Application of high-speed DIC in dynamic deformation and failure of materials
- 格式:doc
- 大小:28.05 KB
- 文档页数:3
[8]Nemat -Nasser S ,Li Jiangyu.Electromechanical response of ionic polymer -metal composites [J ].Journal of Applie Physics ,2000,87(7):3321-3331.[9]Bonomo C ,Fortuna L ,Giannone P ,et al.A method to charac -terize the deformation of an IPMC sensing membrane [J ].Sen -sors and Actuators A ,2005,123/124:146-154.[10]Shahinpoor M ,Kim K J.Ionic polymer -metal composites :I.fundamentals [J ].Smart Materials and Structures ,2001,10:819-833.[11]金宁,王帮峰,卞侃,等.面粗化工艺对IPMC 的制备及性能影响[J ].功能材料,2008,39(11):1933-1936.DH36钢是一种熔点高、韧性好和可焊接性优良的新型高强度船用钢,其力学行为近些年来已引起研究者的极大兴趣。
其中,DH36钢塑性流动中存在的异于静态“时效”和“PLC 锯齿屈服动态应变时效”的“第3种动态应变时效”现象[1-2]是DH36钢的一个显著特性。
数十年来,研究者对静态应变时效和PLC 锯齿屈服的动态应变时效现象和机理进行了大量的描述和解释,Kocks [3]、Reed-Hill [4]、Kaufman [5]和Cho [6]等人认为,这两种时效现象是由于金属材料在塑性变形的过程中,运动位错和溶质原子相互作用的效果。
钱匡武[7-10]等人指出动态应变时效是金属和合金中移动着的溶质原子(如钢中的C 、N )和运动中的位错发生交互作用时所表现的一种强化现象,而时效对金属疲劳、断裂等现象有很大影响。
2021 No.4April2021年第4期4月混凝土与水泥制品CHINA CONCRETE AND CEMENT PRODUCTS 超高性能混凝土 (UHPC 冤动态损伤机理综述吴永魁,姚一鸣(东南大学土木工程学院,江苏南京210000)摘要:总结分析了超高性能混凝土(UHPC )现有研究成果,综述了其超高性能机理、单调拉伸和循环荷载下的本构关系、低周期疲劳状态下的损伤过程及微观损伤机理等,并对未来的研究方向提出了建议。
关键词:超高性能混凝土;协同效应;本构关系;微观机理中图分类号:TU528.31文献标识码:A doi:10.19761/j.1000-4637.2021.04.001.06Review of Dynamic Damage Mechanism of Ultra-high Performance ConcreteWU Yong-kui, YA O Yi-ming(School of Civil Engineering, Southeast University, Nanjing 210000, China)Abstract: Based on the summary and analysis of the research works of UHPC, the ultra -high performancemechanism of UHPC, the constitutive relation under monotone tensile and cyclic loads, the damage process under lowcycle fatigue and the microscopic damage mechanism were summarized. Some suggestions for the future research direction were also provided.Key words: Ultra-high performance concrete; Synergistic effect; Constitutive relation; Microscopic mechanism0前言普通混凝土脆性大、抗拉强度低,尤其是在动态荷载下抗裂性能差,难以满足当今建筑对安全性及耐久性的要求。
㊀第49卷第4期煤炭科学技术Vol 49㊀No 4㊀㊀2021年4月CoalScienceandTechnology㊀Apr.2021㊀移动扫码阅读邓志刚.动静载作用下煤岩多场耦合冲击危险性动态评价技术[J].煤炭科学技术,2021,49(4):121-132 doi:10 13199/j cnki cst 2021 04 015DENGZhigang.Multi-fieldcouplingdynamicevaluationmethodofrockbursthazardconsideringdynamicandstaticload[J].CoalScienceandTechnology,2021,49(4):121-132 doi:10 13199/j cnki cst 2021 04 015动静载作用下煤岩多场耦合冲击危险性动态评价技术邓㊀志㊀刚1,2(1.煤炭科学技术研究院有限公司安全分院,北京㊀100013;2.煤炭资源高效开采与洁净利用国家重点实验室,北京㊀100013)摘㊀要:深部开采冲击地压灾害孕灾过程中既有静态基础量又有动态变化量,剧增的原岩应力与覆岩断裂㊁井下爆破等引起的动载扰动是诱发冲击地压灾害的源头,因此实现冲击危险性快速㊁高精度评价必须综合考虑动静载作用㊂笔者开展了典型煤岩霍普金森压杆试验及数值模拟,分析了动载对煤岩体破坏作用以及对应力场的影响,针对应力变化可以直接引起介质中震动波波速变化,且波速变化前的幅值与变化幅度均受应力场影响这一特性,掌握了震动场与应力场的耦合关系,建立了多场耦合冲击危险性动态评价技术:以原岩应力场表示煤岩孕灾过程的静态基础量,以采动应力场和震动场表示煤岩孕灾过程的动态变化量,以波速异常指数㊁波速梯度指数㊁应力异常指数㊁应力梯度指数为评价指标可实现煤岩冲击危险性动态评价㊂研究结果表明:动载作用下能量以震动波形式传递,造成应力场的重新分布,应力呈现分区传递特点,并且在能量达到某一阈值后引起煤岩损伤破坏,但无论动载直接作用在岩石上还是煤体上,岩石是能量传递路径,煤层是能量耗散㊁释放主体,破坏主要发生在煤体中㊂多场耦合冲击危险性评价技术在某工作面经现场应用,在工作面逐渐揭露断层过程中冲击危险性由强冲击危险性降低到中等冲击危险性,现场监测数据表明评价结果与现场实际相符㊂关键词:动静载荷;冲击危险性;震动场;多场耦合;动态评价中图分类号:TD324㊀㊀㊀文献标志码:A㊀㊀㊀文章编号:0253-2336(2021)04-0121-12Multi-fieldcouplingdynamicevaluationmethodofrockbursthazardconsideringdynamicandstaticloadDENGZhigang1,2(1.MineSafetyTechnologyBranch,ChinaCoalResearchInstitute,Beijing㊀100013,China;2.StateKeyLaboratoryofCoalMiningandCleanUtilization,Beijing㊀100013,China)收稿日期:2020-12-02;责任编辑:朱恩光基金项目:国家科技重大专项资助项目(2016ZX05045003-006-002);国家自然科学基金面上资助项目(51674143)作者简介:邓志刚(1981 ),男,吉林长春人,研究员,博士,中国煤炭科工集团三级首席科学家㊂Tel:010-84261581,E-mail:dengzhigang2004@163.comAbstract:Staticbasicquantityanddynamicvariationquantityexistintheprocessofrockburstindeepmining.Dynamicloaddisturbanceandtheincreasingofin-situstressfieldarethesourceofrockburst.Therefore,thedynamicandstaticloadmustbeconsideredcomprehensivelyinthefastandhigh-precisionevaluationofrockbursthazard.Hopkinsonpressurebarexperimentsandnumericalsimulationswerecarriedouttoanalyzetheinfluencesofdynamicloadonthedamageandstressfieldofthecoalrock.Inviewofthefactthatthechangeofstresscoulddi⁃rectlycausethechangeofvibrationwavevelocityandtheamplitudebeforeandafterthechangeofwavevelocitywereaffectedbythestressfield,thecouplingrelationshipbetweenvibrationfieldandstressfieldwasmasteredandthemulti-fieldcouplingdynamicevaluationmethodofrockbursthazardwasestablished.Intheprocessofcatastrophe,thein-situstressfieldrepresentsthestaticfoundationquantity,andtheminingstressfieldandthevibrationfieldrepresentthedynamicchangequantity.Thewavevelocityanomalyindex,wavevelocitygradientin⁃dex,stressanomalyindexandstressgradientindexareusedasevaluationindexestorealizedynamicevaluationofrockbursthazard.There⁃sultsshowthattheenergyistransmittedintheformofvibrationwaveunderdynamicload,resultingintheredistributionofstressfield.Thestresspresentsthecharacteristicsofzonaltransmission,andcausesthedamageofcoalandrockwhentheenergyreachesacertainthreshold.However,nomatterthedynamicloaddirectlyactsontherockorthecoal,therockistheenergytransferpath,thecoalseamisthemainbodyofenergydissipationandrelease,andthefailuremainlyoccursinthecoal.Themulti-fieldcouplingdynamicevaluationmethodofrockburst1212021年第4期煤炭科学技术第49卷hazardwasappliedonacertainworkingface.Therockbursthazardwasreducedfromstrongtomediumintheprocessofgraduallyexposingfaults.Thefieldmonitoringdatashowedthattheevaluationresultswereconsistentwiththeactualsituation.Keywords:dynamicandstaticloads;rockbursthazard;vibrationfield;multi-fieldcoupling;dynamicevaluation0㊀引㊀㊀言我国多数矿井进入深部开采阶段,冲击地压灾害频度㊁强度显著增加[1],冲击地压防治工作任重道远㊂2018年8月1日,国家煤矿安全监察局印发的‘防治煤矿冲击地压细则“开始实施,规定: 开采具有冲击倾向性的煤层必须进行冲击危险性评价 , 开采冲击地压煤层必须进行采区㊁采掘工作面冲击危险性评价 , 当评估煤层有冲击倾向性时,应当进行冲击危险性评价 ,并且以冲击危险性评价结果作为冲击地压监测㊁卸压等工作开展的依据㊂目前冲击危险性评价方法较多㊂一类是以冲击地压主要诱因为切入点的冲击危险性静态评价技术,如窦林名等[2]提出的综合指数法,综合考虑了岩体结构㊁力学特性㊁地质因素等条件㊂姜福兴等[3]采用模糊数学的方法,用垂直应力与煤体单轴抗压强度的比值㊁弹性能量指数2个指标评价煤体的冲击危险性,且根据应力叠加原理建立了冲击危险性评价模型,后又在此基础上提出了冲击地压分类评价技术手段㊂张科学等[6]综合考虑开采深度㊁冲击倾向性㊁煤层顶底板性质㊁地质构造㊁开采技术提出了基于层次分析法的煤层冲击危险性模糊综合评价模型㊂张宏伟等[7]应用地质动力区划方法对煤矿冲击危险进行评价㊂邓志刚[10]基于三维地应力场反演技术开展了相关研究,综合考虑构造应力㊁采动影响等因素,实现了对采区宏观区域的冲击危险评价㊂欧阳振华等[11]考虑瓦斯作用,将煤层气属性㊁抽采效果分析作为一类地质因素㊁开采技术条件,提出一种含瓦斯煤冲击危险性改进型综合指数评价方法㊂但是由于冲击地压致灾机理不清,灾害孕育㊁发展㊁发生的过程中影响因素繁杂,以及复杂多变的采掘及地质条件,致使静态评价方法主要是宏观上为煤层开采前的防冲工作提供一定参考,缺少对于采掘过程中因局部区域地质及开采条件变化㊁卸压措施等因素引起的冲击危险性动态变化的量化能力,因此,另一类基于现场监测数据的冲击危险性动态评价技术是当前研究工作的重点,如刘少虹等[12]基于地音与电磁波CT探测数据提出的冲击危险性层次化评价方法;李宏艳等[14]基于微震监测数据建立的考虑响应能量和无响应时间的冲击危险性动态评价技术㊂姜福兴等[15]应用矿压观测法观测冲击地压工作面支架压力㊁立柱压缩量,判断工作面顶板来压规律,结合巷道的变形及其围岩应力分布进行观测,评价及预测冲击危险性㊂何学秋等[17]采用电磁辐射法评价冲击危险性,主要参数为电磁辐射强度和脉冲数㊂曹民远等[19]采用数值模拟和理论计算的方法分析了采掘工作面应力扰动叠加的影响,提出了近直立煤层动态权重评价法的计算体系㊂但是冲击地压的孕灾过程中既有静态基础量,又有动态变化量,因此目前仅依靠单一理论或方法快速㊁高精度的进行冲击危险性评价难度较大㊂我国煤矿进入深部开采后,剧增的原岩应力场成为冲击地压灾害发生的必要条件㊂覆岩断裂㊁井下爆破等带来的强动载扰动易成为诱发冲击灾变的充分条件,但目前冲击危险性评价的研究工作中少有兼顾动静载综合作用的理论或方法㊂为此,笔者以震动场㊁采动应力场表示孕灾过程中动态变化量,以原岩应力场表示孕灾过程中静态基础量㊂提出了波速异常指数㊁波速梯度指数㊁应力异常指数㊁应力梯度指数4个冲击危险性评价指标,并在此基础上建立了多场耦合冲击危险性动态评价技术以实现井下高精度冲击危险性动态评价㊂1㊀煤岩动载破坏试验分析1.1㊀典型煤岩动载破坏霍普金森压杆试验分离式霍普金森压杆(SHPB)试验系统(图1)由压杆系统㊁测量系统和数据采集处理系统3个部分组成㊂图1㊀SHPB试验装置Fig.1㊀SHPBexperimentaldevice当动载试块受到不同气压后获得不同初速度撞击入射杆,在杆内产生入射脉冲εi,试件在该应力作用下产生高速变形,同时产生反射脉冲εr和透射脉冲εt㊂如图2所示㊂选取强冲击倾向性煤样试件4221邓志刚等:动静载作用下煤岩多场耦合冲击危险性动态评价技术2021年第4期个,中砂岩试件4个,尺寸均为ø50mmˑ100mm㊂本次试验煤岩样取样点分别为某典型冲击地压矿井3-1煤回风大巷HF6导点处顶板和311102工作面煤层㊂煤岩物理力学参数见表1㊂分别采用气压0.2㊁0.4㊁0.6㊁0.8MPa发射子弹,撞击入射杆,记录其入射㊁反射和透射波曲线㊂图2㊀SHPB试验原理Fig.2㊀PrincipleofSHPBexperimental㊀㊀煤样㊁岩样入射波㊁反射波和透射波曲线如图3㊁图4所示,仅出示驱动应力为0.2㊁0.4㊁0.8MPa时的结果㊂对比分析可知,随着撞击杆驱动应力增加,入射波波速幅值㊁入射波波速变化率均有所增加,反射波和透射波波峰和波谷增高,透射波持续时间缩短,这也和冲击地压发生的突然㊁猛烈性质一致㊂1.2㊀典型煤岩动载破坏数值模拟采取有限元方法对煤岩霍普金森压杆试验进行模拟,进一步分析动载作用下煤岩体损伤破坏机理㊂数值模型如图5所示㊂模拟试件分为煤样㊁岩样㊁煤-岩组合样,岩-煤组合样,其中煤-岩组合样是指震动波入射端在煤上,岩-煤组合样是指震动波入射端在岩石上㊂煤样㊁岩样尺寸为ø50mmˑ100mm,煤岩组合样中煤㊁岩样尺寸均为ø50mmˑ50mm㊂入射杆㊁透射杆材料参数按钢材设定[20],密度为7794kg/m3,弹性模量为211GPa,泊松比为0.285㊂表1㊀煤岩物理力学参数Table1㊀Physicalandmechanicalparametersofcoalandrock试样密度/(kg㊃m-3)单轴抗压强度/MPa弹性模量/GPa泊松比抗拉强度/MPa内摩擦角/(ʎ)黏聚力/MPa煤样1325.4038.7623.4740.2822.49318.5213.894岩样2111.9840.4347.3950.2222.83935.6015.525图3㊀煤样不同气压下的波形Fig.3㊀Waveformsofcoalunderdifferentairpressure图4㊀岩样不同气压下的波形Fig.4㊀Waveformsofrockunderdifferentairpressure3212021年第4期煤炭科学技术第49卷图5㊀霍普金森试验数值模型Fig.5㊀SHPBexperimentnumericalmodel煤岩物理力学参数见表2㊂加载在入射杆端部的震动波信号为SHPB试验中不同气压驱动子弹记录的入射杆应变波信号㊂不同震动波作用下煤岩体应力㊁损伤分布如图6 图9所示,限于篇幅煤样㊁岩样仅出示驱动应力为0.2㊁0.4㊁0.8MPa时的结果,煤岩组合样仅出示驱动应力为0.2MPa和0.8MPa时的结果㊂分析可知,震动波作用引起煤岩应力重新分布,应力传递呈现分区传递特点,即存在应力传递优势面㊂在震动波波速峰值㊁波速变化率较低时,震动波对煤岩介质表2㊀数值模拟参数Table2㊀Numericalsimulationparameters试样弹性模量/GPa泊松比密度/(kg㊃m-3)屈服强度/MPa单轴抗压强度/MPa内摩擦角/(ʎ)黏聚力/MPa煤样3.4740.32132017.2524.6018.5213.890岩样7.6830.23251944.9750.2743.1010.656图6㊀煤样应力与损伤分布情况Fig.6㊀Stressanddamagedistributionofcoalspecimen没有破坏作用,即震动波对煤岩介质的破坏与损伤存在阈值㊂煤岩体发生破坏的位置同时是单元受拉损伤㊁受压损伤极值位置,因此震动波作用下煤岩体破坏模式为拉压复合破坏㊂无论震动波直接作用在岩石上还是煤上,煤岩组合试件的破坏主要发生在煤体上,说明岩石是能量传播的路径,煤体是能量耗421邓志刚等:动静载作用下煤岩多场耦合冲击危险性动态评价技术2021年第4期图7㊀岩样应力与损伤分布情况Fig.7㊀Stressanddamagedistributionofrockspecimen图8㊀煤-岩样应力与损伤分布情况Fig.8㊀Stressanddamagedistributionofcoal-rockspecimen5212021年第4期煤炭科学技术第49卷图9㊀岩-煤样应力与损伤分布情况Fig.9㊀Stressanddamagedistributionofrock-coalspecimen散㊁释放的主体,这也符合冲击地压主要发生在煤层中的事实㊂1.3㊀震动场与煤岩冲击危险性的关联依据采煤工作面和掘进工作面煤岩体破坏失稳主要形式,结合SHPB试验和数值模拟研究结果,煤岩体震动场与冲击危险性的关系总结如下:①震动波是能量传递的载体,震动波所具有的能量超过一定阈值时可引起煤岩破坏,易诱发冲击地压灾害㊂②震动波传递引起应力分布变化,应力传递沿优势面进行㊂随着震动波能量增加,优势面周围易出现煤岩损伤破坏,引起煤岩冲击灾变㊂③当震源位于岩层时,能量传递速度较快,在煤岩界面发生衰减,煤体在震动波作用下发生破坏;当震源位于煤层时,煤体对震动波传递速度相对较慢,能量多耗散在煤层中,主要诱发煤体破坏,对岩层造成的破坏较小㊂2㊀煤岩动㊁静载冲击危险性评价指标考虑动静载作用煤岩冲击危险性评价指标包括应力场相关指标和震动场相关指标,其中静载作用主要表现为应力场的变化,动载作用主要引起震动场的变化㊂2.1㊀应力场冲击危险性评价指标基于煤矿冲击地压应力控制理论[21],煤岩体冲击破坏是应力作用的结果,一是取决于应力绝对值大小,二是应力梯度变化㊂因此,建立应力异常指数和应力梯度指数㊂应力异常指数表征一定区域内不同位置应力差异的指标,计算公式为γσ=σr-σminσmax-σminˑ10(1)式中:γσ为应力异常指数;σr为监测区域某点应力,MPa;σmax㊁σmin分别为监测区域内实时应力最大值和最小值,MPa㊂应力梯度指数是表征一定区域内不同位置应力变化速度差异的指标,计算公式为gσ=gσr-gσmingσmax-gσminˑ10(2)式中:gσ为应力梯度异常指数;gσr为监测区域内某一点的应力场梯度;gσmax㊁gσmin分别为监测区域内应力最大㊁最小梯度㊂2.2㊀震动场冲击危险性评价指标综上,震动场波速绝对值㊁变化速率对煤岩破坏有显著影响㊂因此,提出表征震动波波速的波速异常指数和表征震动波波速变化速率的波速梯度指数,作为2个基于震动场的冲击危险性动态评价指数㊂波速异常指数表征一定区域内不同位置震动波波速的差异,计算公式为γθ=θr-θminθmax-θminˑ10(3)式中:γθ为波速异常指数;θr为监测区域某点震动波621邓志刚等:动静载作用下煤岩多场耦合冲击危险性动态评价技术2021年第4期波速,m/s;θmax㊁θmin分别为监测区域内震动波波速最大值和最小值,m/s㊂波速梯度指数gθ是通过震动场波速变化速率表征煤岩体发生冲击地压的危险程度,计算公式为gθ=gθr-gθmingθmax-gθminˑ10(4)式中:gθ为波速梯度异常指数;gθr为监测区域内某一点的震动波波速梯度;gθmax㊁gθmin为监测区域内震动波波速最大㊁最小梯度㊂3㊀煤岩多场耦合冲击危险性动态评价技术结合笔者以往研究[22]和上述研究成果可知,一方面煤岩应力场改变可以直接引起介质中震动波波速变化,且波速变化前的幅值与变化幅度均与应力场大小相关;另一方面,震动场传递会造成煤岩应力场的重新分布㊂因此,考虑动㊁静载作用开展煤岩冲击危险性动态评价关键在于分析震动场-应力场的耦合作用㊂煤炭开采之前,煤岩体处于重力和构造应力组成的原岩应力场之中;开采过程中,煤岩体形成采动应力场;原岩应力场和采动应力场相互作用,煤岩体损伤变形,震动产生,以弹性波的形式向外传播形成震动场㊂冲击地压是原岩应力场㊁采动应力场和震动场综合作用的结果,煤岩体中多场耦合关系如图10所示㊂图10㊀煤岩体中多场耦合关系Fig.10㊀Fieldincoalrockmassanditscouplingrelationship为了准确描述煤岩体中各种场的关系,从冲击危险性评价角度建立统一数学模型R(ti,s;mj)=0㊀㊀(i,j=1,2,3, )(5)式中:ti为场的变量,一般情况下有多个,既可以是标量也可以是矢量;s为场的源或者汇,通常只有一个;mj为煤岩体的物理性质变量,如弹性模量㊁泊松比㊁剪切模量㊁波速等多个变量㊂基于该函数煤岩体中的3种场的冲击危险性评价具体表达式如下:1)原岩应力场为Y(h,c,f;ρ,μ)=0(6)式中:h为采深;c为地应力;f为体积力;ρ为煤岩体密度;μ为泊松比㊂2)震动场为S(x,y,z,t,E,f;ρ,μ)=0(7)式中:x㊁y㊁z为震源的位置坐标;t为发震时间;E为震源能量㊂3)采动应力场为F(u,f;ρ,μ)=0(8)式中:u为位移㊂3.1㊀原岩应力场与采动应力场(RM)耦合冲击危险性评价模型㊀㊀原岩应力场冲击危险性评价指标见表3㊂原岩应力场冲击危险性指数定义为R=(R1+R2+R3+R4)/4(9)其中,R1㊁R2㊁R3㊁R4为不同评价指标得分㊂原岩应力冲击危险性反映煤岩体自身发生冲击地压的固有属性,其数值大小反映了煤岩体采动后,发生自发型冲击地压的可能性和危险性㊂原岩应力场冲击危险性指数取值与冲击危险等级关系见表4㊂表3㊀原岩应力场冲击危险性评价指标Table3㊀Rockbursthazardevaluationindexsofin-situstressfield变量影响因素阈值分值R1开采深度hhɤ400m1400m<hɤ600m2600m<hɤ800m3h>800m4R2向落差大于3m的断层推进的工作面或巷道,工作面或掘进工作面至断层的距离LdLdȡ100m150mɤLd<100m220mɤLd<50m3Ld<20m4R3向背斜或向斜推进的工作面或巷道,工作面或掘进工作面与之距离LzLzȡ50m120mɤLz<50m210mɤLz<20m3Lz<10m4R4同一水平煤层冲击地压发生次数nn=01n=122ɤn<33nȡ34㊀㊀采动应力冲击危险指标包括:应力异常指数和应力梯度指数㊂二者取值与冲击危险等级之间的关系见表5㊁表6㊂7212021年第4期煤炭科学技术第49卷表4㊀原岩应力场冲击危险性等级划分标准Table4㊀Rockbursthazardclassificationcriteriabasedonin-situstressfield阈值冲击危险性评价指数冲击危险等级Rɤ11无1<R<22弱2ɤR<33中等Rȡ34强表5㊀应力异常指数冲击危险性等级划分标准Table5㊀Rockbursthazardclassificationcriteriabasedonstressanomalyindex阈值冲击危险性评价指数冲击危险等级γσɤ11无1<γσ<32弱3ɤγσ<53中等γσȡ54强表6㊀应力梯度指数冲击危险性等级划分标准Table6㊀Rockbursthazardclassificationcriteriabasedonstressgradientindex阈值冲击危险性评价指数冲击危险等级gθɤ11无1<gθ<32弱3ɤgθ<53中等gθȡ54强㊀㊀基于原岩应力场与采动应力场耦合的冲击危险性评价模型为DRM=a1R+b1γσ+c1gσ(10)㊀㊀其中:DRM是原岩应力场与采动应力场耦合的冲击危险性评价指数;a1,b1,c1分别为原岩应力场和采动应力场耦合冲击危险性评价权重系数,不同矿井取值不同㊂原岩应力场与采动应力场耦合的冲击危险性指数取值与冲击危险等级之间的关系见表7㊂表7㊀原岩应力场与采动应力场耦合冲击危险性等级划分标准Table7㊀Rockbursthazardclassificationcriteriabasedoncouplingofin-situstressfieldandminingstressfield阈值冲击危险性评价指数冲击危险等级DRMɤ11无1<DRM<32弱3ɤDRM<53中等DRMȡ54强3.2㊀原岩应力场与震动场(RS)耦合冲击危险性评价模型㊀㊀震动场冲击危险性指标包括:波速异常指数和波速梯度指数㊂二者取值与冲击危险等级之间的关系见表8㊁表9㊂原岩应力场与震动场耦合的冲击危险性评价模型为DRS=a2R+b2γθ+c2gθ(11)㊀㊀其中:DRS为原岩应力场和震动场耦合的冲击危险性评价指数;a2,b2,c2为原岩应力场和震动场耦合冲击危险性评价权重系数,不同矿井取值不同㊂原岩应力场与震动场耦合的冲击危险性指数取值与冲击危险等级之间的关系见表10㊂表8㊀波速异常指数冲击危险性等级划分标准Table8㊀Rockbursthazardclassificationcriteriabasedonwavevelocityanomalyindex阈值冲击危险性评价指数冲击危险等级γθɤ11无1<γθ<32弱3ɤγθ<53中等γθȡ54强表9㊀波速梯度指数冲击危险性等级划分标准Table9㊀Rockbursthazardclassificationcriteriabasedonwavevelocitygradientindex阈值冲击危险性评价指数冲击危险等级gθɤ11无1<gθ<32弱3ɤgθ<53中等gθȡ54强表10㊀原岩应力场与震动场耦合冲击危险性等级划分标准Table10㊀Rockbursthazardclassificationcriteriabasedoncouplingofin-situstressfieldandvibrationfield阈值冲击危险性评价指数冲击危险等级DRSɤ11无1<DRS<32弱3ɤDRS<53中等DRSȡ54强3.3㊀采动应力场与震动场(MS)耦合冲击危险性评价模型㊀㊀采动应力场与震动场耦合冲击危险性评价模型为DMS=a3γσ+b3gσ+c3γθ+d3gθ(12)㊀㊀其中:DMS为采动应力场与震动场耦合冲击危险性评价指数;a3,b3,c3,d3分别为应力异常指数,应力梯度指数,波速异常指数,波速梯度指数的权重系数,不同矿井取值不同㊂采动应力场与震动场耦合的冲击危险性指数取值与冲击危险等级之间的关系见表11㊂3.4㊀多场耦合(RMS)冲击危险性动态评价模型冲击地压发生的本质是煤岩体具有的冲击能量821邓志刚等:动静载作用下煤岩多场耦合冲击危险性动态评价技术2021年第4期超过围岩吸收能量的极限㊂应力场可以表现煤岩体表11㊀采动应力场与震动场耦合冲击危险性等级划分标准Table11㊀Rockbursthazardclassificationcriteriabasedoncouplingofminingstressfieldandvibrationfield阈值冲击危险性评价指数冲击危险等级DMSɤ11无1<DMS<32弱3ɤDMS<53中等DMSȡ54强未受扰动的地应力场和受采动影响而形成的采动应力场,是煤岩体承受应力的状态量㊂震动场主要表现煤岩体无法承受外部高应力差作用发生损伤破坏,在此过程中以震动形式释放出能量的时空域,可以表现煤岩体积蓄能量的过程㊂冲击地压的不仅发生在高应力区,也发生在煤岩体由低应力区向高应力区转化的过程中,采用煤岩体多场耦合的方法可以充分全面评价监测区域的冲击危险性㊂基于上述对RM耦合㊁RS耦合和MS耦合的冲击危险性评价模型,构建煤岩体多场耦合(RMS)冲击危险性动态评价模型㊂冲击危险性指数算法如下D=DRM+DRS+DMS(13)多场耦合冲击危险性评价指数D与冲击危险性等级的对应关系见表12㊂表12㊀多场耦合(RMS)冲击危险性等级划分标准Table12㊀Rockbursthazardclassificationcriteriabasedonmulti-fieldcoupling阈值冲击危险性评价指数冲击危险等级Dɤ51无5<D<102弱10ɤD<153中等Dȡ154强4㊀工程应用选取典型冲击地压矿井311202工作面为现场,开展相关应用㊂4.1㊀工作面概况311202工作面是该矿井12盘区第2个回采工作面,是首个沿空回采工作面,位于12盘区北部,为311201接续工作面,东部以12盘区辅运大巷为界,西部至12盘区西部边界,南部为实体煤,北部为正在回采的311201工作面,保护煤柱宽度6m㊂该工作面采用走向长壁综合机械化一次采全高采煤法,采高5.25m,工作面倾斜长度299m,走向长度3140m,全部垮落法管理顶板,两回采巷道采用液压支架进行超前支护㊂工作面布置如图11所示㊂图11㊀311202工作面布置Fig.11㊀LayoutofNo.311202miningface经鉴定,3-1煤及其顶底板均具有弱冲击倾向性,3-1煤层冲击危险等级为中等冲击危险㊂311202工作面所在地层构造形态总体为一向北西倾斜的单斜构造,倾向300ʎ 320ʎ㊁倾角1ʎ 3ʎ,地层产状沿走向及倾向均有一定变化,沿走向发育有宽缓的波状起伏㊂311202工作面受DF19㊁DF18㊁F22㊁F24断层影响较大,其中DF19断层影响最为显著,该断层走向长度约1200m,落差6.5 10.0m,预计影响311202工作面走向长度560m,对生产过程中的冲击地压灾害影响最大㊂311202工作面主要断层情况见表13,311202工作面煤层顶底板结构特征见表14㊂表13㊀311202工作面断层特征Table13㊀FaultcharacteristicsofNo.311202miningface断层走向/(ʎ)倾向/(ʎ)倾角/(ʎ)性质落差/mDF183124270正断层0 5.0DF192962649正断层6.5 10.0F222851530正断层1.1F243579046正断层0.3表14㊀311202工作面煤层顶底板结构特征Table14㊀StructuralcharacteristicsofcoalseamroofandfloorinNo.311202miningface顶底板岩性厚度/m平均厚度/m基本顶细粒砂岩9.25 19.7015.84直接顶砂质泥岩2.28 12.858.50直接底砂质泥岩4.69 12.997.68基本底细粒砂岩5.21 21.4514.824.2㊀多场耦合冲击危险性动态评价原岩应力场包括重力场和构造应力场,通过地应力测试及三维反演可得到㊂采动应力场通过应力在线监测系统监测得到㊂在311202回风巷生产帮安设应力在线监测系统,距离开切眼60m生产帮侧9212021年第4期煤炭科学技术第49卷安设第1组应力测点,之后每隔40m安设一组,共布置10组,主要监测工作面超前300m范围内回风巷一侧煤体采动应力分布情况;每组垂直于煤壁施工2个ø44mm应力钻孔,孔深分别为11m和16m,钻孔间距1m㊂当测点与工作面距离小于30m时开始回撤,随着工作面回采,测点依次前移,直至回采结束㊂测点布置方案如图12所示㊂收集了311202工作面2019年5月至11月的回风巷采动应力监测数据,并进行了分析和应用㊂图12㊀应力在线监测测点布置Fig.12㊀Layoutofmeasuringpointsforonlinestressmonitoring工作面震动场数据由ARAMISM/E微震监测系统监测得到㊂311202工作面测站布置情况如图13所示㊂井下布置4台微震拾震器(编号S9至S12)和6个移动式监测探头(编号T19至T24),地面布置1台编号为A2矿震测站组成联合监测网,对工作面进行全面监测㊂图13㊀311202回采工作面微震监测系统测站布置Fig.13㊀ArrangementofthestationofmicroseismicmonitoringsysteminNo.311202miningface选取311202工作面回采至距离DF19断层10m时,开始揭露DF19断层时以及揭露DF19断层295m时,3个时间节点311202工作面超前150m范围内的冲击危险性评价情况㊂回采至距离DF19断层10m时,计算原岩应力场冲击危险性指数R,3-1煤层平均采深620m,R1=3;工作面距离断层10m,R2=4;工作面前方无背斜或向斜,R3=1;该区域未发生过冲击地压,R4=1㊂根据式(9)计算得到R=2.3㊂按照式(1)㊁式(2)计算得到γσ=2.3,gσ=3.3㊂311202工作面最大主应力与水平应力比约为1,取a1=b1=c1=0.5,根据式(10)计算得到DRM=4.0㊂同理计算出,揭露断层时DRM=5.0;揭露断层295m时DRM=4.0㊂回采至距离DF19断层10m时,R=2.3;根据式(3)㊁(4)计算得到γθ=3.4,gθ=5.0;工作面最大主应力与水平应力比约为1,取a2=b2=c2=0.5,根据式(11)计算得到DRS=5.4㊂同理计算出,揭露断层时DRS=6.5;揭露断层295m时DRS=4.5㊂回采至距离DF19断层10m时,根据式(1)㊁式(2)计算得到γσ=2.3,gσ=3.3;根据式(3)㊁式(4)计算得到γθ=3.4,gθ=5.0㊂311202工作面最大主应力与水平应力比约为1,取a3=b3=c3=d3=0.5,根据式(12)计算得到DMS=7.0㊂同理计算出,揭露断层时DMS=9.2;揭露断层295m时DMS=6.2㊂根据式(13)计算得到,回采至距离DF19断层10m时D=16.4,具有强冲击危险性;揭露断层时D=20.7,具有强冲击危险性;揭露断层295m时D=14.7,具有中等冲击危险性㊂4.3㊀评价结果验证与对比依据311202工作面回采期间超前工作面300m范围内微震监测数据㊁钻孔应力监测数据平均值验证评价结果㊂在距离DF19断层10m附近,当天微震释放总能量约为19300J,单次最大能量为7000J,微震事件26次;揭露断层时,当天微震释放总能量约为22300J,单次最大能量约为9000J,微震事件17次;揭露断层296m附近,当天微震释放总能量约为7700J,单次最大能量约为6000J,微震事件6次㊂从微震事件能量㊁频次中可以看出冲击危险性降低㊂在距离断层10m附近㊁揭露断层附近以及揭露断层296m附近选取3个煤层钻孔应力测点,3个测点应力监测数据如图14所示㊂工作面推进过程中煤层应力数值增加,强冲击危险区域应力始终高于中等冲击危险区域㊂微震和煤层钻孔应力监测数据验证了冲击危险性动态评价结果的合理性㊂图14㊀煤层钻孔应力监测数据平均值Fig.14㊀Averagevaluesofstressmonitoringdatasincoalseam031。
表面技术第53卷第5期高温对含氢DLC涂层的微观结构及力学性能的影响贾伟飞1,梁灿棉2,胡锋1,2*(1.武汉科技大学 高性能钢铁材料及其应用省部共建协同创新中心,武汉 430081;2.广东星联精密机械有限公司,广东 佛山 528251)摘要:目的针对含氢DLC涂层热稳定性很差的问题,探究高温下含氢DLC涂层的微观组织变化特征,以及高温对其力学性能的影响。
方法采用等离子体强化化学气相沉积(Plasma Enhanced Chemical Vapor Deposition, PECVD)在S136模具不锈钢表面沉积以Si为过渡层的含氢DLC复合涂层,利用光学显微镜、扫描电镜、拉曼光谱、X射线电子衍射仪、三维轮廓仪研究DLC涂层的微观结构,采用划痕测试仪、往复式摩擦磨损试验机、纳米压痕仪研究DLC涂层的力学性能,并通过LAMMPS软件,利用液相淬火法建立含氢DLC模型,模拟分析经高温处理后涂层的组织变化特征和纳米压痕行为。
结果在400 ℃、2 h的退火条件下,拉曼谱峰强度I D/I G由未退火的0.7增至1.5,涂层发生了石墨化转变,同时基线斜率下降,H元素析出;XPS结果表明,在此条件下涂层中sp2杂化组织相对增加,氧元素增多,涂层粗糙度增大;在600 ℃、2 h退火条件下,DLC发生了严重氧化,LAMMPS模拟结果表明,在400 ℃高温下涂层的分子键长变短,表明sp3杂化组织在高温下吸收能量,并向sp2杂化转变。
纳米压痕模拟结果显示,在400 ℃下退火后,涂层的硬度下降。
结论在400 ℃下退火处理后,涂层中的H元素释放,涂层内应力减小,保证了涂层的强度;在600 ℃退火条件下,过渡层的Si和DLC在高温下形成了C—Si键,使得DLC薄膜部分被保留;LAMMPS 模拟结果表明,在高温下涂层发生了石墨化转变,涂层的硬度减小。
关键词:含氢DLC涂层;退火处理;微观组织;力学性能;LAMMPS模拟中图分类号:TB332 文献标志码:A 文章编号:1001-3660(2024)05-0174-10DOI:10.16490/ki.issn.1001-3660.2024.05.018Effect of High-temperature on Microstructure and MechanicalProperties of Hydrogen-containing DLC CoatingJIA Weifei1, LIANG Canmian2, HU Feng1,2*(1. Collaborative Innovation Center for Advanced Steels, Wuhan University of Science and Technology, Wuhan 430081,China; 2. Guangdong Xinglian Precision Machinery Co., Ltd., Guangdong Foshan 528251, China)ABSTRACT: The thermal stability of hydrogen-containing DLC coating is poor, and the work aims to explore the microstructure changes of hydrogen-containing DLC coating at high temperature and their impact on mechanical properties. The收稿日期:2023-01-09;修订日期:2023-05-18Received:2023-01-09;Revised:2023-05-18基金项目:中国博士后科学基金(2021M700875)Fund:China Postdoctoral Science Foundation (2021M700875)引文格式:贾伟飞, 梁灿棉, 胡锋. 高温对含氢DLC涂层的微观结构及力学性能的影响[J]. 表面技术, 2024, 53(5): 174-183.JIA Weifei, LIANG Canmian, HU Feng. Effect of High-temperature on Microstructure and Mechanical Properties of Hydrogen-containing DLC Coating[J]. Surface Technology, 2024, 53(5): 174-183.*通信作者(Corresponding author)第53卷第5期贾伟飞,等:高温对含氢DLC涂层的微观结构及力学性能的影响·175·hydrogen-containing DLC composite coating with Si as the transitional layer was deposited on the surface of S136 stainless steel by plasma enhanced chemical vapor deposition (PECVD). The microstructure of DLC coating was investigated by optical/scanning electron microscopy, Raman spectroscopy, XPS (X-ray photoelectron spectroscopy) and three-dimensional profiler, the mechanical properties of DLC coating were studied by scratch, reciprocating friction wear and nano-indentation experiment, and the nano-indentation experiment behavior of DLC coating was simulated by LAMMPS to analyze the microstructure characteristics in annealing. The coating was subject to annealing conditions of 400 ℃for 2 hours and 600 ℃for 2 hours. Under the former condition, Raman spectroscopy showed an increase in the intensity ratio of the I D/I G peaks from0.7 to 1.5, indicating graphitization transition, accompanied by a decrease in baseline slope and H element segregation. XPSanalysis revealed an increase in sp2 hybridization and oxygen content in the coating under this condition, as well as an increase in surface roughness. At 600 ℃, severe oxidation of the DLC coating was observed. Under that condition, the matrix stainless steel was also oxidized. Molecular dynamics simulations using LAMMPS suggested a decrease in molecular bond length at 400 ℃high temperature. The three-dimensional profile test showed that the roughness under the unannealed condition was mainly from the large particles produced during deposition. At 400 for 2℃h, the coating had the minimum surface roughness. At this time, some large particles in the coating structure fell off, and the coating was basically completely damaged at 600 for℃ 2 h. The roughness was mainly from the original stainless steel roughness. The scratch test showed that under the condition of 400 for℃2 h, due to the release of the internal stress of the coating and the tighter bonding of the transition layer, the coating had the bestbonding effect with the substrate and was the least likely to fall off. The statistical results of LAMMPS simulation showed that the chemical bonds of the original DLC model tended to become shorter after annealing at high temperature. Relative to the unannealed DLC coating, the mechanical properties of DLC coating were best under 400 for℃ 2 h. Under this condition, the precipitation of mixed H elements in the coating led to the transformation of the original C—H sp3 structure, which occupied a large space to the smaller C—C sp3 and C—C sp2 structure, releasing internal stress in the coating, while ensuring the strength.The nano-indentation experiments showed that the elastic recovery and hardness of the coating were the highest at 400 for℃ 2 h, compared with that at other annealing temperature. The structure of the DLC coating containing hydrogen changed due to the precipitation of H element at 400 ℃. On the one hand, the coating structure changed from sp3 to sp2 due to high temperature, and on the other hand, the precipitation of H element changed the original C—H sp3 to C—C sp3, reducing the internal stress of the coating and improving the mechanical properties. The coating is basically damaged at 600 for 2 h, but the substrate still℃retains part of the coating. This is because the transition layer Si reacts with the coating to improve the heat resistance of the remaining coating. Molecular dynamics simulations using LAMMPS showed that the coating undergoes a graphitization transition at high temperature, leading to a reduction in its hardness.KEY WORDS: hydrogen-containing DLC coating; annealing treatment; microstructure; mechanical properties; LAMMPS simulationDLC(Diamond-Like Carbon,类金刚石碳,简称DLC)涂层材料具有超高硬度、低摩擦因数、优良化学稳定性等特点,广泛应用于机械、电子、生物医学等领域[1-3]。
近场动力学理论在脆性材料波散射与裂纹扩展问题的数值模拟王剑锋;钱松荣;石宏顺【摘要】近场动力学(peridynamics,PD)是一个物质点具有通用积分运动方程的连续介质理论,其非局部思想能够很好地处理和解决传统连续介质力学在裂纹尖端解的奇异性问题,也弥补了有限元法(FEM)在断裂问题上网格重构的缺陷,在研究材料的断裂与损伤方面有着独特的优势.基于固体力学和断裂力学理论在应力波传播的研究基础上,通过对比传统波动理论和PD理论中P波的传递速度、传递半径及受载出现的波反射和绕射现象,提出近场力波的概念,从本质上分析了近场力波与应力波传递的区别.用PD理论对含预制缺陷的脆性材料(混凝土)动态断裂过程进行数值模拟,通过分析C15混凝土受冲击载荷断裂过程的能量释放速率,得出近场力波的传递会对裂纹的萌生和扩展产生影响.【期刊名称】《科学技术与工程》【年(卷),期】2019(019)011【总页数】9页(P1-9)【关键词】近场动力学;近场力波;反射波;冲击载荷;裂纹扩展【作者】王剑锋;钱松荣;石宏顺【作者单位】贵州大学机械工程学院,贵阳550025;贵州大学机械工程学院,贵阳550025;贵州大学机械工程学院,贵阳550025【正文语种】中文【中图分类】O382固体力学中波传播特性的研究可以追溯到20世纪初,光的波动理论的提出有力地推动了固体力学波动理论的发展。
随着固体中波的理论在无损探伤与检测、地震学和地震勘探技术方面得到广泛的应用,弹性波散射的研究在解释地震现象、地震监测、冲击下材料和结构的响应、新型材料如复合材料和陶瓷材料在受冲击作用下波的传播、断裂动力学等实际问题中应用越来越广泛,波动问题受到人们普遍的重视。
近年来,相关学者通过实验方法、解析方法和数值方法来研究弹性波的传播特性[1,2]。
数值模拟技术在现代工程领域意义重大,目前对于弹性波研究的数值模拟方法主要有:有限差分方法(FDM)、离散单元法(DEM)、有限元方法(FEM)、伪谱法(PSM)、谱元法(SEM)、反射率法(RM)以及边界元法(BEM)等[3],这些方法基本上都是基于传统的弹性力学的理论基础演变而来,并为波动理论的研究发展产生了巨大的贡献。
0引言直升机由于其具有平移飞行、悬停飞行和垂直起降的能力,使其成为所有飞行器中用途最广泛的类型之一[1]。
迄今为止,直升机已经广泛应用于军事和民用领域,然而,近几十年来,直升机安全问题越来越受到关注。
对直升机事故调查发现,飞机耐撞性被视为关键问题之一。
但直到越南战争时期才引起足够的重视,第一批优先考虑防撞设计的是UH-60黑鹰和AH-64阿帕奇直升机[2]。
在之后的开发中,耐撞性设计变得越来越重要。
而在各种典型的能量吸收结构中,蜂窝结构由于具有高比强度、比刚度和显著的能量吸收性能,在大多数工程领域得到了广泛应用[3]。
迄今为止,在耐撞性研究中,人们开发了许多蜂窝夹层结构来提高能量吸收能力。
目前Sun 等人[4]研究了基于一阶和二阶顶点的分层蜂窝的平面外耐撞性行为。
结果表明,一阶和二阶蜂窝的比能量吸收分别提高了81.3%和185.7%,而峰值力没有增加太多。
Ma 等人[5]研究了仿生自相似规则分层蜂窝在面外冲击载荷下的耐撞性。
分层单元组织可以加强材料强度,从而提高抗压强度和能量吸收能力。
湖南大学[6]和东南大学团队[7]关于蜂窝夹层结构几何属性对其抗冲击的影响有了系统性的研究。
但是,直升机在飞行过程中往往遭受高速冲击,而在这方面的研究目前还相对较少。
所以本文通过ABAQUS 建立了蜂窝夹芯结构的有限元模型,并模拟了破片侵彻夹芯结构的过程,分析了在破片高速贯穿夹芯板时,结构各部分的损伤情况。
并进一步对比了各部分参数的变化对其吸能的影响,旨在进一步了解夹芯结构的面板、芯层的参数和夹芯板耐撞性之间的关系。
1数值仿真模型及参数设置有限元模型分为夹芯结构和破片,其中夹芯板的结构如图1所示,前后面板为边长150mm 的正方形,厚度1mm ;芯层采用边长为4mm,厚度为0.07mm 的正六边形蜂窝,高度为15mm。
破片采用球型破片,其直径为12mm,质量为7.05g。
由于主要研究夹芯板的动态响应过程,所以不考虑破片自身的变形情况,将破片设置为钢体结构。
表面技术第53卷第8期DLC基纳米多层膜摩擦学性能的研究进展与展望汤鑫1,王静静1*,李伟1,胡月1,鲁志斌2,张广安2(1.上海理工大学 材料与化学学院,上海 200093;2.中国科学院兰州化学物理研究所 固体润滑国家重点实验室,兰州 730000)摘要:类金刚石(DLC)薄膜是一种良好的固体润滑剂,能够有效延长机械零件、工具的使用寿命。
DLC 基纳米多层薄膜的设计是耐磨薄膜领域的一项研究热点,薄膜中不同组分层具备不同的物理化学性能组合,能从多个角度(如高温、硬度、润滑)进行设计来提升薄膜力学性能、摩擦学性能以及耐腐蚀性能等。
综述了DLC多层薄膜的设计目的与研究进展,以金属/DLC基纳米多层膜、金属氮化物/DLC基纳米多层膜、金属硫化物/DLC基纳米多层膜以及其他DLC基纳米多层膜为主,对早期研究成果及现在的研究方向进行了概述。
介绍了以上几种DLC基纳米多层膜的现有设计思路(形成纳米晶/非晶复合结构、软/硬交替沉积,诱导转移膜形成,实现非公度接触)。
随后对摩擦机理进行了分析总结:1)层与层间形成特殊过渡层,提高了结合力;2)软/硬的多层交替设计,可以抵抗应力松弛和裂纹偏转;3)高接触应力和催化作用下诱导DLC中的sp3向sp2转化,形成高度有序的转移膜,从而实现非公度接触。
最后对DLC基纳米多层膜的未来发展进行了展望。
关键词:DLC基纳米多层膜;力学性能;摩擦学性能;摩擦机理;结构中图分类号:TH117.1;TH142.2文献标志码:A 文章编号:1001-3660(2024)08-0052-11DOI:10.16490/ki.issn.1001-3660.2024.08.005Research Progress and Prospects on Tribological Propertiesof DLC Based Nano-multilayer FilmsTANG Xin1, WANG Jingjing1*, LI Wei1, HU Yue1, LU Zhibin2, ZHANG Guang'an2(1. School of Materials and Chemistry, Shanghai University of Technology, Shanghai 200093, China; 2. State Key Laboratory ofSolid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China)ABSTRACT: Friction and wear can cause surface damage of materials, especially metal materials, and shorten the service life of work pieces. DLC (diamond-like carbon) is an amorphous carbon film composed of mixed structures, usually formed by the mixture of sp2 carbon and sp3 carbon. With high hardness, low friction coefficient, good chemical inertness and biocompatibility, DLC is a kind of film with great potential, which has a wide range of applications in mechanical, electrical, biomedical engineering and other fields. Its super-hard, wear-resistant and self-lubricating properties meet the technical requirements of the modern manufacturing industry. It is widely used as solid lubricant for the surfaces of contact parts that rub against each other.收稿日期:2023-05-08;修订日期:2023-10-12Received:2023-05-08;Revised:2023-10-12基金项目:中国科学院兰州化学物理研究所固体润滑国家重点实验室开放课题(LSL-2205);上海高校青年教师培养资助计划Fund:Open Project of State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (LSL-2205); Shanghai University Youth Teacher Training Assistance Program引文格式:汤鑫, 王静静, 李伟, 等. DLC基纳米多层膜摩擦学性能的研究进展与展望[J]. 表面技术, 2024, 53(8): 52-62.TANG Xin, WANG Jingjing, LI Wei, et al. Research Progress and Prospects on Tribological Properties of DLC Based Nano-multilayer Films[J]. Surface Technology, 2024, 53(8): 52-62.*通信作者(Corresponding author)第53卷第8期汤鑫,等:DLC基纳米多层膜摩擦学性能的研究进展与展望·53·Compared with single-layer DLC films with single component, DLC based nano-multilayer films with alternating layers of two or more components can improve the mechanical and tribological properties better, which is due to that different layers in the nano-multilayer films have different combinations of physical and chemical properties. Therefore, it can be designed from many aspects (such as high temperature, hardness, lubrication, and corrosion) to improve the mechanical properties, tribological properties and corrosion resistance of the films. Usually, the nano-multilayer films have good impact resistance and plastic deformation resistance ability, which can effectively inhibit the formation and propagation of cracks, and have a good cycle service life under high load conditions.In this paper, DLC based nano-multilayer films were systematically reviewed, including metal/DLC based nano-multilayer films, metal nitride/DLC based nano-multilayer films, metal sulfide/DLC based nano-multilayer films and other DLC based nanolayer films. Firstly, the design background and concept of DLC multilayer thin films were elaborated. The design idea of multilayer films was to form a gradient mixing interface between multilayers to achieve gradient changes in composition and properties. This multilayer structure could produce unique structural effects, which could effectively reduce various stresses generated during the friction process, and significantly improved the adhesion strength between film and substrate and the overall elastic modulus of the film, which had important significance for the structure evolution of DLC based nano-multilayer films and the interface action mechanism. Then, the friction mechanisms were summarized. The main friction mechanisms of DLC multilayer films were concluded as follows: 1) The nanocrystalline/amorphous structure was formed, which improved the binding force between the layers and reduced the shear force and friction force; 2) The soft/hard multilayer alternating design resisted stress relaxation and crack deflection; 3) Under the action of pressure, the amorphous carbon layer was induced to forma two-dimensional layered structure to achieve incommensurate contact and effectively reduce friction and wear. Finally, thefuture development of DLC-based nano-multilayer films was forecasted. To improve the tribological properties of DLC composite films under extreme, varied and complex conditions, it is necessary to carry out researches from multiple perspectives: 1) Establishing a multi-material system, which combines doping and multilayer gradient design; 2) Regulating the crystal growth rate and increasing the deposition rate and density of the films by multi-technology co-preparation;3) Establishing a more scientific model to study the friction mechanism of DLC.KEY WORDS: DLC based nano-multilayer films; mechanical properties; tribological properties; friction mechanism; structure摩擦磨损现象广泛存在于机械零件的直接接触中,如机械传动、齿轮咬合。
2021年3期创新前沿科技创新与应用Technology Innovation and Application高模量改性沥青混合料动态力学特性研究*丁敏1,2,曾德勇1(1.浙江省交通运输科学研究院,浙江杭州311305;2.浙江省道桥检测与养护技术研究重点实验室,浙江杭州311305)沥青混合料是一种典型的黏弹塑性体,在车辆荷载作用下,研究混合料的动态模量特性及黏弹性能对评价沥青混合料的路用性能具有重要作用。
我国高模量沥青混合料通常采用外掺高模量改性剂来提高混合料的模量值,进而改善其在高温条件下抵抗外界荷载作用能力。
许志鸿等[1]介绍了动载作用下沥青混合料力学特性,研究提出了影响沥青混合料动态模量的因素。
文献[2-4]利用时温等效原理得到高模量沥青混合料的动态模量主曲线,分析高模量沥青混合料的粘弹特性。
李亚平等[5]利用主曲线研究高模量沥青混合料外加剂的掺量,研究表明AP-8最佳掺量为0.3%;李保安等[6]及王昊鹏等[7]利用动态模量主曲线评价高模量沥青混合料抗车辙能力;黄新颜等[8]研究表明对高模量沥青混合料的高温性能、模量特性等进行研究并结合我国气候区划提出3种高模量沥青混合料的适用场合;陈辉等[9]利用动态模量主曲线评价混合料的水稳定性,研究表明水损害对沥青混合料低频时(或高温时)的粘弹性质影响更为显著;杨小龙[10]总结了沥青混合料动态模量预估模型的研究进展提出可用人工神经网络方法建立沥青混合料动态预估模型,来研究混合料黏弹性。
采用动态模量主曲线研究高模量沥青混合料的动态模量特性的研究已经较多,但采用频率-模量曲线研究高模量沥青混合料的黏弹特性研究较少。
本文采用动态模量主曲线及“模量-频率双对数坐标”线性拟合得到黏弹因子,研究高模量沥青混合料的动态力学特性,评价不同混合料抗变形能力及黏弹性能。
1试验材料参数及方法1.1试验材料参数本文选用美国霍尼韦尔公司生产的聚合物改性剂(以下简称为Hon 改性剂),辽宁省交通科学研究院有限责任公司生产的“智信路宝”牌高模量沥青混凝土外掺摘要:文章为研究高模量沥青混合料动态力学性能,通过研究不同温度、频率条件下分析掺加SBS 、路宝、Honeywell 改性剂的沥青混合料动态模量特性,采用时温等效原理获取混合料动态模量主曲线及频率-模量双对数线性方程获取混合料黏弹因子,来评价高模量沥青混合料黏弹性能。
HeterogeneityindeformationofgranularceramicsunderdynamicloadingJ.Y.Huanga,b,c,L.Lua,c,D.Fanc,T.Sund,K.Fezzaad,S.L.Xua,∗,M.H.Zhub,∗,S.N.Luoc,b,∗aCASKeyLaboratoryofMaterialsBehaviorandDesign,DepartmentofModernMechanics,UniversityofScienceandTechnologyofChina,Hefei,Anhui230027,
P.R.ChinabKeyLaboratoryofAdvancedTechnologiesofMaterials,MinistryofEducation,SouthwestJiaotongUniversity,Chengdu,Sichuan610031,P.R.China
cThePeacInstituteofMultiscaleSciences,Chengdu,Sichuan610207,P.R.China
dAdvancedPhotonSource,ArgonneNationalLaboratory,Argonne,Illinois60439,USA
AbstractDynamiccompressionexperimentsareconductedonmicron-sizedSiCpowdersofdifferentinitialdensitieswithasplitHopkinsonbar.Digitalimagecorrelationisappliedtoimagesfromhigh-speedx-rayphasecontrastimagingtomapdynamicstrainfields.Thex-rayimagingandstrainfieldmappingdemonstratethedegreeofheterogeneityindeformationdependsontheinitialpowderden-sity;mesoscalestrainfieldevolutionisconsistentwithsofteningorhardeningmanifestedbybulk-scaleloadingcurves.Statisticalanalysisofthestrainprobabilitydistributionsexhibitsexponentialdecaysimilartothoseofcontactforces,whicharesupposedtoleadtothegrain-scaleheterogeneityofgranularmaterials.
Application of high-speed DIC in dynamic deformation and failure of materials1. INTRODUCTIONThe measurement of dynamic response of materials and structures under blasting and impact loading is difficult because of its short duration. Conventional techniques, such as strain gauge, VISAR and other sensors, have some limitations. These techniques usually can only provide information for one or a few points. Non-contact optical methods provide a new way to experimentally study dynamic problems through full-field measurement.材料和结构在爆破作用下的动力响应和冲击载荷作用下的动态响应是很困难的,因为它的持续时间短。
传统的技术,如应变计,VISAR等传感器,具有一定的局限性。
这些技术通常只能提供一个或几个点的信息。
非接触光学方法提供了一种新的方法来实验研究动态问题,通过全场测量。
Compared to most optical techniques, digital image correlation (DIC) method has been successfully used recently due to its special advantages such as simplicity for surface preparation, non-sensitivity to environment and high efficiency of image processing. Based on the images captured by high-speed cameras during dynamic loading, DIC can provide dynamic displacement fields, strain fields and velocity fields. Thus the spatial and temporal deformation information can be achieved by this technique. The present paper summarizes our study on application of high speed 2D/3D DIC in various dynamic problems.大多数光学技术相比,数字图像相关(DIC)的方法有已成功地用于最近由于其特殊的优点,如表面制备简单,非环境和图像处理效率高的敏感性。
基于高速相机拍摄的图像动态加载过程中,DIC提供动态位移域,域和域的应变速度。
这样的技术可以实现空间和时间的变形信息。
本文总结了我们的研究应用高速二维/三维DIC的各种动态问题。
2.EXPERIMENTSDIC was used in various dynamic tests including low velocity impact of SHPB, blasting loading and underwater shock wave loading. In DIC analysis, the speckle pattern was prepared by spraying the paint on the surface of samples: firstly covered by the uniform white paint layer, and then covered by the black random spots. For mesoscale analysis, the real image of microstructure is used as speckle patternDIC是用于各种动态测试包括SHPB低速冲击,爆炸荷载和水下冲击波加载。
在DIC分析,通过喷涂油漆对试样表面制备了散斑:首先被均匀的白漆层,然后被黑色的随机点。
对于中尺度分析,微观结构的真实图像被用作散斑图。
Dynamic deformation and failure of brittle materials including Al2O3 ceramic, rock, PMMA and polymer composites were studied by using 2D/3D DIC. Dynamic Brazilian disc test, flattened Brazilian disc test, semi-circular bending, uniaxial compression were conducted by using SHPB. DIC was used to measure the displacement field, strain field. The crack opening displacement (COD) was also measured by using DIC and crack propagation is quantitative analyzed. Stress wavepropagation in long rod specimens of different materials including Gel, PTFE, PMMA and Alceramic was studied. SHPB was used as the loading device. The propagation, reflection and interaction of stress waves were analyzed based on DIC. The spalling of brittle materials including PMMA and Al caused by stress wave were also studied by using DIC.动态变形和脆性材料包括氧化铝陶瓷,岩石的破坏,采用二维/三维DIC和PMMA聚合物复合材料的研究。
动态巴西圆盘试验,平台巴西圆盘试验,半圆弯曲,利用SHPB进行单轴压缩。
DIC是用来测量位移场,应变场。
裂纹张开位移(COD)也利用DIC和裂纹扩展测量的定量分析。
不同材料的长杆试样的应力波传播,包括胶、聚四氟乙烯、聚甲基丙烯酸甲酯、三氧化铝研究陶瓷。
SHPB作为加载装置。
应力波的传播、反射和相互作用基于DIC 分析。
脆性材料包括PMMA和Al的剥落引起的应力波也利用DIC的研究。
Attempts were also made to study the dynamic mesoscale deformation and failure of particle-filled composite and Ti alloy. The mesoscale displacement field and strain field under dynamic loading were calculated and the mesomechanical behavior of materials was analyzed based on DIC.也作了尝试研究动态尺度变形和粒子填充复合材料和钛合金的失效。
计算了动态载荷下的位移场和应变场和中尺度材料的细观力学行为的分析是基于DIC3. RESULTSSome results are listed as follows. Fig.1 shows the strain distribution and displacement vector field in dynamic Brazilian test for a low strength brittle polymer composite, in which tensile strain localization along the loading line canbe observed and finally results in the splitting failure of the disc specimen under tension. Fig.2 shows the strain distribution of a Al2O3 spalling rod, indicating strain localization at two spalling locations. Fig. 3 shows the evolution of 3D out-of-plane displacement fields of a thin metal plate at different times under confined blasting loading, from which the dynamic response and deformation performance of the metal plate under blasting loading can be characterized.一些研究结果如下。
如图1所示的应变分布和位移矢量场动态劈裂试验低强度脆性聚合物复合材料,拉伸应变局部化沿加载线可以被观察和最后结果的劈裂破坏的圆盘试样在张力下。
图2显示Al2O3剥落杆的应变分布,表明在两剥落位置的应变局部化。
图3显示演化的三维的平面位移田野的薄金属板在不同时代下密闭装药爆破,从的动态响应和变形性能的金属板在爆炸荷载的特点,可以。
4. CONCLUSIONHigh-speed DIC technique was successfully used to measure full-field deformation in various dynamic tests, which help us better understand the dynamic deformation process and failure mechanism of materials. High-speed DIC is proven to p 1/2 be an effectivemethod to investigate dynamic deformation and failure of materials. Challenges of DIC technique application in dynamic problems are discussed.高速DIC技术成功地用于测量在各种动态测试全场变形,这有助于我们更好地了解动态变形过程和材料的失效机理。