调节集合测量
- 格式:ppt
- 大小:2.06 MB
- 文档页数:129
第七章调节和聚散第—节调节和聚散的解剖和生理调节和聚散是视力和视觉功能的根本要素,本局部将阐述其概念,并详细讲解有关调节和聚散测量的根本方法和临床应用。
调节和聚散的解剖和生理一、调节的机制睫状肌是由自主神经系统操作的,同时接受交感神经和副交感神经的支配。
(一)副交感的支配副交感纤维起自E-W核。
这些纤维穿出中脑成为第三对脑神经的主干,然后进入眶隔,穿过眶上裂,并成为动眼神经一局部。
动眼神经在睫状神经节发出一支运动根,动眼神经在睫状神经内与副交感神经形成突触。
节后纤维进入眼球内发出睫状短神经,向前穿行于脉络膜腔隙,到达睫状肌,并支配它。
(二)交感神经的支配Gilartin运用解剖、生理、药理、临床和心理的方法证实了交感神经对睫状肌的支配,并在调节中起作用。
交感神经纤维沿着颈交感干走行,在颈上神经节形成突触。
节后纤维沿着颈内动脉到达海绵窦。
进入眼眶后通过睫状神经节的交感根发出两支睫状长神经和一支睫状短神经。
交感神经对睫状肌的支配总结如下:1.交感神经对睫状肌主要是抑制作用,通过β-肾上腺素受体来完成,主要是β2受体。
2.交感神经的作用较小,最大幅度是-1.50D左右。
3.正常的视觉环境中,交感神经的时间效应比副交感神经慢。
到达最大效应需要10~40秒;而副交感神经只需1~2秒。
(一)副交感的支配副交感纤维起自E-W核。
这些纤维穿出中脑成为第三对脑神经的主干,然后进入眶隔,穿过眶上裂,并成为动眼神经一局部。
动眼神经在睫状神经节发出一支运动根,动眼神经在睫状神经内与副交感神经形成突触。
节后纤维进入眼球内发出睫状短神经,向前穿行于脉络膜腔隙,到达睫状肌,并支配它。
(二)交感神经的支配Gilartin运用解剖、生理、药理、临床和心理的方法证实了交感神经对睫状肌的支配,并在调节中起作用。
交感神经纤维沿着颈交感干走行,在颈上神经节形成突触。
节后纤维沿着颈内动脉到达海绵窦。
进入眼眶后通过睫状神经节的交感根发出两支睫状长神经和一支睫状短神经。
AC/A的测定
AC/A的定义
•AC/A:A表示调节力,AC表示集合力
•是调节性集合与引起该调节集合的调节之比•刺激性AC/A:即其中的A是调节刺激
•反应性AC/A:即其中的A是调节刺反应•正常刺激性AC/A=4△±2/D
AC/A
是联系调节与集合的纽带
调节
集合
AC/A是判断双眼视异常的重
要依据,双眼视异常的分类
中就以AC/A值作为分类依据
隐斜法测量AC/A
•公式:AC/A=PD+(△近-△远)/D
•注:
–PD指瞳距
–△近指近距离隐斜量,内隐斜取+,外隐斜取-
–△远指远距离隐斜量,内隐斜取+,外隐斜取-
–D为看近所需要的调节量
计算性AC/A测量结果重复性高,关键是近距离的隐斜测量需要控制好调节。
视功能检查:NRA PRA BCC的结果分析负/正相对调节NRA/PRA正常值:NRA(负相对调节)的正常值是:+1.75至+2.25为什么是这样一个正常值呢这是由我们检查时采用的工作距离决定的。
一般我们做NRA/PRA检查是在 40cm处进行,也就是说此处的调节刺激是2.5D。
所以,我们做NRA负相对调节时,调节最多放松到2.5D时就不能再放松了(放松到零了),此时如果再加正镜就会导致视物模糊了(相当于长生雾视了)。
如果做NRA时正镜加到2.5D以后说明初始的验光结果已经错误了(过矫正了)。
因而,NRA负相对调节是不会大于+2.5D的。
如果NRA负相对调节过小,说明调节不能放松,有可能存在调节痉挛、调节过度、假性近视的情况,也就是说在这种情况下验光容易近视过矫正!PRA(正相对调节)的正常值是:-1.75至-3.00。
其实RRA反应的是调节的储备力量,越大越好。
PRA小说明调节不足,调节不持久或不能产生有效调节,这样青少年儿童容易近视加快;而成人则容易引起视觉疲劳了。
调节滞后/调节超前(BCC)正常值:+0.25~+0.75D(非老视眼);+0.50D(平均)。
调节反应(BCC)测量误差分析很多验光师都说怎么日常检查的调节反应总是负值,而且以-0.25D为多,即调节超前,但按教科书上描述,多数正常人是调节滞后的。
这是怎么回事呢通过对学员的操作细节的观察,我发现这样的测量误差主要是由于做调节反应检查时,没有在全矫正的基础上进行造成的:我们验光时,先要按MPMVA(最正之最佳视力)原则进行主观验光,即能矫正到1.2时就要矫正到1.2,能矫正到1.5时就矫正到1.5以此类推,这样检查的结果才是真实的屈光状况,我们称为验光处方。
而涉及到配镜时,根据具体的顾客情况、眼位特征、用眼需求等的不同需要在这个全矫正的基础上进行调整,我们称为配镜处方。
多数情况下,近视眼配镜都会欠矫正一些以避免看近时调节过度,所以多数验光师会矫正到1.0或0.8。
我们眼睛的“调节与集合”知识!我们眼睛的“调节与集合”知识~一调节(一)定义正视眼是当调节静止时,从无限远处物体发出的平行光线经眼的屈光系统屈折后形成焦点在视网膜上,因此看远清楚;而近处物体所发出的光线为散开光线,如果人眼的屈光系统的屈光力不改变的话,势必结像于视网膜后,即看近不清,但对于正视眼的人来说,看近清楚,也就是意味着我们视远和视近时的屈光力不同。
通过研究我们发现人眼在看近处物体时,屈光力增加,这种人眼自动改变晶状体曲率以增加眼的屈光力使近距离物体仍能成像在视网膜上以达到明视的作用称为眼的调节。
从上图可以看出,调节时眼屈光系统的改变,主要表现在晶状体屈光度的改变。
表2,1,表示的是眼在发生调节时,屈光系统的变化。
表2,1眼调节时屈光系统的变化参数(二)调节的机制关于调节机制的细微环节,至今仍存在着争论,但是Helmholtz学说被认为是最经典的调节机制。
Helmholtz在1885年描述了这一经典的调节机制:休息时,眼睛处于非调节状态并聚焦于远距离目标,赤道部悬韧带纤维休息时张力跨越了晶状体周围的空间,通过晶状体囊膜对晶状体的赤道部产生直接向外的力量,使得晶状体处于相对较平和非调节状态。
处于调节状态时,睫状肌收缩,睫状肌顶端向前并向内移动,使得睫状肌环直径减少。
睫状肌顶端的向前移动降低了悬韧带纤维的张力,因此对晶状体囊膜向外牵拉力减少,晶状体囊膜原有的弹性牵拉弹性的晶状体实质形成球形。
随着晶状体厚度增加,晶状体前后表面曲率半径变陡,晶状体屈光力因此增大,见图2,1,2a、b所示。
当调节停止时,脉络膜后部附着区牵拉睫状肌向后移动回复非调节状态时较扁平的形状,因此悬韧带纤维张力被拉紧,牵拉晶状体回复非调节状态时扁平的形状,从而降低晶状体的屈光力。
如图2-1-3a 图 2,1,2 b图2-1-3 调节示意图(三)调节的范围和程度调节远点:几何光学中相对应的物点与像点称为共扼焦点。
人眼清晰视物,成像必在视网膜黄斑部,调节静止时与之相共轭的视轴上物点即为其远点,换言之,即调节静止时,自远点发出的光线恰好聚焦在网膜上;或为当人眼在调节静止时,所能看清的最远一点称为调节远点。