CMOS与CCD传感器深度解析
- 格式:doc
- 大小:24.50 KB
- 文档页数:5
CCD和CMOS摄像头成像原理以及其他区别成像原理:CCD摄像头的成像原理基于电荷耦合器件。
它由一个二维阵列组成,每个单元都能够捕捉光的能量并将其转化为电荷信号。
这些电荷信号在行和列之间传输,最终被转换为模拟电压信号。
然后,这些模拟信号通过模数转换器转换为数字信号进行处理。
CMOS摄像头的成像原理则是基于互补金属氧化物半导体技术。
它由一组光电二极管和放大器组成,每个像素都有自己的放大器。
当光照射到像素上时,光电二极管会产生电流,放大器将其放大并转换为电压信号。
这些电压信号可以直接转换为数字信号进行处理。
工作原理:CCD摄像头的工作原理是将每个像素的电荷值逐个传递到一个读出电路中。
在每个传递过程中,电荷信号会被逐渐放大和整合,然后传输到模数转换器进行数字化。
这种逐行扫描方式可以提供较高的图像质量和灵敏度,但需要较长的读取时间。
CMOS摄像头的工作原理是通过每个像素的独立电路来直接转换光信号为电压信号。
每个像素都有自己的放大器和模数转换器,可以同时工作。
这种并行读取方式使得CMOS摄像头具有较快的读取速度和较低的功耗。
其他区别:1.灵敏度:由于CCD摄像头的电荷耦合原理,在低光条件下表现出色,具有较高的灵敏度。
而CMOS摄像头的灵敏度较低,容易出现图像噪点。
2.功耗:CMOS摄像头相比CCD摄像头具有较低的功耗,这使得它在便携设备和电池供电应用中更受欢迎。
3.成本:CMOS摄像头的制造成本较低,因为它使用了标准CMOS制程。
相比之下,CCD摄像头的制造成本较高。
4.图像质量:由于CCD摄像头的灵敏度和噪点表现,它通常能够提供更高的图像质量,尤其在高动态范围和低光条件下。
CMOS摄像头由于噪点较高,图像质量可能受到一些影响。
5.集成度:CMOS摄像头具有更高的集成度,可以在同一芯片上集成其他功能,如图像处理和通信接口。
这使得CMOS摄像头更适合于多功能摄像头应用。
总结而言,CCD和CMOS摄像头在成像原理、工作原理、灵敏度、功耗、成本、图像质量和集成度等方面存在一些区别。
ccd与cmos传感技术的原理、作用及其区别对比详解无论是CCD还是CMOS,它们都采用感光元件作为影像捕获的基本手段,CCD/CMOS感光元件的核心都是一个感光二极管(photodiode),该二极管在接受光线照射之后能够产生输出电流,而电流的强度则与光照的强度对应。
但在周边组成上,CCD的感光元件与CMOS的感光元件并不相同,前者的感光元件除了感光二极管之外,包括一个用于控制相邻电荷的存储单元,感光二极管占据了绝大多数面积—换一种说法就是,CCD感光元件中的有效感光面积较大,在同等条件下可接收到较强的光信号,对应的输出电信号也更明晰。
而CMOS感光元件的构成就比较复杂,除处于核心地位的感光二极管之外,它还包括放大器与模数转换电路,每个像点的构成为一个感光二极管和三颗晶体管,而感光二极管占据的面积只是整个元件的一小部分,造成CMOS传感器的开口率远低于CCD (开口率:有效感光区域与整个感光元件的面积比值);这样在接受同等光照及元件大小相同的情况下,CMOS感光元件所能捕捉到的光信号就明显小于CCD元件,灵敏度较低;体现在输出结果上,就是CMOS传感器捕捉到的图像内容不如CCD传感器来得丰富,图像细节丢失情况严重且噪声明显,这也是早期CMOS 传感器只能用于低端场合的一大原因。
CMOS开口率低造成的另一个麻烦在于,它的像素点密度无法做到媲美CCD的地步,因为随着密度的提高,感光元件的比重面积将因此缩小,而CMOS开口率太低,有效感光区域小得可怜,图像细节丢失情况会愈为严重。
因此在传感器尺寸相同的前提下,CCD 的像素规模总是高于同时期的CMOS传感器,这也是CMOS长期以来都未能进入主流数码相机市场的重要原因之一。
每个感光元件对应图像传感器中的一个像点,由于感光元件只能感应光的强度,无法捕获色彩信息,因此必须在感光元件上方覆盖彩色滤光片。
在这方面,不同的传感器厂商有不同的解决方案,最常用的做法是覆盖RGB红绿蓝三色滤光片,以1:2:1的构成由四个像点构成一个彩色像素(即红蓝滤光片分别覆盖一个像点,剩下的两个像点都覆盖绿色滤光片),采取这种比例的原因是人眼对绿色较为敏感。
ccd和cmos原理
CCD和CMOS是两种常见的图像传感器技术,它们在数码相机、摄像机等设备中被广泛采用。
CCD(Charge-Coupled Device)即电荷耦合器件,它是由大量光敏元件和信号传输电路组成的集成电路。
CCD的工作原理是基于光电效应,当光线照射到CCD上时,光子被光敏元件吸收并转化为电荷。
这些电荷按照特定的方式传输到读出电路中,最终转化为数字信号。
CCD传感器具有高灵敏度、低噪声等特点,适用于要求较高图像质量的应用领域。
CMOS(Complementary Metal-Oxide-Semiconductor)即互补金属氧化物半导体,它是另一种图像传感器技术。
CMOS传感器由像素阵列、控制逻辑和信号处理电路等组成。
CMOS
传感器的工作原理是通过控制每个像素的 MOSFET(金属氧化物半导体场效应晶体管)来实现图像捕捉和信号处理。
CMOS传感器具有功耗低、集成度高等优势,适用于功耗敏感的便携设备。
CCD和CMOS的主要区别在于信号读取方式和电路结构。
CCD传感器采用串行读取方式,需要较多的控制电路和电荷传输电路,相对复杂。
而CMOS传感器采用平行读取方式,每个像素都有自己的读出电路,使得整个图像采集过程更加简化。
总之,CCD和CMOS是两种不同的图像传感器技术,它们在
光电转换、信号处理和功耗等方面有所差异,适用于不同的应用场景。
ccd和cmos的异同CCD与CMOS传感器是当前被普遍采用的两种图像传感器,两者都是利用感光二极管进行光电转换,将图像转换为数字数据,而其主要差异是数字数据传送的方式不同。
一般而言普通的数码相机中使用CCD芯片的成像质量要好一些。
CCD与CMOS传感器是当前被普遍采用的两种图像传感器,两者都是利用感光二极管进行光电转换,将图像转换为数字数据,而其主要差异是数字数据传送的方式不同。
一般而言普通的数码相机中使用CCD 芯片的成像质量要好一些。
CCD 是目前比较成熟的成像器件,CMOS 被看作未来的成像器件。
CCD 与 CMOS 相同之处两种类型的传感器都以完全相同的方式检测光。
入射光子撞击硅原子,硅原子是半导体。
当发生这种情况时,原子中的一个电子被提升到更高的能级(轨道),称为导带。
硅通常表现得像绝缘体,所以它的电子不能四处移动。
但是一旦电子被提升到导带,就可以自由地移动到其他相邻的原子,就像硅是金属一样。
什么是绝缘体变成导体–这就是硅被称为半导体的原因。
在光学传感器中,这些现在可移动的电子被称为光电子。
两种类型的传感器都使用像素。
像素只是硅的一个小方形区域,它收集并保持这些光电子。
通常的比喻是田间的一系列水桶,每个都收集雨水。
如果你想知道在该领域的任何部分下雨了多少,你只需要测量每个桶的充满程度。
到目前为止,CCD 和CMOS 的一切都是一样的; 这是一个非常不同的测量过程。
CCD 与 CMOS 不同之处电荷耦合器件(CCD)是更老,更成熟的技术。
这些芯片采用NMOS 或 PMOS 技术制造,这种技术在 70 年代很流行,但在今天很少使用。
在读出期间,CCD 将电子从像素移动到像素,就像桶式旅一样。
它们通过传感器一角的读出放大器一个接一个地移出。
这样做的最大好处是每个像素都以相同的方式测量。
使用单个读出放大器使读出过程非常一致。
这样可以生成具有低固定模式噪声和读取噪声的高质量数据。
像素中也没有浪费的空间,这是 CMOS 传感器的问题。
CMOS与CCD传感器深度解析<a rel='nofollow' onclick="doyoo.util.openChat();return false;"href="#">[摘要]:路径识别是体现智能车智能水平的一个重要标志,而传感器是智能车进行路径识别的关键检测元件。
针对智能车在特殊路径与传感器数目限制的条件下的路径识别,提出了基于CMOS传感器的路径识别方案与基于CCD传感器的路径识别方案,并对两种方案的应用性能进行了比较。
通过将基于面阵图像传感器的路径识别方案应用于智能车竞赛并取得优异成绩,验证了该方案的可行性与有效性。
[关键词]:路径识别智能车图像传感器0 引言传感器概述――光电传感器光电传感器是一种小型电子设备,它可以检测出其接收到的光强的变化。
早期的用来检测物体有无的光电传感器.光电传感器是一种小的金属圆柱形设备,发射器带一个校准镜头,将光聚焦射向接收器,接收器出电缆将这套装置接到一个真空管放大器上。
在金属圆筒内有一个小的白炽灯做为光源。
这些小而坚固的白炽灯传感器就是今天光电传感器的雏形。
与CCD/CMOS图像传感器是较为常见的应用于路径识别的传感器。
光电传感器物理结构、信号处理方式简单但检测距离近。
CCD/CMOS能更早感知前方路径信息,但数据处理方式复杂,将CCD/CMOS图像传感器应用于路径识别是发展趋势。
CCD与CMOS传感器是当前被普遍采用的两种图像传感器,两者都是利用感光二极管(photodiode)进行光电转换,将图像转换为数字数据,而其主要差异是数字数据传送的方式不同。
CCD传感器中每一行中每一个象素的电荷数据都会依次传送到下一个象素中,由最底端部分输出,再经由传感器边缘的放大器进行放大输出;而在CMOS传感器中,每个象素都会邻接一个放大器及A/D转换电路,用类似内存电路的方式将数据输出。
造成这种差异的原因在于:CCD的特殊工艺可保证数据在传送时不会失真,因此各个象素的数据可汇聚至边缘再进行放大处理;而CMOS工艺的数据在传送距离较长时会产生噪声,因此,必须先放大,再整合各个象素的数据。
CCD传感器与CMOS传感器的区别CCD是电荷耦合器件(charge-coupled device), 它使⽤⼀种⾼感光度的半导体材料(p-Si)制成,能把光转变成电荷。
在⼀个⽤于感光的CCD中,有⼀个光敏区域(硅的外延层),和⼀个由移位寄存器制成的传感区域。
图像通过透镜投影在⼀列电容上(光敏区域),导致每⼀个电容都积累⼀定的电荷,⽽电荷的数量则正⽐于该处的⼊射光强。
如图在栅电极(G)中,施加正电压会产⽣势阱(黄),并把电荷包(电⼦,蓝)收集于其中。
只需按正确的顺序施加正电压,就可以传导电荷包,如图1所⽰。
图1 CCD像元及转移⽰意图多个像素电荷转移如图2所⽰,⼀旦电容阵列曝光,⼀个控制回路将会使每个电容把⾃⼰的电荷传给相邻的下⼀个电容(传感区域)。
图2 多像元转移⽰意图阵列中最后⼀个电容⾥的电荷,则将传给⼀个电荷放⼤器,并被转化为电压信号。
通过重复这个过程,控制回路可以把整个阵列中的电荷转化为⼀系列的电压信号,如图3所⽰。
图3 CCD读出电路⽰意图CMOS是互补型⾦属氧化物半导体(Complementary Metal-Oxide Semiconductor)主要是利⽤硅和锗这两种元素所做成的半导体,使其在CMOS上共存着带N(带–电)和 P(带+电)级的半导体,利⽤这个⼯艺产⽣的成像传感器称为CMOS成像传感器。
⽬前其基本结构是⼀个光电⼆极管,⼀个浮置栅,传输门,复位门,选择们以及源级跟随读出管构成,称为4T单元结构。
如图4所⽰。
图4 典型的4管像元结构其他结构有三管结构和⼆管结构,如图5所⽰。
图5 三管像元结构(左)和⼆管像元结构(右)CCD图像传感器和CMOS图像传感器的主要区别如下:1.成像过程CCD与CMOS图像传感器光电转换的原理相同,都是把光⼦转换为电荷,如图6所⽰图6 光电转换⽰意图在制造上的主要区别是CCD是集成在半导体单晶材料上,⽽CMOS是集成在被称做⾦属氧化物的半导体材料上,他们最主要的差别在于信号的读出过程不同;由于CCD仅有⼀个(或少数⼏个)输出节点统⼀读出,其信号输出的⼀致性⾮常好;⽽CMOS芯⽚中,每个像素都有各⾃的信号放⼤器,各⾃进⾏电荷-电压的转换,其信号输出的⼀致性较差,数以百万的放⼤器的不⼀致性却带来了更⾼的固定噪声,这⼜是CMOS相对CCD的固有劣势。
解惑CMOS与CCD区别何在人们经常在成像市场上,听到CMOS与CCD的技术词汇,但很多人并不明白它们究竟为何物?不知如何区分,给产品选购带来了困惑。
的确,这两大类主要的感光元件,已经形成了两大差异化应用阵营,各有优势。
因此大家也有必要了解一下这两种技术本质上的差别!原理相同,结构有异CCD与CMOS传感器是当前被普遍采用的两种图像传感器。
CCD(电荷耦合器件)是前辈,自1969年在贝尔试验室研制成功以来,它经历多年发展,从初期的10多万像素发展至今,已经非常成熟,应用于多个领域。
而CMOS(互补金属氧化物半导体)则是后来者,它诞生于1998年,这类新型的图像传感技术被认为是代表未来的技术方向。
它们两者都是利用感光二极管(photodiode)进行光电转换,将图像转换为数字数据,而其主要差异是数字数据传送的方式不同,原理与“太阳能电池”效应相近,光线越强、电力越强;反之,电力也越弱。
只是CCD和CMOS的实现结构(ADC的位置和数量)有所差异。
简单地说,CCD每曝光一次,在快门关闭后进行像素转移处理,将每一行中每一个像素(pixel)的电荷信号依序传人“缓冲器”中,由底端的线路引导输出至CCD旁的放大器进行放大,再串联ADC输出。
相对的,CMOS的设计中每个像素旁就直接连着ADC(放大兼类比数字信号转换器),信号直接放大并转换成数字信号。
竞争引发进步,CCD和CMOS传感器技术都在各自的劣势中试图补齐短板。
新一代的CCD传感器一直在功耗上作改进,而CMOS传感器则在改善分辨率与灵敏度方面的不足。
二者在品质上的差距在不断缩小,比如,OmniVision于2004年就推出了0V5610 CMOS 5百万像素图像传感器,它的重要意义就在于它成为第一个能够输出CCD影像品质的CMOS图像传感器。
从此,CMOS在成像品质上的追求就显得更为游刃有余了。
CMOS将走向何方既然说CMOS代表了新一代的成像方式,那么咱就看看它又会有什么样的发展。
CCD与CMOS的差异对比
1、CMOS-采用滚动曝光(rolling shutter),在监控目标物品快速移
动时画面容易产生拖尾、重影(见图一),并容易产生色飘(见图二)
图一
图二
2、CMOS-采用全景曝光(global shutter),每一帧图像都可清晰、
适合的图像分辨率,在监控目标快速移动时画面真实,适合大型平安城市治安及路面监控的需求(图三、图四)。
图三
图四
3、CMOS-没有快门概念,在高亮场景会出现过度曝光现象
4、CCD-可以设置快门,也可适应外界光线的变化(快门值
1/50`~1/10000连续可调),另通过设置快门可对快速运动物体捕捉。
5、摄像机的清楚度取决于图像传感器的性能,CCD与CMOS两种感
光芯片相比,CCD传感器在低照度、分辨率、噪声控制、高质量图像输出、动态影像表现方面都要优于COMS,所以绝大部分专业摄像机仍是选择CCD作为感光芯片,且高清百万像素网络摄像机选用的Sony最高级ICX系列感光芯片具超低敏捷度照度,在黑暗的环境下取得更清楚的图像,是普通摄像机无法实现的。
6、武汉市公安局在《武汉市城市视频监控系统适用产品供货资格(第
一批)政府采购项目》招标文件中对IP摄像机产品要求“采用1/3英寸CCD传感器”。
CCD和CMOS都是利用感光二极管(Photodiode)来进行光电转换的。
接收的光线越强、电荷越多;光线越弱,电荷越少。
通过这种方式,将拍摄的景物转变成携带电荷数量不一样的多个像素点。
CCD和CMOS的主要区别在于数据放大和传输顺序的不同。
在曝光后,CCD将每一行的每一个像素产生的电荷按顺序传入一个缓冲区中,统一由放大器进行放大,然后一起转换成数字信号输出;而CMOS的每个像素旁都连接着一个放大转换器,把每一个像素的信号放大并且转变成数字信号,最后一并输出。
原理上的不同导致CCD和CMOS在很多方面都存在差异。
CMOS的感光度比CCD 低,因为CMOS上每个像素都包含了放大与转换电路,单一像素感光区域的面积比CCD要小;CMOS的成本比CCD低;CMOS由于每一个像素单独放大,很难达到所有像素放大同步的效果,所以图像效果比CCD差;CMOS耗电量比CCD低,因为CCD需要外加电压把电荷“驱赶”到传输通道中去,而CMOS不需要这么做。
CCD的优点是灵敏度高,噪音小,信噪比大。
但是生产工艺复杂、成本高、功耗高。
CMOS的优点是集成度高、功耗低(不到CCD的1/3)、成本低。
但是噪音比较大、灵敏度较低、对光源要求高。
在相同像素下CCD的成像往往通透性、明锐度都很好,色彩还原、曝光可以保证基本准确。
而CMOS的产品往往通透性一般,对实物的色彩还原能力偏弱,曝光也都不太好。
什么是CCD与CMOS传感器CCD:电荷藕合器件图像传感器CCD(Charge CoupledDevice),它使用一种高感光度的半导体材料制成,能把光线转变成电荷,通过模数转换器芯片转换成数字信号,数字信号经过压缩以后由相机内部的闪速存储器或内置硬盘卡保存,因而可以轻而易举地把数据传输给计算机,并借助于计算机的处理手段,根据需要和想像来修改图像。
CCD由许多感光单位组成,通常以百万像素为单位。
当CCD表面受到光线照射时,每个感光单位会将电荷反映在组件上,所有的感光单位所产生的信号加在一起,就构成了一幅完整的画面。
CMOS:互补性氧化金属半导体CMOS(Complementary Metal-Oxide Semiconductor)和CCD 一样同为在数码相机中可记录光线变化的半导体。
CMOS的制造技术和一般计算机芯片没什么差别,主要是利用硅和锗这两种元素所做成的半导体,使其在CMOS上共存着带N(带–电)和 P(带+电)级的半导体,这两个互补效应所产生的电流即可被处理芯片纪录和解读成影像。
然而,CMOS的缺点就是太容易出现杂点,这主要是因为早期的设计使CMOS在处理快速变化的影像时,由于电流变化过于频繁而会产生过热的现象。
CCD的优势在于成像质量好,但是由于制造工艺复杂,只有少数的厂商能够掌握,所以导致制造成本居高不下,特别是大型CCD,价格非常高昂。
在相同分辨率下,CMOS价格比CCD便宜,但是CMOS器件产生的图像质量相比CCD来说要低一些。
到目前为止,市面上绝大多数的消费级别以及高端数码相机都使用CCD作为感应器;CMOS感应器则作为低端产品应用于一些摄像头上,若有哪家摄像头厂商生产的摄想头使用CCD感应器,厂商一定会不遗余力地以其作为卖点大肆宣传,甚至冠以“数码相机”之名。
一时间,是否具有CCD感应器变成了人们判断数码相机档次的标准之一。
CMOS影像传感器的优点之一是电源消耗量比CCD低,CCD为提供优异的影像品质,付出代价即是较高的电源消耗量,为使电荷传输顺畅,噪声降低,需由高压差改善传输效果。
ccdcmosCCD和CMOS是两种常见的数字图像传感器技术。
它们广泛应用于相机、摄像机、手机等设备中。
本文将介绍CCD和CMOS的基本原理、特点以及它们在图像传感器领域的应用。
CCD是英文Charge-Coupled Device的缩写,中文名为电荷耦合器件。
它是一种基于电荷耦合技术的图像传感器。
CCD是由一系列电荷耦合器件阵列组成的。
当光线通过镜头进入CCD,光子会在感光元件上产生电荷。
然后,这些电荷会被传递到一组容量耦合的电极中,最后被转换为电压信号。
相比之下,CMOS是英文Complementary Metal-Oxide-Semiconductor的缩写,中文名为互补金属氧化物半导体。
CMOS 图像传感器是基于互补金属氧化物半导体技术制造的。
与CCD不同,CMOS图像传感器的每个像素都包含了一个光敏元件、一个转换器和一个存储单元。
每个像素都可以单独处理和控制电荷转换,从而实现图像的获取和处理。
CCD和CMOS有各自的特点和优势。
首先,CCD具有较高的图像质量和较低的噪声水平。
它适用于需要高质量图像的应用,如专业摄影和科学测量。
其次,CCD在低光条件下表现出色,具有较高的灵敏度和动态范围。
此外,CCD还具有较低的功耗和较高的稳定性,使其在一些特殊应用中非常受欢迎。
CMOS则更适用于低成本、低功耗和大规模集成的应用。
CMOS图像传感器的制造成本较低,因为它可以与通用半导体工艺一起制造,而不需要专门的工艺。
此外,CMOS图像传感器的功耗较低,适合用于电池供电的设备。
另外,CMOS还具有很好的集成度,可以将图像传感器和其他功能集成到同一芯片上。
CCD和CMOS在图像传感器领域广泛应用。
在相机中,CCD和CMOS都可用于捕捉高质量的静态图像。
然而,随着技术的不断进步,CMOS图像传感器在相机市场中占据着主导地位,因为它具有更高的性能和更低的制造成本。
在摄像机中,CCD与CMOS则各有优势。
CCD适用于需要高质量视频和低噪声水平的应用,如安防监控和高端摄像机。
CCD和CMOS传感器的原理及区别1.原理:CCD传感器是一种电容耦合方式的图像传感器。
它由大量的光电二极管和电荷转移通道构成,每个光电二极管负责转换一个像素的光强度为电荷。
当光照射到光电二极管上时,产生的电子会在电荷转移通道中移动,并最终被放大和读出。
CCD传感器通过将每个像素的电荷转移到电压转换器上,并将其转换为数字信号进行处理。
CMOS传感器采用的是很多个转换器的阵列,每个转换器负责一个像素的光电转换。
它通过在每个像素上放置一个光电转换器(photodiode)来实现光电转换的功能。
当光照射到光电转换器上时,产生的电荷会被转换为电流并放大。
每个像素的电荷转换和信号放大均在该像素内部进行,然后将信号转换为数字信号。
2.区别:2.1结构上的差异:CCD传感器中包含了大量的光电二极管和电荷转移通道,这些元件通过硅片上的电荷转移线连接在一起。
相比之下,CMOS传感器中每个像素都有自己的光电转换器和信号放大器,这些像素之间相对独立。
2.2功耗和集成度:CMOS传感器由于每个像素都有自己的转换器和信号放大器,因此可以实现更高的集成度。
而CCD传感器则需要更多的外部元器件来实现信号放大和处理,因此功耗相对较高。
2.3噪点和灵敏度:CMOS传感器中每个像素的转换器都可以进行个别调整,从而提高噪点和灵敏度的性能。
而CCD传感器在这方面的性能相对较差。
2.4帧率和响应速度:CMOS传感器的帧率和响应速度相对较高,每个像素操作独立,可以在更短的时间内进行读取和处理。
而CCD传感器由于采用电荷传递机制,其帧率和响应速度较慢。
2.5动态范围:CMOS传感器的动态范围相对较窄,在高光和低光强度之间的转换能力较弱。
而CCD传感器具有更宽的动态范围,可以在不同光照条件下提供更好的图像质量。
综上所述,CCD传感器和CMOS传感器在原理、结构和性能方面存在一些区别。
CMOS传感器由于其结构上的特点,具有功耗低、帧率高、响应速度快等优势,适用于需要高速图像采集的应用场景。
摘要:上世纪60年代末期,美国贝尔实验室提出固态成像器件概念,CMOS图像传感器全称互补金属氧化物半导体图像传感器(CMOS—Complementary Metal Oxide Semiconductor),CCD 全称电荷耦合器件图像传感器( CCD—Charge-couple Device)。
二者的研究几乎是同时起步的,固体图像传感器得到了迅速发展。
CMOS图像传感器由于受当时工艺水平的限制,图像质量差、分辨率低、噪声降不下来和光照灵敏度不够,因而没有得到重视和发展。
CCD图像传感器因其光照灵敏度高、噪音低、像素少等优点,一直主宰着图像传感器市场。
CMOS 和CCD图像传感器都利用了硅的光电效应原理,不同点在于像素光生电荷的读出方式。
CMOS 和CCD的主要区别是CCD是集成在半导体单晶材料上,而CMOS是集成在被称做金属氧化物的半导体材料上。
本文将详细介绍CMOS图像传感器与CCD至今的比较。
图11 CMOS和CCD图像传感器基本原理介绍1.1 CMOS图像传感器工作原理介绍图2所示为CMOS图像传感器工作原理框图。
光子转换为电子后直接在每个像元中完成电子电荷F电压转换#这种信号转换与读出技术的不同对两种图像传感器的结构、性能及其性能的限制产生明显的影响,相机的大部分功能集成在图像传感器芯片上,这使传感器的功能应用弹性较小,但由于集成度高、结构紧密CMOS相机可应用于小尺寸摄像,可适应恶劣的环境$具有更高的可靠性.图2 CMOS图像传感器工作原理框图其特点有:1)传感器内部芯片集成度高,而外围电路简单;2)光子转换为电子后直接在每个像元中完成电子电荷-电压转换。
图3 CCD图像传感器工作原理框图其特点有:1)曝光后光子通过像元转换为电子电荷包;2)电子电荷包顺序转移到共同的输出端;3)通过输出放大器将大小不同的电荷包转换为电压信号。
2 CMOS图像传感器与CCD的特性比较CMOS图像传感器与CCD相比具有功耗低、摄像系统尺寸小、可将信号处理电路与MOS图像传感器集成在一个芯片上等优点,但其图像质量(特别是低亮度环境下)与系统灵活性与CCD相比相对较低,由于具有上述特点,它适合大规模批量生产,适用于要求小尺寸、低价格、摄像质量无过高要求的应用,如保安用小型(微型相机、手机、计算机网络视频会议系统、无线手持式视频会议系统、条形码扫描器、传真机、玩具、生物显微计数、某些车用摄像系统等大量商用领域CMOS图像传感器相比,具较好的图像质量和灵活性,仍然保持高端的摄像技术应用,如天文观察、卫星成像、高分辨率数字照片、广播电视、高性能工业摄像、大部分科学与医学摄像等应用CCD器件的灵活性体现为与采用CMOS器件相比,用户可构建更多不同的摄像系统CMOS图像传感器相比,在价格方面,目前几乎相等。
CMOS 和CCD 传感器的分类和特点详解
图像传感器在智能手机、照相机、摄像机中都发挥着十分关键的作用。
在CIS、CMOS 和CCD 三类传感器中,人们经常讨论的是CMOS 和CCD 图像传感器之间的比较优势,本文将简单介绍两种传感器的分类及特点,并会给
出选择两种传感器产品时的一些实用建议。
CMOS 传感器与CCD 传感器对比
CCD 成像质量好,但是制造工艺复杂,能够生产的厂家也比较少,价格
也相对来说比较高,并且功耗也很高,因此,不适合在移动设备上使用。
而CMOS 传感器耗电低,但是画质水平比不上CCD,不过随着技术的提高,COMS 的画质已经逐步赶上了CCD,另外,在相同分辨率下,CMOS 价格比CCD 便宜,所以目前市面上的手机摄像头都采用CMOS 传感器。
CMOS 传感器的分类
通常CMOS 传感器又会分为:背照式CMOS 传感器和堆栈式CMOS 传感器。
背照式CMOS 传感器。
分析CCD与CMOS五个方面互有优劣CCD和CMOS都是图像传感器的核心部分。
但其工作原理还是有很多不同的,也许大家会认为CCD成像清晰、噪点少,所以相对CMOS优势明显。
其实不然,虽然大量的ADC给CMOS带来了低噪点的缺陷,但也在其他方面显示出了极大的好处。
比较CCD与CMOS,它们在以下五个方面互有优劣:灵敏度由于CMOS每个像素包含一个感光二极管、一个电荷/电压转换单元、一个晶体管以及一个放大器,导致感光二极管占据的面积只是整个元件的一小部分。
过多的额外设备压缩单一像素的有效感光区域的表面积,因此在像素尺寸相同的情况下,CMOS传感器的灵敏度要低于CCD传感器。
直接的后果就是低照度环境下,CMOS无法像CCD 一样灵敏,成像清晰度大大降低。
成本CCD电荷耦合器存储的电荷信息,需在同步信号控制下一位一位地实施转移后读取,电荷信息转移和读取输出需要有时钟控制电路和三组不同的电源相配合,整个电路较为复杂。
如果专用通道中有一个像素故障,就会导致一整排的信号拥塞而无法传递。
因此CCD的良率比CMOS低。
而CMOS应用半导体工业常用的MOS制程,可以一次整合全部周边设施于单晶片中,节省加工晶片所需负担的成本和良率的损失,成本大为降低。
噪点由于CMOS每个感光二极体旁都搭配一个ADC放大器,如果以百万像素计,那么就需要百万个以上的ADC放大器。
由于放大器属于模拟器件,无法保证每个像点的放大率严格一致,致使放大后的图像无法代表拍摄物体的原貌。
因此,对比每行只有单个放大器的CCD,CMOS最终计算出的噪点就比较多。
速度CCD电荷耦合器需在同步时钟的控制下,以行为单位一位一位地输出信息,速度较慢;而CMOS光电传感器采集光信号的同时就可以取出电信号,还能同时处理各单元的图像信息,速度比CCD电荷耦合器快很多。
功耗CCD传感器除了在电源管理电路设计上的难度更高之外,电荷耦合器大多需要三组电源供电,耗电量较大;而CMOS光电传感器只需使用一个电源,耗电量非常小,仅为CCD电荷耦合器的1/8到1/10,CMOS光电传感器在节能方面具有很大优势。
4.5 CMOS工作原理4.5.2 CMOS与CCD图像传感器对比CMOS与CCD图像传感器对比•光电转换原理相同,读出过程不同CMOS工作时,仅需工作电压信号CCD读取信号需多路外部驱动•集成性:CMOS强•噪声:CMOS大•功耗:CMOS是CCD的1/10•填充系数:CMOS低•访问灵活:CMOS强•价格:CMOS低•读出过程/数据传送方式差异CCD传感器电荷依次传送到下一像元,由最底端输出,再经由边缘的放大器进行放大输出CMOS传感器,每个像元都会邻接一个放大器及A/D转换电路,寻址读取差异原因:CCD的特殊工艺保证数据传送时不失真,因此各像元的数据可汇聚至边缘再进行放大处理;CMOS工艺的数据在传送距离较长时会产生噪声,因此必须先放大,再整合各像元的数据。
•工艺与成本CCD光敏单元阵列难与驱动电路及信号处理电路单片集成,不易处理一些模拟和数字功能;CCD阵列驱动脉冲复杂,需要使用相对高的工作电压,不能与深亚微米超大规模集成技术(VLSI)兼容,制造成本较高;大型CCD价格昂贵;CCD像素的提高已基本到极限。
CMOS与周边电路整合性高,芯片结构可方便与其它硅基元件集成,只需一路电源,体积减小;工艺更加符合目前集成技术流水线生产的理念,所以生产成本可以控制的更低,面阵做得更大。
•采样速度指传感器以最高的像素、最高的位深、最高的速度输出的能力•CCD传感器由于天生的工艺限制,很难提高其输出规格,发热和功耗无法避免。
•CMOS具备很强的扩展性能,X-Y寻址工作速度快,可实时开窗读出任意局部画面,提高感兴趣区域的帧频或行频。
•功耗CCD电源消耗较高:为使电荷传输顺畅,噪声降低,需由高压差改善传输效果。
CMOS影像传感器将每一像元的电荷转化成电压,读取前将其放大,利用3.3V电源即可驱动,电源消耗量低。
•CCD图像质量和灵敏度高,保持高端的摄像技术应用,如天文观测、卫星成像、高分辨率数字照片、广播电视、高性能工业摄像、科学与医学摄像等。
CMOS与CCD传感器深度解析
[摘要]:路径识别是体现智能车智能水平的一个重要标志,而传感器是智能车进行路径识别的关键检测元件。
针对智能车在特殊路径与传感器数目限制的条件下的路径识别,提出了基于cmos传感器的路径识别方案与基于ccd传感器的路径识别方案,并对两种方案的应用性能进行了比较。
通过将基于面阵图像传感器的路径识别方案应用于智能车竞赛并取得优异成绩,验证了该方案的可行性与有效性。
[关键词]:路径识别智能车图像传感器
0 引言
传感器概述——光电传感器
光电传感器是一种小型电子设备,它可以检测出其接收到的光强的变化。
早期的用来检测物体有无的光电传感器.光电传感器是一种小的金属圆柱形设备,发射器带一个校准镜头,将光聚焦射向接收器,接收器出电缆将这套装置接到一个真空管放大器上。
在金属圆筒内有一个小的白炽灯做为光源。
这些小而坚固的白炽灯传感器就是今天光电传感器的雏形。
与ccd/cmos图像传感器是较为常见的应用于路径识别的传感器。
光电传感器物理结构、信号处理方式简单但检测距离近。
ccd/cmos 能更早感知前方路径信息,但数据处理方式复杂,将ccd/cmos图像传感器应用于路径识别是发展趋势。
ccd与cmos传感器是当前被普遍采用的两种图像传感器,两者都是利用感光二极管
(photodiode)进行光电转换,将图像转换为数字数据,而其主要差异是数字数据传送的方式不同。
ccd传感器中每一行中每一个象素的电荷数据都会依次传送到下一个象素中,由最底端部分输出,再经由传感器边缘的放大器进行放大输出;而在cmos传感器中,每个象素都会邻接一个放大器及a/d转换电路,用类似内存电路的方式将数据输出。
造成这种差异的原因在于:ccd的特殊工艺可保证数据在传送时不会失真,因此各个象素的数据可汇聚至边缘再进行放大处理;而cmos工艺的数据在传送距离较长时会产生噪声,因此,必须先放大,再整合各个象素的数据。
1 传统ccd和cmos的比较
ccd和cmos感光元件都采用感光二极管作为捕获光线的部件,感光二极管受到光线照射时会输出电流,电流的强度则和光照的强度成正比。
但不同的是,一个ccd感光单元除了感光二极管之外,只包括一个控制相邻电荷的寄存器。
而cmos感光单元的构成则比较复杂,除了感光二极管之外,还包括放大器和模/数转换电路,这样一个感光单元就包含了一个感光二极管和三个晶体管。
每个ccd 或cmos感光单元就是感光元件上的一个子像素。
2 ccd和cmos的优缺点
由于ccd感光元件的单个感光单元结构简单,因此在相同面积下,ccd感光元件可以做得比cmos更加精细,分辨率更高;同时,在感光单元中,感光二极管占有更大的面积,所得图像也比较艳丽;此外,由于统一进行信号放大,因此图像的噪音小。
不过,ccd也有
一些缺点,首先是要使用专用的制造设备,而且一个单元的损坏会造成整个列的失效,成品率低,导致生产成本较高;其次,ccd需要外加电压才能使电荷流动,并且不同的垂直寄存器需要的电压不一样,要用专用的电源管理电路配合,功耗比同尺寸的cmos高;再次,由于ccd感光元件本身无法和模/数转换等周边电路整合,因此整个模块的小型化比较困难。
cmos感光元件可以利用标准的cmos半导体芯片生产技术大规模生产,同时,它的每个感光单元都是独立的,即使损坏也不会影响到其他单元,因此生产成本低廉;其次,由于每个单元独立进行信号放大和模/数转换,因此不但功耗很低,而且整个模块的体积也更小。
但是,由于感光单元中更大的部分被放大器和模/数转换单元占据,传统cmos元件的开口率很低,由此导致光利用效率差,色彩也不够艳丽;此外,由于每个单元独立输出,初始信号的放大率很难做到严格统一,因此图像的噪声问题比较严重。
3 由于数据传送方式不同,因此ccd与cmos传感器在效能与应用上也有诸多差异
3.1灵敏度差异
由于cmos传感器的每个象素由四个晶体管与一个感光二极管构成(含放大器与a/d转换电路),使得每个象素的感光区域远小于象素本身的表面积,因此在象素尺寸相同的情况下,cmos传感器的灵敏度要低于ccd传感器。
3.2成本差异
由于cmos传感器采用一般半导体电路最常用的cmos工艺,可以轻易地将周边电路(如agc、cds、timing generator、或dsp等)
集成到传感器芯片中,因此可以节省外围芯片的成本;除此之外,由于ccd采用电荷传递的方式传送数据,只要其中有一个象素不能运行,就会导致一整排的数据不能传送,因此控制ccd传感器的成品率比cmos传感器困难许多,即使有经验的厂商也很难在产品问世的半年内突破 50%的水平,因此,ccd传感器的成本会高于cmos 传感器。
3.3分辨率差异
如上所述,cmos传感器的每个象素都比ccd传感器复杂,其象素尺寸很难达到ccd传感器的水平,因此,当我们比较相同尺寸的ccd 与cmos传感器时,ccd传感器的分辨率通常会优于cmos传感器的水平。
例如,目前市面上cmos传感器最高可达到210万象素的水平(omnivision的 ov2610,2002年6月推出),其尺寸为1/2英寸,象素尺寸为4.25μm,但sony在2002年12月推出了icx452,其尺寸与 ov2610相差不多(1/1.8英寸),但分辨率却能高达513万象素,象素尺寸也只有2.78mm的水平。
综上所述,ccd传感器在灵敏度、分辨率、噪声控制等方面都优于cmos传感器,而cmos传感器则具有低成本、低功耗、以及高整合度的特点。
不过,随着ccd与cmos传感器技术的进步,两者的差异有逐渐缩小的态势。
4 实际应用
基于仿人机器人对分辨率的要求不高,可以采用价格较为低廉的cmos传感器。
实现仿人机器人环形跑道跑的设计思想如下:
机器人头部安装一cmos摄像头,斜向下45°,此时,摄像头正好对准正下方的黑色寻迹线,此时,机器人正常行进,当机器人遇到弯道时,黑线偏出摄像头,摄像头将信息反馈给单片机,执行转弯的指令,当机器人过弯之后,黑线回到摄像头视野之内,机器人继续直线前行。
(下转第46页)。