2016年北师大版九年级数学上3.1用树状图或表格求概率同步试卷含答案解析
- 格式:doc
- 大小:716.50 KB
- 文档页数:35
第三章 概率的进一步认识3.1 用树状图或表格求概率(1)一、选择题1.一枚质地均匀的正方体骰子,连续抛掷两次,两次点数相同的概率是( ) A.12 B.13 C.14 D.162.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( )A.12B.14C.16D.1123.暑假即将来临,小明和小亮每人要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动.那么两人选到同一社区参加实践活动的概率是( )A.12B.13C.16D.194.有三张正面分别写有数字-1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a 的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b 的值,则点(a ,b )在第二象限的概率为( )A.16B.13C.12D.23二、填空题5.现有四张完全相同的卡片,上面分别标有数字-1、-2、3、4,将卡片背面朝上洗匀,然后从中随机地抽取两张,则这两张卡片上数字之积为负数的概率是__ __.6.现有四个外观完全一样的粽子,其中有且只有一个有蛋黄,若从中一次随机抽取两个,则这两个粽子都没有蛋黄的概率是__ _.7.从2、3、4这三个数中任取两个数字组成一个两位数,其中能被3整除的两位数的概率是__ _.8.某校举行以“保护环境,从我做起”为主题的比赛.经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛.前两名都是九年级同学的概率是_ ___.三、解答题9.九(1)班计划组织志愿者到敬老院为老人服务,准备从3名男生小亮、小明、小伟和2名女生小丽、小敏中随机选取一名男生和一名女生参加,请用树状图或列表法写出所有可能出现的结果;并求出恰好选中男生小明与女生小丽的概率.10.小明与甲、乙两人一起玩“手心手背”的游戏.他们约定:如果三人中仅有一人出“手心”或“手背”,则这个人获胜;如果三人都出“手心”或“手背”,则不分胜负,那么在一个回合中,如果小明出“手心”,则他获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)3.1(2) 判断游戏是否公平一、选择题1.若从长度是3,5,6,9的四条线段中任取三条,则能构成三角形的概率是( ) A.12 B.34 C.13 D.142.在x 2□4x □4的空格中,任意填上“+”或“-”,在所得到的整式中,恰好是完全平方式的概率是( )A .1 B.12 C.13 D.143.假定鸟蛋孵化后,雏鸟为雌与雄时概率相同,如果三枚蛋全部成功孵化,则三只雏鸟中恰有两只雄鸟的概率是( )A.16B.38C.58D.234.小明和小亮做游戏,先是各自背着对方在纸上写一个正整数,然后都拿给对方看.他们约定:若两人所写的数都是奇数或都是偶数,则小明获胜;若两个人所写的数一个是奇数,另一个是偶数,则小亮获胜.这个游戏( )A .对小明有利B .对小亮有利C .游戏公平D .无法确定对谁有利5.在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,从中随机摸出一个小球记下标号后放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和大于4的概率是( )A.38B.12C.58D.34二、填空题6.有三辆车按1,2,3编号,舟舟和嘉嘉两人可任意选坐一辆车.则两人同坐3号车的概率为__ __.7.某校从小记者团内的3名同学(2男1女)中任选2名前往采访体育赛事,那么选出的2名同学恰好是一男一女的概率是__ _.三、解答题8.从甲、乙、丙3名同学中随机抽取环保志愿者,求下列事件的概率;(1)抽取1名,恰好是甲; (2)抽取2名,甲在其中.9.某市“艺术节”期间,小明、小亮都想去观看茶艺表演,但是只有一张茶艺表演门票,他们决定采用抽卡片的办法确定谁去.规则如下:将正面分别标有数字1、2、3、4的四张卡片(除数字外其余都相同)洗匀后,背面朝上放置在桌面上,随机抽出一张记下数字后放回;重新洗匀后背面朝上放置在桌面上,再随机抽出一张记下数字.如果两个数字之和为奇数,则小明去;如果两个数字之和为偶数,则小亮去.你认为这个规则公平吗?请说明理由.3.1(3) 利用概率玩“配紫色”游戏一、选择题1.如图,随机闭合开关K 1,K 2,K 3中的两个,则能让两盏灯泡同时发光的概率为( ) A.16 B.13 C.12 D.232.如图,是一个可以自由转动的转盘,它被分成三个面积相等的扇形,任意转动转盘两次,当转盘停止后,指针所指颜色相同的概率为( )A.13B.23C.19D.16(第1题) (第2题)3.经过某十字路口的汽车,它可能继续直行,也可能向左或向右转.若这三种可能性大小相同,则两辆汽车经过该十字路口全部继续直行的概率为( )A.13B.23C.19D.124.定义一种“十位上的数字比个位、百位上的数字都要小”的三位数叫做“V 数”,如“947”就是一个“V 数”.若十位上的数字为2,则从1,3,4,5中任选两数,能与2组成“V 数”的概率是( )A.14B.310C.12D.34二、填空题5.小英同时掷甲、乙两枚质地均匀的正方体骰子.记甲骰子朝上一面的数字为x ,乙骰子朝上一面的数字为y ,这样就确定点P 的一个坐标(x ,y ),那么点P 落在双曲线y =6x上的概率为 . 三、解答题6.如图是两个可以自由转动的转盘,每个转盘被分成了三个相等的扇形,小明和小亮用它们做配紫色(红色与蓝色能配成紫色)游戏,你认为配成紫色与配不成紫色的概率相同吗?7.商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同.若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或列表法求出他恰好买到雪碧和奶汁的概率.第三章 概率的进一步认识3.1 用树状图或表格求概率1.(1)用树状图或表格求简单事件的概率1.D2.C3.B4.B5.236.127.138.169.解:即出现了6种结果:小亮、小丽,小亮、小敏,小明、小丽,小明、小敏,小伟、小丽,小伟、小敏则P (小明、小丽)=16. 10.解:画树状图:∵小明出的是手心,甲、乙两人出手心、手背的所有可能有4种,其中都是手背的情况只有1种,∴P(小明获胜)=14 . 2.(2) 判断游戏是否公平1.A2.B3.B4.C5.C6.197.238.解:(1)∵从甲、乙、丙3名同学中随机抽取环保志愿者,∴抽取1名,恰好是甲的概率为13(2)∵抽取2名,可得:甲乙,甲丙,乙丙,共3种等可能的结果,甲在其中的有2种情况,∴抽取2名,甲在其中的概率为23. 9.解:画树状图:,则P(和为奇数)=816=12,P(和为偶数)=816=12,P(小明)=P(小亮),故这个游戏对双方是公平. (3)利用概率玩“配紫色”游戏1.B2.A3.C4.C5.196.解:画树状图如下:结果:(红,红)(红,蓝)(红,蓝)(红,红)(红,蓝)(红,蓝)(蓝,红)(蓝,蓝)(蓝,蓝),所以P (配成紫色)=59,P (配不成紫色)=49,所以配成紫色与配不成紫色的概率不相同. 7.解:画树状图得:∵共有12种等可能的结果,他恰好买到雪碧和奶汁的有2种情况,∴他恰好买到雪碧和奶汁的概率为:212=16.。
第三章概率的进一步认识1用树状图或表格求概率第1课时 用树状图或表格求概率基础自我诊断关键问答①何时用列表法或画树状图法求概率?1.①2017大连 同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率为( )2. 甲口袋中装有2个小球,分别标有号码1 , 2;乙口袋中装有2个小球,分别标有号 码1 , 2;这些球除数字不同外,其余完全相同•从甲、乙两个口袋中分别随机地摸出一个 小球,求这两个小球上的号码都是 1的概率.能力备哮课时化命题点1直接列举法求概率 [热度:93%]3•②2017恩施州小明和他的爸爸妈妈共 3人站成一排拍照,他的爸爸妈妈相邻的概率 是() 1112A.6B.3C.2D.3易错警示 ②利用列举法求事件的概率,所列结果要准确,不要出现遗漏或重复.4.③如图3- 1- 1,有以下三个条件:① AC = AB ,②AB // CD ,③/ 1 = Z 2•从这三个 条件中任选两个作为条件,另一个作为结论,则组成的命题是真命题的概率是( )1 1 1 A.4 B.3 C.2D.3 考向提升训练方法点拨③概率问题经常与其他知识综合在一起考查 ,求解过程中一定要注意回顾所学知识.5•从长度分别为2,4,6,7的四条线段中随机取三条,能构成三角形的概率是 _________________________ .命题点2用列表法或画树状图法求“两步”试验的概率[热度:93%]6.④从分别标有数字2, 3和4, 5的两组卡片中的一组中随机地抽取一张作为十位上的数字,再从另一组中抽取一张作为个位上的数字,组成的两位数恰好是“5的倍数的概率为方法点拨 ④ 列表时,把其中的一次操作或一个条件作为横行 列出表格计算概率.7.⑤一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1, 2, 3, 4,随机摸出一个小球后不放回,再从剩下的小球中随机摸出一个小球 ,则两次摸出的小球标号之和等于5的概率为 _____________ .易错提示 ⑤ 不放回,就是第一次摸出的球,在第二次摸时不会出现,所以在画树状图时一定要注意这一点.& 一个不透明的袋中有 3张形状和大小完全相同的卡片 ,编号分别为1, 2, 3,先从 中任取一张,将其编号记为 m ,再从剩下的两张中任取一张 ,将其编号记为n ,则关于x 的 方程x 2+ mx + n = 0有两个不相等的实数根的概率是.9.某市今年中考需进行体育测试,其中男生测试项目有“ 1000米跑”“立定跳远” “掷实心球” “一分钟跳绳”“引体向上”五个项目. 考生须从这五个项目中选取三个,另一次操作或另一个条件作为竖列B图 3-1 — 1项目•要求:“ 1000米跑”必选,“立定跳远”和“掷实心球”二选一,“一分钟跳绳”和“引体向上”二选一.(1) 写出男生在体育测试中所有可能选择的结果;(2) 若小明和小亮都做不了引体向上,请你用列表法或画树状图法求他们在体育测试中所选项目完全相同的概率.命题点3 利用画树状图法求“三步”试验的概率[热度:92%]10. ⑥2017 •台州三名运动员参加定点投篮比赛,原定出场顺序是:甲第一个出场,乙第二个出场,丙第三个出场.由于某种原因,要求这三名运动员用抽签方式重新确定出场顺序,则抽签后每名运动员的出场顺序都发生变化的概率为____________________________________________ .方法点拨⑥在遇到“三步”或“三步”以上的问题时,用列表法已经不能解决,只能用画树状图的方法来解决.11.2017 •镇江改编某校5月份举行了八年级生物实验考查,有A和B两个考查实验,规定每名学生只参加其中一个实验的考查,并由学生自己抽签决定具体的考查实验,小明、小丽、小华都参加了本次考查.(1) 小丽参加实验A考查的概率是 ______________ ;(2) 小明、小丽都参加实验A考查的概率是 _________________ ;(3) 他们三人都参加实验A考查的概率是 ________________ .12. ⑦某乳品公司最近推出一款果味酸奶,共有红枣、木瓜两种口味,若送奶员连续三天,每天从中任选一瓶某种口味的酸奶赠送给某住户品尝,则该住户收到的三瓶酸奶中,至少有两瓶为红枣口味的概率是多少?(请用画树状图的方法给出分析过程,并求出结果)解题突破⑦本题只能用画树状图的方法来做,不适合用列表法思维拓展:咅优13. ⑧为落实“垃圾分类”,环卫部门要求垃圾要按A, B, C三类分别装袋、投放,其中A类指废电池、过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料、废纸等可回收垃圾•甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1) 直接写出甲投放的垃圾恰好是A类的概率;(2) 求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.解题突破⑧解决这个问题分几步走?应该选用哪种方法分析?“乙投放的两袋垃圾不同类”在分析时需要注意什么?详解详析【关键问答】①当一次试验涉及两个因素,并且可能出现的结果数目较多时,为了不重不漏地列出所有可能的结果,通常采用列表法;当一次试验涉及多个因素(三个或三个以上)时,通常采用画树状图法求概率.1. A [解析]画树状图如下:开始共有4种等可能的结果,其中两枚硬币全部正面向上的结果有1种,所以两枚硬币全部1正面向上的概率为4•故选A.2. 解:列表如下.乙12甲1(1 , 1)(1 , 2)2(2, 1)(2 , 2)由表可知,共有4种等可能的结果,其中两个小球上的号码都是1的结果仅有1种,1••• P(两个小球上的号码都是1)=-.43. D [解析]设小明为A,爸爸为B ,妈妈为C,则所有的可能结果是(ABC) , (ACB), (BAC) , (BCA) , (CAB) , (CBA),•他的爸爸妈妈相邻的概率是4= ?.6 3故选D.4. D [解析]构成如下三个命题:如果① AC= AB ,②AB// CD ,那么③/ 1 = Z 2;如果②AB / CD ,③/ 1 = Z 2,那么①AC= AB;如果①AC = AB,③/ 1 = Z 2,那么②AB // CD. 这三个命题都是真命题.故选D.1 - 一5.;1 [解析]从四条线段中随机取三条,有如下四个不同的结果:① 2, 4, 6:②2, 4, 7;③2,6,7;④4,6,7•因为这四个结果出现的可能性相等 ,其中,能构成三角形的结果有两个,所以,从长度分别为2, 4,6, 7的四条线段中随机取三条,能构成三角形的概率2 1 1 P =1故答案为亍町[解析]列表格,得:45 2 24, 42 25, 52 334, 4335, 53“5的倍数的结果有两种,•组成的两位数恰好是 “ 5”2 1的倍数的概率为8盲17.1 [解析]画树状图如下:•••共有12种等可能的结果,两次摸出的小球标号之和等于 5的有4种情况,•两次摸出的小球标号之和等于5的概率是茅i18.1 [解析]依题意列表如下:n m12 31(1 , 2)(1 , 3) 2 (2, 1)(2 , 3)3(3, 1) (3, 2)•••一共有8种等可能的结果,其中是开始123 4/N ZN ZN ZN 2 3 4 1 3 4 1 2 4L 2 3当m2—4n > 0时,关于x的方程x2+ mx+ n = 0有两个不相等的实数根,而使得m2—4n >0成立的m, n有2组,即(3, 1)和(3, 2),则关于x的方程x2+ mx+ n = 0有两个不相等1的实数根的概率是£9.解:⑴将“立定跳远”“掷实心球”“一分钟跳绳”和“引体向上”分别用 A , B ,C ,D 表示,画树状图如下:由树状图可知可能选择的结果有四种:①“1000米跑” “立定跳远”和“一分钟跳绳”;②“ 1000米跑”“立定跳远”和“引体向上”; ③“ 1000米跑”“掷实心球”和“ 分钟跳绳”;④“1000米跑”“掷实心球”和“引体向上”.(2)因为他们都做不了引体向上,所以不会选②④•列表如下:①③①(①,①) (①,③) ③(③,①)(③,③)•••所有可能出现的结果共有 4种,其中所选项目完全相同的有 2种,.••他们在体育测试中所选项目完全相同的概率为4= 1.110.3 [解析]画树状图如下:• ••抽签后每名运动员的出场顺序都发生变化的概率为111 111. (1)- ⑵-(3)-[解析](1)小丽参加实验 A 考查的概率是-. 2 4 82•••共有6种等可能的结果 ,抽签后每名运动员的出场顺序都发生变化的有 2种情况,2 _ 16 = 3.A B C D C D开始第一牛第二个 第三个甲一►乙(2画树状图如图所示.共有8种等可能的结果,其中至少有两瓶为红枣口味的结果数为 4,所以该住户收到的4 1 三瓶酸奶中,至少有两瓶为红枣口味的概率为4=-. 8 213. 解:(1) ••垃圾要按A , B , C 三类分别装袋,甲投放了一袋垃圾1•甲投放的垃圾恰好是 A 类的概率为扌⑵画树状图如图所示:• • •两人参加的实验考查共有四种等可能的结果 种,,而两人均参加实验 A 考查的结果有1•••小明、小丽都参加实验A 考查的概率为14⑶画树状图如图所示.小华A三人参加的实验考查共有 8种等可能的结果,其中三人都参加实验 A 考查的结果只有1种,.••他们三人都12. 解:画树状图如下:开始由图可知,共有18种等可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种,所以乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率是12 _ 218=3.。
北师大新版九年级上学期《3.1 用树状图或表格求概率》同步练习卷一.填空题(共50小题)1.周末,爸爸带亮亮到璧山枫香湖儿童公园游玩,游乐区内有红、紫、黄三种颜色的攀爬网和蓝、绿两种颜色的组合木层,由于时间关系,爸爸要求亮亮只能在三种举爬网和两种组合木层中各选一种游玩,那么亮亮选择红色攀爬网和绿色组合木层的概率是.2.同时掷两枚质地均匀的骰子,求点数的和为6的概率(结果精确到0.01).3.在一个不透明的袋子中,装有1个红球和2个白球,这些球除颜色外其余都相同.搅均后从中随机一次摸出两个球,则摸到的两个球都是白球的概率是.4.现有两个不透明的袋子,其中一个装有红、黄两种颜色的小球各1个,另一个装有红、黄、蓝三种颜色的球各1个,小球除颜色外其他均相同,若小浩从两个袋子中分别随机摸出一个小球,则摸出的两个小球颜色恰好相同的概率为.5.有一位新娘去商场买新婚衣服,购买了不同款式的上衣2件,不同颜色的裤子3条,利用树状图或列表法表示搭配衣服的所有可能出现的结果有种.6.袋中有颜色不同外其余均相同的2个红球和3个黄球,第一次摸出一球记住颜色后,放回袋中搅匀,再随意摸出一球,两次摸出的都是红色球的概率是.7.在永州有一种叫“斗牛”的游戏,每人发5张扑克牌,在这5张牌中取岀3张牌,若这3张牌的数字之和是10的整数倍,我们称之为“牛”(注;J、Q、K的数字规定为10);现某人得到J,K,4,6,9这5张牌,那么在这5张牌中任取岀3张牌能组成“牛”的概率是8.在一个不透明的盒子中,装有3个分别写有数字6,﹣2,7的小球,他们的形状、大小、质地完全相同,搅拌均匀后,先从盒子里随机抽取1个小球,记下小球上的数字后放回盒子,搅拌均匀后再随机取出1个小球,再记下小球上的数字.则两次取出的小球上的数字相同的概率是.9.为了弘扬中华传统文化,营造书香校园文化氛围,2017年12月11日,兴义市新电学校举行中华传统文化知识大赛活动该学校从三名男生和两名女生中选出两名同学担任本次活动的主持人,则选出的恰为一男一女的概率是10.“九(1)”班为了选拔两名学生参加学校举行的“中华优秀传统文化知识竞赛”活动,在班级内先举行了预选赛,在预选赛中有两女、一男3位学生获得了一等奖,从获得等奖的3位学生中随机抽取2名学生参加学校的比赛,则选出的2名学生恰好为一男一女的概率为11.将一副扑克牌中的两张牌红桃A和黑桃2都从中间剪开,分成四块,这四块背面完全一样,将它们洗匀后,背面朝上,任取两张,恰好能拼成一张牌的概率是.12.如图,有6张扑克牌,从中任意抽取两张,点数和是偶数的概率是.13.同时掷两粒骰子,都是六点向上的概率是.14.如图,在正方体的展开图形中,要将﹣1,﹣2,﹣3填入剩下的三个空白处(彼此不同),则正方体三组相对的两个面中数字互为相反数的概率是.15.从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概率是.16.从长度分别为3,4,6,9的四条线段中任选三条作边,能构成三角形的概率为.17.把一枚均匀的硬币连续抛掷三次,三次正面朝上的概率是.18.2018年5月18日,益阳新建西流湾大桥竣工通车,如图,从沅江A地到资阳B地有两条路线可走,从资阳B地到益阳火车站可经会龙山大桥或西流湾大桥或龙洲大桥到达,现让你随机选择一条从沅江A地出发经过资阳B地到达益阳火车站的行走路线,那么恰好选到经过西流湾大桥的路线的概率是.19.甲、乙两袋均有红、黄色球各一个,分别从两袋中任意取出一球,那么所取出的两球是同色球的概率是.20.一家公司招考员工,每位考生要在A,B,C,D,E这5道试题中随机抽出2道题回答,规定答对其中1题即为合格,已知某位考生会答A,B两题,则这位考生合格的概率为.21.在一个不透明的口袋中,有3个红球、2个黄球、一个白球,它们除颜色不同之外其它完全相同,现从口袋中随机摸出一个球记下颜色后放回,再随机摸出一个球,则两次摸到一个红球和一个黄球的概率是.22.在一个不透明的盒子中,有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出两个小球,摸出的两个小球都为偶数的概率是.23.一天晚上,童威帮助妈妈清洗两个只颜色不同的有盖茶杯,突然停电了,童威治好把杯盖和杯身随机地搭配在一起,则颜色搭配正确的概率是.24.某校参加台州市“汉字听写大赛”,若要在参赛队伍中的3名女生和2名男生中随机抽取2人参加现场采访,则恰好抽到1名男生和1名女生的概率是.25.3.12日植树节,老师想从甲、乙、丙、丁4名同学中挑选2名同学代表班级去参加学校组织的植树活动,恰好选中甲和乙去参加的概率是.26.《中国诗词大会》栏目中,外卖小哥击败北大硕士引发新一轮中华优秀传统文化热.某文化中心开展“经典诵读”比赛活动,诵读材料有《论语》、《大学》、《中庸》、《孟子》(依次用字母A,B,C,D表示这四个材料),将A,B,C,D分别写在4张完全相同的不透明卡片的正面,背面朝上洗匀后放在桌面上,比赛时甲选手先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由乙选手从中随机抽取一张卡片,他俩按各自抽取的内容进行诵读比赛.则他俩诵读两个不同材料的概率是.27.现有三张分别标有2,2,6的卡片,它们除数字外完全相同,把卡片背面向上洗匀,从中随机抽取一张后放回,再背面向上洗匀,从中随机抽出一张,则两次抽出的卡片所标数字不同的概率是.28.一个布袋里装有4个只有颜色不同的球,其中3个红球,1个白球.从布袋摸出1个球,不放回,再摸出1个球,则两次摸到的球都是红球的概率是.29.“十一”假期,小明和小华计划到我县的丹江大观园、坐禅谷、八仙洞、神仙洞其中的一个景点取游玩,他们各自在这四个景点中任选一个,每个景点被选中的可能性相同,小明和小华都选择去八仙洞的概率是30.木盒中装有1个黑球和2个白球,这些球除颜色外其他都相同.从木盒里先摸出一个球,放回去后摇匀,再摸出1个球,则摸到1个黑球1白球的概率是.31.学校乒乓球社团有4名男队员和3名女队员,要从这7名队员中随机抽取一男一女组成一对混合双打组合,可组成不同的组合共有对.32.一个不透明的口袋中有2个红球、1个绿球,这些球除颜色外无其它差别.现从袋子中随机一次摸出两个球,则是两个红球的概率是.33.小明有三张扑克牌:1,4,9,小红也有三张扑克牌:2,5,8;扑克牌都背面朝上放在自己面前的桌子上,每人从自己面前的桌子上随机拿出一张牌,把两人拿出的牌进行比较,小明拿出的牌大于小红的牌的概率是.34.一个不透明的口袋中有三个小球,上面分别标有字母A,B,C,每个小球除字母不同外其余均相同,从口袋中随机摸出一个小球,记下字母后放回且搅匀,再从口袋中随机摸出一个小球记下字母,则两次摸出的小球上的字母相同的概率为.35.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是.36.一个布袋中装有1个蓝色球和2个红色球,这些球除颜色外其余都相同,随机摸出一个球后放回摇匀,再随机摸出一个球,则两次摸出的球都是红球的概率是.37.在四张完全相同的卡片上分别印有等边三角形、平行四边形、矩形、圆的图案,现将印有图案的一面朝下,混合后从中一次性随机抽取两张,则抽到的卡片上印有的图案都是轴对称图形的概率为.38.从0,1,2,3四个数字中任取三个数字组成没有重复数字的三位数,那么组成的三位数是奇数的概率是.39.一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是.40.在一个不透明的布袋中装有标着数字2,3,4,5的4个小球,这4个小球的材质、大小和形状完全相同,现从中随机摸出两个小球,这两个小球上的数字之积大于9的概率为41.从2、3、4这三个数字中任选两个组成两位数,在组成的所有两位数中任意抽取一个数,这个数恰好能被2整除的概率是.42.在﹣4、﹣2,1、2四个数中、随机取两个数分别作为函数y=ax2+bx+1中a,b的值,则该二次函数图象恰好经过第一、二、四象限的概率为.43.小明有两双不同的运动鞋,上学时,小明从中任意拿出两只,恰好能配成一双的概率是.44.从2018年高中一年级学生开始,湖南省全面启动高考综合改革,学生学习完必修课程后,可以根据高校相关专业的选课要求和自身兴趣、志向、优势,从思想政治、历史、地理、物理、化学、生物6个科目中,自主选择3个科目参加等级考试.学生A已选物理,还从思想政治、历史、地理3个文科科目中选1科,再从化学、生物2个理科科目中选1科.若他选思想政治、历史、地理的可能性相等,选化学、生物的可能性相等,则选修地理和生物的概率为.45.三张背面完全相同的数字牌,它们的正面分别印有数字“1”、“2”、“3”,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a、b、c,则以a、b、c为边长正好构成等边三角形的概率是.46.有4根细木棒,长度分别为2cm,3cm,4cm,5cm,从中任选3根,恰好能搭成一个三角形的概率是.47.一个不透明的口袋中有三个完全相同的小球,它们的标号分别为1,2,3.随机摸出一个小球然后放回,再随机摸出一个小球,则两次摸出的小球标号相同的概率是.48.甲口袋装有2个相同的小球,它们分别写有字母A和B;乙口袋中装有3个相同的小球,它们分别写有字母C、D和E.童威从两个口袋中各随机取出一个小球,它们恰好一个元音一个辅音字母的概率是(字母A和E是元音,字母B、C和D是辅音)49.口袋中有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同,随机一次性取出两个小球,取出的小球的颜色都是红色的概率为.50.在一个口袋中有三个完全相同的小球,把它们分别标上数字﹣3,0,1,随机地摸出一个小球记录数字然后放回,再随机地摸出一个小球记录数字.则两次的数字和是正数的概率为.北师大新版九年级上学期《3.1 用树状图或表格求概率》同步练习卷参考答案与试题解析一.填空题(共50小题)1.周末,爸爸带亮亮到璧山枫香湖儿童公园游玩,游乐区内有红、紫、黄三种颜色的攀爬网和蓝、绿两种颜色的组合木层,由于时间关系,爸爸要求亮亮只能在三种举爬网和两种组合木层中各选一种游玩,那么亮亮选择红色攀爬网和绿色组合木层的概率是.【分析】根据题意可以写出所有的可能性,从而可以得到亮亮选择红色攀爬网和绿色组合木层的概率.【解答】解:由题意可得,选择的所有可能性是:(红,蓝),(红,绿),(紫,蓝),(紫,绿),(黄,蓝),(黄,绿),故亮亮选择红色攀爬网和绿色组合木层的概率是,故答案为:.【点评】本题考查列表法与树状图法,解答本题的关键是明确题意,求出相应的概率.2.同时掷两枚质地均匀的骰子,求点数的和为6的概率0.14(结果精确到0.01).【分析】利用列表展示所有36种等可能的结果数,其中点数相同占5种,然后根据概率的概念计算即可.【解答】解:由列表可知共有36种等可能的结果数,其中点数之和等于6占5种,所以点数之和等于6概率=≈0.14,故答案为:0.14.【点评】本题考查了利用列表法求概率的方法:先利用列表法图展示所有等可能的结果数n,再找出其中某事件所占有的结果数m,然后根据概率的概念计算出这个事件的概率.3.在一个不透明的袋子中,装有1个红球和2个白球,这些球除颜色外其余都相同.搅均后从中随机一次摸出两个球,则摸到的两个球都是白球的概率是.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:画树状图如图:∵一共有6种情况,两个球都是白球有2种,==,∴P(两个球都是白球)故答案为:.【点评】本题考查的是用列表法或画树状图法求概率,列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.4.现有两个不透明的袋子,其中一个装有红、黄两种颜色的小球各1个,另一个装有红、黄、蓝三种颜色的球各1个,小球除颜色外其他均相同,若小浩从两个袋子中分别随机摸出一个小球,则摸出的两个小球颜色恰好相同的概率为.【分析】画树状图展示所有12种等可能的结果数,再找出两次摸出都是红球的结果数,然后根据概率公式求解.【解答】解:画树状图得:∵共有6种等可能的结果,两次摸出颜色恰好相同的有2种情况,∴两次摸出都是红球的概率为:=.故答案为:.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.5.有一位新娘去商场买新婚衣服,购买了不同款式的上衣2件,不同颜色的裤子3条,利用树状图或列表法表示搭配衣服的所有可能出现的结果有6种.【分析】列出得出所有等可能的情况数即可.【解答】解:列表如下:上衣用a,b表示,裤子用c,d,e表示,所有等可能的情况有6种,故答案为:6.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.6.袋中有颜色不同外其余均相同的2个红球和3个黄球,第一次摸出一球记住颜色后,放回袋中搅匀,再随意摸出一球,两次摸出的都是红色球的概率是.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率即可.【解答】解:列表如下由列表可知共有5×5=25种可能,两次都摸到红球的有4种,所以两次摸出的都是红色球的概率是,故答案为:.【点评】此题考查概率的概念和求法,用树状图或表格表达事件出现的可能性是求解概率的常用方法.用到的知识点为:概率=所求情况数与总情况数之比.7.在永州有一种叫“斗牛”的游戏,每人发5张扑克牌,在这5张牌中取岀3张牌,若这3张牌的数字之和是10的整数倍,我们称之为“牛”(注;J、Q、K的数字规定为10);现某人得到J,K,4,6,9这5张牌,那么在这5张牌中任取岀3张牌能组成“牛”的概率是【分析】5张牌中任取岀3张牌能组成“牛”的个数除以5张牌中任取岀3张牌的总数,计算即可;【解答】解:5张牌中任取岀3张牌为=60,5张牌中任取岀3张牌能组成“牛”的情况如下为:•=12∴这5张牌中任取岀3张牌能组成“牛”的概率为:=故答案为:【点评】本题主要考查了概率的计算方法:概率=所求情况数与总情况数之比,难度适中.8.在一个不透明的盒子中,装有3个分别写有数字6,﹣2,7的小球,他们的形状、大小、质地完全相同,搅拌均匀后,先从盒子里随机抽取1个小球,记下小球上的数字后放回盒子,搅拌均匀后再随机取出1个小球,再记下小球上的数字.则两次取出的小球上的数字相同的概率是.【分析】根据题意先画出树状图,得出所有可能出现的结果数,两次取出小球上的数字相同有3种:(6,6)、(﹣2,﹣2)、(7,7),再根据概率公式即可得出答案.【解答】解:根据题意画图如下:∵共有9种情况,两次取出小球上的数字相同的有3种情况,∴两次取出小球上的数字相同的概率为,故答案为:.【点评】此题可以采用列表法或者采用树状图法,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.树状图法适用于两步或两步以上完成的事件.解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.9.为了弘扬中华传统文化,营造书香校园文化氛围,2017年12月11日,兴义市新电学校举行中华传统文化知识大赛活动该学校从三名男生和两名女生中选出两名同学担任本次活动的主持人,则选出的恰为一男一女的概率是【分析】画出树状图,再根据概率公式列式进行计算即可得解.【解答】解:画树状图如下:共有20种机会均等的结果,其中一男一女占12种,则恰好抽中一男一女的概率是=,故答案为:.【点评】本题考查了列表法与树状图法:先利用列举法或树形图法不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.10.“九(1)”班为了选拔两名学生参加学校举行的“中华优秀传统文化知识竞赛”活动,在班级内先举行了预选赛,在预选赛中有两女、一男3位学生获得了一等奖,从获得等奖的3位学生中随机抽取2名学生参加学校的比赛,则选出的2名学生恰好为一男一女的概率为【分析】根据题意画出树状图,得出抽中一男一女的情况,再根据概率公式,即可得出答案.【解答】解:根据题意画树状图如下:共有6种情况,恰好抽中一男一女的有4种情况,则恰好抽中一男一女的概率是,故答案为:.【点评】本题考查了列表法与树状图法:先利用列举法或树形图法不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.11.将一副扑克牌中的两张牌红桃A和黑桃2都从中间剪开,分成四块,这四块背面完全一样,将它们洗匀后,背面朝上,任取两张,恰好能拼成一张牌的概率是.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:将剪开的红桃A记为A、A′,剪开的黑桃2记为2、2′,画树状图如下:由树状图知,共有12种等可能结果,其中恰好能拼成一张牌的有4种结果,所以恰好能拼成一张牌的概率为=,故答案为:.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.12.如图,有6张扑克牌,从中任意抽取两张,点数和是偶数的概率是.【分析】列举出所有情况,看所求的情况占总情况的多少即可.【解答】解:任意抽取两张的情况有15种,点数和为奇数的有7种,点数和为偶数的概率是,故答案为:.【点评】考查概率的概念和求法,解题的关键是找到所有存在的情况.用到的知识点为:概率=所求情况数与总情况数之比.13.同时掷两粒骰子,都是六点向上的概率是.【分析】列表展示所有36种当等可能的结果数,其中都是六点向上的占1种,然后根据概率的定义即可得到“都是六点向上的”的概率.【解答】解:如图,共有36种当等可能的结果数,其中都是6点向上的结果数为1,所以同时掷两粒骰子,都是六点向上的概率是,故答案为:.【点评】本题考查了列表法或树状图法:利用列表法或树状图法展示所有等可能的结果数n,再找出某事件所占有的结果数m,然后利用概率的概念求得这个事件的概率=.14.如图,在正方体的展开图形中,要将﹣1,﹣2,﹣3填入剩下的三个空白处(彼此不同),则正方体三组相对的两个面中数字互为相反数的概率是.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【解答】解:将﹣1、﹣2、﹣3分别填入三个空,共有3×2×1=6种情况,其中三组相对的两个面中数字和均为零的情况只有一种,故其概率为:.故答案为.【点评】本题考查概率的求法与运用.一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P (A)=.15.从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概率是.【分析】列举出所有等可能的情况数,找出能构成三角形的情况数,即可求出所求概率.【解答】解:从长为3,5,7,10的四条线段中任意选取三条作为边,所有等可能情况有:3,5,7;3,5,10;3,7,10;5,7,10,共4种,其中能构成三角形的情况有:3,5,7;5,7,10,共2种,则P(能构成三角形)==,故答案为:.【点评】此题考查了列表法与树状图法,以及三角形的三边关系,其中概率=所求情况数与总情况数之比.16.从长度分别为3,4,6,9的四条线段中任选三条作边,能构成三角形的概率为.【分析】根据题意可以写出所有的可能性,从而可以求得能组成三角形的概率.【解答】解:从长度分别为3,4,6,9的四条线段中任取三条的所有可能性是:(3,4,6)、(3,4,9)、(3,6,9)、(4,6,9),能组成三角形的可能性是:(3,4,6)、(4,6,9),∴能组成三角形的概率为:=,故答案为.【点评】本题考查列表法和树状图法、三角形三边关系,解答此类问题的关键是写出所有的可能性.17.把一枚均匀的硬币连续抛掷三次,三次正面朝上的概率是.【分析】依据题意先用画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:把一枚均匀的硬币连续抛掷三次出现的情况如下,共有8种等可能出现的结果,三次正面朝上的次数有1次.∴三次正面朝上的概率是,故答案为:.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.18.2018年5月18日,益阳新建西流湾大桥竣工通车,如图,从沅江A地到资阳B地有两条路线可走,从资阳B地到益阳火车站可经会龙山大桥或西流湾大桥或龙洲大桥到达,现让你随机选择一条从沅江A地出发经过资阳B地到达益阳火车站的行走路线,那么恰好选到经过西流湾大桥的路线的概率是.【分析】由题意可知一共有6种可能,经过西流湾大桥的路线有2种可能,根据概率公式计算即可;【解答】解:由题意可知一共有6种可能,经过西流湾大桥的路线有2种可能,所以恰好选到经过西流湾大桥的路线的概率==.故答案为.【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.19.甲、乙两袋均有红、黄色球各一个,分别从两袋中任意取出一球,那么所取出的两球是同色球的概率是.【分析】列举出所有情况,看取出的两球是同色球的情况数占总情况数的多少即可.【解答】解:∵可能的情况为∴一共有4种情况,所取出的两球是同色球的情况为2种,∴所取出的两球是同色球的概率为=,故答案为:.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.20.一家公司招考员工,每位考生要在A,B,C,D,E这5道试题中随机抽出2道题回答,规定答对其中1题即为合格,已知某位考生会答A,B两题,则这位考生合格的概率为.【分析】列举出所有情况,看合格的情况数占所有情况数的多少即可.。
3.1 用树状图或表格求概率第1课时 用树状图或表格求概率【基础练习】 一、选择题:同时掷两颗均匀的骰子,下列说法中正确的是( ).(1)“两颗的点数都是3”的概率比“两颗的点数都是6”的概率大;(2)“两颗的点数相同”的概率是16; (3)“两颗的点数都是1”的概率最大;(4)“两颗的点数之和为奇数”与“两颗的点数之和为偶数”的概率相同.A. (1)、(2)B. (3)、(4)C. (1)、(3)D. (2)、(4)二、填空题: 用列表的方法求下列各事件发生的概率,并用所得的结果填空. 1.从1、2、3、4、5这五个数字中,先随意抽取一个,然后从剩下的四个数中再抽取一个,则两次抽到的数字之和为偶数的概率是 ;2.有五条线段,其长度分别为1、3、5、7、9,从中任取三条,以这三条线段为边能够成一个三角形的概率是 ;3.现有10个型号相同的杯子,其中一等品7个,二等品2个,三等品1个,从中任取两个杯子都是一等品的概率是 .用画树状图的方法求下列各事件发生的概率,并用所得的结果填空.4.在两个布袋中分别装有三个小球,这三个小球的颜色分别为红色、白色、绿色,其他没有区别.把两袋小球都搅匀后,再分别从两袋中各取出一个小球,求取出两个相同颜色....小球的概率是_______.5.妞妞和她的爸爸玩“锤子、剪刀、布”游戏.每次用一只手可以出锤子、剪刀、布三种手势之一,规则是锤子赢剪刀、剪刀赢布、布赢锤子,若两人出相同手势,则算打平.妞妞和爸爸出相同手势的概率是___________.6.三个袋中各装有2个球,其中第一个袋和第二个袋中各有一个红球和一个黄球,第三个袋中有一个黄球和一个黑球,现从三个袋中各摸出一个球,则摸出的三个球中有2个黄球和一个红球的概率为_________.三、解答题:有两组卡片,第一组卡片共3张,分别写着2、2、3;第二组卡片共5张,分别写着1、2、2、3、3. 试用列表的方法求从每组中各抽取一张卡片,两张都是2的概率.【综合练习】有两个质量均匀、大小相同的正四面体,其中一个的四个面上分别写着数字1、2、3、4,另一个的四个面上分别写着数字5、6、7、8. 将这两个正四面体同时投掷到桌面上,并以它们底面上的数字之和来计分,问:(1)共能组成多少种不同的计分?(2)底面上的数字之和为素数的概率是多少?(3)底面上的数字之和为偶数的概率是多少?【探究练习】中国队和韩国队等9支球队参加奥运会足球预选赛亚洲区决赛,把9支球队任意地分成3组,试求中、韩两队恰好分在同一组的概率.答案:【基础练习】一、D. 二、1. 25 ; 2. 310 ; 3. 715 ; 4.13 ;5.13; 6.14.三、415 . 【综合练习】(1)7;(2)14 ;(3)12 .【探究练习】14 .。
九年级数学(上)第三章《概率的进一步认识》同步测试3.1用树状图或表格求概率一、选择题1.甲、乙、丙三人站成一排拍照,则甲站在中间的概率是()A.16B.13C.12D.232.同时抛掷三枚质地均匀的硬币,至少有两枚硬币正面向上的概率是()A.38B.58C.23D.123.一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为()A.25B.23C.35D.3104.三张背面完全相同的数字牌,它们的正面分别印有数字“1”、“2”、“3”,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a、b、c,则以a、b、c为边长正好构成等边三角形的概率是()A.19B.127C.59D.135.有6张看上去无差别的卡片,上面分别写着1,2,3,4,5,6,随机抽取一张后,放回并混在一起,再随机抽取一张,两次抽取的数字的积为奇数的概率是()A.12B.14C.310D.166.质地均匀的骰子六个面分别刻有1到6的点数,掷两次骰子,得到向上一面的两个点数,则下列事件中,发生可能性最大的是()A.点数都是偶数 B.点数的和为奇数C.点数的和小于13 D.点数的和小于27.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球,则两次摸出的小球的标号之和等于5的概率是()A.12B.13C.14D.158.某校九年级共有1、2、3、4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是()A.18B.16C.38D.129.甲箱内有4颗球,颜色分别为红、黄、绿、蓝;乙箱内有3颗球,颜色分别为红、黄、黑.小赖打算同时从甲、乙两个箱子中各抽出一颗球,若同一箱中每球被抽出的机会相等,则小赖抽出的两颗球颜色相同的机率为何?()A.13B.16C.27D.71210.三张外观相同的卡片分别标有数字1、2、3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是()A.13B.23C.16D.1911.某学校在八年级开设了数学史、诗词赏析、陶艺三门校本课程,若小波和小睿两名同学每人随机选择其中一门课程,则小波和小睿选到同一课程的概率是()A.12B.13C.16D.1912.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是()A.13B.16C.19D.11213.有一枚均匀的正方体骰子,骰子各个面上的点数分别为1,2,3,4,5,6,若任意抛掷一次骰子,朝上的面的点数记为x,计算|x﹣4|,则其结果恰为2的概率是()A.16B.14C.13D.1214.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球标号的积小于4的概率是()A.16B.516C.13D.1215.小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为()A.14B.13C.12D.34二、填空题1.掷两枚质地均匀的骰子,其点数之和大于10的概率为.2.同时投掷两个骰子,它们点数之和不大于4的概率是.3.在一个不透明的箱子中装有4件同型号的产品,其中合格品3件、不合格品1件,现在从这4件产品中随机抽取2件检测,则抽到的都是合格品的概率是.4.一个布袋内只装有一个红球和2个黄球,这些球除颜色外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黄球的概率是.5.如图所示,一只蚂蚁从A点出发到D,E,F处寻觅食物.假定蚂蚁在每个岔路口都可能的随机选择一条向左下或右下的路径(比如A岔路口可以向左下到达B处,也可以向右下到达C处,其中A,B,C都是岔路口).那么,蚂蚁从A出发到达E处的概率是.6.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.7.同时掷两枚均匀的硬币,则两枚都出现反面朝上的概率是.8.一只昆虫在如图所示的树枝上寻觅食物,假定昆虫在每个岔路口都会随机选择一条路径,则它获取食物的概率是.9.在一个不透明的空袋子里,放入仅颜色不同的2个红球和1个白球,从中随机摸出1个球后不放回,再从中随机摸出1个球,两次都摸到红球的概率是.10.如图是一个能自由转动的正六边形转盘,这个转盘被三条分割线分成形状相同,面积相等的三部分,且分别标有“1”、“2”、“3”三个数字,指针的位置固定不动,让转盘自由转动两次,当每次转盘停止后,记录指针指向的数(当指针指向分割线时,视其指向分割线左边的区域),则两次指针指向的数都是奇数的概率为.三、解答题1. 甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1,2,3的小球,乙口袋中装有2个分别标有数字4,5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.(1)请用列表或树状图的方法(只选其中一种),表示出两次所得数字可能出现的所有结果;(2)求出两个数字之和能被3整除的概率.2. 甲、乙两人都握有分别标记为A、B、C的三张牌,两人做游戏,游戏规则是:若两人出的牌不同,则A胜B,B胜C,C胜A;若两人出的牌相同,则为平局.(1)用树状图或列表等方法,列出甲、乙两人一次游戏的所有可能的结果;(2)求出现平局的概率.3. 一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为.(1)求袋子中白球的个数;(请通过列式或列方程解答)(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)参考答案一、选择题1.B2.D3.C4.A5.B6.C7.C8.B9.B 10.A 11.B 12.C 13.C 14.C 15.A二、填空题1.1122.16;3.12;4.49;5.12;6.14;7.14;8.13;9.13;10.49三、解答题1. 解:(1)树状图如下:(2)∵共6种情况,两个数字之和能被3整除的情况数有2种,∴两个数字之和能被3整除的概率为21 =63,即P(两个数字之和能被3整除)=13.2. 解:(1)画树状图得:则共有9种等可能的结果;(2)∵出现平局的有3种情况,∴出现平局的概率为:31 =93.3.解:(1)设袋子中白球有x个,根据题意得:213xx=+,解得:x=2,经检验,x=2是原分式方程的解,∴袋子中白球有2个;(2)画树状图得:∵共有9种等可能的结果,两次都摸到相同颜色的小球的有5种情况,∴两次都摸到相同颜色的小球的概率为:59.。
初中数学北师大版九年级上学期第三章 3.1 用树状图或表格求概率一、单选题1.“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择—个参加活动,两人恰好选择同—场馆的概率是( )A. B. C. D.2.小李与小陈做猜拳游戏,规定每人每次至少要出一个手指,两人出拳的手指数之和为偶数时小李获胜,那么,小李获胜的概率为( )A. B. C. D.3.从标有1,2,3,4的四张卡片中任取两张,卡片上的数字之和为奇数的概率是( )A. B. C. D.4.如图,有一电路AB是由图示的开关控制,闭合a,b,c,d,e五个开关中的任意两个开关,使电路形成通路,则使电路形成通路的概率是()A. B. C. D.二、综合题5.箱子里有4瓶牛奶,其中有一瓶是过期的.现从这4瓶牛奶中不放回地任意抽取2瓶.(1)请用树状图或列表法把上述所有等可能的结果表示出来;(2)求抽出的2瓶牛奶中恰好抽到过期牛奶的概率.6.九年级(1)班全班50名同学组成五个不同的兴趣爱好小组,每人都参加且只能参加一个小组,统计(不完全)人数如下表:15 20 10已知前面两个小组的人数之比是.解答下列问题:(1)________.(2)补全条形统计图:(3)若从第一组和第五组中任选两名同学,求这两名同学是同一组的概率.(用树状图或列表把所有可能都列出来)7.为了解学生的课外阅读情况,七(1)班针对“你最喜爱的课外阅读书目”进行调查(每名学生必须选一类且只能选一类阅读书目),并根据调查结果列出统计表,绘制成扇形统计图.男、女生所选类别人数统计表根据以上信息解决下列问题(1)________,________;(2)扇形统计图中“科学类”所对应扇形圆心角度数为________ ;(3)从选哲学类的学生中,随机选取两名学生参加学校团委组织的辩论赛,请用树状图或列表法求出所选取的两名学生都是男生的概率.8.现有A、B、C三个不透明的盒子,A盒中装有红球、黄球、蓝球各1个,B盒中装有红球、黄球各1个,C盒中装有红球、蓝球各1个,这些球除颜色外都相同.现分别从A、B、C三个盒子中任意摸出一个球. (1)从A盒中摸出红球的概率为;(2)用画树状图或列表的方法,求摸出的三个球中至少有一个红球的概率.9.如图所示,有一个可以自由转动的转盘,其盘面分为4等份,在每一等份分别标有对应的数字2,3,4,(1)求前8次的指针所指数字的平均数.(2)小明继续自由转动转盘2次,判断是否可能发生“这10次的指针所指数字的平均数不小于3.3,且不大于3.5”的结果?若有可能,计算发生此结果的概率,并写出计算过程;若不可能,说明理由.(指针指向盘面等分线时为无效转次.)答案解析部分一、单选题1. A解:用A、B、C分别表示“图书馆,博物馆,科技馆”三个场馆画树状图为:共有9种等可能的结果数,其中两人恰好选择同一场馆的有3种情况,∴两人恰好选择同一场馆的概率=故答案为:A【分析】由题意可知,此事件是抽取放回,列出树状图,根据树状图求出所有等可能的结果数及两人恰好选择同一场馆的可能数,然后利用概率公式求解。
北师大版九年级数学上册《3.1用树状图或表格求概率》同步测试题带答案·知识点1游戏的公平性问题1.小强和小华两人玩“剪刀、石头、布”的游戏,随机出手一次,则小强获胜的概率为( )A.16B.13C.12D.232.小明、小颖和小凡都想去影院看电影,但现在只有一张电影票,三人决定一起做游戏,谁获胜谁就去,游戏规则是:连续掷两枚质地均匀的硬币,若两枚正面朝上,则小明获胜,若两枚反面朝上,则小颖获胜;若一枚正面朝上,一枚反面朝上,则小凡获胜,关于这个游戏,下列判断正确的是( )A.三人获胜的概率相同B.小明获胜的概率大C.小颖获胜的概率大D.小凡获胜的概率大3.学生甲、乙在学习了概率初步知识后设计了如下游戏:甲手中有6,8,10三张扑克牌,乙手中有5,7,9三张扑克牌,两人从各自手中随机取一张牌进行比较,数字大的则本局游戏获胜.(1)请用列表或画树状图的方法列举出此游戏所有可能出现的情况;(2)求学生乙本局游戏获胜的概率.·知识点2转盘问题4.如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅱ”所示区域内的概率是( )A.13B.14C.16D.185.(2023·聊城中考)如图,两个相同的可以自由转动的转盘A和B,转盘A被三等分,分别标有数字2,0,-1;转盘B被四等分,分别标有数字3,2,-2,-3.如果同时转动转盘A,B,转盘停止时,两个指针指向转盘A,B上的对应数字分别为x,y(当指针指在两个扇形的交线时,需重新转动转盘),那么点(x,y)落在直角坐标系第二象限的概率是.6.现有三张分别标有数字1,2,3的牌,它们除数字外完全相同,把牌背面朝上洗匀后,甲、乙两人进行摸牌游戏,甲从中随机抽取一张,记下数字后放回洗匀,乙再从中随机抽取一张,若两人抽取的数字之和为偶数,则甲胜,否则乙胜.则甲获胜的概率是( )A.13B.23C.49D.597.甲、乙各抛一次质地均匀的正方体骰子,骰子的六个面上分别刻有1至6的点数,若甲、乙的点数相同时,算两人平手;若甲的点数>乙的点数时,算甲获胜;若乙的点数>甲的点数时,算乙获胜.则甲获胜的概率是( )A.712B.512C.12D.138.从-2,-1,2三个数中任取两个不同的数,作为点的坐标,则该点在第三象限的概率等于.9.如图,一段长管中放置着三根同样的绳子,小明从左边随机选一根,张华从右边随机选一根,两人恰好选中同一根绳子的概率是.【素养提升】10.福州国际马拉松赛事设有“马拉松(42.195千米)”,“半程马拉松(21.097 5千米)”,“迷你马拉松(5千米)”三个项目,小智和小慧参加了该赛事的志愿者服务工作,组委会将志愿者随机分配到三个项目组.(1)小智被分配到“马拉松(42.195千米)”项目组的概率为.(2)用树状图或列表法求小智和小慧被分到同一个项目组进行志愿服务的概率.【易错必究】·易错点:忽视等可能的前提条件【案例】用如图所示的两个转盘进行“配紫色”游戏,配得紫色的概率是( )A.14B.13C.12D.1参考答案·知识点1游戏的公平性问题1.小强和小华两人玩“剪刀、石头、布”的游戏,随机出手一次,则小强获胜的概率为(B)A.16B.13C.12D.232.小明、小颖和小凡都想去影院看电影,但现在只有一张电影票,三人决定一起做游戏,谁获胜谁就去,游戏规则是:连续掷两枚质地均匀的硬币,若两枚正面朝上,则小明获胜,若两枚反面朝上,则小颖获胜;若一枚正面朝上,一枚反面朝上,则小凡获胜,关于这个游戏,下列判断正确的是(D)A.三人获胜的概率相同B.小明获胜的概率大C.小颖获胜的概率大D.小凡获胜的概率大3.学生甲、乙在学习了概率初步知识后设计了如下游戏:甲手中有6,8,10三张扑克牌,乙手中有5,7,9三张扑克牌,两人从各自手中随机取一张牌进行比较,数字大的则本局游戏获胜.(1)请用列表或画树状图的方法列举出此游戏所有可能出现的情况;(2)求学生乙本局游戏获胜的概率.【解析】略·知识点2转盘问题4.如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅱ”所示区域内的概率是(A)A.13B.14C.16D.185.(2023·聊城中考)如图,两个相同的可以自由转动的转盘A和B,转盘A被三等分,分别标有数字2,0,-1;转盘B被四等分,分别标有数字3,2,-2,-3.如果同时转动转盘A,B,转盘停止时,两个指针指向转盘A,B上的对应数字分别为x,y(当指针指在两个扇形的交线时,需重新转动转盘),那么点(x,y)落在直角坐标系第二象限的概率是16.6.现有三张分别标有数字1,2,3的牌,它们除数字外完全相同,把牌背面朝上洗匀后,甲、乙两人进行摸牌游戏,甲从中随机抽取一张,记下数字后放回洗匀,乙再从中随机抽取一张,若两人抽取的数字之和为偶数,则甲胜,否则乙胜.则甲获胜的概率是(D)A.13B.23C.49D.597.甲、乙各抛一次质地均匀的正方体骰子,骰子的六个面上分别刻有1至6的点数,若甲、乙的点数相同时,算两人平手;若甲的点数>乙的点数时,算甲获胜;若乙的点数>甲的点数时,算乙获胜.则甲获胜的概率是(B)A.712B.512C.12D.138.从-2,-1,2三个数中任取两个不同的数,作为点的坐标,则该点在第三象限的概率等于13.9.如图,一段长管中放置着三根同样的绳子,小明从左边随机选一根,张华从右边随机选一根,两人恰好选中同一根绳子的概率是13.【素养提升】10.福州国际马拉松赛事设有“马拉松(42.195千米)”,“半程马拉松(21.097 5千米)”,“迷你马拉松(5千米)”三个项目,小智和小慧参加了该赛事的志愿者服务工作,组委会将志愿者随机分配到三个项目组.(1)小智被分配到“马拉松(42.195千米)”项目组的概率为.(2)用树状图或列表法求小智和小慧被分到同一个项目组进行志愿服务的概率.【解析】略【易错必究】·易错点:忽视等可能的前提条件【案例】用如图所示的两个转盘进行“配紫色”游戏,配得紫色的概率是(C)A.14B.13C.12D.1。
第一节用树状图或表格求概率同步测试一、选择题1.某校有一个两层楼的餐厅,甲、乙、丙三名学生各自随机选择此中的某个楼层的餐厅用餐,则甲、乙、丙三名学生在同一个楼层餐厅用餐的概率为()1 3 1 3A. B. C. D.4 4 8 8答案: A分析:解答:设两层楼分别为 A , B,共有 8 种状况,在一层的共有 2 种状况,因此甲乙丙同在一层楼吃饭的概率是1.4应选 A剖析 :列举出所有状况,让甲、乙、丙三名学生在同一个楼层餐厅用餐的状况数即AAA,AAB,ABA,ABB,BAA,BAB,BBA,BBB,除以总状况数即为所求的概率.2.如下图的两个转盘,每个转盘均被分红四个相同的扇形,转动转盘时指针落在每一个扇形内的时机均等,同时转动两个转盘,则两个指针同时落在标有奇数扇形内的概率为()1 1 1 1A. B. C. D.2 3 4 8答案: C分析:解答:列表得:1共有 16 种状况,两个指针同时落在标有奇数扇形内的状况有4 种状况,因此概率是,故4选 C .剖析 :本题考察了树状图来求概率 ,列举出所有状况,看两个指针同时落在标有奇数扇形内的状况占总状况的多少即可.3.在一个口袋中有 3 个完整相同的小球,把它们分别标号为1, 2, 3,随机地摸取一个小球而后放回,再随机地摸出一个小球.则两次取的小球的标号相同的概率为()A.1 1 1 1 B.C.2D.369答案: A分析: 解答: 列表,得:因此共有 9 种状况,两次取的小球的标号相同的有3 种状况;因此两次取的小球的标号相同的概率为3 1 9 .3应选 A .剖析 :本题考察了列表法求概率 ,本题是抽取再放回 ,用表格列出所有的 9 种状况是解决问题的重点 .4.学校准备从甲、乙、丙、丁四位同学中选两位参加数学比赛,则同时选中甲、乙两位同学的概率是 ()1 B.1 1 1 A.C.2D.648答案: A分析: 解答: 解:画树状图得:∵共有 12 种等可能的结果,同时选中甲、乙两位同学的有 2 种状况,2 = 1 .因此选 A .∴同时选中甲、乙两位同学的概率是:12 6剖析 :第一依据题意画出树状图,而后由树状图求得所有等可能的结果与同时选中甲、乙两位同学的状况,再利用概率公式求解即可求得答案5.随机闭合开关S1、 S2、S3中的两个,能让灯泡⊙发光的概率是( )3 2 1 1A. B. C. D.4 3 2 3答案: B,应选 B.2分析:解答:随机闭合开关S1、S2、S3中的两个出现的状况列表得,因此概率为3开关S1 S2 S1 S3 S2S3,结果亮亮不亮剖析 :本题第一要明确 ,并联电路的特色 ,用列表法 ,求出三个开关的所有闭合状况,再剖析出灯泡亮的状况 ,即可解决问题 .6.小兰和小潭分别用掷 A 、 B 两枚骰子的方法来确立P(x, y)的地点,她们规定:小兰掷得的点数为 x,小谭掷得的点数为 y,那么,她们各掷一次所确立的点落在已知直线y=-2x+6 上的概率为 ()6 1 1 1A. B. C. D.36 18 12 9答案: B分析:解答:列表得:∴一共有 36 种状况,她们各掷一次所确立的点落在已知直线y=-2x+6 上的有( 1, 4),(2, 2).∴她们各掷一次所确立的点落在已知直线y=-2x+6 上的概率为2 136 .18应选 B剖析 :用列表法先列出所有的36 种坐标 ,而后再分别代入直线,找出知足分析式的点的坐标,问题即可获得解决.7小红上学要经过三个十字路口,每个路口碰到红、绿灯的时机都相同,小红希望上学时经过每个路口都是绿灯,但实质这样的时机是()1 1 1 1A. B. C. D.2 3 4 8答案: D分析:解答:解:画树状图,得∴共有 8 种状况,经过每个路口都是绿灯的有一种,∴实质这样的时机是 1 .8应选 D.剖析 :本题可理解为两步实验,用树状图列出这两步实验的所有状况8 种 ,问题即可获得解决 .8.在数 -1,1,2 中任取两个数作为点坐标,那么该点恰幸亏一次函数y=x-2 图象上的概率是()1 1 1 1A. B. C. D.2 3 4 6答案: D分析:解答:画树状图如上:共有 6 种等可能的结果,此中只有(1, -1)在一次函数y=x-2 图象上,1因此点在一次函数y=x-2 图象上的概率=.6应选 D.剖析 :用树状图列出这四个数作为点的坐标的所有状况,注意有次序性,再代入找出知足分析式的点 ,问题即可获得解决.9.一枚质地平均的昔通硬币重复掷两次,落地后两次都是正面向上的概率是( )1 1 1B. C. D.2 3 4答案: D分析:解答:共有 4 种状况,落地后两次都是正面向上的状况数有 1 种,因此概率为1.应选D.4剖析 :用树状图列出所有可能出现的状况(正正 ;正反 ;反正 ;反反 )这是解决问题的重点.10.任意掷一枚平均的硬币两次,则两次都不是正面向上的概率是()1 1 1B. C. D.4 3 3答案: B分析:解答:∵任意掷一枚平均的硬币两次,等可能的结果有:正正,正反,反正,反反,∴两次都不是正面向上的概率是1.应选 B.4剖析:第一利用列举法可得任意掷一枚平均的硬币两次,等可能的结果有:正正,正反,反正,反反,而后利用概率公式求解即可求得答案.11.将分别标有数字 1,2,3,4 的四张卡片洗匀后,反面向上,放在桌面上,随机抽取一张(不放回 ),接着再随机抽取一张,恰巧两张卡片上的数字相邻的概率为()111 1A. B. C. D.543 2答案: D分析:解答:第一次可有 4 种选择,那么第二次可有 3 种选择,那么知共有4×3=12 种可能,恰巧两张卡片上的数字相邻的有 6 种,因此概率是 6 = 1 ,应选D.12 2剖析 :第一利用列举法可得抽取不放回的等可能的结果有:12 种,相邻的有 6 种 ,而后利用概率公式求解即可求得答案.12.有三张正面分别写有数字-1, 1, 2 的卡片,它们反面完整相同,现将这三张卡片反面朝上洗匀后随机抽取一张,以其正面数字作为 a 的值,而后再从节余的两张卡片随机抽一张,以其正面的数字作为 b 的值,则点 (a, b)在第二象限的概率为()1 1 1 2A. B. C D.6 3 2 3答案: B分析:解答:解:依据题意,画出树状图如上:一共有 6 种状况,在第二象限的点有(-1,1)( -1, 2)共 2 个,因此, P= 2 1 = .6 3应选 B.剖析 :第一利用树形图可得等可能的结果有 6 种,而后利用概率公式求解即可求得答案.13.一个盒子中有 4 个除颜色外其他都相同的玻璃球, 1 个红色, 1 个绿色, 2 个白色,现随机从盒子中一次取出两个球,这两个球都是白球的概率为( )1B. 1C.1A.36 2答案: A分析:解答:共12 种等可能的状况, 2 次都是白球的状况数有 2 种,因此概率为.应选 A.剖析 :列举出所有状况,看这两个球都是白球的状况数占总状况数的多少即可.14.小明同时向上掷两枚质地平均、相同大小的正方体骰子,骰子的六个面上分别刻有 1 到 6 的点数,掷得面向上的点数之和是 3 的倍数的概率是 ( )1 1 8 5A. B. C. D.3 6 15 6答案: A分析:解答:明显和为 3 的倍数的概率为.应选 A.剖析 :本题可理解为两步实验,用列表法求出36 种所有可能的状况,而后找出和为 3 的倍数个数问题即可获得解决.15.甲、乙、丙、丁四位同学参加校田径运动会4×100 米接力跑比赛,假如任意安排四位同学的跑步次序,那么恰巧由甲将接力棒交给乙的概率是()1 1 1 5A. B. C. D.4 6 8 24答案: A分析:解答:画树状图得:一共有 24 种状况,恰巧由甲将接力棒交给乙的有甲乙丙丁、甲乙丁丙、丙甲乙丁、丁甲乙丙、丙丁甲乙、丁丙甲乙 6 种状况,∴恰巧由甲将接力棒交给乙的概率是6 = 1 ,应选 A.24 4剖析 :用树形图列举出所有状况,看恰巧由甲将接力棒交给乙的状况数占总状况数的多少即可.二、填空题16. 由 1, 2, 3 构成不重复的两位数,十位数字是 2 的概率是_____.答案:13分析:解答:由 1,2, 3 构成不重复的两位数有:则十位数字是 2 的状况有: 21、23 两种;12、 13、 21、 23、 31、 32 共六种状况;∴十位数字是 2 的概率是2÷6= 1.故答案为 1 .3 3剖析 :先依据题意列出切合条件的两位数有 6 种,此中十位数字是 2 的状况有 2 种,而后根据概率公式求解即可.17.如图,是两个能够自由转动的平均圆盘 A 和 B,A 、B 分别被平均的分红三等份和四等份.同时自由转动圆盘 A 和 B,圆盘停止后,指针分别指向的两个数字的积为偶数的概率是_____.答案:23分析:解答:画树状图得:∵由 12 种等可能的结果,指针分别指向的两个数字的积为偶数的有8 种状况,8 2∴指针分别指向的两个数字的积为偶数的概率是:.12 3故答案为:2.3剖析 :第一依据题意画出树状图,而后由树状图求得所有等可能的结果与指针分别指向的两个数字的积为偶数的状况,再利用概率公式求解即可求得答案.18.有四条线段,长度分别为1、 3 、 4 、5,任意取此中三条,能构成三角形的概率是_____答案:14分析:解答:四条线段,长度分别为1、3、4、5,任意取此中三条状况为:1, 3,4;1, 3,5; 1, 4, 5; 3, 4,5;能构成三角形的状况有:3,4, 5 只有 1 种状况,1 1则 P= .故答案为:4 4剖析 :找出四条选段,任意取此中三条的状况数,再找出能构成三角形的状况,即可求出所求的概率.19.从 1cm、3cm、5cm、7cm、9cm 的五条线段中,任选三条能够构成三角形的概率是_____.答案:310分析:解答:∵从 1cm、3cm、5cm、7cm、9cm 的五条线段中,任选三条,等可能的结果有:1cm、 3cm、 5cm, 1cm、 3cm、7cm, 1cm、 3cm、 9cm, 1cm、 5cm、 7cm, 1cm、5cm、 9cm,1cm、 7cm、 9cm, 3cm、 5cm、 7cm, 3cm、 5cm、 9cm, 3cm、 7cm、 9cm, 5cm、 7cm、 9cm 共 10 种,能构成三角形的有以上状况:3cm,5cm,7cm,3cm,7cm,9cm,5cm,7cm,9cm,3∴任选三条能够构成三角形的概率是:.10故答案为:3.10剖析 :第一利用列举法可得:任选三条,等可能的结果有:1cm、3cm、5cm,1cm、3cm、7cm,1cm、 3cm、 9cm, 1cm、 5cm、 7cm, 1cm、 5cm、 9cm, 1cm、 7cm、 9cm, 3cm、 5cm、7cm,3cm、5cm、9cm,3cm、7cm、9cm,5cm、7cm、9cm 共 10 种,能构成三角形的有以上状况:3cm, 5cm, 7cm, 3cm, 7cm, 9cm, 5cm, 7cm, 9cm,再利用概率公式即可求得答案.20.假如有两组牌,它们牌面数字分别为1、 2、3,那么从每组牌中各摸出一张牌,两张牌的牌面数字和等于 4 的牌概率是 ____ .1答案:3分析:解答:解:画树状图如上:共有 9 种状况,两张牌的牌面数字和等于 4 的牌有 3 种,∴P(两张牌的牌面数字和等于4) = 3 1 .故答案为:1.9 3 3剖析 :用树形图按两步实验的方法列出9 种状况 ,数字之和等于 4 的有 3 种,即可得出答案 . 概率三.解答题21.有两组牌,每组牌都是 4 张,牌面数字分别是 1, 2, 3, 4,从每组牌中任取一张,求抽取的两张牌的数字之和等于 5 的概率,并画出树状图.答案:解:,共有 16 种等可能的状况,和为 5 的状况有 4 种,∴ P(和为 5) = 1.4分析:剖析 :画出树状图.列举出所有状况,看抽取的两张牌的数字之和等于 5 的状况占所有状况的多少即可.22.一个不透明的盒子中放有四张分别写有数字1,2,3,4 的红色卡片和三张分别写有数字1, 2, 3 的蓝色卡片,卡片除颜色和数字外完整相同.(1) 从中任意抽取一张卡片,求该卡片上写有数字 1 的概率;答案: 27(2)将 3 张蓝色卡片取出后放入此外一个不透明的盒子内,而后在两个盒子内各任意抽取一张卡片,以红色卡片上的数字作为十位数,蓝色卡片上的数字作为个位数构成一个两位数,求这个两位数大于 22 的概率.答案:712分析:解答:( 1)∵在 7 张卡片中共有两张卡片写有数字1,∴从中任意抽取一张卡片,卡片上写有数字1 的概率是 2 ;7(2)构成的所有两位数列表为:十位数1 2 3 4个位数1 11 21 31 412 12 22 32 423 13 23 33 43或列树状图为:7∴这个两位数大于22 的概率为.12剖析 :本题考察的是用列表法或画树状图法求概率.列表法或画树状图法能够不重复不遗漏的列出所有可能的结果,合适于两步达成的事件.用到的知识点为:概率 =所讨状况数与总状况数之比.依照题意先用列表法或画树状图法剖析所有等可能和出现所有结果的可能,而后依据概率公式求出该事件的概率.23.现将红、黄、蓝各一球放入不透明的盒子中,这三个球除颜色外完整相同,每次摇匀后,从中摸出一个球记录颜色并放回,共摸两次,求摸到同种颜色球的概率.答案:解:由树状图可知共有3×3=9 种可能,摸到同种颜色球的有 3 种,因此概率是3 1.9 3图法分析:剖析 :用树形图 ,先求出摸两次所有可能出现的状况共9 种 ,再找出同颜色的有 3 种 ,计算即可得到答案 .24.“十一”黄金周时期,小明要与父亲母亲出门游乐,带了 2 件上衣和 3 条长裤 (把衣服和裤子分别装在两个袋子里),上衣颜色有红色、黄色,长裤有红色、黑色、黄色.问题为:(1)小明任意取出一条裤子和一件上衣配成一套,用( 画树状图或列表格 )中的一种列出所有可能出现结果;答案: 6 种;(2)配好一套衣服,小明正好拿到黑色长裤的概率是多少;答案:13(3)他任意取出一件上衣和一条长裤穿上的颜色正好相同的概率是多少?答案:13分析:解答:解:( 1)列表如上:裤子红色黑色黄色上衣红色红色,红色红色,黑色红色,黄色黄色黄色,红色黄色,黑色黄色,黄色因此小明任意取出一条裤子和一件上衣配成一套,所有可能出现的结果有 6 种;(2)黑色长裤的有两种,因此概率是 1 ;3(3)颜色相同的占两种,因此概率是 1 .3剖析 :因为本题需要两步达成,因此采纳列表法或许采纳树状图法都比较简单;解题时要注意是放回实验仍是不放回实验.本题属于放回实验.(1)依据表格可得所有状况;(2)找到黑色长裤占所有状况的多少;(3)颜色相同的状况占所有状况的多少.25.不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其他都相同),此中白球有 2 个,黄球有 1 个,现从中任意摸出一个是白球的概率为 1 .2(1)试求袋中蓝球的个数;答案: 1 个.(2)第一次任意摸一个球 (不放回 ),第二次再摸一个球,请用画树状图或列表格法,求两次摸到都是白球的概率.答案:1 6分析:解答:( 1)设蓝球个数为x 个,则由题意得 2 = 1, x=12+ 1+ x 2 答:蓝球有 1 个;(2)∴两次摸到都是白球的概率=2=1.12 6剖析 :求概率时要理解概率值等于出现的次数比上总的次数,因为给出了概率求个数,因此可列方程解之 .。
用树状图或表格求概率一、选择题1.一枚质地均匀的正方体骰子,连续抛掷两次,两次点数相同的概率是( )A. 12 B.13 C.14 D.16【答案】D 【解析】列表得:由表格可知,总共出现的等可能结果有36种,两次点数相同的结果有6种,两次点数相同的概率为61 366.故选D.2.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A. 12 B.14 C.16 D.112【答案】C 【解析】试题分析:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:21 126=.故答案为:C.考点:概率.3. 暑假即将来临,小明和小亮每人要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动,那么小明和小亮选到同一社区参加实践活动的概率为【】A.12 B.13 C.16 D.19【答案】B【解析】画树状图得:∵共有9种等可能的结果,小明和小亮选到同一社区参加实践活动的有3种情况,∴小明和小亮选到同一社区参加实践活动的概率为:3193=。
故选B。
4. 有三张正面分别写有数字-1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为A. 1 6B.13 C.12 D.23【答案】B【解析】试题分析:根据题意,画出树状图如下:一共有6种情况,在第二象限的点有(﹣1,1)(﹣1,2)共2个,所以,P==.故选B.考点:列表法与树状图法求概率.二、填空题5.现有四张完全相同的卡片,上面分别标有数字-1,-2,3,4。
把卡片背面朝上洗匀,然后从中随机抽取两张,则这两张卡片上的数字之积为负数的概率是_____ .【答案】23。
【解析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率。
用树状图或表格求概率(典型题汇总)知识点 1 利用列表法求概率1.将一枚质地均匀的硬币先后抛掷两次,则至少出现一次正面向上的概率为( )A.14B.12C.34D.232.国家出台全面二孩政策,自2016年1月1日起家庭生育无须审批.如果一个家庭已有一个孩子,再生一个孩子,那么两个都是女孩的概率是( )A.12B.13C.14D.无法确定3.一个不透明的口袋中有三个小球,上面分别标有字母a,b,c,每个小球除字母不同外其余均相同,小园同学从口袋中随机摸出一个小球,记下字母后放回且搅匀,再从该口袋中随机摸出一个小球记下字母.用列表的方法,求小园同学两次摸出的小球上的字母相同的概率.知识点 2 利用画树状图法求概率4.小明和小亮在玩“石头、剪刀、布”的游戏,两人一起做同样手势的概率是( )A.12B.13C.14D.155.同时抛掷三枚质地均匀的硬币,至少有两枚硬币正面向上的概率是( )A.38B.58C.23D.126.三名九年级学生坐在仅有的三个座位上,起身后重新就座,恰好有两名同学没有坐回原座位的概率为( )A.19B.16C.14D.127.在一个不透明的盒子里,装有三个分别写有数字1,2,3的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树状图或列表的方法,求下列事件的概率:(1)两次取出小球上的数字相同的概率;(2)两次取出小球上的数字之和大于3的概率.8.为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.9.从1,2,3,4这四个数中一次随机地取两个数,则其中一个数是另一个数的2倍的概率是( )A.13B.12C.14D.1610.假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚卵全部成功孵化,那么三只雏鸟中恰有两只雌鸟的概率是( )A.16B.38C.58D.2311.在一个不透明的袋子中装有四个小球,它们除分别标有的号码1,2,3,4不同外,其他完全相同.任意从袋子中摸出一球后不放回,再任意摸出一球,则第二次摸出球的号码比第一次摸出球的号码大的概率是( )A.13B.12C.23D.16图3-1-112.如图3-1-1,随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是________.13.如图3-1-2,管中放置着三根同样的绳子AA1,BB1,CC1.小明在左侧选两个打一个结,小红在右侧选两个打一个结,则这三根绳子能连接成一根长绳的概率为__________.图3-1-214.如图3-1-3是“密室逃脱俱乐部”的通路俯视图,一同学进入入口后,可任选一条通道过关.(1)他进入A密室或B密室的可能性哪个大?请说明理由(利用画树状图或列表法来求解);(2)求该同学从中间通道进入A密室的概率.图3-1-315.端午节的早晨,小文妈妈为小文准备了四个粽子做早点:一个枣馅粽、一个肉馅粽、两个花生馅粽,四个粽子除内部馅料不同外,其他均相同.(1)小文吃前两个粽子刚好都是花生馅粽的概率为________;(2)若妈妈在早点中给小文再增加一个花生馅的粽子,则小文吃前两个粽子都是花生馅粽的可能性是否会增大?请利用列表或画树状图的方法来说明理由.详解1.C2.C [解析] 列表如下:∵共有4种等可能的结果,两个都是女孩的有1种情况,∴两个都是女孩的概率是14.故选C.3.解:列表如下:所有等可能的情况有9种,其中两次摸出的小球上的字母相同的情况有3种. 所以小园同学两次摸出的小球上的字母相同的概率为39=13.4.B [解析] 画树状图如下:共有9种等可能的结果数,其中两人随机同时出手一次,做同样手势的结果数为3种,故两人一起做同样手势的概率是39=13.故选B.5.D [解析] 画树状图如下:∴至少有两枚硬币正面向上的概率是48=12.6.D [解析] 画树状图为(用A ,B ,C 表示三位同学,用a ,b ,c 表示他们原来的座位):共有6种等可能的结果数,其中恰好有两名同学没有坐回原座位的结果数为3种, 所以恰好有两名同学没有坐回原座位的概率=36=12.故选D.7.解:(1)画树状图如下:共有9种等可能的结果数,其中两次取出小球上的数字相同的结果数为3种, 所以两次取出小球上的数字相同的概率=39=13.(2)由(1)中树状图可知:两次取出小球上的数字之和大于3的结果数为6种, 所以两次取出小球上的数字之和大于3的概率=69=23.8.解:(1)小丽从中随机抽取一个比赛项目,恰好抽中“三字经”的概率为14.(2)画树状图如下:共有12种等可能的结果,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1,所以恰好小红抽中“唐诗”且小明抽中“宋词”的概率为112.9.A [解析] 画树状图如下:∵共有12种等可能的结果,其中一个数是另一个数的2倍的有4种情况, ∴其中一个数是另一个数的2倍的概率是:412=13.故选A.10.B [解析] 画树状图如图所示:因为所有等可能的情况有8种,其中三只雏鸟中恰有两只雌鸟的情况有3种,所以三只雏鸟中恰有两只雌鸟的概率是38.11.B [解析] 画树状图如下:共有12种等可能的结果数,其中第二次摸出球的号码比第一次摸出球的号码大的结果数为6种,所以第二次摸出球的号码比第一次摸出球的号码大的概率=612=12.故选B.12.1513.23 [解析] 小明在左侧选两个打一个结有三种可能:AB ,AC ,BC ,小红在右侧选两个打一个结有三种可能:A 1B 1,A 1C 1,B 1C 1,画树状图如下:共有9种等可能的结果数,其中这三根绳子能连接成一根长绳的结果数为6种, 所以这三根绳子能连接成一根长绳的概率=69=23.故答案为23.14.解:(1)该同学进入B 密室的可能性大. 理由如下:画树状图如图:共有6个等可能的结果,∴P (进入A 密室)=26=13,P (进入B 密室)=46=23,∴该同学进入B 密室的可能性大.(2)由(1)中的树状图可知该同学从中间通道进入A 密室的概率为16.15.解:(1)16(2)会增大.理由:分别用A ,B 表示一个枣馅粽、一个肉馅粽,用C 1,C 2,C 3表示三个花生馅粽,画树状图如下:∵共有20种等可能的结果,两个都是花生馅粽的有6种情况, ∴小文吃前两个粽子都是花生馅粽的概率为620=310>16,∴给小文再增加一个花生馅的粽子,则小文吃前两个粽子都是花生馅粽的可能性会增大.。
3.1 用树状图或表格求概率同步测试题(满分120分;时间:120分钟)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!题号一二三总分得分一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 一个盒子装有除颜色外其它均相同的个红球和个白球,现从中任取个球,则取到的是一个红球、一个白球的概率为()A. B. C. D.2. 在一个不透明的布袋里装有个小球,其中个红球,个白球,个黄球,它们除颜色外其它完全相同.那么一次性摸出两个小球恰好都是红球的概率是()A. B. C. D.3. 某校安排三辆车,组织九年级学生团员去敬老院参加学雷锋活动,其中小王与小菲都可以从这三辆车中任选一辆搭乘,则小王与小菲同车的概率为()A. B. C. D.4. 同时抛掷两枚硬币,硬币落地后,出现“一正面和一个反面”的概率为()D.A. B. C.5. 布袋中有红、黄、蓝三个球,它们除颜色不同以外,其他都相同,从袋中随机取出一个球后再放回袋中,这样取出球的顺序依次是“红-黄-蓝”的概率是()A. B. C. D.6. 一家医院某天上午出生了两个婴儿,那么这两个婴儿中,出现个男婴、个女婴的概率是()A. B. C. D.7. 在一个口袋中有个完全相同的小球,它们的标号分别为,,,,从中随机摸出一个小球记下标号后放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和大于的概率是()A. B. C. D.8. 从、、、中任取一个数作为十位上的数字,再从余下的数字中任取一个数作为个位上的数字,那么组成的两位数是的倍数的概率是()A. B. C. D.9. 有四张质地相同的卡片,它们的背面相同,其中两张的正面印有“粽子”的图标,另外两张的正面印有“龙舟”的图案,现将它们背面朝上,洗均匀后排列在桌面,任意翻开两张,那么两张图案一样的概率是()A. B. C. D.10. 学校要从茗茗、墨墨和丽丽三人中随机选两人去参加演讲比赛,则茗茗和丽丽同时入选的概率是()A. B. C. D.二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 一个不透明的布袋里装有个只有颜色不同的球,其中个白球,个红球.从中摸出个球,记下颜色后放回搅匀,再摸出个球.则两次都摸出红球的概率是________.12. 现有三张完全相同的卡片,上面分别标有数字,,,把卡片背面朝上洗匀,然后从中随机抽取一张,记下数字后放回洗匀,再从中随机抽取一张,则两次都抽到的负数的概率是________.13. 把标有号码,,,,,的个乒乓球放在一个箱子中,摇匀后,从中任意取两个,号码之和小于的概率是________.14. 小明随意将一枚元和一枚角的硬币同时抛出,着地时两枚硬币都是正面朝上的概率是________.15. 随机掷一枚均匀的硬币两次,两次都是正面朝上的概率是________.16. 抛掷两枚质地均匀的硬币,落地后两枚全部是正面朝上的概率是________.17. 如果鸟卵孵化后,雏鸟为雌为雄的概率相同.如果枚卵全部成功孵化,则只雏鸟都为雄鸟的概率是________.18. 一个袋子中装有个球,其中个黑球个白球,这些球除颜色外,形状、大小、质地等完全相同.搅匀后,在看不到球的条件下,随机从这个袋子中摸出两个球为白球的概率是________.19. 学校为了了解九年级学生“一分钟跳绳次数”的情况,随机选取了名女生和名男生,则从这名学生中选取名同时跳绳,恰好选中一男一女的概率是________.20. 甲盒子中有编号为、的个白色乒乓球,乙盒子中有编号为、的个黄色乒乓球.现分别从每个盒子中随机地取出个乒乓球,则取出乒乓球的编号之和大于的概率为________.三、解答题(本题共计6 小题共计60分,)21. 本校有、两个餐厅,甲、乙两名学生各自随机选择其中一个餐厅用餐,请用列表或画树状图的方法解答:(1)甲、乙两名学生在同一餐厅用餐的概率;(2)甲、乙两名学生至少有一人在餐厅的概率.22. 一只不透明的袋子里共有个球,其中个白球,个红球,它们除颜色外均相同.(1)从袋子中随机摸出一个球是白球的概率是多少?(2)从袋子中随机摸出一个球,不放回袋子,摇匀袋子后再摸一个球,请用列表或画树状图的方法,求出两次摸出的球都是白球的概率.23. 某校学生会正筹备一个“迎新年”文艺汇演活动,现准备从名(其中两男两女)节目主持候选人中,随机选取两人担任节目主持人,请列举出所有等可能的不同的选取搭配方法,并求选出的两名主持人“恰好为一男一女”的概率.24.体育中考现场考试内容有三项:米跑为必测项目;另在立定跳远、实心球(二选一)和坐位体前屈、分钟跳绳(二选一)中选择两项.(1)毎位考生有________种选择方案;(2)用画树状图或列表的方法求小明与小刚选择同种方案的概率.(友情提酲:各种方案用、、、…或①、②、③、…等符号来代表可简化解答过程)25. 小张、小王和另两名同学一起去看电影《寻龙诀》,小张买到张座位相连的电影票,座位号顺次为排、、、座.现在小张和小王从中随机各抽取一张电影票,求小张和小王抽取的电影票正好是相邻座位的概率(请通过画树状图或列表法写出分析过程).26. 一个不透明的口袋中装有个分别标有数字,,,的小球,它们的形状、大小完全相同.小红先从口袋中随机摸出一个小球记下数字为;小颖在剩下的个小球中随机摸出一个小球记下数字为.(1)小红摸出标有数字的小球的概率是________;(2)请用列表法或画树状图的方法表示出由,确定的点所有可能的结果;(3)若规定:点在第一象限或第三象限小红获胜;点在第二象限或第四象限则小颖获胜.请分别求出两人获胜的概率.。
3.1用树状图或表格求概率分层练习考查题型一列表法或树状图法求概率(1)求:吉祥物“冰墩墩(2)求:吉祥物“冰墩墩【详解】(1)吉祥物1故答案为:考查题型二判断游戏公平性1.小董利用均匀的骰子和同桌做游戏,规则如下:①两人同时做游戏,各自投掷一枚骰子,也可以连续投掷几次骰子;②当掷出的点数和不超过10,如果决定停止投掷,那么你的得分就是掷出的点数和;当掷出的点数和超过10,必须停止投掷,并且你的得分为0;(1)随机地摸出一张,求摸出牌面图形是轴对称图形的概率;(2)小华和小明玩游戏,规则是:随机地摸出一张,放回洗匀后再摸一张.若摸出两张牌面图形都是轴对称图形的纸牌,则小华赢;否则,小明赢.你认为该游戏公平吗?请用画树状图或列表法说明理由.用A,B,C表示)【详解】(1)解:由题意,随机地摸出一张共有3种等可能的结果,其中摸出牌面图形是轴对称图形的结果有纸牌,A B,共2种,则摸出牌面图形是轴对称图形的概率为23 P=.由图可知,摸出两张牌共有9种等可能的结果,其中摸出两张牌面图形都是轴对称图形的结果有考查题型三概率在转盘游戏的应用(1)转得非负数的概率是多少?(2)转得整数的概率是多少?(3)若小丽和妈妈做游戏,请说明理由.【详解】(1)解:由题意可知,转盘中有所以转得非负数的概率为(2)解∶由题意可知,转盘中有9所以转得整数的概率为(1)求转动一次转盘获得购物券的概率;(1)请你用列表法(或画树状图法)求两款转盘指针分别指向一红区和一蓝区的概率.(2)如果一名顾客当天在本店购物满200【详解】解:(1)整个圆周被分成了∴获得一等奖的概率为:整个圆周被分成了16份,黄色为∴获得二等奖的概率为:1.“田忌赛马”的故事闪烁着我国古代先贤的智慧光芒.该故事的大意是:齐王有上、中、下三匹马111,,A B C ,田忌也有上、中、下三匹马222,,A B C ,且这六匹马在比赛中的胜负可用不等式表示如下:121212A A B B C C >>>>>(注:A B >表示A 马与B 马比赛,A 马获胜).一天,齐王找田忌赛马,约定:每匹马都出场比赛一局,共赛三局,胜两局者获得整场比赛的胜利.面对劣势,田忌事先了解到齐王三局比赛的“出马”顺序为上马、中马、下马,并采用孙膑的策略:分别用下马、上马、中马与齐王的上马、中马、下马比赛,即借助对阵(212121,,C A A B B C )获得了整场比赛的胜利,创造了以弱胜强的经典案例.假设齐王事先不打探田忌的“出马”情况,试回答以下问题:(1)如果田忌事先只打探到齐王首局将出“上马”,他首局应出哪种马才可能获得整场比赛的胜利?并求其获胜的概率;。
3.1 用树状图或表格求概率同步测试题一、选择题(共30分)1.下列说法不正确的是()A.某事件发生的概率为1,则它不一定必然会发生B.某事件发生的概率为0,则它必然不会发生C.抛一个普通纸杯,杯口不可能向上D.从一批产品中任取一个为次品是可能的2.一个袋中有4个珠子,其中2个红色,2个蓝色,除颜色外其余特征均相同,若从这个袋中任取2个珠子,都是蓝色珠子的概率是()A.12B.13C.14D.163.一次抽奖活动中,印发奖券1000张,其中一等奖20张,二等奖80张,三等奖200 张,那么任一位抽奖者(仅买一张奖券)中奖的概率是()A.150B.225C.15D.3104.往返与A、B两市之间的特快列车,途中要停靠两个站点,如果任意两站间的票价都不同,那么有()种不同的票价.A.4 B.6 C.10 D.125.一个箱子中放有红、黄、黑三种小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,这个游戏是()A.公平的B.不公平的C.先摸者赢的可能性大D.后摸者赢的可能性大6.下列说法中,正确的是()A.买一张电影票,座位号一定是偶数B.投掷一枚均匀硬币,正面一定朝上C.三条任意长的线段可以组成一个三角形D.从1、2、3、4、5这五个数字中任取一个数,取得奇数比取得偶数的可能性大7.如图,小明周末到外婆家,走到十字路口处,记不清哪条路通往外婆家,那么他能一次选对路的概率是()A.1 2B.13C.14D.0 8.某班学生在颁奖大会上得知该班获得奖励的情况如下表.已知该班共有28人获得奖励,其中获得两项奖励的13人,那么该班获得奖励最多的一位同学可能获得的奖励为()A.3 项B.4 项C.5 项D.6 项二、填空题(共20分)9.某校有一支由12 人组成的篮球队,年龄结构如下表.从中抽取1人,年龄不小于15岁的概率是.10.如图表示某班21位同学衣服上口袋的数目.若任选一位同学,则其衣服上口袋数为5的概率是.11.一个科室有3名男士、2名女士,从中任选2人做一项接待工作,则选到的人都女士的概率为.12.去掉大小王一副牌共52张,任取两张,则两张为同色的概率等于.年龄(岁)14 15 16 17人数(人) 2 6 3 1三、解答题(共50分)13.某公司对一批某品牌衬衣的质量抽检结果如下表.(1)从这批衬衣众人抽1件是次品的概率约为多少?(2)如果销售这批衬衣600件,那么至少要再准备多少件正品衬衣供买到次品的顾客更换?14.两家商厦搞节日促销活动,A商厦进行有奖销售,凡购物满100元可摸一张奖券,每一万张奖券设一等奖10个,奖金5000元;二等奖100个,奖金500元;三等奖200个,奖金20元.B商厦,全场八五折酬宾.问顾客参加哪一家商厦的节日促销活动期望值较高?15.保险公司对某地区人们的寿命调查后发现活到50岁的有69800人,在该年龄死亡的人数为980人,活到70岁的有38500人,在该年龄死亡的有2400人.(1)某人今年50岁,则他活到70岁的概率为多少?(2)若有20000个50岁的人参加保险,当年死亡的赔偿金为每人2万元,预计保险公司该年赔付总额为多少?.16.小明有3双黑袜子和1双白袜子,假设袜子不分左右,那么从中随机抽取2只恰好配成一双的概率是多少?如果袜子分左右呢?17.请你在如图转盘内涂上红、黄、蓝三种颜色,要求任意旋转一次指针落在红色区域的概率是512,落在黄色区域和蓝色区域的概率之比是3 : 418.你喜欢玩游戏吗?现请你玩一个转盘游戏.如图所示的两个转盘中指针落在每一个数字上的机会均等.现同时自由转动甲、乙两个转盘,转盘停止后,指针各指向一个数字,用所指的两个数字作乘积.请你:(1)列举(用列表或画树状图)所有可能得到的数字之积.(2)求出数字之积为奇数的概率.19.某商场搞促销活动,设计了一个游戏:在一只黑色的口袋里装有颜色不同的50只小球,其中红球1只、黄球2只、绿球10只,其余为白球.搅拌均匀后,每花2元钱可摸1个球.奖品的情况为:摸得红球奖金8元;摸得黄球奖金5元;摸得绿球奖金l元;摸得白球无奖金.(1)如果花2元摸1个球,那么摸不到奖的概率是多少?(2)如果花4元同时摸2个球,那么获得10元奖品的概率是多少?20.一个口袋里有10个红球和若干个白球,请通过以下实验估计口袋中白球的个数:从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不断重复上述过程.实验中总共摸了200 次,其中有50次摸到红球.参考答案。
3.1 用树状图或表格求概率同步练习一、仔仔细细,记录自信1.下列事件发生的概率为0的是()A.随意掷一枚均匀的硬币两次,至少有一次反面朝上B.今年冬天黑龙江会下雪C.随意掷两个均匀的骰子,朝上面的点数之和为1D.一个转盘被分成6个扇形,按红、白、白、红、红、白排列,转动转盘,指针停在红色区域2.在100张奖券中,有4张中奖,小红从中任抽1张,他中奖的概率是()A.14B.120C.125D.11003.下列说法正确的是()A.抛一枚硬币正面朝上的机会与抛一枚图钉钉尖着地的机会一样大B.为了了解泰州火车站某一天中通过的列车车辆数,可采用普查的方式进行C.彩票中奖的机会是1%,买100张一定会中奖D.泰州市某中学学生小亮,对他所在的住宅小区的家庭进行调查,发现拥有空调的家庭占65%,于是他得出泰州市拥有空调家庭的百分比为65%的结论4.如图1是一个可以自由转动的转盘,转动这个转盘,指针最有可能指向的颜色是()A.黄色B.红色C.紫色D.绿色5.某商店举办有奖储蓄活动,购货满100元者发对奖券一张,在10000张奖券中,设特等奖1个,一等奖10个,二等奖100个.若某人购物满100元,那么他中一等奖的概率是()A.1100B.11000C.110000D.111100006.以下说法正确的是()A.在同一年出生的400人中至少有两人的生日相同B.一个游戏的中奖率是1%,买100张奖券,一定会中奖C.一副扑克牌中,随意抽取一张是红桃K,这是必然事件D.一个袋中装有3个红球、5个白球,任意摸出一个球是红球的概率是3 57.一个袋中有4个珠子,其中2个红色,2个蓝色,除颜色外其余特征均相同,若从这个袋中任取2个珠子,都是蓝色珠子的概率是()A.12B.13C.14D.168.以下说法合理的是()A.小明在10次抛图钉的实验中发现3次钉尖朝上,由此他说钉尖朝上的概率是30%B.抛掷一枚普通的正六面体骰子,出现6的概率是1/6的意思是每6次就有1次掷得6C.某彩票的中奖机会是2%,那么如果买100张彩票一定会有2张中奖D.在一次课堂进行的实验中,甲、乙两组同学估计硬币落地后,正面朝上的概率分别为0.48和0.51二、认认真真,书写快乐9.任意掷一枚均匀硬币两次,两次都是同一面朝上的概率是.10.小刚和小明按如下规则做游戏:桌面上放有53支铅笔,每次取1支或2支,由小刚先取,最后取完铅笔的人获胜.如果小刚获胜的概率为1,那么小刚第一次应该取走支.11.某校初三(2)班想举办班徽设计比赛,全班50名同学,计划每位同学交设计方案一份,拟评选出10份为一等奖,那么该班某位同学获一等奖的概率为.12.一个口袋中装有4个白球,2个红球,6个黄球,摇匀后随机从中摸出一个球是白球的概率是.13.某班有49位学生,其中有23位女生.在一次活动中,班上每一位学生的名字都各自写在一张小纸条上,放入一盒中搅匀.如果老师闭上眼睛从盒中随机抽出一张纸条,那么抽到写有女生名字纸条的概率是.14.10张卡片分别写有0至9十个数字,将它们放入纸箱后,任意摸出一张,则P(摸到数字2)=,P(摸到奇数)=.15.盒子里装有大小、形状相同的3个白球和2个红球,搅匀后从中摸出一个球,放回搅匀后,再摸出第二个球,则取出的恰是两个红球的的概率是.三、平心静气,展示智慧16.李红和张明正在玩掷骰子游戏,两人各掷一枚骰子.(1)当两枚骰子点数之积为奇数时,李红得3分,否则,张明得1分,这个游戏公平吗?为什么?(2)当两枚骰子的点数之和大于7时,李红得1分,否则张明得1分,这个游戏公平吗?为什么?17.如图2是从一副扑克牌中取出的两组牌,分别是黑桃1、2、3、4和方块1、2、3、4,将它们背面朝上分别重新洗牌后,从两组牌中各摸出一张,那么摸出的两张牌的牌面数字之和等于5的概率是多少?请你用列举法(列表或画树状图)加以分析说明.参考答案一、1~5 CCBDB 6~8 ADD二、9.1210.211.1512.1313.234914.110,1215.4 25三、16.(1)这个游戏对双方公平.(2)不公平,略.17.P牌面数字之和等于514 .。
北师大版九年级数学上册第三章 3.1用树状图或表格求概率 假期同步测试一.选择题1. 从1,2,3,4中任取两个不同的数,分别记为a 和b ,则a 2+b 2>19的概率是( ) A .B .C .D .【解析】画树状图得:∵共有12种等可能的结果,任取两个不同的数,a 2+b 2>19的有4种结果, ∴a 2+b 2>19的概率是=,故选:D .2.如图所示的两个转盘,每个转盘均被分成四个相同的扇形,转动转盘时指针落在每一个扇形内的机会均等,同时转动两个转盘,则两个指针同时落在标有奇数扇形内的概率为()A.12B.13C.14D.18【解析】列表得:共有16种情况,两个指针同时落在标有奇数扇形内的情况有4种情况,所以概率是41,故选C .3.一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为( ) A .B .C .D .【解析】画树状图得:∵共有20种等可能的结果,取到的是一个红球、一个白球的有12种情况, ∴取到的是一个红球、一个白球的概率为: =.故选C .4.随机闭合开关S 1、S 2、S 3中的两个,能让灯泡⊙发光的概率是( )A.43 B.32 C.21 D.31 【解析】随机闭合开关S 1、S 2、S 3中的两个出现的情况列表得,所以概率为32,故选B .5.质地均匀的骰子六个面分别刻有1到6的点数,掷两次骰子,得到向上一面的两个点数,则下列事件中,发生可能性最大的是( ) A .点数都是偶数 B .点数的和为奇数 C .点数的和小于13 D .点数的和小于2【解析】画树状图为:共有36种等可能的结果数,其中点数都是偶数的结果数为9,点数的和为奇数的结果数为18,点数和小于13的结果数为36,点数和小于2的结果数为0, 所以点数都是偶数的概率==,点数的和为奇数的概率==,点数和小于13的概率=1,点数和小于2的概率=0,所以发生可能性最大的是点数的和小于13. 故选C .6.在数-1,1,2中任取两个数作为点坐标,那么该点刚好在一次函数y=x-2图象上的概率是( )A.21 B.31 C.41 D.61 【解析】画树状图如上:共有6种等可能的结果,其中只有(1,-1)在一次函数y=x-2图象上,所以点在一次函数y=x-2图象上的概率=16.故选D .7.从1、2、3、4四个数中随机选取两个不同的数,分别记为a 、c ,则关于x 的一元二次方程ax 2+4x+c =0有实数解的概率为( ) A .B .C .D .【解析】画树状图得:由树形图可知:一共有12种等可能的结果,其中使ac≤4的有6种结果,∴关于x的一元二次方程ax2+4x+c=0有实数解的概率为,故选:C.8.甲箱内有4颗球,颜色分别为红、黄、绿、蓝;乙箱内有3颗球,颜色分别为红、黄、黑.小赖打算同时从甲、乙两个箱子中各抽出一颗球,若同一箱中每球被抽出的机会相等,则小赖抽出的两颗球颜色相同的机率为何?()A.B.C.D.【解析】树状图如图所示:共有12种等可能的结果,颜色相同的有2种情形,故小赖抽出的两颗球颜色相同的机率==;故选:B.9.一个盒子中有4个除颜色外其余都相同的玻璃球,1个红色,1个绿色,2个白色,现随机从盒子中一次取出两个球,这两个球都是白球的概率为( )【解析】共12种等可能的情况,2次都是白球的情况数有2种,所以概率为故选A.10.甲、乙是两个不透明的纸箱,甲中有三张标有数字,,1的卡片,乙中有三张标有数字1,2,3的卡片,卡片除所标数字外无其他差别,现制定一个游戏规则:从甲中任取一张卡片,将其数字记为a,从乙中任取一张卡片,将其数字记为b.若a,b能使关于x 的一元二次方程ax2+bx+1=0有两个不相等的实数根,则甲获胜;否则乙获胜.则乙获胜的概率为()A.B.C.D.【解析】画树状图如下:由图可知,共有9种等可能的结果,其中能使乙获胜的有4种结果数,∴乙获胜的概率为,故选:C.11.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是()A.B.C.D.【解析】由题意可得,同时投掷这两枚骰子,所得的所有结果是:(1,1)、(1,2)、(1,3)、(1,4)、(1,5)、(1,6)、(2,1)、(2,2)、(2,3)、(2,4)、(2,5)、(2,6)、(3,1)、(3,2)、(3,3)、(3,4)、(3,5)、(3,6)、(4,1)、(4,2)、(4,3)、(4,4)、(4,5)、(4,6)、(5,1)、(5,2)、(5,3)、(5,4)、(5,5)、(5,6)、(6,1)、(6,2)、(6,3)、(6,4)、(6,5)、(6,6),则所有结果之和是:2、3、4、5、6、7、3、4、5、6、7、8、4、5、6、7、8、9、5、6、7、8、9、10、6、7、8、9、10、11、7、8、9、10、11、12,∴所得结果之和为9的概率是:,故选C.12.(2019•临沂)经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是()A.B.C.D.【解析】画“树形图”如图所示:∵这两辆汽车行驶方向共有9种可能的结果,其中一辆向右转,一辆向左转的情况有2种,∴一辆向右转,一辆向左转的概率为;故选:B.二.填空题13. 由1,2,3组成不重复的两位数,十位数字是2的概率是_____.【解析】由1,2,3组成不重复的两位数有:12、13、21、23、31、32共六种情况;则十位数字是2的情况有:21、23两种;∴十位数字是2的概率是2÷14.一只昆虫在如图所示的树枝上寻觅食物,假定昆虫在每个岔路口都会随机选择一条路径,则它获取食物的概率是.【解析】根据树状图,蚂蚁获取食物的概率是=.故答案为.15.在一个不透明的箱子中装有4件同型号的产品,其中合格品3件、不合格品1件,现在从这4件产品中随机抽取2件检测,则抽到的都是合格品的概率是.【解析】画树状图得:∵共有12种等可能的结果,抽到的都是合格品的有6种情况,∴抽到的都是合格品的概率是: =.故答案为:.16.小蕾有某文学名著上、中、下各1册,她随机将它们叠放在一起,从上到下的顺序恰好为“上册、中册、下册”的概率是.【解析】画树状图如图:共有6个等可能的结果,从上到下的顺序恰好为“上册、中册、下册”的结果有1个,∴从上到下的顺序恰好为“上册、中册、下册”的概率为;故答案为:.17.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.【解析】画树状图如下:∴P(两次摸到同一个小球)==故答案为:18.若从﹣1,1,2这三个数中,任取两个分别作为点M的横、纵坐标,则点M在第二象限的概率是____. 【解析】列表如下:由表可知,共有6种等可能结果,其中点M 在第二象限的有2种结果, 所以点M 在第二象限的概率是 31. 故答案为:31 . 三.解答题19. (2019 山东省潍坊市)如图所示,有一个可以自由转动的转盘,其盘面分为4等份,在每一等份分别标有对应的数字2,3,4,5.小明打算自由转动转盘10次,现已经转动了8次,每一次停止后,小明将指针所指数字记录如下:(1)求前8次的指针所指数字的平均数.(2)小明继续自由转动转盘2次,判断是否可能发生“这10次的指针所指数字的平均数不小于3.3,且不大于3.5”的结果?若有可能,计算发生此结果的概率,并写出计算过程;若不可能,说明理由.(指针指向盘面等分线时为无效转次.)解:(1)前8次的指针所指数字的平均数为×(3+5+2+3+3+4+3+5)=3.5; (2)∵这10次的指针所指数字的平均数不小于3.3,且不大于3.5, ∴后两次指正所指数字和要满足不小于5且不大于7,画树状图如下:由树状图知共有12种等可能结果,其中符合条件的有8种结果,所以此结果的概率为=.20.一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为.(1)求袋子中白球的个数;(请通过列式或列方程解答)(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)解:(1)设袋子中白球有x个,根据题意得: =,解得:x=2,经检验,x=2是原分式方程的解,∴袋子中白球有2个;(2)画树状图得:∵共有9种等可能的结果,两次都摸到相同颜色的小球的有5种情况,∴两次都摸到相同颜色的小球的概率为:.21.“十一”黄金周期间,小明要与父母外出游玩,带了2件上衣和3条长裤(把衣服和裤子分别装在两个袋子里),上衣颜色有红色、黄色,长裤有红色、黑色、黄色.问题为:(1)小明随意拿出一条裤子和一件上衣配成一套,用(画树状图或列表格)中的一种列出所有可能出现结果;配好一套衣服,小明正好拿到黑色长裤的概率是多少;(3)他任意拿出一件上衣和一条长裤穿上的颜色正好相同的概率是多少?解:(1)列表如上:裤子红色黑色黄色上衣红色红色,红色红色,黑色红色,黄色黄色黄色,红色黄色,黑色黄色,黄色所以小明随意拿出一条裤子和一件上衣配成一套,所有可能出现的结果有6种;(2(322.为提升学生的艺术素养,某校计划开设四门选修课程:声乐、舞蹈、书法、摄影.要求每名学生必须选修且只能选修一门课程,为保证计划的有效实施,学校随机对部分学生进行了一次调查,并将调査结果绘制成如下不完整的统计表和统计图.学生选修课程统计表课程人数所占百分比声乐14 b%舞蹈8 16%书法16 32%摄影 a 24%合计m 100%根据以上信息,解答下列问题:(1)m=,b=.(2)求出a的值并补全条形统计图.(3)该校有1500名学生,请你估计选修“声乐”课程的学生有多少名.(4)七(1)班和七(2)班各有2人选修“舞蹈”课程且有舞蹈基础,学校准备从这4人中随机抽取2人编排“舞蹈”在开班仪式上表演,请用列表法或画树状图的方法求所抽取的2人恰好来自同一个班级的概率.解:(1)m=8÷16%=50,b%=×100%=28%,即b=28,故答案为:50、28;(2)a=50×24%=12,补全图形如下:(3)估计选修“声乐”课程的学生有1500×28%=420(人).(4)画树状图为:共有12种等可能的结果数,其中抽取的2名学生恰好来自同一个班级的结果数为4,则所抽取的2人恰好来自同一个班级的概率为=.23.2019年4月23日是第二十四个“世界读书日“.某校组织读书征文比赛活动,评选出一、二、三等奖若干名,并绘成如图所示的条形统计图和扇形统计图(不完整),请你根据图中信息解答下列问题:(1)求本次比赛获奖的总人数,并补全条形统计图;(2)求扇形统计图中“二等奖”所对应扇形的圆心角度数;(3)学校从甲、乙、丙、丁4位一等奖获得者中随机抽取2人参加“世界读书日”宣传活动,请用列表法或画树状图的方法,求出恰好抽到甲和乙的概率.解:(1)本次比赛获奖的总人数为4÷10%=40(人),二等奖人数为40﹣(4+24)=12(人),补全条形图如下:(2)扇形统计图中“二等奖”所对应扇形的圆心角度数为360°×=108°;(3)树状图如图所示,∵从四人中随机抽取两人有12种可能,恰好是甲和乙的有2种可能,∴抽取两人恰好是甲和乙的概率是=.24.我市去年成功举办2018郴州国际休闲旅游文化节,获评“全国森林旅游示范市”.我市有A,B,C,D,E五个景区很受游客喜爱.一旅行社对某小区居民在暑假期间去以上五个景区旅游(只选一个景区)的意向做了一次随机调查统计,并根据这个统计结果制作了如下两幅不完整的统计图:(1)该小区居民在这次随机调查中被调查到的人数是200 人,m=35 ,并补全条形统计图;(2)若该小区有居民1200人,试估计去B地旅游的居民约有多少人?(3)小军同学已去过E地旅游,暑假期间计划与父母从A,B,C,D四个景区中,任选两个去旅游,求选到A,C两个景区的概率.(要求画树状图或列表求概率)解:(1)该小区居民在这次随机调查中被调查到的人数是20÷10%=200(人),则m%=×100%=35%,即m=35,C景区人数为200﹣(20+70+20+50)=40(人),补全条形图如下:故答案为:200,35;(2)估计去B地旅游的居民约有1200×35%=420(人);(3)画树状图如下:由树状图知,共有12种等可能结果,其中选到A,C两个景区的有2种结果,所以选到A,C两个景区的概率为=.。
3.1 用树状图或表格求概率同步练习◆基础训练1.下列事件中可作为机会均等的结果的事件来计算概率的是()①某篮球运动员投篮一次命中目标;②抛一枚图钉,钉尖朝上;③一副扑克牌(去掉大小王)中任抽一张是红桃;④号码由1,2,3三个数字组成的内线电话,任意拨其中的三个数字电话接通A.②③④B.②③C.③④D.①②③④2.袋中有3个红球,2个白球,若从袋中任意摸出1个球,则摸出白球的概率是()A.15B.25C.23D.133.随机掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,则这个骰子向上的一面点数是奇数的概率为()A.12B.13C.14D.154.在“等边三角形、正方形、等腰梯形、正五边形、矩形、正六边形”中,任取其中一个图形,恰好既是中心对称图形,又是轴对称图形的概率为______.5.九年级(1)班将竞选出正、副班长各1名,现有甲、乙两位男生和丙、丁两位女生参加竞选.(1)男生当选班长的概率是_______;(2)请用列表或画树状图的方法求出两位女生同时当选正、副班长的概率.6.某商店举办有奖销售活动,办法如下:凡购货满100元者得奖券一张,多购多得,每10000张奖券为一个开奖单位,设特等奖1个,一等奖50个,二等奖100个,那么买100元商品的中奖概率是多少?7.在“妙手推推推”的游戏中,主持人出示了一个9位数,让参加者猜商品价格.被猜的价格是一个4位数,也就是这个9位数中从左到右连在一起的某4个数字.如果参与者不知道商品的价格,从这些连在一些的所有4位数中,任意..猜一个,求他猜中该商品价格的概率.8.小红与父母一起从杭州乘火车去上海,火车车厢里每排有左、中、右三个座位.小红一家三口随意坐在某排的三个座位,则小红恰好坐在中间的概率是多少?◆提高训练9.小刚与小亮一起玩一种转盘游戏.如图是两个完全相同的转盘,每个转盘分成面积相等的三个区域,分别有“1”、“2”、“3”表示.固定指针,同时转动两个转盘,任其自由停止,若两指针的数字和为奇数,则小刚获胜;否则,小亮获胜.则在该游戏中小刚获胜的概率是()A.12B.49C.59D.2310.从分别写有1,3,5,7,9的五张卡片中任取一张恰好是3的倍数的概率是_______.11.如图,三张卡片上分别写有一个代数式,把它们背面朝上洗匀,小明闭上眼睛,从中随机抽取一张卡片,再从剩下的卡片中随机抽取另一张.第一次抽取的卡片上的整式做分式,第二次抽取的卡片上的整式做分母,用列表法或画树状图法求能组成分式的概率是多少?2 5 83 9 64 1 712.一枚质地均匀的正方体骰子,六个面分别标有1,2,3,4,5,6,连续投掷两次.(1)用列表法或树状图表示出朝上的面上的数字所有可能出现的结果;(2)记两次朝上的面上的数字分别为p、q,若p、q分别作为点A的横坐标和纵坐标,求点A(p,q)在函数y=12x的图象上的概率.13.一个不透明的口袋里装有红、黄、绿三种颜色的球(除颜色不同外其余都相同),其中红球有2个,黄球有1个,从中任意摸出1个球是红球的概率为12.(1)试求袋中绿球的个数;(2)第1次从袋中任意摸出1球(不放回),第2次再任意摸出1球,请你用画树状图或列表格的方法,求两次都摸到红球的概率.14.请你依据图框中的寻宝游戏规则,探究“寻宝游戏”的奥秘:(1)用树状图表示出所有可能的寻宝情况;(2)求在寻宝游戏中胜出的概率.◆拓展训练15.抽屉中有2个白球,3个红球,它们只有颜色不同,任意摸出一球,大家知道摸到白球的概率为25,摸到红球的概率为35,现在把这5个球分别放到两个相同的盒子中,其中一个盒子中放有1个白球,1个红球,而另一个盒子中放有1个白球和2个红球,再把两个盒子放到抽屉中,问任意摸一球,摸到白球的概率还是25吗?为什么?若不是25,请求出此时摸到白球的概率.参考答案1.C 2.B 3.A4.1 25.(1)12(2)166.151 100007.1 68.1 39.B10.2 511.2 312.(1)略(2)1 913.(1)1个(2)1 614.(1)略(2)1 615.不是,5 12。
2016年北师大版九年级数学上册同步测试:3.1 用树状图或表格求概率一、选择题(共3小题)
1.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为()
A.B.C.D.
2.一天晚上,小丽在清洗两只颜色分别为粉色和白色的有盖茶杯时,突然停电了,小丽只好把杯盖和茶杯随机搭配在一起,则其颜色搭配一致的概率是()
A.B.C.D.1
3.一次掷两枚质地均匀的硬币,出现两枚硬币都正面朝上的概率是()
A.B.C.D.
二、填空题(共4小题)
4.把一枚均匀的硬币连续抛掷两次,两次正面朝上的概率是.
5.甲、乙、丙三位好朋友随机站成一排照合影,甲没有站在中间的概率为.
6.现有四张分别标有1,2,2,3的卡片,它们除数字外完全相同,把卡片背面向上洗匀,从中随机抽取一张后放回,再背面朝上洗匀,从中随机抽出一张,则两次抽出的卡片所标数字不同的概率
是.
7.一枚质地均匀的正方体骰子的六个面分别刻有1到6的点数,将这枚骰子掷两次,其点数之和是7的概率为.
三、解答题(共23小题)
8.为了提高中学生身体素质,学校开设了A:篮球、B:足球、C:跳绳、D:羽毛球四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校随机抽取若干名学生进行问卷调查(每个被调查的对象必须选择而且只能在四种体育活动中选择一种),将数据进行整理并绘制成以下两幅统计图(未画完整).
(1)这次调查中,一共调查了名学生;
(2)请补全两幅统计图;
(3)若有3名喜欢跳绳的学生,1名喜欢足球的学生组队外出参加一次联谊活动,欲从中选出2人担任组长(不分正副),求一人是喜欢跳绳、一人是喜欢足球的学生的概率.
9.学校初三年级男生共200名,随机抽取10名测量他们的身高(单位:cm)为:181,176,169,155,163,
175,173,167,165,166.
(1)求这10名男生的平均身高和上面这组数据的中位数;
(2)估计该校初三年级男生身高高于170cm的人数;
(3)从身高为181,176,175,173的男生中任选2名,求身高为181cm的男生被抽中的概率.
10.有三张卡片(形状、大小、颜色、质地都相等),正面分别写上整式x2+1,﹣x2﹣2,3.将这三张卡片背面向上洗匀,从中任意抽取一张卡片,记卡片上的整式为A,再从剩下的卡片中任意抽取一张,记卡片上的整式为B,于是得到代数式.
(1)请用画树状图或列表的方法,写出代数式所有可能的结果;
(2)求代数式恰好是分式的概率.
11.为了参加中考体育测试,甲、乙、丙三位同学进行足球传球训练,球从一个人脚下随机传到另一个人脚下,且每位传球人传给其余两人的机会是均等的,由甲开始传球,共传球三次.
(1)请利用树状图列举出三次传球的所有可能情况;
(2)求三次传球后,球回到甲脚下的概率;
(3)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?
12.某超市计划在“十周年”庆典当天开展购物抽奖活动,凡当天在该超市购物的顾客,均有一次抽奖的机会,抽奖规则如下:将如图所示的圆形转盘平均分成四个扇形,分别标上1,2,3,4四个数字,抽奖者连续转动转盘两次,当每次转盘停止后指针所指扇形内的数为每次所得的数(若指针指在分界线时重转);
当两次所得数字之和为8时,返现金20元;当两次所得数字之和为7时,返现金15元;当两次所得数字之和为6时返现金10元.
(1)试用树状图或列表的方法表示出一次抽奖所有可能出现的结果;
(2)某顾客参加一次抽奖,能获得返还现金的概率是多少?
13.某校了解九年级学生近两个月“推荐书目”的阅读情况,随机抽取了该年级的部分学生,调查了他们每人“推荐书目”的阅读本数.设每名学生的阅读本数为n,并按以下规定分为四档:当n<3时,为“偏少”;当3≤n<5时,为“一般”;当5≤n<8时,为“良好”;当n≥8时,为“优秀”.将调查结果统计后绘制成不完整的统计图表:
请根据以上信息回答下列问题:
(1)分别求出统计表中的x、y的值;
(2)估计该校九年级400名学生中为“优秀”档次的人数;
(3)从被调查的“优秀”档次的学生中随机抽取2名学生介绍读书体会,请用列表或画树状图的方法求抽取的2名学生中有1名阅读本数为9的概率.
14.一个不透明的口袋中装有2个红球(记为红球1、红球2),1个白球、1个黑球,这些球除颜色外都相同,将球搅匀.
(1)从中任意摸出1个球,恰好摸到红球的概率是
(2)先从中任意摸出一个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表),求两次都摸到红球的概率.
15.(2015•烟台)”切实减轻学生课业负担”是我市作业改革的一项重要举措.某中学为了解本校学生平均每天的课外作业时间,随机抽取部分学生进行问卷调查,并将调查结果分为A、B、C、D四个等级,A:。