高数2-6
- 格式:ppt
- 大小:932.50 KB
- 文档页数:30
空间中的垂直关系____________________________________________________________________________________________________________________________________________________________________理解空间中三种垂直关系的定义;掌握空间中三种垂直关系判定及性质;用空间中三种垂直关系的定义、判定及性质解决垂直问题.一、直线与平面垂直1.如果两条直线相交于一点或经过平移后相交于一点,并且交角为直角,则称这两条直线互垂直.2.如果一条直线(AB)和一个平面(α)相交于点O,并且和这个平面内过点O的任何直线都垂直,我们就说这条直线和这个平面互相垂直,记作AB⊥α,直线叫做平面的垂线,平面叫做直线的垂面,交点叫做垂足.垂线上任一点到垂足间的线段,叫做这点到这个平面的垂线段.垂线段的长度叫做这点到平面的距离3.直线和平面垂直的判定4.(1)判定定理:如果一条直线和一个平面内的任何两条相交直线都垂直,那么这条直线垂直于这个平面.符号语言:l⊥a,l⊥b,a∩b=A,a⊂α,b⊂α⇒l⊥α,如图:(2)如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于同一个平面.符号语言:a∥b,a⊥α⇒b⊥α,如图:5.直线与平面垂直的性质(1)性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.符号语言:a⊥α,b⊥α⇒a∥b,如图:(2)一条直线垂直于一个平面,它就和平面内的任意一条直线垂直.符号语言:a⊥α,b⊂α⇒a⊥b,如图:6.设P是三角形ABC所在平面α外一点,O是P在α内的射影(1)若PA=PB=PC,则O为△ABC的外心.特别地当∠C=90°时,O为斜边AB中点.(2)若PA、PB、PC两两垂直,则O为△ABC的垂心.(3)若P到△ABC三边距离相等,则O为△ABC的内心.7.(1)过一点有且只有一条直线与已知平面垂直.(2)过一点有且只有一个平面与已知直线垂直.二、直线和平面平行1.平面与平面垂直的定义:如果两个相交平面的交线与第三个平面垂直,又这两个平面与第三个平面相交所得的两条交线互相垂直,就称这两个平面互相垂直.平面α、β互相垂直,记作α⊥β.2.两个平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.符号表示:a⊥α,a⊂β⇒α⊥β,如图:3.两个平面垂直的性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线,垂直于另一个平面.符号表示:α⊥β,α∩β=CD,BA⊂α,BA⊥CD,B为垂足⇒BA⊥β,如图:推论:如果两个平面垂直,那么过第一个平面内的一点垂直于第二个平面的直线,在第一个平面内.类型一线面垂直例1:如图,直角△ABC所在平面外一点S,且SA=SB=SC,点D为斜边AC的中点.(1)求证:SD⊥平面ABC;(2)若AB=BC,求证:BD⊥平面SAC.解析:由于D是AC中点,SA=SC,∴SD是△SAC的高,连接BD,可证△SDB≌△SDA.由AB=BC,则Rt△ABC是等腰直角三角形,则BD⊥AC,利用线面垂直的判定定理即可得证.答案:(1)∵SA=SC,D为AC的中点,∴SD⊥AC.在Rt△ABC中,连接BD,则AD=DC=BD,又∵SB=SA,SD=SD,∴△ADS≌△BDS.∴SD⊥BD.又AC∩BD=D,∴SD⊥面ABC.(2)∵BA=BC,D为AC中点,∴BD⊥AC.又由(1)知SD⊥面ABC,∴SD⊥BD.于是BD垂直于平面SAC内的两条相交直线,∴BD⊥平面SAC.练习1:((2014·河南南阳一中高一月考)如图所示,在四棱锥P-ABCD中,底面ABCD是矩形,侧棱P A⊥平面ABCD,E、F分别是AB、PC的中点,P A=AD.求证:EF⊥平面PCD.答案:如图,取PD的中点H,连接AH、HF.∴FH 12 CD,∴FH AE,∴四边形AEFH是平行四边形,∴AH∥EF. ∵底面ABCD是矩形,∴CD⊥AD.又∵PA⊥底面ABCD,∴PA ⊥CD ,PA ∩AD =A , ∴CD ⊥平面PAD .又∵AH ⊂平面PAD ,∴CD ⊥AH .又∵PA =AD ,∴AH ⊥PD ,PD ∩CD =D , ∴AH ⊥平面PCD ,又∵AH ∥EF ,∴EF ⊥平面PCD .练习2:如右图,在正方体1111ABCD A B C D -中,P 为1DD 的中点,O 为ABCD 的中心, 求证:1B O ⊥平面PAC 答案:连结111,,PO PB B D ,由正方体的性质可知,1,AC BD AC BB ⊥⊥,且1BD BB B =I ∴AC ⊥面11BDD B 又∵BO ⊂面11BDD B ∴1B O AC ⊥ 设AB a =,则11121,2,2OB OD a B D a PD PD a ===== ∵2222222222221113113,22424OB OB BB a a a OP PD DO a a a =+=+==+=+= 222222111119244PB B D PD a a a =+=+=∴2221OB PO PB += ∴1B O PO ⊥ ∵PO AC O =I∴1B O ⊥平面PAC练习3:在如右图,在空间四边形ABCD 中,,AB AD BC CD ==, 求证:AC BD ⊥答案:设E 为BD 的中点,连结,AE EC∵AB AD = ∴BD AE ⊥ 同理可证:BD EC ⊥又∵AE EC E =I ∴BD ⊥面AEC∵AE ⊂面AEC ∴BD AC ⊥例2:如图在△ABC 中,∠B =90°,SA ⊥平面ABC , 点A 在SB 和SC 上的射影分别是N 、M ,求证:MN ⊥SC .解析:根据直线平面垂直的性质,找到所求垂直的线段中的 一条与另一条所在的平面垂直,即可证明这两条线段互相垂直. 答案:证明:∵SA ⊥平面ABC , ∴SA ⊥BC ,又∠ABC =90°, ∴BC ⊥AB ,∴BC ⊥平面SAB , ∴AN ⊥BC ,又AN ⊥SB ,∴AN ⊥平面SBC ,E ABCDOP D 1C 1B 1A 1DCBA∴AN ⊥SC ,又AM ⊥SC , ∴SC ⊥平面AMN , ∴MN ⊥SC .练习1:如图,在正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为A 1D 、AC 上的点,且EF ⊥A 1D ,EF ⊥AC .求证:EF ∥BD 1. 答案:如图所示,连接A 1C 1、C 1D 、BD 、B 1D 1. 由于AC ∥A 1C 1,EF ⊥AC ,∴EF ⊥A 1C 1. 又EF ⊥A 1D ,A 1D ∩A 1C 1=A 1, ∴EF ⊥平面A 1C 1D . ∵BB 1⊥平面A 1B 1C 1D 1,A 1C 1⊂平面A 1B 1C 1D 1, ∴BB 1⊥A 1C 1.又∵四边形A 1B 1C 1D 1为正方形,∴A 1C 1⊥B 1D 1. ∵BB 1∩B 1D 1=B 1,∴A 1C 1⊥平面BB 1D 1D . 而BD 1⊂平面BB 1D 1D ,∴BD 1⊥A 1C 1. 同理,DC 1⊥BD 1,DC 1∩A 1C 1=C 1, ∴BD 1⊥平面A 1C 1D . 由①②可知EF ∥BD 1.练习2:在空间中,下列命题:①平行于同一条直线的两条直线平行;②垂直与同一直线的两条直线平行;③平行与同一平面的两条直线平行;④垂直于同一平面的两条直线平行.其中正确的由___. 答案:①④练习3:已知,,a b c 及平面β,则下列命题正确的是( )A 、////a a b b ββ⎫⇒⎬⊂⎭B 、a a b b ββ⊥⎫⇒⊥⎬⊥⎭C 、//a c a b b c ⊥⎫⇒⎬⊥⎭D 、//a a b b ββ⊂⎫⇒⎬⊂⎭ 答案:B例3:如图,在底面为直角梯形的四棱锥P -ABCD 中,AD ∥BC , ∠ABC =90°,PA ⊥平面ABCD ,PA =3,AD =2,AB =23,BC =6.求证:BD ⊥平面PAC .解析:通过计算得到直角,进而得到垂直. 答案:∵PA ⊥平面ABCD ,BD ⊂平面ABCD ,∴BD ⊥PA .∵∠BAD 和∠ABC 都是直角,∴tan ∠ABD =AD AB =33,tan ∠BAC =BCAB=3, ∴∠ABD =30°,∠BAC =60°.∴∠AEB =90°,即BD ⊥AC , 又PA ∩AC =A ,∴BD ⊥平面PAC .练习1:在正方体中ABCD -A 1B 1C 1D 1中,P 为DD 1的中点, O 为底面ABCD 的中心.求证:B 1O ⊥平面PAC . 答案:如图所示,连接AB 1、CB 1、B 1D 1、PB 1、PO .设AB =a ,则AB 1=CB 1=B 1D 1=2a ,AO =OC =22a , ∴B 1O ⊥AC .∵B 1O 2=OB 2+BB 21=⎝⎛⎭⎪⎫22a 2+a 2=32a 2,PB 21=PD 21+B 1D 21=⎝ ⎛⎭⎪⎫12a 2+(2a )2=94a 2,OP 2=PD 2+DO 2=⎝ ⎛⎭⎪⎫12a +⎝⎛⎭⎪⎫22a 2=34a 2,∴B 1O 2+OP 2=PB 21,∴B 1O ⊥OP . 又PO ∩AC =O ,∴B 1O ⊥平面PAC . 练习2:如图,若测得旗杆PO =4,P A =PB =5,OA =OB =3,则旗杆PO 和地面α的关系是________.答案:∵PO =4,OA =OB =3,P A =PB =5,∴PO 2+AO 2=P A 2,PO 2+OB 2=PB 2, ∴PO ⊥OA ,PO ⊥OB .又OA ∩OB =O ,∴PO ⊥平面AOB ,∴PO ⊥地面α.类型二平面与平面垂直例4:(2014·山东临沂高一期末测试)如图,在底面为正三角形的直三棱柱ABC -A 1B 1C 1中,点D 是BC 的中点,求证:平面AC 1D ⊥平面BCC 1B 1.解析:运用平面垂直的判定.答案:∵△ABC 为正三角形,D 为BC 的中点,∴AD ⊥BC .又∵CC 1⊥底面ABC ,AD ⊂平面ABC , ∴CC 1⊥AD .又BC ∩CC 1=C , ∴AD ⊥平面BCC 1B 1. 又AD ⊂平面AC 1D ,∴平面AC 1D ⊥平面BCC 1B 1.练习1:三棱锥S -ABC 中,∠BSC =90°,∠ASB =60°,∠ASC =60°,SA =SB =SC . 求证:平面ABC ⊥平面SBC .答案:解法一:取BC 的中点D ,连接AD 、SD .由题意知△ASB 与△ASC 是等边三角形,则AB =AC . ∴AD ⊥BC ,SD ⊥BC .令SA =a ,在△SBC 中,SD =22a , 又∵AD =AC 2-CD 2=22a ,∴AD 2+SD 2=SA 2. 即AD ⊥SD .又∵AD ⊥BC ,∴AD ⊥平面SBC . ∵AD ⊂平面ABC ,∴平面ABC ⊥平面SBC .解法二:∵SA =SB =SC =a , 又∵∠ASB =∠ASC =60°,∴△ASB 、△ASC 都是等边三角形. ∴AB =AC =a .作AD ⊥平面SBC 于点D ,∵AB =AC =AS ,∴D 为△SBC 的外心. 又∵△BSC 是以BC 为斜边的直角三角形, ∴D 为BC 的中点,故AD ⊂平面ABC . ∴平面ABC ⊥平面SBC .练习2:如右图,在四面体ABCD 中,2,BD a AB AD CB CD a =====.求证:平面ABD ⊥平面BCD . 答案:取BD 的中点E ,连结,AE EC∵AB AD = ∴AE BD ⊥同理CE BD ⊥ 在△ABD 中,12,2AB a BE BD a === ∴2222AE AB BE a =-=同理22CE a = 在△AEC 中,2,2AE CE a AC a ===∴222AC AE CE =+ ∴AE CE ⊥ ∵BD CE E =I ∴AE ⊥平面BCD ∵AE ⊂平面ABD ∴平面ABD ⊥平面BCD 练习3:空间四边形ABCD 中,若,AD BC BD AD ⊥⊥,那么有( ) A 、平面ABC ⊥平面ADC B 、平面ABC ⊥平面ADBC 、平面ABC ⊥平面DBCD 、平面ADC ⊥平面DBC 答案:D例5:已知P 是△ABC 所在平面外的一点,且P A ⊥平面ABC ,平面P AC ⊥平面PBC ,求证:BC ⊥AC .解析:已知条件是线面垂直和面面垂直,要证明两条直线垂直,应将两条直线中的一条放入一平面中,使另一条直线与该平面垂直,即由线面垂直得到线线垂直.在空间图形中,高一级的垂直关系蕴含着低一级的垂直关系,通过本题可以看到:面面垂直⇒线面垂直⇒线线垂直. 答案:如图,在平面P AC 内作AD ⊥PC 于点D ,∵平面P AC ⊥平面PBC ,AD ⊂平面P AC ,且AD ⊥PC , ∴AD ⊥平面PBC ,又BC ⊂平面PBC ,∴AD ⊥BC .∵P A ⊥平面ABC ,BC ⊂平面ABC , ∴P A ⊥BC ,∵AD ∩P A =A ,∴BC ⊥平面P AC , 又AC ⊂平面P AC ,∴BC ⊥AC .练习1:已知三棱锥P -ABC 中,侧面PAC 与底面ABC 垂直,PA =PB =PC . (1)求证:AB ⊥BC ;(2)若AB =BC ,过点A 作AF ⊥PB 于点F ,连接CF ,求证:平面PBD ⊥平面AFC .ABCDE答案:如图所示:(1)取AC的中点D,连接PD、BD,∵PA=PC,∴PD⊥AC,又平面PAC⊥平面ABC,且平面PAC∩平面ABC=AC,∴PD⊥平面ABC,D为垂足.∵PA=PB=PC,∴DA=DB=DC,∴AC为△ABC的外接圆的直径,故AB⊥BC.(2)∵PA=PC,AB=BC,PB=PB,∴△ABP≌△CBP.∵AF⊥PB,∴CF⊥PB,又AF∩CF=F,∴PB⊥平面AFC,又PB⊂平面PBD,∴平面PBD⊥平面AFC.练习2:已知平面P AB⊥平面ABC,平面P AC⊥平面ABC,如图所示.求证:P A⊥平面ABC.答案:如图所示,在平面ABC内任取一点D,作DF⊥AC于点F,作DG⊥AB于点G,∵平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,∴DF⊥平面PAC,又∵PA⊂平面PAC,∴PA⊥DF,同理可证:DG⊥PA,∵DF∩DG=D,且DF⊂平面ABC,DG⊂平面ABC,∴PA⊥平面ABC.1.一条直线和三角形的两边同时垂直,则这条直线和三角形的第三边的位置关系是() A.平行B.垂直C.相交不垂直D.不确定答案:B2.若一条直线l上有两个点到平面α的距离相等,则l与α的关系是()A.平行B.相交C.垂直D.不确定答案:D3.已知直线l⊥平面α,直线m⊂平面β,给出下列四个命题:①α∥β,l⊄β⇒l⊥m②α⊥β⇒l∥m③l∥m⇒α⊥β④l⊥m⇒α∥β其中正确的两个命题是()A.①②B.③④C.②④D.①③答案:D4.如图,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD,则在三棱锥A-BCD中,下列命题正确的是()A .平面ABD ⊥平面ABCB .平面ADC ⊥平面BDC C .平面ABC ⊥平面BDCD .平面ADC ⊥平面ABC 答案:D5.若有直线m 、n 和平面α、β,下列四个命题中,正确的是()A .若m ∥α,n ∥α,则m ∥nB .若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥βC .若α⊥β,m ⊂α,则m ⊥βD .若α⊥β,m ⊥β,m ⊄α,则m ∥α 答案:D6.Rt △ABC 所在平面α外一点P 到直角顶点的距离为24,到两直角边的距离都是610,那么点P到平面α的距离等于__________.答案:12_________________________________________________________________________________ _________________________________________________________________________________基础巩固1.已知一平面平行于两条异面直线,一直线与两异面直线都垂直,那么这个平面与这条直线的位置关系是()A .平行B .垂直C .斜交D .不能确定 答案:B2.直线a ⊥直线b ,a ⊥平面β,则b 与β的位置关系是()A .b ⊥βB .b ∥βC .b ⊂βD .b ⊂β或b ∥β 答案:D 3.下列命题①⎭⎪⎬⎪⎫a ⊥αb ⊂α⇒a ⊥b ; ②⎭⎪⎬⎪⎫a ⊥αa ∥b ⇒b ⊥α; ③⎭⎪⎬⎪⎫a ⊥αb ∥α⇒a ⊥b; ④⎭⎪⎬⎪⎫a ⊥ba ⊥b b ⊂αc ⊂α⇒a ⊥α; ⑤⎭⎪⎬⎪⎫a ∥αa ⊥b ⇒b ⊥α; ⑥⎭⎪⎬⎪⎫a ⊥αb ⊥a ⇒b ∥α. 其中正确命题的个数是( ) A .3 B .4 C .5 D .6答案:A4..若平面α∥平面β,直线a⊂α,直线b⊂β,那么a、b的位置关系是()A.无公共点B.平行C.既不平行也不相交D.相交答案:A5.直线a与平面α内的两条直线都垂直,则a与α的位置关系是()A.垂直B.平行C.a在平面α内D.不确定答案:D6.若平面α⊥平面β,且平面α内的一条直线a垂直于平面β内的一条直线b,则() A.直线a必垂直于平面βB.直线b必垂直于平面αC.直线a不一定垂直于平面βD.过a的平面与过b的平面垂直答案:C7.长方体ABCD-A1B1C1D1中,MN在平面BCC1B1内,MN⊥BC于M,则MN与AB的位置关系为____________________.答案:MN⊥AB8.如图所示,已知正三棱柱ABC-A1B1C1的面对角线A1B⊥B1C,求证B1C⊥C1A.答案:如图所示,连接A1C,交AC1于点D,则点D是A1C的中点.取BC的中点N,连接AN、DN,则DN∥A1B.又A1B⊥B1C,∴B1C⊥DN.又△ABC是正三角形,∴AN⊥BC.又平面ABC⊥平面BB1C1C,平面ABCD∩平面BB1C1C=BC,AN⊂平面ABC,∴AN⊥平面BB1C1C.又B1C⊂平面BB1C1C,∴B1C⊥AN.又AN⊂平面AND,DN⊂平面AND,AN∩DN=N,∴B1C⊥平面AND.又C1A⊂平面AND,∴B1C⊥AC1.能力提升9.若两直线a与b异面,则过a且与b垂直的平面()A.有且只有一个B.至多有一个C.有无数多个D.一定不存在答案:B10.已知三棱锥S-ABC的各顶点都在一个半径为r的球面上,球心O在AB上,SO⊥底面ABC,AC=2r,则球的体积与三棱锥体积之比是()A.πB.2πC.3πD.4π答案:D11.(2014·浙江文,6)设m,n是两条不同的直线,α、β是两个不同的平面()A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α答案:C12.已知平面ABC外一点P,且PH⊥平面ABC于H.给出下列4个命题:①若P A⊥BC,PB⊥AC,则H是△ABC的垂心;②若P A、PB、PC两两互相垂直,则H是△ABC的垂心;③若∠ABC=90°,H是AC的中点,则P A=PB=PC;④若P A=PB=PC,则H是△ABC的外心.其中正确命题的个数为()A.1 B.2C.3 D.4答案:D13.平面α的斜线AB交α于点B,过定点A的动直线l与AB垂直,且交α于点C,则动点C的轨迹为________.(填直线、圆、其它曲线)答案:直线14.如图所示,已知矩形ABCD中,AB=1,BC=a,P A⊥平面ABCD,若在BC上只有一个点Q满足PQ⊥QD,则a的值等于________.答案:215.如图所示,在四棱锥P-ABCD中,P A⊥底面ABCD.底面各边都相等,M是PC上的一动点,当点M满足________________时,平面MBD⊥平面PCD.(注:只要填写一个你认为正确的即可)答案:BM⊥PC(其它合理答案亦可)16.如图所示,△ABC为正三角形,CE⊥平面ABC,BD∥CE,且CE=AC=2BD,M是AE的中点.(1)求证:DE=DA;(2)求证:平面BDM⊥平面ECA;(3)求证:平面DEA⊥平面ECA.答案:(1)取EC的中点F,连接DF.∵CE⊥平面ABC,∴CE⊥BC.易知DF∥BC,∴CE⊥DF.∵BD ∥CE ,∴BD ⊥平面ABC .在Rt △EFD 和Rt △DBA 中,EF =12CE =DB ,DF =BC =AB , ∴Rt △EFD ≌Rt △DBA .故DE =DA .(2)取AC 的中点N ,连接MN 、BN ,则MN CF . ∵BD CF ,∴MN BD ,∴N ∈平面BDM . ∵EC ⊥平面ABC ,∴EC ⊥BN .又∵AC ⊥BN ,EC ∩AC =C ,∴BN ⊥平面ECA . 又∵BN ⊂平面BDM ,∴平面BDM ⊥平面ECA .(3)∵DM ∥BN ,BN ⊥平面ECA ,∴DM ⊥平面ECA .又∵DM ⊂平面DEA ,∴平面DEA ⊥平面ECA .。
高数上第一章 复习题1. 计算下列极限: (1)2)1( 321lim nn n -+⋅⋅⋅+++∞→;(2)35)3)(2)(1(lim nn n n n +++∞→;(3))1311(lim 31x x x ---→;(4)xx x 1sin lim 20→;(5)xx x arctan lim ∞→.(6)145lim1---→x x x x ;(7))(lim 22x x x x x --++∞→.(8)xx x sin ln lim 0→;(9)2)11(lim xx x +∞→;(10))1(lim 2x x x x -++∞→;(11)1)1232(lim +∞→++x x x x ;(12)30sin tan lim xx x x -→;2. 下列函数在指出的点处间断, 说明这些间断点属于哪一类, 如果是可去间断点, 则补充或改变函数的定义使它连续:(1)23122+--=x x x y , x =1, x =2;(2)x xy tan =, x =k , 2ππ+=k x (k =0, ±1, ±2, ⋅ ⋅ ⋅);3. 设函数⎩⎨⎧≥+<=0)(x x a x e x f x应当如何选择数a , 使得f (x )成为在(-∞, +∞)内的连续函数?4. 证明方程x =a sin x +b , 其中a >0, b >0, 至少有一个正根, 并且它不超过a +b .5. 证明()11 2111lim 222=++⋅⋅⋅++++∞→nn n n n .6. 已知f (x )=⎩⎨⎧≥<0 0 sin x x x x , 求f '(x ) .第二章 复习题1. 求下列函数的导数:(1) y =ln(1+x 2);(2) y =sin 2x ;(3)22x a y -=;(4)xx y ln 1ln 1+-=; (5)xx y 2sin =; (6)x y arcsin=; (7))ln(22x a x y ++=;(8)x x y +-=11arcsin.(9)x x y -+=11arctan ;(10)x x x y tan ln cos 2tan ln ⋅-=;(11))1ln(2x x e e y ++=;2. 求下列函数的n 阶导数的一般表达式:(1) y =(sinx)^n(2) y =x e x .3. 求方程y =1+xe y 所确定的隐函数的二阶导数22dxy d.4.求参数方程⎩⎨⎧-=+=t t y t x arctan )1ln(2所确定的函数的三阶导数33dx y d :5. 求下列函数的微分:(1)21arcsin x y -=;(3) y =tan 2(1+2x 2);(3)2211arctan xxy +-=;6. 讨论函数⎪⎩⎪⎨⎧=≠=000 1sin )(x x x x x f 在x =0处的连续性与可导性.第三章 复习题1.设F(x)=(x-1) 2f(x),其中f(x)在[1,2]上具有二阶导数且f(2)=2,证明:至少存在一点ξ∈(1,2),使得F ”(ξ)=0.2.设b>a>0,证明:(b-a)/(1+b 2) <arctan b –arctan a<(b-a)/(1+a 2).3. 用洛必达法则求下列极限: (1)x e e x x x sin lim 0-→-;(2)22)2(sin ln lim x x x -→ππ;(3)x x x x cos sec )1ln(lim 20-+→;4. 证明不等式 :当x >0时, 221)1ln(1x x x x +>+++;5.判定曲线y=x arctan x的凹凸性:6.求下列函数图形的拐点及凹或凸的区间: (1)y=xe-x (2) y=ln(x2+1);7. 设f (x )在[0, a ]上连续, 在(0, a )内可导, 且f (a )=0, 证明存在一点ξ∈(0, a ), 使f (ξ)+ξf '(ξ)=0.第四、五、六章 复习题1. 求下列不定积分:(1)⎰dx e x x 3;(2)⎰+++dx x x x 1133224;(3)⎰dt t t sin;(4)⎰-+dx e e x x 1;(5)⎰--dx x x 2491;(6)⎰-+dx x x )2)(1(1;.(8)⎰-dx x x 92;(9) ⎰-xdx e x cos ;(10)⎰dx x 2)(arcsin ;(11)⎰xdx e x 2sin .(12)dx x x )1(12+⎰;2. 设f (x )在[a , b ]上连续, 在(a , b )内可导且f '(x )≤0, ⎰-=x a dt t f a x x F )(1)(.证明在(a , b )内有F '(x )≤0.3. 计算下列定积分:(1)⎰-πθθ03)sin 1(d ; (2)dx x ⎰-2022;4. 求由摆线x =a (t -sin t ), y =a (1-cos t )的一拱(0≤t ≤2π)与横轴 所围成的图形的面积.5.计算曲线y=sin x(0≤x≤π)和x轴所围成的图形绕y轴旋转所得旋转体的体积..。
高等数学第二版上册课后答案【篇一:《高等数学》详细上册答案(一--七)】lass=txt>《高等数学》上册(一----七)第一单元、函数极限连续使用教材:同济大学数学系编;《高等数学》;高等教育出版社;第六版;同济大学数学系编;《高等数学习题全解指南》;高等教育出版社;第六版;核心掌握知识点:1. 函数的概念及表示方法;2. 函数的有界性、单调性、周期性和奇偶性;3. 复合函数、分段函数、反函数及隐函数的概念;4. 基本初等函数的性质及其图形;5. 极限及左右极限的概念,极限存在与左右极限之间的关系;6. 极限的性质及四则运算法则;7. 极限存在的两个准则,会利用其求极限;两个重要极限求极限的方法;8. 无穷小量、无穷大量的概念,无穷小量的比较方法,利用等价无穷小求极限; 9. 函数连续性的概念,左、右连续的概念,判断函数间断点的类型;10. 连续函数的性质和初等函数的连续性,闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),会用这些性质.学习任务巩固练习阶段:(本阶段是复习能力提升的关键阶段,高钻学员一定要有认真吃透本章节内所有习题)第二单、元函数微分学计划对应教材:高等数学上册同济大学数学系编高等教育出版社第六版本单元中我们应当学习——1. 导数和微分的概念、关系,导数的几何意义、物理意义,会求平面曲线的切线方程和法线方程,函数的可导性与连续性之间的关系;2. 导数和微分的四则运算法则,复合函数的求导法则,基本初等函数的导数公式,一阶微分形式的不变性;3. 高阶导数的概念,会求简单函数的高阶导数;4. 会求以下函数的导数:分段函数、隐函数、由参数方程所确定的函数、反函数;5. 罗尔(rolle)定理、拉格朗日(lagrange)中值定理、泰勒(taylor)定理、柯西(cauchy)中值定理,会用这四个定理证明;6. 会用洛必达法则求未定式的极限;7. 函数极值的概念,用导数判断函数的单调性,用导数求函数的极值,会求函数的最大值和最小值;8. 会用导数判断函数图形的凹凸性,会求函数图形的拐点,会求函数的水平、铅直和斜渐近线;9. 曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.【篇二:高数第二册习题及答案】class=txt>系班姓名学号第一节对弧长的曲线积分一.选择题1.设l是连接a(?1,0),b(0,1),c(1,0)的折线,则?l(x?y)ds? [ b](a)0 (b)2 (c)22 (d)2x2y2d ] ?l43(a)s(b)6s(c)12s(d)24s二.填空题1.设平面曲线l为下半圆周y???x2,则曲线积分?l(x2?y2)ds?2.设l是由点o(0,0)经过点a(1,0) 到点b(0,1)的折线,则曲线积分三.计算题 1.?l(x?y)ds? 1?22??l(x2?y2)nds,其中l为圆周x?acost,y?asint(0?t?2?).解:原式??2?a2?a2n?1?2?dt?2??a 2.2n?1??l,其中l为圆周x2?y2?a2,直线y?x及x轴在第一象限内所围成的扇形的整个边界.解:设圆周与x轴和直线y?x的交点分别为a和b,于是原式???oa????abbo?在直线oa上y?0,ds?dx得?oa??exdx0aa?e?1在圆周ab上令x?acos?,y?asin?,0????4得?ab??4ea?a?ea??4在直线bo上y?x,ds?2dx得?bo?adx?e?1所以原式?(2?3.a?)ea?2 4?ly2ds,其中l为摆线的一拱x?a(t?sint),y?a(1?cost)(0?t?2?). 2解:原式?2a??(1?cost)3???(1?cost)dt52256a3?15或原式?a2?2?03(1?cost)????2?02?(1?cost)dt (1?cost)dt5252333?2?t(2sin)2dt222?ttttdt??16a3?(1?2cos2?cos4)dcos022425?8a?2?sin5256a3?15高等数学练习题第十章曲线积分与曲面积分系班姓名学号第二节对坐标的曲线积分一.选择题1.设l以(1,1),(?1,1),(?1,?1),(1,?1)为顶点的正方形周边,为逆时针方向,则?lx2dy?y2dx?[ d ](a)1(b)2(c)4(d)0 2.设l是抛物线y?x2(?1?x?1),x增加的方向为正向,则(a)0,?lxds和?xdy?ydx?[ a ]l2525(b)0,0 (c),(d),0 3838二.填空题1.设设l是由原点o沿y?x2到点a(1,1),则曲线积分?l(x?y)dy? 16232.设l是由点a(1,?1)到b(1,1)的线段,则三.计算题?l(x2?2xy)dx?(y2?2xy)dy= 1.设l为取正向圆周x2?y2?a2,求曲线积分??l(2xy?2y)dx?(x2?4x)dy.解:将圆周写成参数形式x?acos?,y?asin?,(0???2?),于是原式??{(2a2cos?sin??2asin?)?(?asin?)?(a2cos2??4acos?)?acos? }d?2???2?{(?2a3cos?sin2??2a2sin2?)?(a3cos3??4a2cos2?)}d???2a2?22.设l是由原点o沿y?x到点a(1,1),再由点a沿直线y?x到原点的闭曲线,求??larctanydy?dx x解:i1??arctan?dx ?oax?(2xarctanx?1)dx1?[x2arctanx?x?arctanx?x]10?i2???2?2yarctan?dx ?aox?1(arctan1?1)dx?1?? 4所以原式?i1?i2? ? 3.计算?24?2?1??1?4??l(x?y)dx?(y?x)dy,其中l是:2(1)抛物线y?x上从点(1,1)到点(4,2)的一段弧;(2)从点(1,1)到点(4,2)的直线段;(3)先沿直线从点(1,1)到点(1,2),然后再沿直线到点(4,2)的折线. 解:(1)原式? ? ??2121{(y2?y)?2y?(y?y2)}dy(2y3?y2?y)dy343(2)过(1,1),(4,2)的直线方程为x?3y?2,dx?3dy 所以原式? ??21{3(4y?2)?(2?2y)}dy?21(10y?4)dy?11(3)过(1,1),(1,2)的直线方程为x?1,dx?0,1?y?2所以 i1??21(y?1)dy?1 2(3)过(1,2),(4,2)的直线方程为y?2,dy?0,1?x?4所以 i2??41(x?2)dx?272于是原式?i1?i2?14 4.求?l(y2?z2)dx?2yzdyxdz?2,其中l为曲线x?t,y?t2,z?t3(0?t?1)按参数增加的方向进行.解:由题意,原式? ? ?高等数学练习题第十章曲线积分与曲面积分系班姓名学号第三节格林公式及其应用一.选择题 1.设曲线积分?{(t01014?t6)?4t6?3t4}dt?(3t6?2t4)dt1 35?l(x4?4xyp)dx?(6xp?1y2?5y4)dy与路径无关,则p? [ c](a)1 (b)2 (c)3(d)4 2.已知(x?ay)dx?ydy为某函数的全微分,则a?[ d] 2(x?y)(a)?1 (b)0(c)1 (d)212xx223.设l为从a(1,)沿曲线2y?x到点b(2,2)的弧段,则曲线积分?dx?2dy= [ d]ly2y(a)?3 (b)3(c)3(d)0 2【篇三:高等数学(上)第二章练习题】txt>一. 填空题1.设f(x)在x?x0处可导,且x0?0,则limx?x?02.设f(x)在x处可导,则limf2(x?h)?f2(x?2h) h?02h?______________3.设f(x)???axx?0ex?1x?0在x?0处可导,则常数a?______?4.已知f?(x)?sinxx?5.曲线y?x?lnxx上横坐标为x?1的点的切线方程是 6.设y?xxsinx ,则y??7.设y?e?2x,则dyx??x0?0.1?8.若f(x)为可导的偶函数,且f?(x0)?5,则f?(?x0)?二. 单项选择题9.函数f(x)在x?x0处可微是f(x)在x?x0处连续的【】a.必要非充分条件b.充分非必要条件c.充分必要条件 d.无关条件10. 设limf(x)?f(a)x?a(x?a)2?l,其中l为有限值,则在f(x)在x?a处【】a.可导且f?(a)?0 b.可导且f?(a)?0c.不一定可导d.一定不可导11.若f(x)?max(2x,x2),x?(0,4),且f?(a)不存在,a?(0,4),则必有【a.a?1 b.a?2 c.a?3 d. a?1212.函数f(x)?x在x?0处【】a.不连续b.连续但不可导c.可导且导数为零 d.可导但导数不为零?2213.设f(x)???3xx?1,则f(x)在x?1处【】??x2x?1a.左、右导数都存在b.左导数存在但右导数不存在c.右导数存在但左导数不存在 d.左、右导数都不存在14.设f(x)?3x3?x2|x|,使f(n)(0)存在的最高阶数n为【】a.0 b. 1 c.2 d. 315.设f(u)可导,而y?f(ex)ef(x),则y??【】a.ef(x)[f?(x)f(ex)?exf?(ex)]b. ef(x)[f?(x)f(ex)?f?(ex)]c.ef(x)f?(ex)?ef?(x)f(ex) d. exef(x)f?(ex)?ef?(x)f(ex)16.函数f(x)?(x2?x?2)|x3?x|不可导点的个数是【】a.3 b. 2 c.1 d. 0】17.设f(x)可导,f(x)?f(x)(1?|sinx|),要使f(x)在x?0处可导,则必有【】a.f(0)?0b.f?(0)?0c.f(0)?f?(0)?0 d.f(0)?f?(0)?018.已知直线y?x与y?logax相切,则a?【】a.e b. e c.ee d.e19.已知f(x)?x(1?x)(2?x)?(100?x),且f?(a)?2?(98)!,则a?【】 a.0 b.1 c.2 d.3 ?1?1e1,则当?x?0时,在x?x0处dy是【】 3a.比?x高阶的无穷小b.比?x低阶的无穷小c.与?x等价的无穷小d.与?x同阶但非等价的无穷小221.质点作曲线运动,其位置与时间t的关系为x?t?t?2,y?3t2?2t?1,则当t?1时,质点的速度大小等于【】 20.已知f?(x0)?a.3 b.4 c.7 d.5三. 解答下列各题22.设f(x)?(x?a)?(x),?(x)在x?a连续,求f?(a)23.y?esin24.y?2(1?2x) ,求dy x2arcsin,求y?? 2d2y325.若f(u)二阶可导,y?f(x),求2 dx?1??,求y?(1) ?x??x?ln(1?t2)dyd2y27.若? ,求与2 dxdx?y?t?arctant28.y?(x2?1)e?x,求y(24)29.y?arctanx,求y(n)(0) 26.设y??1?1x?x2?xx?0?30.已知f(x)??ax3?bx2?cx?d0?x?1_在(??,??)内连续且可导,?2x?xx?1?求a,b,c,d的值xy31.求曲线e?2x?y?3上纵坐标为y?0的点处的切线方程?x?t(1?t)?032.求曲线?y 上对应t?0处的法线方程 ?te?y?1?0233.过原点o向抛物线y?x?1作切线,求切线方程?34.顶角为60底圆半径为a的圆锥形漏斗盛满了水,下接底圆半径为b(b?a)的圆柱形水桶,当漏斗水面下降的速度与水桶中水面上升的速度相等时,漏斗中水面的高度是多少?35.已知f(x)是周期为5的连续函数,它在x?0的某个邻域内满足关系式f(1?sinx)?3f(1?sinx)?8x??(x),其中,?(x)是当x?0时比x高阶的无穷小,且f(x)在x?1处可导,求曲线y?f(x)在点(6,f(6))处的切线方程习题答案及提示5. y?x x 6.x[(1?lnx)sinx?cosx]7. ?0.2 8. ?5 一. 1.?(x0) 2. 3f(x)f?(x) 3. 1 4二. 9. b 10. a 11. b 12. c 13. b 14. c 15. a16. b 17. a 18. c 19. c 20. d 21. d三. 22. 提示:用导数定义 f?(a)??(a) 23.dy??2esin2(1?2x)sin(2?4x)dxd2y343 24. y??? 25. 2?6xf?(x)?9xf(x) dxdytd2y1? ,2?(t?t?1) 26. y?(1)?1?2ln2 27. dx2dx428. y(24)?e?x[x2?48x?551]12x??y??29.由y?(x)? 1?x2(1?x2)2由(1?x2)y?(x)?1 两边求n阶导数,_利用莱布尼兹公式,代入x?0,得递推公式,y(n?1)(0)??n(n?1)y(n?1)(0)__利用y?(0)?1和y??(0)?0 ?(?1)k(2k)!n?2k?1 k?0,1,2,? y(0)??0n?2k?2?30. 提示:讨论分段点x?0与x?1处连续性与可导性a?2, b??3, c?1 , d?031. x?y?1?032. ex?y?1?0(n)33.y??2x35. 提示:关系式两边取x?0的极限,得f(1)?0limx?0f(1?sinx)?3f(1?sinx)?8x?(x)sinx??lim???8 ?x?0sinxxx? ?sinx而 f(1?sinx)?3f(1?sinx)f(1?t)?3f(1?t)?limx?0t?0sinxtf(1?t)?f(1)f(1?t)?f(1)???lim??3?4f?(1)?t?0t?t??得f?(1)?2,由周期性f(6)?f(1)?0f(x)?f(6)f?(6)?lim 令x?5?t 由周期性得 x?6x?6f(t)?f(1)?lim?2 t?1t?1切线方程y?2(x?6) lim。
下册各章习题答案 第七章第八章习题8.11. (1) 1; (2) 0; (3) 41-; (4) e ; (5) 2; (6) 0. 2.)(2122y x xy +≤习题8.2 1. (1)323y y x x z -=∂∂,233xy x y z -=∂∂; (2) )ln(21xy x x z =∂∂,)ln(21xy y y z =∂∂;(3)y x y x y x z csc sec 1=∂∂,y x y x yx y z csc sec 12-=∂∂; (4)1-=∂∂z y z x y x u ,z y zx y u z y z ln 1-=∂∂,y x x y zu z y z ln ln =∂∂; (5)z z y x y x z x u 21)(1)(-+-=∂∂-,zz y x y x z y u 21)(1)(-+--=∂∂-,zz y x y x y x z u 2)(1)ln()(-+--=∂∂;(6))]2sin()[cos(xy xy y xu-=∂∂,)]2sin()[cos(xy xy x y u -=∂∂, .3. 4π=α.4. (1)2222812y x x z -=∂∂,2222812x y yz -=∂∂,xy y x z 162-=∂∂∂; (2)22222)(2y x xy x z +=∂∂,22222)(2y x xy y z +-=∂∂,222222)(y x x y y x z +-=∂∂∂;(3)y y x z x 222l n =∂∂,222)1(--=∂∂x y x x yz ,)ln 1(12y x y y x z x +=∂∂∂-; (4)[]22222sin cos 22x x x y x z +-=∂∂,2322cos 2x yy z =∂∂,222sin 2x x y y x z =∂∂∂.5.223231,0y y x z y x z -=∂∂∂=∂∂∂.6. ⎪⎩⎪⎨⎧+≠++=∂∂000)(222222323=当当y x y x y x y x f ;⎪⎩⎪⎨⎧+≠++=∂∂000)(222222323=当当y x y x y x x y f .习题8。
高数题总结第1篇a x 2 +b x +c = 0 ax^2+bx+c=0 ax2+bx+c=0 △ = b 2 − 4 a c △=b^2-4ac △=b2−4ac △ > 0 x 1 , 2 = − b ± b 2 − 4 a c 2 a △>0\quad x_{1,2}=\frac{-b±\sqrt{b^2-4ac}}{2a} △>0x1,2=2a−b±b2−4ac△ = 0 x 1 = x 2 △=0\quad x_1=x_2 △=0x1=x2重根△ < 0 △<0\quad△<0两个负根例如: i 2 = − 1 − 9 = ± 3 i i^2=-1\quad \sqrt{-9}=±3i i2=−1−9=±3i根与系数关系: x 1 + x 2 = − b a , x 1 × x 2 = c a x_1+x_2=-\frac{b}{a},x_1×x_2=\frac{c}{a} x1+x2=−ab,x1×x2=ac例:求解 4 y ′ ′ + 4 y ′ + 5 y = 0 4y''+4y'+5y=0 4y′′+4y′+5y=0 解: 4 λ 2 + 4 λ + 5 = 04λ^2+4λ+5=0 4λ2+4λ+5=0 △ = b 2 − 4 a c = 16 − 4 × 5 = 16 − 80 < 0 △=b^2-4ac=16-4×5=16-80<0 △=b2−4ac=16−4×5=16−80<0 λ 1 , 2 = − 4 ± − 64 2 × 4 = − 4 ± i 8 8 = − 1 2 ± i = α ± β i λ_{1,2}=\frac{-4±\sqrt{-64}}{2×4}=\frac{-4±i8}{8}=-\frac{1}{2}±i=α±βi λ1,2=2×4−4±−64=8−4±i8=−21±i=α±βi 即 α = − 1 2 , β = 1 α=-\frac{1}{2},β=1 α=−21,β=1 综上,通解为 y = e α x ( C 1 c o s β x + C 2 s i n β x ) y=e^{αx}(C_1cosβx+C_2sinβx)y=eαx(C1cosβx+C2sinβx) = e − 1 2 x ( C 1 c o s x + C 2 s i n x ) =e^{-\frac{1}{2}x}(C_1cosx+C_2sinx) =e−21x(C1cosx+C2sinx)高数题总结第2篇高数题总结第3篇斯托克斯公式是xxx公式的推广:xxx公式: 平面图形的面积<==>平面曲线斯托克丝公式: 空间曲面的面积<==>空间曲线微分:求导,求变化率积分:求微分(或称导数)的原函数, 分为定积分和不定积分微分与积分,是相反的一对运算,求加速度,就用微分对速度求导数(就是求速度的变化率).求路程,就用对速度在某一段时间内进行积分级数有什么作用:对数,三角函数,三角对数等等,都是通过级数计算而来.常用的pi,e等,也是用级数计算出多少位的近似值. 再如波形分析,如振动, 声学,电学等,通常都是将波形分解成傅立叶级数,再进行计算.二重积分:求平面图形面积,求空间曲面面积, 求曲面柱的体积三重积分:求空间物体体积,求质量,求质心...(经常要化为二重积分求解)曲线积分与曲面积分:经常要化为重积分来计算.线性插值:双线性插值,三线性插值多项式插值:拉格朗日插值:一阶拉格朗日插值,二阶拉格朗日插值...分段拉格朗日插值(其中有基函数的概念)等, 要构造拉格朗日多项式xxx插值:求xxx多项式xxx插值:差商埃尔米特插值:样条插值:在每个间隔使用低阶多项式(而不是线性函数):三次样条,B 样条分段插值:最近邻插值:找到最近的值,并分配相同的值.这里面最常使用的有:线性插值, 拉格朗日插值,xxx插值,_条插值,最近邻插值(其他的插值法了解一下就好).高数题总结第4篇微积分定理:———若函数f(x)在[a,b]上连续,且存在原函数F(x),则f(x)在[a,b]上可积,且b(上限)∫a(下限)f(x)dx=F(b)—F(a)这即为xxx—莱布尼茨公式。
大学高等数学知识点整理一 . 数列函数 :1. 类型 :(1) 数列 : * ; *(2) 初等函数 :(3) 分段函数 : * ; * ;*(4) 复合 ( 含) 函数 :(5) 隐式 ( 方程 ):(6) 参式 ( 数一 , 二 ):(7) 变限积分函数 :(8) 级数和函数 ( 数一 , 三 ):2. 特征 ( 几何 ):(1) 单调性与有界性 ( 判别 ); ( 单调定号 )(2) 奇偶性与周期性 ( 应用 ).3. 反函数与直接函数 :二 . 极限性质 :1. 类型 : * ; * ( 含); * ( 含)2. 无穷小与无穷大 ( 注 : 无穷量 ):3. 未定型 :4. 性质 : * 有界性 , * 保号性 , * 归并性三 . 常用结论 :, , ,, , , ,,四 . 必备公式 :1. 等价无穷小 : 当时 ,; ; ;; ; ;;2. 泰勒公式 :(1) ;(2) ;(3) ;(4) ;(5) .五 . 常规方法 :前提 : (1) 准确判断( 其它如 : ); (2) 变量代换 ( 如 : )1. 抓大弃小,2. 无穷小与有界量乘积 ( ) ( 注 : )3. 处理 ( 其它如 : )4. 左右极限 ( 包括):(1) ; (2) ; ; (3) 分段函数 : , ,5. 无穷小等价替换 ( 因式中的无穷小 )( 注 : 非零因子 )6. 洛必达法则(1) 先” 处理”, 后法则 ( 最后方法 ); ( 注意对比 : 与)(2) 幂指型处理 : ( 如 : )(3) 含变限积分 ;(4) 不能用与不便用7. 泰勒公式 ( 皮亚诺余项 ): 处理和式中的无穷小8. 极限函数 : ( 分段函数 )六 . 非常手段1. 收敛准则 :(1)(2) 双边夹 : * , *(3) 单边挤 : * * *2. 导数定义 ( 洛必达 ?):3. 积分和 : ,4. 中值定理 :5. 级数和 ( 数一三 ):(1) 收敛, ( 如) (2) ,(3) 与同敛散七 . 常见应用 :1. 无穷小比较 ( 等价 , 阶 ): *(1)(2)2. 渐近线 ( 含斜 ):(1)(2) ,( )3. 连续性 : (1) 间断点判别 ( 个数 ); (2) 分段函数连续性 ( 附 : 极限函数 , 连续性 )八 . 上连续函数性质1. 连通性 : ( 注 : , “ 平均” 值 :)2. 介值定理 : ( 附 : 达布定理 )(1) 零点存在定理 : ( 根的个数 );(2) .第二讲 : 导数及应用 ( 一元 )( 含中值定理 )一 . 基本概念 :1. 差商与导数 : ;(1) ( 注 : 连续 ) )(2) 左右导 : ;(3) 可导与连续 ; ( 在处 , 连续不可导 ; 可导 )2. 微分与导数 :(1) 可微可导 ; (2) 比较与的大小比较 ( 图示 );二 . 求导准备 :1. 基本初等函数求导公式 ; ( 注 : )2. 法则 : (1) 四则运算 ; (2) 复合法则 ; (3) 反函数三 . 各类求导 ( 方法步骤 ):1. 定义导 : (1) 与; (2) 分段函数左右导 ; (3)( 注 : , 求 : 及的连续性 )2. 初等导 ( 公式加法则 ):(1) , 求 : ( 图形题 );(2) , 求 : ( 注 : )(3) , 求及 ( 待定系数 )3. 隐式 ( ) 导 :(1) 存在定理 ;(2) 微分法 ( 一阶微分的形式不变性 ).(3) 对数求导法 .4. 参式导 ( 数一 , 二 ) : , 求 :5. 高阶导公式 :; ;;注 : 与泰勒展式 :四 . 各类应用 :1. 斜率与切线 ( 法线 ); ( 区别 : 上点和过点的切线 )2. 物理 : ( 相对 ) 变化率速度 ;3. 曲率 ( 数一二 ): ( 曲率半径 , 曲率中心 , 曲率圆 )4. 边际与弹性 ( 数三 ) : ( 附 : 需求 , 收益 , 成本 , 利润 )五 . 单调性与极值 ( 必求导 )1. 判别 ( 驻点):(1) ; ;(2) 分段函数的单调性(3) 零点唯一 ; 驻点唯一 ( 必为极值 , 最值 ).2. 极值点 :(1) 表格 ( 变号 ); ( 由的特点 )(2) 二阶导 ( )注 (1) 与的匹配 ( 图形中包含的信息 );(2) 实例 : 由确定点“ ” 的特点 .(3) 闭域上最值 ( 应用例 : 与定积分几何应用相结合 , 求最优 )3. 不等式证明 ( )(1) 区别 : * 单变量与双变量 ? * 与?(2) 类型 : * ; ** ; *(3) 注意 : 单调性端点值极值凹凸性 . ( 如 : )4. 函数的零点个数 : 单调介值六 . 凹凸与拐点 ( 必求导 !):1. 表格 ; ( )2. 应用 : (1) 泰勒估计 ; (2) 单调 ; (3) 凹凸 .七 . 罗尔定理与辅助函数 : ( 注 : 最值点必为驻点 )1. 结论 :2. 辅助函数构造实例 :(1)(2)(3)(4) ;3. 有个零点有个零点4. 特例 : 证明的常规方法 : 令有个零点 ( 待定 )5. 注 : 含时 , 分家 !( 柯西定理 )6. 附 ( 达布定理 ): 在可导 , , , 使 :八 . 拉格朗日中值定理1. 结论 : ; ( )2. 估计 :九 . 泰勒公式 ( 连接之间的桥梁 )1. 结论 : ;2. 应用 : 在已知或值时进行积分估计十 . 积分中值定理 ( 附 : 广义 ): [ 注 : 有定积分 ( 不含变限 ) 条件时使用 ]第三讲 : 一元积分学一 . 基本概念 :1. 原函数:(1) ; (2) ; (3)注 (1) ( 连续不一定可导 );(2) ( 连续 )2. 不定积分性质 :(1) ;(2) ;二 . 不定积分常规方法1. 熟悉基本积分公式2. 基本方法 : 拆 ( 线性性 )3. 凑微法 ( 基础 ): 要求巧 , 简 , 活 ( )如 :4. 变量代换 :(1) 常用 ( 三角代换 , 根式代换 , 倒代换 ):(2) 作用与引伸 ( 化简 ):5. 分部积分 ( 巧用 ):(1) 含需求导的被积函数 ( 如);(2)“ 反对幂三指”:(3) 特别 : (* 已知的原函数为; * 已知)6. 特例 : (1) ; (2) 快速法 ; (3)三 . 定积分 :1. 概念性质 :(1) 积分和式 ( 可积的必要条件 : 有界 , 充分条件 : 连续 )(2) 几何意义 ( 面积 , 对称性 , 周期性 , 积分中值 )* ; *(3) 附 : , )(4) 定积分与变限积分 , 反常积分的区别联系与侧重2: 变限积分的处理 ( 重点 )(1) 可积连续 , 连续可导(2) ; ;(3) 由函数参与的求导 , 极限 , 极值 , 积分 ( 方程 ) 问题3. 公式 : ( 在上必须连续 !)注 : (1) 分段积分 , 对称性 ( 奇偶 ), 周期性(2) 有理式 , 三角式 , 根式(3) 含的方程 .4. 变量代换 :(1) ,(2) ( 如 : )(3) ,(4) ; ,(5) ,5. 分部积分(1) 准备时“ 凑常数”(2) 已知或时 , 求6. 附 : 三角函数系的正交性 :四 . 反常积分 :1. 类型 : (1) ( 连续 )(2) : ( 在处为无穷间断 )2. 敛散 ;3. 计算 : 积分法公式极限 ( 可换元与分部 )4. 特例 : (1) ; (2)五 . 应用 : ( 柱体侧面积除外 )1. 面积 ,(1) (2) ;(3) ; (4) 侧面积 :2. 体积 :(1) ; (2)(3) 与3. 弧长 :(1)(2)(3) :4. 物理 ( 数一 , 二 ) 功 , 引力 , 水压力 , 质心 ,5. 平均值 ( 中值定理 ):(1) ;(2) , ( 以为周期 : ) 第四讲 : 微分方程一 . 基本概念1. 常识 : 通解 , 初值问题与特解 ( 注 : 应用题中的隐含条件 )2. 变换方程 :(1) 令( 如欧拉方程 )(2) 令( 如伯努利方程 )3. 建立方程 ( 应用题 ) 的能力二 . 一阶方程 :1. 形式 : (1) ; (2) ; (3)2. 变量分离型 :(1) 解法 :(2)“ 偏” 微分方程 : ;3. 一阶线性 ( 重点 ):(1) 解法 ( 积分因子法 ):(2) 变化 : ;(3) 推广 : 伯努利 ( 数一 )4. 齐次方程 :(1) 解法 :(2) 特例 :5. 全微分方程 ( 数一 ): 且6. 一阶差分方程 ( 数三 ):三 . 二阶降阶方程1. :2. : 令3. : 令四 . 高阶线性方程 :1. 通解结构 :(1) 齐次解 :(2) 非齐次特解 :2. 常系数方程 :(1) 特征方程与特征根 :(2) 非齐次特解形式确定 : 待定系数 ; ( 附 : 的算子法 )(3) 由已知解反求方程 .3. 欧拉方程 ( 数一 ): , 令五 . 应用 ( 注意初始条件 ):1. 几何应用 ( 斜率 , 弧长 , 曲率 , 面积 , 体积 );注 : 切线和法线的截距2. 积分等式变方程 ( 含变限积分 );可设3. 导数定义立方程 :含双变量条件的方程4. 变化率 ( 速度 )5.6. 路径无关得方程 ( 数一 ):7. 级数与方程 :(1) 幂级数求和 ; (2) 方程的幂级数解法 :8. 弹性问题 ( 数三 )第五讲 : 多元微分与二重积分一 . 二元微分学概念1. 极限 , 连续 , 单变量连续 , 偏导 , 全微分 , 偏导连续 ( 必要条件与充分条件 ),(1)(2)(3) ( 判别可微性 )注 : 点处的偏导数与全微分的极限定义 :2. 特例 :(1) : 点处可导不连续 ;(2) : 点处连续可导不可微 ;二 . 偏导数与全微分的计算 :1. 显函数一 , 二阶偏导 :注 : (1) 型 ; (2) ; (3) 含变限积分2. 复合函数的一 , 二阶偏导 ( 重点 ):熟练掌握记号的准确使用3. 隐函数 ( 由方程或方程组确定 ):(1) 形式 : * ; * ( 存在定理 )(2) 微分法 ( 熟练掌握一阶微分的形式不变性 ): ( 要求 : 二阶导 )(3) 注 : 与的及时代入(4) 会变换方程 .三 . 二元极值 ( 定义 ?);1. 二元极值 ( 显式或隐式 ):(1) 必要条件 ( 驻点 );(2) 充分条件 ( 判别 )2. 条件极值 ( 拉格朗日乘数法 ) ( 注 : 应用 )(1) 目标函数与约束条件 : , ( 或 : 多条件 )(2) 求解步骤 : , 求驻点即可 .3. 有界闭域上最值 ( 重点 ).(1)(2) 实例 : 距离问题四 . 二重积分计算 :1. 概念与性质(“ 积” 前工作 ):(1) ,(2) 对称性 ( 熟练掌握 ): * 域轴对称 ; * 奇偶对称 ; * 字母轮换对称 ; * 重心坐标 ;(3)“ 分块” 积分 : * ; * 分片定义 ; * 奇偶2. 计算 ( 化二次积分 ):(1) 直角坐标与极坐标选择 ( 转换 ): 以“ ” 为主 ;(2) 交换积分次序 ( 熟练掌握 ).3. 极坐标使用 ( 转换 ):附 : ; ;双纽线4. 特例 :(1) 单变量 : 或(2) 利用重心求积分 : 要求 : 题型, 且已知的面积与重心5. 无界域上的反常二重积分 ( 数三 )五 : 一类积分的应用 ( ):1. “ 尺寸”: (1) ; (2) 曲面面积 ( 除柱体侧面 );2. 质量 , 重心 ( 形心 ), 转动惯量 ;3. 为三重积分 , 格林公式 , 曲面投影作准备 .第六讲 : 无穷级数 ( 数一 , 三 )一 . 级数概念1. 定义 : (1) , (2) ; (3) ( 如)注 : (1) ; (2) ( 或); (3)“ 伸缩” 级数 : 收敛收敛 .2. 性质 : (1) 收敛的必要条件 : ;(2) 加括号后发散 , 则原级数必发散 ( 交错级数的讨论 );(3) ;二 . 正项级数1. 正项级数 : (1) 定义 : ; (2) 特征 : ; (3) 收敛( 有界 )2. 标准级数 : (1) , (2) , (3)3. 审敛方法 : ( 注 : , )(1) 比较法 ( 原理 ): ( 估计 ), 如;(2) 比值与根值 : * * ( 应用 : 幂级数收敛半径计算 )三 . 交错级数 ( 含一般项 ): ( )1. “ 审” 前考察 : (1) (2) ; (3) 绝对 ( 条件 ) 收敛 ?注 : 若, 则发散2. 标准级数 : (1) ; (2) ; (3)3. 莱布尼兹审敛法 ( 收敛 ?)(1) 前提 : 发散 ; (2) 条件 : ; (3) 结论 : 条件收敛 .4. 补充方法 :(1) 加括号后发散 , 则原级数必发散 ; (2) .5. 注意事项 : 对比; ; ; 之间的敛散关系四 . 幂级数 :1. 常见形式 :(1) , (2) , (3)2. 阿贝尔定理 :(1) 结论 : 敛; 散(2) 注 : 当条件收敛时3. 收敛半径 , 区间 , 收敛域 ( 求和前的准备 )注 (1) 与同收敛半径(2) 与之间的转换4. 幂级数展开法 :(1) 前提 : 熟记公式 ( 双向 , 标明敛域 );;(2) 分解 : ( 注 : 中心移动 ) ( 特别 : )(3) 考察导函数 :(4) 考察原函数 :5. 幂级数求和法 ( 注 : * 先求收敛域 , * 变量替换 ):(1)(2) ,( 注意首项变化 )(3) ,(4) 的微分方程(5) 应用 : .6. 方程的幂级数解法7. 经济应用 ( 数三 ):(1) 复利 : ; (2) 现值 :五 . 傅里叶级数 ( 数一 ): ( )1. 傅氏级数 ( 三角级数 ):2. 充分条件 ( 收敛定理 ):(1) 由( 和函数 )(2)3. 系数公式 :4. 题型 : ( 注 : )(1) 且( 分段表示 )(2) 或(3) 正弦或余弦*(4) ( )*5.6. 附产品 :第七讲 : 向量 , 偏导应用与方向导 ( 数一 )一 . 向量基本运算1. ; ( 平行)2. ; ( 单位向量 ( 方向余弦 ) )3. ; ( 投影 : ; 垂直 : ; 夹角 : )4. ; ( 法向 : ; 面积 : )二 . 平面与直线1. 平面(1) 特征 ( 基本量 ):(2) 方程 ( 点法式 ):(3) 其它 : * 截距式; * 三点式2. 直线(1) 特征 ( 基本量 ):(2) 方程 ( 点向式 ):(3) 一般方程 ( 交面式 ):(4) 其它 : * 二点式 ; * 参数式 ;( 附 : 线段的参数表示 :)3. 实用方法 :(1) 平面束方程 :(2) 距离公式 : 如点到平面的距离(3) 对称问题 ;(4) 投影问题 .三 . 曲面与空间曲线 ( 准备 )1. 曲面(1) 形式: 或; ( 注 : 柱面)(2) 法向( 或) 2. 曲线(1) 形式, 或;(2) 切向 : ( 或)3. 应用(1) 交线 , 投影柱面与投影曲线 ;(2) 旋转面计算 : 参式曲线绕坐标轴旋转 ;(3) 锥面计算 .四 . 常用二次曲面1. 圆柱面 :2. 球面 :变形 : , ,,3. 锥面 :变形 : ,4. 抛物面 : ,变形 : ,5. 双曲面 :6. 马鞍面 : , 或五 . 偏导几何应用1. 曲面(1) 法向 : , 注 :(2) 切平面与法线 :2. 曲线(1) 切向 :(2) 切线与法平面3. 综合 : ,六 . 方向导与梯度 ( 重点 )1. 方向导 ( 方向斜率 ):(1) 定义 ( 条件 ):(2) 计算 ( 充分条件 : 可微 ):附 :(3) 附 :2. 梯度 ( 取得最大斜率值的方向 ) :(1) 计算 :;(2) 结论;取为最大变化率方向 ;为最大方向导数值 .第八讲 : 三重积分与线面积分 ( 数一 )一 . 三重积分 ( )1. 域的特征 ( 不涉及复杂空间域 ):(1) 对称性 ( 重点 ): 含 : 关于坐标面 ; 关于变量 ; 关于重心(2) 投影法 :(3) 截面法 :(4) 其它 : 长方体 , 四面体 , 椭球2. 的特征 :(1) 单变量, (2) , (3) , (4)3. 选择最适合方法 :(1)“ 积” 前 : * ; * 利用对称性 ( 重点 )(2) 截面法 ( 旋转体 ): ( 细腰或中空 , , )(3) 投影法 ( 直柱体 ):(4) 球坐标 ( 球或锥体 ): ,(5) 重心法 ( ):4. 应用问题 :(1) 同第一类积分 : 质量 , 质心 , 转动惯量 , 引力(2) 公式二 . 第一类线积分 ( )1. “ 积” 前准备 :(1) ; (2) 对称性 ; (3) 代入“ ” 表达式2. 计算公式 :3. 补充说明 :(1) 重心法 : ;(2) 与第二类互换 :4. 应用范围(1) 第一类积分(2) 柱体侧面积三 . 第一类面积分 ( )1. “ 积” 前工作 ( 重点 ):(1) ; ( 代入)(2) 对称性 ( 如 : 字母轮换 , 重心 )(3) 分片2. 计算公式 :(1)(2) 与第二类互换 :四 : 第二类曲线积分 (1): ( 其中有向 )1. 直接计算 : ,常见 (1) 水平线与垂直线 ; (2)2. Green 公式 :(1) ;(2) : * 换路径 ; * 围路径(3) ( 但内有奇点 ) ( 变形 )3. 推广 ( 路径无关性 ):(1) ( 微分方程 ) ( 道路变形原理 )(2) 与路径无关 ( 待定 ): 微分方程 .4. 应用功 ( 环流量 ): ( 有向, , ) 五 . 第二类曲面积分 :1. 定义 : , 或( 其中含侧 )2. 计算 :(1) 定向投影 ( 单项 ): , 其中( 特别 : 水平面 ); 注 : 垂直侧面 , 双层分隔(2) 合一投影 ( 多项 , 单层 ):(3) 化第一类 ( 不投影 ):3. 公式及其应用 :(1) 散度计算 :(2) 公式 : 封闭外侧 , 内无奇点(3) 注 : * 补充“ 盖” 平面 : ; * 封闭曲面变形( 含奇点 )4. 通量与积分 :( 有向, , )六 : 第二类曲线积分 (2):1. 参数式曲线: 直接计算 ( 代入 )注 (1) 当时 , 可任选路径 ; (2) 功 ( 环流量 ):2. Stokes 公式 : ( 要求 : 为交面式 ( 有向 ), 所张曲面含侧 )(1) 旋度计算 :(2) 交面式 ( 一般含平面 ) 封闭曲线 : 同侧法向或;(3)Stokes 公式 ( 选择 ):( ) 化为; ( ) 化为; ( ) 化为高数重点知识总结1、基本初等函数:反函数 (y=arctanx) ,对数函数 (y=lnx) ,幂函数 (y=x) ,指数函数 ( ) ,三角函数 (y=sinx) ,常数函数 (y=c)2、分段函数不是初等函数。
高数学习计划范例6篇本学期高等数学学习计划如下:一、学习目标:1. 熟练掌握高等数学的基本概念和理论知识,包括极限、导数、微分方程、多重积分等;2. 提高数学分析和运算能力,能够灵活运用数学方法解决实际问题;3. 注重数学建模与实际问题的联系,培养综合运用数学知识的能力。
二、学习内容:1. 极限与连续2. 导数与微分3. 微分方程4. 多元函数微分学5. 多元函数积分学6. 无穷级数7. 空间解析几何三、学习计划:1. 每周安排3-4小时的课前预习时间,对本周要学的知识有所了解和认识;2. 每周参加1-2次课程,听讲、记录、做笔记;3. 每周安排2-3次的课后复习时间,做相关练习,巩固所学知识;4. 每月进行一次全面总结和复习,做相关练习和模拟考试。
四、学习方法:1. 注重理论学习,认真听讲、做笔记、积极提问;2. 多做练习,掌握基本方法和技巧;3. 注重应用,培养解决实际问题的能力;4. 注重知识的整理和总结,提高学习效率。
五、学习资源:1. 教材:高等数学教材2. 辅助资料:高等数学习题集、习题解析、历年试题等3. 网络资源:相关视频、课件、论坛、博客等六、学习评估:1. 每周进行一次小测验,检测所学知识的掌握情况;2. 每月进行一次模拟考试,检验所学知识和方法的运用情况;3. 每学期进行一次期中考试和期末考试,考核学习成果。
七、学习反思:1. 及时总结,发现问题,及时调整学习计划;2. 多与老师、同学交流,尽快解决学习中的问题;3. 注重知识和方法的应用,提高解决实际问题的能力。
通过以上学习计划,相信能够顺利掌握高等数学的知识和方法,提高数学素养。
希望自己能够认真执行学习计划,积极主动地学习,不断提高自己的数学水平。
第一章函数与极限〔考研必考章节,其中求极限是本章最重要的内容,要掌握求极限的集中方法〕第一节映射与函数〔一般章节〕一、集合〔不用看〕二、映射〔不用看)三、函数(了解〕注:P1--5 集合部分只需简单了解P5--7不用看P7--17 重点看一下函数的四大性态:单调、奇偶、周期、有界P17--20 不用看P21 习题1.11、2、3大题均不用做4大题只需做〔3〕〔5〕〔7〕〔8〕5--9 均做10大题只需做〔4〕〔5〕〔6〕11大题只需做〔3〕〔4〕〔5〕12大题只需做〔2〕〔4〕〔6〕13做14不用做15、16重点做17--20应用题均不用做第二节数列的极限〔一般章节本章用极限定义证的题目考纲不作要求,可不看〕一、数列极限的定义〔了解〕二、收敛极限的性质〔了解〕P26--28 例1、2、3均不用证p28--29 定理1、2、3的证明不用自己证但要会理解P30 定理4不用看P30--31 习题1-21大题只需做〔4〕〔6〕〔8〕2--6均不用做第三节〔一般章节〕〔标题不再写了对应同济六版教材标题〕一、〔了解〕二、〔了解〕P33--34 例1、2、3、4、5只需大概了解即可P35 例6 要会做例7 不用做P36--37 定理2、3证明不用看定理3’4〞完全不用看p37习题1--31--4 均做5--12 均不用做第四节〔重要〕一、无穷小〔重要〕二、无穷大〔了解〕p40 例2不用做 p41 定理2不用证p42习题1--41做 2--5 不全做 6 做 7--8 不用做第五节(注意运算法则的前提条件是各自存在)p43 定理1、2的证明要理解p44推论1、2、3的证明不用看p48 定理6的证明不用看p49 习题1--51题只需做(3)(6)(7)(8)(10)(11)(13)(14) 2、3要做4、5重点做6不做第六节极限存在准则(重要) 两个重要极限(重要两个重要极限要会证明p50 准则1的证明要理解p51 重要极限一定要会独立证明(经典重要极限)p53另一个重要极限的证明可以不用看p55--56柯西极限存在准则不用看p56习题1--71大题只做(1)(4)(6)2全做3不用做4全做,其中(2)(3)(5)重点做第七节(重要〕p58--59 定理1、2的证明要理解p59 习题1--7 全做第八节〔基本必考小题〕p60--64 要重点看第八节基本必出考题p64 习题1--81、2、3、4、5要做其中4、5要重点做6--8不用做第九节〔了解〕p66--67 定理3、4的证明均不用看p69 习题1--91、2要做3大题只做〔3〕——〔6〕4大题只做〔4〕——〔6〕5、6均要重点做第十节〔重要,不单独考大题,但考大题会用到〕一、〔重要〕二、〔重要〕p72三、一致连续性〔不用看〕p74习题1--101、2、3、5要做,要会用5的结论。
第一章习题 习题1.11.判断下列函数是否相同: ①定义域不同;②定义域对应法则相同同;2.解 25.125.01)5.0(,2)5.0(=+=-=f f5.解 ① 10,1,1222≤≤-±=-=y y x y x② +∞<<-∞+=+=-=-=y be b c x e c bx c bx e c bx e ay ay a y a y ,,,),ln(ln 6.解 ① x v v u u y sin ,3,ln 2=+== ② 52,arctan 3+==x u u y 习题1.24.解:① 无穷大 ② 无穷小 ③ 负无穷大 ④ 负无穷大 ⑤ 无穷小 ⑥ 无穷小5.求极限:⑴ 21lim 2lim 3)123(lim 13131=+-=+-→→→x x x x x x x⑵ 51)12(lim )3(lim 123lim 22222=+-=+-→→→x x x x x x x⑶ 0tan lim=∞→xxa x⑷-∞=∞--=------=----=+--→→→→32)1)(4(1lim )1)(4()1(2lim )1)(4(122lim 4532lim 11121x x x x x x x x x x x x x x x⑸ 4123lim )2)(2()2)(3(lim 465lim 22222-=+-=-+--=-+-→→→x x x x x x x x x x x x ⑹ )11)(11()11(lim 11lim22220220x x x x x x x x +++-++=+-→→2)11(lim )11(lim 202220-=++-=-++=→→x xx x x x ⑺ 311311lim 131lim 22=++=+++∞→+∞→xx x x x x⑻2132543232lim 25342332lim =⎪⎭⎫⎝⎛⋅+⎪⎭⎫ ⎝⎛⋅+=⋅+⋅⋅+⋅+∞→+∞→x xx x x x x x ⑼ 133)1)(1()2)(1(lim 12lim 1311lim 2132131-=-=+-+-+=+-+=⎪⎭⎫ ⎝⎛+-+-→-→-→x x x x x x x x x x x x x ⑽011lim )1()1)(1(lim)1(lim =++=++++-+=-+∞→∞→∞→nn n n n n n n n n n n n⑾ 1lim 1231lim 22222==⎪⎭⎫ ⎝⎛-+++∞→∞→n n n n n n x x ⑿221121211lim2121211lim 2=-⋅-=⎪⎭⎫ ⎝⎛+++∞→∞→n n n n 6.求极限 ⑴ 414tan lim0=→x x x⑵ 111sinlim1sin lim ==∞→∞→xx x x x x⑶ 2sin 2lim sin sin 2lim sin 2cos 1lim0200===-→→→xxx x x x x x x x x ⑷ x x n nn =⋅∞→2sin 2lim⑸ 21sin lim 212arcsin lim00==→→y y x x y x ⑹111sinlim1sin lim 1sinlim 22222-=-=-=-∞→-∞→-∞→x x x x x x x x x ⑺ k k xx k xx xkx e x x x x ----→---→-→=--=-=-])1()1[(lim )1(lim )1(lim2)(12)(120⑻ 22211lim 1lim e x x x x x xx =⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛+⋅∞→∞→⑼ 313tan 311cot 0])tan 31()tan 31[(lim )tan 31(lim e x x x xx x x =++=+→+→⑽ =⎪⎭⎫ ⎝⎛-+∞→32321lim x x x 343)34(23])321()321[(lim ---∞→=-⋅-e xx xx ⑾ []1)31(lim )31(lim )31(lim 03133311==+=+=+⋅-+∞→⋅⋅-+∞→-+∞→--e xx x x x x x x x x xxx⑿ 1333111lim 1111lim 1lim -+∞→+∞→+∞→==⎪⎭⎫ ⎝⎛+=⎪⎪⎪⎪⎭⎫⎝⎛+=⎪⎭⎫ ⎝⎛+e ex x x x x x x x x x习题1.31、⑴ 因为函数在x=1点处无定义,)2)(1()1)(1()(--+-=x x x x x f ,但是2)(lim 1-=→x f x ,x=1点是函数的第一类间断点(可去)。
高等数学下知识点总结6篇高等数学下知识点总结6篇借鉴经验和教训,对自己的工作和生活进行反思和总结,从而不断进步。
深入学习,专攻某一领域有利于个人成长和职业发展。
下面就让小编给大家带来高等数学下知识点总结,希望大家喜欢!高等数学下知识点总结1第一,函数与导数。
主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
第二,平面向量与三角函数、三角变换及其应用。
这一部分是高考的重点但不是难点,主要出一些基础题或中档题。
第三,数列及其应用。
这部分是高考的重点而且是难点,主要出一些综合题。
第四,不等式。
主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。
是高考的重点和难点。
第五,概率和统计。
这部分和我们的生活联系比较大,属应用题。
第六,空间位置关系的定性与定量分析,主要是证明平行或垂直,求角和距离。
第七,解析几何。
是高考的难点,运算量大,一般含参数。
高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。
针对数学高考强调对基础知识与基本技能的考查我们一定要全面、系统地复习高中数学的基础知识,正确理解基本概念,正确掌握定理、原理、法则、公式、并形成记忆,形成技能。
以不变应万变。
对数学思想和方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时与数学知识相结合。
对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧重体现对知识的理解和应用,尤其是综合和灵活的应用,所有数学考试最终落在解题上。
考纲对数学思维能力、运算能力、空间想象能力以及实践能力和创新意识都提出了十分明确的考查要求,而解题训练是提高能力的必要途径,所以高考复习必须把解题训练落到实处。
训练的内容必须根据考纲的要求精心选题,始终紧扣基础知识,多进行解题的回顾、总结,概括提炼基本思想、基本方法,形成对通性通法的认识,真正做到解一题,会一类。
简单高数题一、函数与极限部分(6题)1. 求极限 lim_{x to 1}(x^2 - 1)/(x - 1)- 解析:- 首先对分子进行因式分解,x^2 - 1=(x + 1)(x - 1)。
- 则原式可化为lim_{x to 1}((x + 1)(x - 1))/(x - 1)。
- 当xto1时,x≠1,可以约去x - 1,得到lim_{x to 1}(x + 1)。
- 把x = 1代入x+1,得到极限值为2。
2. 设函数f(x)=<=ft{begin{array}{ll}x+1, & x<0 0, & x = 0 x - 1, &x>0end{array}right.,求lim_{x to 0}f(x)- 解析:- 当xto0^-(即x从左边趋近于0)时,f(x)=x + 1,则lim_{x to 0^-}f(x)=lim_{x to 0^-}(x + 1)=1。
- 当xto0^+(即x从右边趋近于0)时,f(x)=x - 1,则lim_{x to0^+}f(x)=lim_{x to 0^+}(x - 1)= - 1。
- 因为lim_{x to 0^-}f(x)≠lim_{x to 0^+}f(x),所以lim_{x to 0}f(x)不存在。
3. 求函数y=√(x^2 - 4)+(1)/(x - 3)的定义域。
- 解析:- 对于根式部分,要使√(x^2 - 4)有意义,则x^2-4≥slant0。
- 解不等式x^2 - 4≥slant0,即(x + 2)(x - 2)≥slant0,得到x≤slant - 2或x≥slant2。
- 对于分式部分,要使(1)/(x - 3)有意义,则x - 3≠0,即x≠3。
- 综合起来,函数的定义域为(-∞,-2]∪[2,3)∪(3,+∞)。
4. 已知函数f(x)=ln(x + 1),求f^′(0)。
- 解析:- 首先对f(x)=ln(x + 1)求导,根据求导公式(ln(u))^′=(1)/(u)u^′,这里u=x + 1,u^′ = 1。
⾼数(下)六类积分1.⼆重积分(PDF P150)⼏何意义:曲顶柱体的体积、平⾯薄⽚的质量∫∫Dµ(x,y) dxdy, µ为密度形式:∫∫D f(x,y) dxdy, dxdy为⾯积元素计算⽅法:交换积分次序简化、利⽤对称性、换元法(dxdy -> Jdudv) 极坐标代换(dxdy -> rdr) {x=rcosθ,y=rsinθ}2.三重积分(P167)⼏何意义:物体的质量∫∫∫Ωf(x,y,z)dv, f为密度形式:∫∫∫Ωf(x,y,z)dv= ∫∫∫Ωf(x,y,z)dxdydz , dv为体积元素,Ω为空间中有界闭区域计算⽅法:投影法,截⾯法,对称性(积分区域对称性,轮换对称性) 柱⾯坐标代换(dxdydz -> rdrdθdz){x=rcosθ,y=rsinθ,z=z} 球⾯坐标代换(dxdydz -> r2sinφdrdθdφ){x=rsinφcosθ,y=rsinφsinθ,z=rcosφ} (0≤θ≤2π,0≤φ≤π)重积分的应⽤(P180)1.⼏何应⽤:平⾯区域的⾯积、曲⾯⾯积、曲顶柱体的体积2.物理应⽤:质⼼、转动惯量、引⼒空间曲⾯的曲⾯⾯积:S=∫∫D√(1+z x2+z y2)dxdy质⼼:x c=∫∫D x*µ(x,y) dσ / ∫∫Dµ(x,y) dσ , y c=∫∫D y*µ(x,y) dσ / ∫∫Dµ(x,y) dσ转动惯量:对x轴的转动惯量 I x= ∫∫D y2*µ(x,y) dσ, 对y轴的转动惯量 I y= ∫∫D x2*µ(x,y) dσ空间⽴体对单位质量的质点的引⼒:F x = G ∫∫∫Ωρ(x,y,z)x / r3 dV, F y = G ∫∫∫Ωρ(x,y,z)y / r3 dV, F z = G ∫∫∫Ωρ(x,y,z)z/ r3 dV3.第⼀型曲线积分(P194)⼏何意义:曲线的质量 m = ∫L µ(x,y)dS形式:∫L f(x,y)dS计算⽅法:⽤参数⽅程4.第⼀型曲⾯积分(P224)⼏何意义:曲⾯的⾯积,m = ∫∫S µ(x,y,z) dS, dS曲⾯微元形式:∫∫Σf(x,y,z)dS计算⽅法:1.曲⾯投影到平⾯,2.被积函数三元变两元,3. 曲⾯微元变为曲⾯⾯积5.第⼆型曲线积分(P200)⼏何意义:变⼒沿曲线所做的功形式:∫L Pdx+Qdy (有⽅向)计算⽅法:平⾯封闭曲线上⽤格林公式, 当P x=Q y,与积分路径⽆关,选取折线路径计算6.第⼆型曲⾯积分(P229)⼏何意义:流向曲⾯⼀侧的流量形式:∫∫ΣPdydz+Qdzdx+Rdxdy = ∫∫Σ (Pcosα+Qcosβ+Rcosγ)dS 计算⽅法:合⼀投影法、分⾯投影法、⾼斯公式 。
高数2知识点总结高等数学是大学数学的重要组成部分,其中高数2是高等数学的进阶内容。
本文将对高数2的知识点进行总结,以便读者能够更好地理解和掌握这一学科。
1. 极限与连续极限是高数2中的重要概念,它描述了函数在某一点或无穷远处的趋势。
极限的计算方法有很多种,如代入、夹逼、洛必达法则等。
连续是指函数在某一区间内无间断的特性,连续函数具有一些重要的性质,如介值定理、零点定理等。
2. 一元函数微分学微分学是研究函数变化率与函数本身的关系的学科。
高数2中的微分学主要包括导数和微分。
导数描述了函数在某一点的变化率,它有一些重要的性质,如可导函数的判定、导数法则等。
微分是导数的几何解释,它用于近似计算和误差估计。
3. 一元函数积分学积分学是研究函数累积与函数本身的关系的学科。
高数2中的积分学主要包括不定积分和定积分。
不定积分是求函数原函数的过程,它有一些常见的积分公式和积分方法。
定积分是求函数在某一区间上的累积量,它有一些重要的性质,如定积分的计算、定积分的应用等。
4. 多元函数微分学多元函数微分学是研究多元函数的变化率与函数本身的关系的学科。
高数2中的多元函数微分学主要包括偏导数和全微分。
偏导数描述了多元函数在某一点的各个方向上的变化率,它有一些重要的性质,如混合偏导数的对称性、二阶偏导数的计算等。
全微分是多元函数的线性逼近,它用于近似计算和误差估计。
5. 多元函数积分学多元函数积分学是研究多元函数的累积与函数本身的关系的学科。
高数2中的多元函数积分学主要包括二重积分和曲线积分。
二重积分是求多元函数在平面区域上的累积量,它有一些常见的积分公式和积分方法。
曲线积分是求多元函数沿曲线的累积量,它有一些重要的性质,如格林公式、斯托克斯公式等。
总结:高数2是高等数学的重要内容,主要包括极限与连续、一元函数微分学、一元函数积分学、多元函数微分学和多元函数积分学。
这些知识点在数学和工程领域都有广泛的应用,对理解和解决实际问题具有重要意义。
第六章定积分的应用内容概要课后习题全解习题6-2★ 1.求由曲线xy =与直线x y =所围图形的面积。
知识点:平面图形的面积思路:由于所围图形无论表达为X-型还是Y-型,解法都较简单,所以选其一做即可 解: 见图6-2-1∵所围区域D 表达为X-型:⎩⎨⎧<<<<x y x x 10, (或D 表达为Y-型:⎩⎨⎧<<<<y x y y 210)∴⎰-=10)(dx x x S D61)2132(1223=-=x x (⎰=-=1261)(dy y y S D) ★ 2.求在区间[0,π/2]上,曲线x y sin =与直线0=x 、1=y 所围图形的面积知识点:平面图形面积思路:由于所围图形无论表达为X-型还是Y-型,解法都较简单,所以选其一做即可 解:见图6-2-2∵所围区域D 表达为X-型:⎪⎩⎪⎨⎧<<<<1sin 20y x x π, (或D 表达为Y-型:⎩⎨⎧<<<<y x y arcsin 010) ∴12)cos ()sin 1(202-=+=-=⎰πππx x dx x S D( 12arcsin 1-==⎰πydy S D)★★3.求由曲线x y =2与42+-=x y 所围图形的面积知识点:平面图形面积思路:由于所围图形表达为Y-型时解法较简单,所以用Y-型做 解:见图6-2-3∵两条曲线的交点:⎩⎨⎧±==⇒⎩⎨⎧+-==22422y x x y x y , ∴所围区域D 表达为Y-型:⎩⎨⎧-<<<<-22422yx y y ,∴2316)324()4(2232222=-=--=--⎰y y dy y y S D(由于图形关于X 轴对称,所以也可以解为:2316)324(2)4(223222=-=--=⎰y y dy y y S D )★★4.求由曲线2x y =、24x y =、及直线1=y 所围图形的面积知识点:平面图形面积思路:所围图形关于Y 轴对称,而且在第一象限内的图形表达为Y-型时,解法较简单 解:见图6-2-4∵第一象限所围区域1D 表达为Y-型:⎩⎨⎧<<<<y x y y 210,∴34322)2(22102311=⨯=-==⎰y dy y y S S D D(若用X-型做,则第一象限内所围区域=1D b a D D Y ,其中a D :⎪⎩⎪⎨⎧<<<<22410x y x x ,b D :⎪⎩⎪⎨⎧<<<<14212y x x ;∴12212201422[()(1)]443D D x x S S x dx dx ==-+-=⎰⎰) ★★5.求由曲线xy 1=与直线x y =及2=x 所围图形的面积知识点:平面图形面积思路:由于所围图形表达为X-型,解法较简单,所以用X-型做解:见图6-2-5∵两条曲线xy =和x y =的交点为(1,1)、(-1,-1),又这两条线和2=x 分别交于 21,2(、2) ,2( ∴所围区域D 表达为X-型:⎪⎩⎪⎨⎧<<<<x y xx 121,∴22211113((ln )ln 222DS x dx x x x =-=-=-⎰★★★6.抛物线x y 22=分圆822=+y x 的面积为两部分,求这两部分的面积知识点:平面图形面积思路:所围图形关于X 轴对称,而且在第一象限内的图形表达为Y-型时,解法较简单 解:见图6-2-6,设阴影部分的面积为1D S ,剩余面积为2D S∵两条曲线x y 22=、822=+y x 的交于(2,2)±(舍去4-=x 的解),∴所围区域1D 表达为Y-型:⎪⎩⎪⎨⎧-<<<<-228222y x y y ;又图形关于x 轴对称,∴342)342(2)68(2)28(220320220221+=-+=--=--=⎰⎰ππy y dy y y S D(其中222cos 18cos 22cos 22844sin 2222+=+=⨯=-⎰⎰⎰=πππdt ttdt t dyy ty ) ∴34634282-=--=πππDS ★★★7.求由曲线x e y =、x e y -=与直线1=x 所围图形的面积知识点:平面图形面积思路:由于所围图形表达为X-型时,解法较简单,所以用X-型做 解:见图6-2-7∵两条曲线x e y =和x e y -=的交点为(0,1),又这两条线和1=x 分别交于) ,1(e 和) ,1(1-e∴所围区域D 表达为X-型:⎩⎨⎧<<<<-x x e y e x 10,∴2)()(1101-+=+=-=---⎰e e e e dx e e S x x x x D★★★8.求由曲线x y ln =与直线a y ln =及b y ln =所围图形的面积)0(>>a b知识点:平面图形面积思路:由于所围图形表达为Y-型时,解法较简单,所以用Y-型做 解:见图6-2-8∵在x ln 的定义域范围内所围区域D :⎩⎨⎧<<<<ye x by a 0ln ln , ∴a b edy e S b ay bayD-===⎰ln ln ln ln★★★★9.求通过(0,0),(1,2)的抛物线,要求它具有以下性质:(1)它的对称轴平行于y 轴,且向下弯;(2)它与x 轴所围图形面积最小知识点:平面图形面积和求最值思路:首先根据给出的条件建立含参变量的抛物线方程,再求最值时的参变量解:由于抛物线的对称轴平行于y 轴,又过(0,0),所以可设抛物线方程为bx ax y +=2,(由于下弯,所以0<a),将(1,2)代入bx ax y +=2,得到2=+b a ,因此x a ax y )2(2-+=该抛物线和X 轴的交点为0=x 和aa x 2-=, ∴所围区域D :2200(2)a x ay ax a x-⎧<<⎪⎨⎪<<+-⎩ ∴23223226)2()223(])2([a a x a x a dx x a ax S aa a a D-=-+=-+=--⎰)4()2(61)]2()2()2(3[61)(233322+-=-⨯-+-⨯='---a a a a a a a a S D得到唯一极值点:4-=a ,∴所求抛物线为:x x y 642+-=★★★★10.求位于曲线x e y =下方,该曲线过原点的切线的左方以及x 轴上方之间的图形的面积知识点:切线方程和平面图形面积思路:先求切线方程,再作出所求区域图形,然后根据图形特点,选择积分区域表达类型解:x e y =⇒xe y =',∴在任一点0x x =处的切线方程为)(000x x e ey x x -=-而过(0,0)的切线方程就为:)1(-=-x e e y ,即ex y =所求图形区域为21D D D Y =,见图6-2-10X-型下的1D :⎩⎨⎧<<<<∞-x e y x 00,2D :⎩⎨⎧<<<<xey ex x 1∴222)(12110e e e x eedx ex e dx e S x x x D=-=-=-+=∞-∞-⎰⎰ ★★★11.求由曲线θcos 2a r =所围图形的面积知识点:平面图形面积思路:作图可知该曲线是半径为a 、圆心(0 ,a )的圆在极坐标系下的表达式,可直接求得面积为2a π,也可选择极坐标求面积的方法做。