2018届二轮 力与直线运动 专题卷(全国通用)
- 格式:doc
- 大小:2.90 MB
- 文档页数:21
专题能力训练3 力与物体的曲线运动(时间:45分钟满分:100分)一、选择题(本题共7小题,每小题8分,共56分。
在每小题给出的四个选项中,1~4题只有一个选项符合题目要求,5~7题有多个选项符合题目要求。
全部选对的得8分,选对但不全的得4分,有选错的得0分)1.如图所示,小船过河时,船头偏向上游与水流方向成α角,船相对于静水的速度为v,其航线恰好垂直于河岸。
现水流速度稍有增大,为保持航线不变,且准时到达对岸,下列措施可行的是()A.减小α角,增大船速vB.增大α角,增大船速vC.减小α角,保持船速v不变D.增大α角,保持船速v不变2.(2017·广东广州调研)如图所示,小球在竖直放置的光滑圆形管道内做圆周运动,内侧壁半径为R,小球半径为r,则下列说法正确的是()A.小球通过最高点时的最小速度v min=B.小球通过最高点时的最小速度v min=C.小球在水平线ab以下的管道中运动时,内侧管壁对小球一定无作用力D.小球在水平线ab以上的管道中运动时,外侧管壁对小球一定有作用力3.(2017·辽宁铁岭联考)飞机由俯冲到拉起时,飞行员处于超重状态,此时座椅对飞行员的支持力大于飞行员所受的重力,这种现象叫过荷。
过荷过大会造成飞行员四肢沉重,大脑缺血,暂时失明,甚至昏厥。
受过专门训练的空军飞行员最多可承受9倍重力的影响。
g取10 m/s2,则当飞机在竖直平面上沿圆弧轨道俯冲、拉起的速度为100 m/s时,圆弧轨道的最小半径为()A.100 mB.111 mC.125 mD.250 m4.如图所示,在足够长的斜面上A点,以水平速度v0抛出一个小球,不计空气阻力,它落到斜面上的水平距离为x1。
若将此球改用2v0水平速度抛出,落到斜面上的水平距离为x2,则x1∶x2为() A.1∶1 B.1∶2C.1∶3D.1∶45.如图所示,一人用力跨过定滑轮拉一玩具小车,已知小车的质量为m,水平面对小车的阻力恒为F f。
专题限时集训(二) 力与直线运动(对应学生用书第119页)(限时:40分钟)一、选择题(本题共10小题,每小题6分.在每小题给出的四个选项中,第1~6题只有一项符合题目要求,第7~10题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分.)1.(2017·“超级全能生”26省联考)质点做直线运动的位移x 与时间t 的关系为x =6+5t-t 2(各物理量均采用国际单位制),则该质点( )【导学号:19624021】A .第1 s 内的位移是10 mB .前2 s 内的平均速度是3 m/sC .运动的加速度为1 m/s 2D .任意1 s 内的速度增量都是2 m/sB [第1 s 内的位移x 1=(6+5×1-1) m -6 m =4 m ,故A 错误.前2 s 内的位移x 2=(6+5×2-4) m -6 m =6 m ,则前2 s 内的平均速度v =x 2t 2=62m/s=3 m/s ,故B 正确.根据x =v 0t +12at 2=6+5t -t 2得,加速度a =-2 m/s 2,任意1 s 内速度的增量Δv=at =-2×1 m/s=-2 m/s ,C 、D 均错误.故选B.]2.(2016·福建厦门一中模拟)如图216所示,轻绳跨过光滑的定滑轮,一端系一质量为m 1的物体,另一端系一质量为m 2的沙桶.当m 2变化时,m 1的加速度a 的大小与m 2的关系图线可能是( )图216A B C DB [在m 2小于m 1之前两物体都不动,所以加速度为零,当m 2大于m 1时,m 1开始运动且所受合力逐渐变大,加速度随之逐渐增加,当m 2≫m 1时,加速度趋近于g ,但不可能大于或等于g ,故选项B 正确.]3.若货物随升降机运动的v t 图象如图217所示(竖直向上为正),则货物受到升降机的支持力F 与时间t 关系的图象可能是( )【导学号:19624022】图217B [根据v t 图象可知电梯的运动情况:加速下降→匀速下降→减速下降→加速上升→匀速上升→减速上升,根据牛顿第二定律F -mg =ma 可判断支持力F 的变化情况:失重→等于重力→超重→超重→等于重力→失重,故选项B 正确.]所示为甲、乙两物体从同一地点沿同一方向开始做直2,则在0~t 2的运动过程中,下列说法正确的是( )图2181.5倍 1.5倍 C .在t 2时刻,甲与乙相遇D .在到达t 2时刻之前,乙一直在甲的前面C [由图可知,在t 1时刻,乙的速度为12v 0,此时甲的位移为v 02t 1,乙的位移为12v 02t 1=14v 0t 1,甲位移是乙位移的2倍,故A 错误;甲的加速度大小为a 甲=v 0t 1,乙的加速度为v 0t 2,由t 1=12t 2,则a 甲=2a 乙,故B 错误;由于在t 2时刻,甲、乙的位移相等,即此时乙刚好追上甲,故C 正确; 相遇前甲一直在乙的前面,故D 错误.]5.(2016·合肥二模)如图219所示,有一半圆,其直径水平且与另一圆的底部相切于O点,O 点恰好是下半圆的圆心,它们处在同一竖直平面内.现有三条光滑轨道AOB 、COD 、EOF ,它们的两端分别位于上下两圆的圆周上,轨道与竖直直径的夹角关系为α>β>θ,现让一小物块先后从三条轨道顶端由静止下滑至底端,则小物块在每一条倾斜轨道上滑动时所经历的时间关系为( )【导学号:19624023】图219A .t AB =t CD =t EF B .t AB >t CD >t EFC .t AB <t CD <t EFD .t AB =t CD <t EFB [设上部圆的直径为D ,下部半圆的半径为R ,对轨道AOB ,其长度为L 1=D cos α+R ,在其上运动的加速度a 1=g cos α,由L 1=12a 1t 2AB ,解得:t AB =D cos α+R g cos α=2Dg +2Rg cos α.对轨道COD 、EOF ,同理可解得:t CD =2Dg+2Rg cos β,t EF =2D g+2Rg cos θ.由轨道与竖直线的夹角关系为α>β>θ可知,t AB >t CD >t EF ,选项B 正确.]6.(2017·沧州一中月考)将一质量为m 的小球靠近墙面竖直向上抛出,图220甲是向上运动小球的频闪照片,图乙是下降时的频闪照片,O 是运动的最高点,甲乙两次闪光频率相同,重力加速度为g ,假设小球所受的阻力大小不变,则可估算小球受到的阻力大小约为( )图220A .mg B.13mg C.12mg D.110mg C [设每块砖的厚度是d ,向上运动时:9d -3d =aT 2①向下运动时:3d -d =a ′T 2②联立①②得:a a ′=31③根据牛顿第二定律,向上运动时:mg +f =ma ④ 向下运动时:mg -f =ma ′ ⑤联立③④⑤得:f =12mg ;选C.]7.(2017·成都市石室中学二诊)光滑斜面上,当系统静止时,挡板C 与斜面垂直,弹簧、轻杆均与斜面平行,AB 质量相等.在突然撤去挡板的瞬间( )【导学号:19624024】甲 乙图221A .两图中两球加速度均为g sin θB .两图中A 球的加速度均为零C .图甲中B 球的加速度为2g sin θD .图乙中B 球的加速度为g sin θCD [撤去挡板前,对整体分析,挡板对B 球的弹力大小为2mg sin θ,因弹簧弹力不能突变,而杆的弹力会突变,所以撤去挡板瞬间,图甲中A 球所受合力为零,加速度为零,B 球所受合力为2mg sin θ,加速度为2g sin θ;图乙中杆的弹力突变为零,A 、B 球所受合力均为mg sin θ,加速度均为g sin θ,故C 、D 确,A 、B 错误.故选C 、D.](2017·绵阳市模拟)如图所示,在倾角为θ=30°的光滑斜面上,物块A 、B 质量分别为m 和2m .物块A 静止在轻弹簧上面,物块B 用细线与斜面顶端相连,A 、B 紧挨在一起但A 、B 之间无弹力,已知重力加速度为g ,某时刻把细线剪断,当细线剪断瞬间,下列说法正确的是( )A .物块A 的加速度为0B .物块A 的加速度为g3C .物块B 的加速度为0D .物块B 的加速度为g3BD [剪断细线前,弹簧的弹力:F 弹=mg sin 30°=12mg ,细线剪断的瞬间,弹簧的弹力不变,仍为F 弹=12mg ;剪断细线瞬间,对A 、B 系统,加速度为:a =3mg sin 30°-F 弹3m =g3,即A 和B 的加速度均为g3.故B 、D 均正确.]8.(2017·天津市五区县期末)如图222所示,在水平光滑桌面上放有m 1和m 2两个小物块,它们中间有细线连接.已知m 1=3 kg ,m 2=2 kg ,连接它们的细线最大能承受6 N 的拉力.现用水平外力F 1向左拉m 1或用水平外力F 2向右拉m 2,为保持细线不断,则( )【导学号:19624025】图222A .F 1的最大值为10 NB .F 1的最大值为15 NC .F 2的最大值为10 ND .F 2的最大值为15 NBC [若向左拉m 1,则隔离对m 2分析,T m =m 2a 则最大加速度a =3 m/s 2对m 1m 2系统:F 1=(m 1+m 2)a =(2+3)×3 N=15 N .故B 正确,A 错误. 若向右拉m 2,则隔离对m 1分析,T m =m 1a 则最大加速度a =2 m/s 2对m 1m 2系统:F 2=(m 1+m 2)a =(2+3)×2 N=10 N .故D 错误,C 正确.]9.(2017·绵阳市模拟)如图223甲所示,物块A 与木板B 叠放在粗糙水平面上,其中A的质量为m ,B 的质量为2m ,且B 足够长,A 与B 、B 与地面间的动摩擦因数均为μ.对木板B 施加一水平变力F ,F 随t 变化的关系如图乙所示,A 与B 、B 与地面间的最大静摩擦力等于滑动摩擦力.下列说法正确的是( )甲 乙图223A .在0~t 1时间内,A 、B 间的摩擦力为零 B .在t 1~t 2时间内,A 受到的摩擦力方向水平向左C .在t 2时刻,A 、B 间的摩擦力大小为0.5μmgD .在t 3时刻以后,A 、B 间的摩擦力大小为μmgAD [A 、B 间的滑动摩擦力f AB =μmg ,B 与地面间的滑动摩擦力f =3μmg ,故在0~t 1时间内,推力小于木板与地面间的滑动摩擦力,故B 静止,此时A 、B 无相对滑动,故A 、B 间摩擦力为零,故A 正确;A 在木板上产生的最大加速度为a =μmgm=μg ,此时对B 分析可知F -4μmg =2ma ,解得F =6μmg ,故在t 1~t 2时间内,A 、B 一起向右做加速运动,对A 可知,A 受到的摩擦力水平向右,故B 错误;在t 2时刻,A 、B 未发生滑动,加速度a =5μmg -3μmg 3m =23μg ,对物块A :f =ma =23μmg ,故C 错误;在t 3时刻以后,A 、B 发生滑动,故A 、B 间的摩擦力大小为μmg ,故D 正确.](2017·合肥二模)如图所示是一做匀变速直线运动的质点的位移-时间图象(x t 图象),P (t 1,x 1)为图象上一点.PQ 为过P 点的切线,与x 轴交于点Q .则下列说法正确的是( )A .t 1时刻,质点的速率为x 1t 1B .t 1时刻,质点的速率为x 1-x 2t 1C .质点的加速度大小为x 1-x 2t 21D .0~t 1时间内,质点的平均速度大小为x 1-x2t 1B [x t 图象的斜率表示速度,则t 1时刻,质点的速率为v =x 1-x 2t 1,故A 错误,B 正确;根据图象可知,t =0时刻,初速度不为零,根据a =v -v 0t 可知,加速度a =x 1-x 2t 1-v 0t 1≠x 1-x 2t 21,故C 错误; 0~t 1时间内,质点的平均速度大小v =x 1t 1,故D 错误.]10.(2017·商丘一中押题卷)如图224所示,光滑水平面上放置质量分别为m 和2m 的四个木块,其中两个质量为m 的木块B 、C 间用一不可伸长的轻绳相连,A 、B 木块间的最大静摩擦力是f 1,C 、D 木块间的最大静摩擦力是f 2.现用水平拉力F 拉A 木块,使四个木块以同一加速度运动(假设绳子不会断),则( )【导学号:19624026】图224A .当f 1>2f 2,且F 逐渐增大到3f 2时,C 、D 间即将滑动B .当f 1>2f 2,且F 逐渐增大到32f 1时,A 、B 间即将滑动C .当f 1<2f 2,且F 逐渐增大到3f 2时,C 、D 间即将滑动 D .当f 1<2f 2,且F 逐渐增大到32f 1时,A 、B 间即将滑动AD [当f 1>2f 2,当C 、D 间即将滑动时,C 、D 间的静摩擦力达到最大值f 2,先以D 为研究对象,由牛顿第二定律得:f 2=2ma ,得a =f 22m再以四个物体整体为研究对象,根据牛顿第二定律得F =6ma =3f 2.此时,以B 、C 、D 整体为研究对象,可知,A 对B 的摩擦力f AB =4ma =2f 2<f 1,说明A 、B 间相对静止,故A 正确,B 错误.当f 1<2f 2,A 、B 间即将滑动时,A 、B 间的静摩擦力达到最大值f 1,先以B 、C 、D 整体为研究对象,由牛顿第二定律得:f 1=4ma ′,得a ′=f 14m再以四个物体整体为研究对象,根据牛顿第二定律得F =6ma ′=32f 1.此时,以D 为研究对象,根据牛顿第二定律得:C 对D 的摩擦力f CD =2ma ′=f 12<f 2,则知,C 、D 间相对静止,故C 错误,D 正确.] 二、计算题(共2小题,共32分)图22511.(14分)(2017·淮北市一模)如图225所示,一足够长的固定斜面倾角θ=37°,两物块A 、B 的质量m A 、m B 分别为1 kg 和2 kg ,它们与斜面之间的动摩擦因数均为μ=0.5.两物块之间的轻绳长L =0.5 m ,作用在B 上沿斜面向上的力F 逐渐增大,使A 、B 一起由静止开始沿斜面向上运动,g 取10 m/s 2.(sin 37°=0.6,cos 37°=0.8)(1)当作用在物块B 上的拉力F 达到42 N 时,连接物块A 、B 之间的轻绳恰好被拉断,求该轻绳能承受的最大拉力;(2)若连接物块A 、B 之间的轻绳恰好被拉断瞬间A 、B 的速度均为10 m/s ,轻绳断裂后作用在B 物块上的外力F =42 N 不变,求当A 运动到最高点时,物块A 、B 之间的距离.【解析】 (1)对A 、B 整体受力分析,由牛顿第二定律得:F -(m A +m B )g sin θ-μ(m A +m B )g cos θ=(m A +m B )a代入数据解得a =4 m/s 2对A 物体受力分析,由牛顿第二定律得:F T -m A g sin θ-μm A g cos θ=m A a代入数据解得:F T =14 N.(2)细线断裂后,对A 物体受力分析,由牛顿第二定律得:m A g sin θ+μm A g cos θ=m A a A代入数据解得:a A =10 m/s 2由运动学公式有:v =a A t 解得:t =va A=1 s 由运动学有:x A =vt2=5 m细线断裂后,对B 物体受力分析,由牛顿第二定律得:F -m B g sin θ-μm B g cos θ=m B a B代入数据解得:a B =11 m/s 2由运动学公式有:x B =vt +12a B t 2代入数据解得:x B =15.5 m由题意可知,当A 运动到最高点时,物体A 、B 间的距离为:x =x B -x A +L =11 m.【答案】 (1)14 N (2)11 m12.(18分)(2017·天津市五区县期末)如图226甲所示,光滑平台右侧与一长为L =2.5 m的水平木板相接,木板固定在地面上,现有一小滑块以初速度v 0=5 m/s 滑上木板,恰好滑到木板右端停止.现让木板右端抬高,如图乙所示,使木板与水平地面的夹角θ=37°,让滑块以相同的初速度滑上木板,不计滑块滑上木板时的能量损失,g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:图226(1)滑块与木板之间的动摩擦因数μ;(2)滑块从滑上倾斜木板到滑回木板底端所用的时间t .【导学号:19624027】【解析】 (1)设滑块质量为m ,木板水平时滑块加速度为a ,则对滑块有μmg =ma①滑块恰好到木板右端停止 0-v 20=-2aL② 解得μ=v 202gL=0.5.③(2)当木板倾斜,设滑块上滑时的加速度为a 1,最大距离为x ,上滑的时间为t 1,有 μmg cos θ+mg sin θ=ma 1 ④ 0-v 20=-2a 1x ⑤ 0=v 0-a 1t 1⑥ 由④⑤⑥式,解得t 1=12s⑦设滑块下滑时的加速度为a 2,下滑的时间为t 2,有mg sin θ-μmg cos θ=ma 2 ⑧ x =12a 2t 22⑨ 由⑧⑨式解得t 2=52s ○10 滑块从滑上倾斜木板到滑回木板底端所用的时间t =t 1+t 2=1+52s . ⑪【答案】 (1)0.5 (2)1+52s。
专题1 第4讲1.(2017·全国卷Ⅲ)2017年4月,我国成功发射的天舟一号货运飞船与天宫二号空间实验室完成了首次交会对接,对接形成的组合体仍沿天宫二号原来的轨道(可视为圆轨道)运行.与天宫二号单独运行时相比,组合体运行的( C )A .周期变大B .速率变大C .动能变大D .向心加速度变大解析 组合体比天宫二号质量大,轨道半径R 不变,根据GMm R 2=m v 2R ,可得v =GM R,可知与天宫二号单独运行时相比,组合体运行的速率不变,B 项错误;又T =2πR v ,则周期T 不变,A 项错误;质量变大、速率不变,动能变大,C 项正确;向心加速度a =GM R2,不变,D 项错误.2.(2017·全国卷Ⅱ)(多选)如图,海王星绕太阳沿椭圆轨道运动,P 为近日点,Q 为远日点,M 、N 为轨道短轴的两个端点,运行的周期为T 0.若只考虑海王星和太阳之间的相互作用.则海王星在从P 经M 、Q 到N 的运动过程中( CD )A .从P 到M 所用的时间等于T 04B .从Q 到N 阶段,机械能逐渐变大C .从P 到Q 阶段,速率逐渐变小D .从M 到N 阶段,万有引力对它先做负功后做正功解析 在海王星从P 到Q 的运动过程中,由于引力与速度的夹角大于90°,因此引力做负功,根据动能定理可知,速度越来越小,C 项正确;海王星从P 到M 的时间小于从M 到Q 的时间,因此从P 到M 的时间小于T 04,A 项错误;由于海王星运动过程中只受到太阳引力作用,引力做功不改变海王星的机械能,即从Q 到N 的运动过程中海王星的机械能守恒,B 项错误;从M 到Q 的运动过程中引力与速度的夹角大于90°,因此引力做负功,从Q 到N 的过程中,引力与速度的夹角小于90°,因此引力做正功,即海王星从M 到N 的过程中万有引力先做负功后做正功,D 项正确.3.(2017·湖北襄阳调研)如图所示,A 、B 是绕地球做圆周运动的两颗卫星,A 、B 两卫星与地心的连线在相等时间内扫过的面积之比为k :1,则A 、B 两卫星的周期的比值为( D )A .k 23B .kC .k 2D .k 3 解析 由题意可知⎝⎛⎭⎫θA 2π·πR 2A t ∶⎝⎛⎭⎫θB 2π·πR 2B t =k ,即T B R 2A T A R 2B =k ,根据开普勒第三定律,有R 3A R 3B =T 2A T 2B,联立可得T A T B=k 3,选项A 、B 、C 均错误,选项D 正确. 4.(2017·甘肃张掖诊断)地球赤道上的重力加速度为g ,物体在赤道上随地球自转的向心加速度为a ,要使赤道上的物体“飘”起来,则地球的转速应变原来的( B )A.g 2倍 B .g +a a 倍 C.g -a a 倍 D .g a倍 解析 物体在赤道上随地球自转时,有a =ω21R ;物体随地球自转时,赤道上物体受万有引力和支持力,支持力等于重力,即F -mg =ma ,物体“飘”起来时只受万有引力,有F=ma ′,故a ′=g +a ,则有g +a =ω22R ,又ω=2πn ,解得n 2n 1=ω2ω1=g +a a ,故选项B 正确,A 、C 、D 错误.5.(2017·陕西宝鸡质检)宇航员在某星球上为了探测其自转周期做了如下实验:在该星球两极点,用弹簧测力计测得质量为M 的砝码所受重力为F ,在赤道测得该砝码所受重力为F ′.他还发现探测器绕该星球表面做匀速圆周运动的周期为T .假设该星球可视为质量分布均匀的球体,则其自转周期为( C )A .TF ′F B .T F F ′ C .TF F -F ′ D .T F -F ′F解析 设该星球重力加速度为g 星,自转周期为T 0,根据题述,在该星球两极点F 万=F=Mg 星;在赤道,F 万-F ′=MR ⎝⎛⎭⎫2πT 2;质量为m 的探测器绕该星球表面做匀速圆周运动的周期为T ,由万有引力(重力)等于向心力可得mg 星=mR ⎝⎛⎭⎫2πT 2,联立解得T 0=TF F -F ′,选项C 正确.6.(2017·重庆西北狼联盟)2016年10月19日凌晨,“神舟十一号”飞船与“天宫二号”自动交会对接成功,假设“天宫二号”空间实验室与“神舟十一号”飞船都围绕地球做匀速圆周运动,为了实现飞船与空间实验室的对接.下列措施可行的是( D )A .使飞船与空间实验室在同一轨道上运行,然后飞船加速追上空间实验室实现对接B .使飞船与空间实验室在同一轨道上运行,然后空间实验室减速等待飞船实现对接C .飞船先在比空间实验室半径小的轨道上减速,减速后飞船逐渐靠近空间实验室,两者速度接近实现对接D .飞船先在比空间实验室半径小的轨道上加速,加速后飞船逐渐靠近空间实验室,两者速度接近实现对接解析 飞船与空间实验室在同一轨道上运行,加速时做离心运动,减速时做向心运动,均不可实现对接,选项A 、B 错误;飞船先在比空间实验室半径小的轨道上减速,则其做向心运动,不可能与空间实验室相接触,选项C 错误;飞船先在比空间实验室半径小的轨道上加速,则其做离心运动可使飞船逐渐靠近空间实验室,两者速度接近时实现对接,选项D 正确.7.(2017·河北石家庄模拟)如图所示,有A 、B 两颗卫星绕地心O 做圆周运动,旋转方向相同.A 卫星的周期为T 1,B 卫星的周期为T 2,在某一时刻两卫星相距最近,则(引力常量为G )( B )A .两卫星经过时间t =T 1+T 2再次相距最近B .两颗卫星的轨道半径之比为T 0231:T 0232 C .若已知两颗卫星相距最近时的距离,可求出地球的密度D .若已知两颗卫星相距最近时的距离,可求出地球表面的重力加速度解析 设两卫星经过时间t 再次相距最近,由2πT 1·t -2πT 2·t =2π解得,t =T 1T 2T 2-T 1,选项A 错误.根据开普勒定律,r 31T 21=k ,解得两颗卫星的轨道半径之比r 1∶r 2=T 0231∶T 0232,选项B 正确.若已知两颗卫星相距最近时的距离,结合两颗卫星的轨道半径之比可以求得两颗卫星的轨道半径,根据万有引力提供向心力,得GMm r 2=m 4πT 2r ,可求出地球质量,但不知道地球半径,故求不出地球密度,也求不出地球表面的重力加速度,选项C 、D 错误.8.(2017·吉林长春七校联盟)(多选)为探测引力波,中山大学领衔的“天琴计划”,将向太空发射三颗完全相同的卫星(SC1、SC2、SC3)构成一个等边三角形阵列,地球恰处于三角形的中心,卫星将在以地球为中心、高度约10万公里的轨道上运行,针对确定的引力波源进行引力波探测.如图所示,这三颗卫星在太空中的分列图类似乐器竖琴,故命名为“天琴计划”.已知地球同步卫星距离地面的高度约为3.6万公里.以下说法正确的是( AB )A .三颗卫星具有相同大小的加速度B .从每颗卫星可以观察到地球上大于13的表面 C .三颗卫星绕地球运动的周期一定小于地球的自转周期D .若知道引力常量G 及三颗卫星绕地球的运动周期T ,则可估算出地球的密度解析 根据G Mm r 2=ma ,解得a =G M r 2,由于三颗卫星到地球的距离相等,则绕地球运动的轨道半径r 相等,则它们的加速度大小相等,选项A 正确;从每颗卫星可以观察到地球上大于13的表面,选项B 正确;根据万有引力等于向心力,G Mm r 2=mr ⎝⎛⎭⎫2πT 2,解得T =2πr 3GM,由于三颗卫星的轨道半径大于地球同步卫星的轨道半径,故三颗卫星绕地球运动的周期大于地球同步卫星绕地球运动的周期,即大于地球的自转周期,选项C 错误;若知道引力常量G及三颗卫星绕地球的运动周期T ,根据G Mm r 2=mr ⎝⎛⎭⎫2πT 2,解得M =4π2r 3GT2,但因地球的半径未知,也不能计算出轨道半径r ,不能计算出地球体积,故不能估算出地球的密度,选项D 错误.。
专题二力与直线运动考情分析201520162017力与直线运动T5:匀变速直线运动的多过程问题T6:超重与失重、a-t图象T5:自由下落与竖直上抛运动及v-x图象T9:匀变速直线运动规律、摩擦力、牛顿第二定律T3:物块在斜面上的运动命题解读本专题的考点分为两大板块,一个是运动学部分,另一个为牛顿运动定律,其中,匀变速直线运动的规律及运动图象问题和牛顿运动定律及应用为高频考点.从近三年命题情况看,命题特点为:(1)注重基础与迁移.如匀变速直线运动的规律及非常规运动图象问题,行车安全问题等考查学生的理解能力。
难度属于中等。
(2)注重过程与方法。
如板块问题、多过程问题等,以选择题的形式考查学生的推理能力,以计算题的形式考查学生的分析综合能力。
难度属于偏难。
整体难度偏难,命题指数★★★★★,复习目标是达B冲A。
1。
(2017·徐州沛县中学高三第一次质检)一个做匀减速直线运动的物体,经过3 s速度刚好减为零.若测得该物体在最后1 s内的位移是1 m,那么该物体在这3 s内的平均速度大小是()A。
1 m/s B.3 m/s C。
5 m/s D。
9 m/s解析采用逆向思维法,根据x=错误!at2得,物体的加速度大小a=错误!=错误!m/s2=2 m/s2,则物体的初速度v0=at′=23 m/s=6 m/s,物体在这3 s内的平均速度错误!=错误!=错误!m/s=3 m/s,故B项正确,A、C、D项错误.答案B2。
(2017·江苏清江中学月考)位于水平面上质量为m的物体,在大小为F、方向与水平面成θ角的推力作用下做加速运动,物体与水平面间的动摩擦因数为μ,则物体的加速度大小为( )图1A.错误!B.错误!C.错误!D.错误!解析对物体受力分析如图所示,在水平方向:F cos θ-f=ma,在竖直方向:F N-F sin θ-mg=0,又f=μF N,以上联立解得a=错误!,故D项正确。
答案D3.(2017·扬州模拟)图2甲是某人站在力传感器上做下蹲、起跳动作的示意图,中间的“·”表示人的重心.图乙是根据传感器采集到的数据画出的力-时间图象.两图中a~g各点均对应,其中有几个点在图甲中没有画出.取重力加速度g=10 m/s2。
专题一力和运动第2讲直线运动与牛顿运动定律1.(多选)伽利略开创了实验研究和逻辑推理相结合探索自然规律的科学方法,利用这种方法伽利略发现的规律有()(导学号57180015)A.力不是维持物体运动的原因B.物体之间普遍存在相互吸引力C.忽略空气阻力,重物与轻物下落得同样快D.物体间的相互作用力总是大小相等、方向相反解析:亚里士多德认为力是维持物体运动的原因,伽利略利用理想的完全光滑的斜面实验和逻辑推理发现力不是维持物体运动的原因,而是改变物体运动状态的原因,选项A正确;物体之间普遍存在相互吸引力是牛顿第一次提出的,选项B错误;亚里士多德认为重物比轻物下落得快,伽利略应用斜面结合数学推理及逻辑推理推翻了亚里士多德的观点,得出忽略空气阻力的情况下,重物与轻物下落得同样快的结论,选项C正确;物体间的相互作用力总是大小相等、方向相反是牛顿第三定律的内容,选项D错误.答案:AC2.应用物理知识分析生活中的常见现象,可以使物理学习更加有趣和深入.例如,平伸手掌托起物体,由静止开始竖直向上运动,直至将物体抛出.对此现象分析正确的是()A.手托物体向上运动的过程中,物体始终处于超重状态B.手托物体向上运动的过程中,物体始终处于失重状态C.在物体离开手的瞬间,物体的加速度大于重力加速度D.在物体离开手的瞬间,手的加速度大于重力加速度解析:手托物体向上运动,一定先向上加速,处于超重状态,但后面的运动可以是减速的,也可以是匀速的,不能确定,A、B错误;物体和手具有共同的速度和加速度时,二者不会分离,故物体离开手的瞬间,物体向上运动,物体只受重力,物体的加速度等于重力加速度,但手的加速度应大于重力加速度,并且方向竖直向下,手与物体才能分离,所以C错误,D正确.答案:D3.一质点受多个力的作用,处于静止状态.现使其中一个力的大小逐渐减小到零,再沿原方向逐渐恢复到原来的大小.在此过程中,其他力保持不变,则质点的加速度大小a和速度大小v的变化情况是()A.a和v都始终增大B.a和v都先增大后减小C.a先增大后减小,v始终增大D.a和v都先减小后增大解析:质点受多个力的作用,处于静止状态,则多个力的合力为零,其中任意一个力与剩余所有力的合力大小相等、方向相反,使其中一个力的大小逐渐减小到零再恢复到原来的大小,则所有力的合力先变大后变小,但合力的方向不变,根据牛顿第二定律,a先增大后减小,v始终增大,故选C.答案:C4.物体从斜面(斜面足够长)底端以某一初速度开始向上做匀减速直线运动,经t秒到达位移的中点,则物体从斜面底端到最高点时共用时间为()A.2t B.2tC.(3-2)t D.(2+2)t解析:物体沿斜面向上做匀减速直线运动,到最高点的速度为零,为了使问题简化,可以看成由最高点开始的初速度为零的匀加速直线运动,则前一半位移与后一半位移所用的时间之比为t1t2=12-1,又t2=t,解得t1=(2+1)t,因此总时间为t1+t2=(2+2)t,D正确.答案:D一、单项选择题1.用水平力F拉着一物体在水平地面上做匀速直线运动.从t =0时刻起水平力F的大小随时间均匀减小,到t1时刻F减小为零,则物体运动速度v随时间t的变化图线大致正确的是()(导学号57180094)解析:用水平力F拉着一物体在水平地面上做匀速直线运动,说明水平力F(设大小为F0)等于滑动摩擦力F f,即F0=F f.从t=0时刻起水平力F的大小随时间均匀减小,其水平力F可表示为F0-kt,由牛顿运动定律得,(F0-kt)-F f=ma,解得a=-ktm,即加速度a随时间逐渐增大,所以其速度v随时间t的变化图线大致正确的是A.答案:A2.如图甲所示,小物块从足够长的光滑斜面顶端由静止自由滑下.下滑位移x时的速度为v,其x-v2图象如图乙所示,g取10 m/s2,则斜面倾角θ为()A.30°B.45°C.60°D.75°解析:由x-v2图象可知小物块的加速度a=5 m/s2,根据牛顿第二定律得,小物块的加速度a=g sin θ,所以θ=30°,A对,B、C、D错.答案:A3.(2017·陕西师大附中二模)如图所示为一台非铁性物质制成的天平.天平左盘中的A是一铁块,B是电磁铁.未通电时天平平衡,给B通以图示方向的电流(a端接电源正极,b端接电源负极),调节线圈中电流的大小,使电磁铁对铁块A的吸引力大于铁块受到的重力,铁块A被吸起.当铁块A向上加速运动的过程中,下列判断正确的是()A.电磁铁B的上端为S极,天平仍保持平衡B.电磁铁B的上端为S极,天平右盘下降C.电磁铁B的下端为N极,天平左盘下降D.电磁铁B的下端为N极,无法判断天平的平衡状态解析:从题图可知,电流从螺线管的上端流入,下端流出,根据安培定则可知,螺线管下端是N极,上端是S极,电磁铁通电后,铁块A 被吸起,铁块A 向上加速运动的过程中,会导致超重现象,因而可知铁块受到向上的电磁力F 必然大于铁块的重力G ,当铁块离开盘而又还未到达电磁铁的过程中,虽然铁块对盘的压力没有了,但由牛顿第三定律可知,铁块对电磁铁有向下的吸引力,因此通过左盘电磁铁支架向下压左盘的力比电磁铁未通电时铁块压左盘的力还大,故左盘将下沉.故选C.答案:C4.如图所示,甲从A 地由静止匀加速跑向B 地,当甲前进距离为s 1时,乙从距A 地s 2处的C 点由静止出发,加速度与甲相同,最后二人同时到达B 地,则A 、B 两地距离为( )(导学号 57180095)A .s 1+s 2B.(s 1+s 2)24s 1C.s 214(s 1+s 2)D.(s 1+s 2)2(s 1-s 2)s 1解析:设甲前进距离为s 1时,速度为v ,甲和乙做匀加速直线运动的加速度为a ,乙从C 点到达B 地所用的时间为t ,则有:v t +12at 2-12at 2=s 2-s 1,根据速度—位移公式得,v 2=2as 1,解得t =s 2-s 12as 1,则A 、B 的距离s =s 2+12at 2=(s 1+s 2)24s 1,故B 正确. 答案:B5.(2017·怀化一模)如图所示,甲、乙两车同时由静止从A 点出发,沿直线AC 运动.甲以加速度a 3做初速度为零的匀加速运动,到达C 点时的速度为v .乙以加速度a 1做初速度为零的匀加速运动,到达B 点后做加速度为a 2的匀加速运动,到达C 点时的速度亦为v .若a 1≠a 2≠a 3,则( )A .甲、乙不可能同时由A 达到CB .甲一定先由A 达到CC .乙一定先由A 达到CD .若a 1>a 3,则甲一定先由A 达到C解析:根据速度时间图线得,若a 1>a 3,如图,因为末速度相等,位移相等,即图线与时间轴所围成的面积相等,则t 乙<t 甲.若a 3>a 1,如上图,因为末速度相等,位移相等,即图线与时间轴所围成的面积相等,则t 乙>t 甲,通过图线作不出位移相等、速度又相等、时间也相等的图线,所以甲乙不能同时到达,故A 正确,B 、C 、D 错误,故选A.答案:A6.如图所示,质量为M 的三角形木块a 放在水平面上,把另一质量为m 的木块b 放在a 的斜面上,斜面倾角为α,对a 施一水平力F ,使b 不沿斜面滑动,不计一切摩擦,则b 对a 的压力大小为( )A .mg cos αB.Mg cos αC.FM (M +m )cos αD.Fm (M +m )sin α解析:不计一切摩擦,b 不滑动时即a 、b 相对静止,作为一个整体,在水平力F 作用下,一定沿水平面向左加速运动,根据牛顿运动定律有F=(M+m)a,则有a=FM+m.对木块b分析,不计摩擦,只受到自身重力mg和斜面支持力F N的作用.由于加速度水平向左,所以二者合力水平向左,大小为ma,如图所示,则有F N=mgcos α,选项A、B错误.F N=masin α=mF(M+m)sin α,选项C错误,选项D正确.答案:D二、多项选择题7.(2017·保定模拟)下图为一物体做直线运动的v-t图象,由图象所给信息可以判断,在0~t1和t1~t2时间内()(导学号57180096)A.0~t1时间内物体运动的位移比t1~t2时间内的位移大B.在0~t1和t1~t2时间内进行比较,它们的速度方向相同,加速度方向相反C.0~t1时间内物体的加速度比t1~t2时间内的加速度小D.在0~t1和t1~t2时间内进行比较,它们的速度方向相反,加速度方向相反解析:由图形的面积表示位移可知,0~t1时间内物体运动的位移比t1~t2时间内的位移大,A正确;在0~t1和t1~t2时间内进行比较,它们的速度方向均为正,即方向相同,由斜率的正负知加速度方向相反,B正确,D错误;由斜率的绝对值大小知0~t1时间内物体的加速度比t1~t2时间内的加速度小,C正确;故选ABC.答案:ABC8.静止在光滑水平面上的物体受到一个水平拉力的作用,在4 s 内该拉力随时间变化的关系如图所示,则()A.物体将做往复运动B.2 s末物体的加速度最大C.2 s末物体的速度最大D.4 s内物体的位移最大解析:0~2 s内向一方向做匀加速运动,2~4 s内仍向同一方向做匀减速运动,由于对称性,2 s末物体的速度最大,4 s末速度为0,4 s内位移最大.故C、D正确.答案:CD9.如图所示,物块A、B质量相等,在恒力F作用下,在水平面上做匀加速直线运动.若物块与水平面间接触面光滑,物块A的加速度大小为a1,物块A、B间的相互作用力大小为F N1;若物块与水平面间接触面粗糙,且物块A、B与水平面间的动摩擦因数相同,物块B的加速度大小为a2,物块A、B间的相互作用力大小为F N2,则以下判断正确的是()(导学号57180097)A.a1=a2B.a1>a2C.F N1=F N2D.F N1<F解析:接触面光滑时,整体分析,由牛顿第二定律可得:F =(m A+m B )a 1,可得a 1=F m A +m B =F 2m;对B 受力分析,由牛顿第二定律可得F N1=m B a 1=F 2.当接触面粗糙时,整体分析,由牛顿第二定律可得:F -F f =(m A +m B )a 2,可得a 2=F -F f m A +m B=F -F f 2m ;对B 受力分析,F N2=m B a 2+F f 2=F 2,所以选项A 错误,选项B 、C 、D 正确. 答案:BCD10.(2017·西安联考)如图所示,质量为m =1 kg 的物块A 停放在光滑的水平桌面上.现对物块施加一个水平向右的外力F ,使它在水平面上做直线运动.已知外力F 随时间t (单位为s)的变化关系为F =(6-2t )N ,则( )A .在t =3 s 时,物块的速度为零B .物块向右运动的最大速度为9 m/sC .在0~6 s 内,物块的平均速度等于4.5 m/sD .物块向右运动的最大位移大于27 m解析:水平面光滑,物体所受的合力等于F ,在0~3 s 内,物体受的力一直向右,一直向右做加速运动,可知3 s 时速度不为零,故A 错误.根据牛顿第二定律得,a =F m=6-2t ,at 图象如图所示.图线与时间轴围成的面积表示速度的变化量,可知最大速度变化量为Δv =12×6×3 m/s =9 m/s ,可知物体向右运动的最大速度为9 m/s ,故B 正确.物体的速度时间图象如图所示,由图线与时间轴围成的面积表示位移知,位移x >12×6×9 m =27 m ,则平均速度v -=x t >276m/s =4.5 m/s ,故D 正确,C 错误.故选BD. 答案:BD三、计算题11.如图所示,一长为200 m 的列车沿平直的轨道以80 m/s 的速度匀速行驶,当车头行驶到进站口O 点时,列车接到停车指令,立即匀减速停车,因OA 段铁轨不能停车,整个列车只能停在AB 段内,已知OA =1 200 m ,OB =2 000 m ,求:(导学号 57180098)(1)列车减速运动的加速度大小的取值范围;(2)列车减速运动的最长时间.解析:(1)若列车车尾恰好停在A 点右侧,减速运动的加速度大小为a 1,距离为x 1,则0-v 20=-2a 1x 1x 1=1 200 m +200 m =1 400 m解得a 1=167m/s 2 若列车车头恰好停在B 点,减速运动的加速度大小为a 2,距离为x OB=2 000 m,则0-v20=-2a2x OB 解得a2=1.6 m/s2故加速度大小a的取值范围为1.6 m/s2≤a≤167m/s2.(2)当列车车头恰好停在B点时,减速运动时的时间最长,则0=v0-a2t解得t=50 s.答案:(1)1.6 m/s2≤a≤167m/s2(2)50 s12.如图所示,一足够长的固定光滑斜面倾角θ=37°,两物块A、B的质量m A=1 kg、m B=4 kg.两物块之间的轻绳长L=0.5 m,轻绳可承受的最大拉力为F T=12 N,对B施加一沿斜面向上的力F,使A、B由静止开始一起向上运动,力F逐渐增大,g取10 m/s2(sin 37°=0.6,cos 37°=0.8).(1)若某一时刻轻绳被拉断,求此时外力F的大小;(2)若轻绳拉断瞬间A、B的速度为3 m/s,轻绳断后保持外力F 不变,求当A运动到最高点时,A、B之间的间距.解析:(1)对A、B整体分析,根据牛顿第二定律得F-(m A+m B)g·sin θ=(m A+m B)aA物体:F T-m A g sin θ=m A a代入数据解得F=60 N.(2)设沿斜面向上为正方向,A物体:-m A g sin θ=m A a A设A物体运动到最高点所用时间为t,则有v0=-a A t 此过程A物体的位移为x A=v-A·tB物体:F-m B g sin θ=m B a Bx B=v0t+12a B t2代入数据解得两者间距为x=x B-x A+L=2.375 m. 答案:(1)60 N(2)2.375 m。
专题一力与运动第一讲力与物体平衡1.[考查共点力的平衡条件、弹力的方向判断]如图所示,三个形状不规则的石块a、b、c在水平桌面上成功地叠放在一起。
下列说法正确的是( )A.石块b对a的支持力一定竖直向上B.石块b对a的支持力一定等于a受到的重力C.石块c受到水平桌面向左的摩擦力D.石块c对b的作用力一定竖直向上解析:选D 由题图可知,a与b的接触面不是水平面,可知石块b对a的支持力与其对a的静摩擦力的合力,跟a受到的重力是一对平衡力,故A、B错误;以三个石块作为整体研究,整体受到的重力与支持力是一对平衡力,则石块c不会受到水平桌面的摩擦力,故C错误;选取ab作为整体研究,根据平衡条件,石块c对b的作用力与其重力平衡,则石块c对b的作用力一定竖直向上,故D正确。
2.[考查摩擦力的有无及方向判断][多选]如图甲、乙所示,倾角为θ的斜面上放置一滑块M,在滑块M上放置一个质量为m的物块,M和m相对静止,一起沿斜面匀速下滑,下列说法正确的是( )A.图甲中物块m受到摩擦力B.图乙中物块m受到摩擦力C.图甲中物块m受到水平向左的摩擦力D.图乙中物块m受到与斜面平行向上的摩擦力解析:选BD 对题图甲:设m受到摩擦力,则物块m受到重力、支持力、摩擦力,而重力、支持力平衡,若受到摩擦力作用,其方向与接触面相切,方向水平,则物体m受力将不平衡,与题中条件矛盾,故假设不成立,A、C错误。
对题图乙:设物块m不受摩擦力,由于m 匀速下滑,m 必受力平衡,若m 只受重力、支持力作用,由于支持力与接触面垂直,故重力、支持力不可能平衡,则假设不成立,由受力分析知:m 受到与斜面平行向上的摩擦力,B 、D 正确。
3.[考查力的合成与分解、胡克定律][多选]如图,粗糙水平面上a 、b 、c 、d 四个相同小物块用四根完全相同的轻弹簧连接,正好组成一个等腰梯形,系统静止。
ab 之间、ac 之间以及bd 之间的弹簧长度相同且等于cd 之间弹簧长度的一半,ab 之间弹簧弹力大小为cd 之间弹簧弹力大小的一半。
专题能力训练2 力与物体的直线运动(时间:45分钟满分:100分)一、选择题(本题共6小题,每小题10分,共60分。
在每小题给出的四个选项中,1~3题只有一个选项符合题目要求,4~6题有多个选项符合题目要求。
全部选对的得10分,选对但不全的得5分,有选错的得0分)1.如图所示,在光滑水平面上有一静止小车,小车质量为m0=5 kg,小车上静止放置一质量为m=1 kg的木块,木块和小车间的动摩擦因数为μ=0.2,用水平恒力F拉动小车,下列关于木块的加速度a1和小车的加速度a2,可能正确的是()A.a1=2 m/s2,a2=1 m/s2B.a1=1 m/s2,a2=2 m/s2C.a1=2 m/s2,a2=4 m/s2D.a1=3 m/s2,a2=5 m/s22.右图为用索道运输货物的情景,已知倾斜的索道与水平方向的夹角为37°,重物与车厢地板之间的动摩擦因数为0.30。
当载重车厢沿索道向上加速运动时,重物与车厢仍然保持相对静止状态,重物对车厢内水平地板的正压力为其重力的1.15倍,sin 37°=0.6,cos 37°=0.8,那么这时重物对车厢地板的摩擦力大小为()A.0.35mgB.0.30mgC.0.23mgD.0.20mg3.如图甲所示,粗糙斜面与水平面的夹角为30°,质量为0.3 kg 的小物块静止在A点。
现有一沿斜面向上的恒定推力F作用在小物块上,作用一段时间后撤去推力F,小物块能达到的最高位置为C点,小物块从A到C的v-t图象如图乙所示。
g取10 m/s2,则下列说法正确的是()A.小物块到C点后将沿斜面下滑B.小物块加速时的加速度是减速时加速度的C.小物块与斜面间的动摩擦因数为D.推力F的大小为6 N4.(2016·全国Ⅰ卷)一质点做匀速直线运动。
现对其施加一恒力,且原来作用在质点上的力不发生改变,则()A.质点速度的方向总是与该恒力的方向相同B.质点速度的方向不可能总是与该恒力的方向垂直C.质点加速度的方向总是与该恒力的方向相同D.质点单位时间内速率的变化量总是不变5.如图所示,质量均为m的A、B两球之间系着一根不计质量的弹簧,放在光滑的水平面上,A球紧靠竖直墙壁。
第2讲力与直线运动一、记牢匀变速直线运动的“四类公式”二、理清一个网络,破解“力与运动”的关系高频考点1运动图象的理解及应用1-1.(2017·宁德市高中质检)AK47步枪成为众多军人的最爱.若该步枪的子弹在枪膛内的加速度随时间变化的图象如图所示,下列说法正确的是()A.子弹离开枪膛时的速度为450 m/sB.子弹离开枪膛时的速度为600 m/sC.子弹在枪膛内运动的距离小于0. 45 mD .子弹在枪膛内运动的距离大于0. 45 m解析:根据Δv =at 可知,图像与坐标轴围成的面积等于速度的变化量,则子弹离开枪膛的速度为:v =12×3×10-3×2×105 m /s =300 m/s ,选项A 、B 错误;子弹在枪膛内的做加速度减小的加速运动,则平均速度大于v2=150 m/s ,故子弹在枪膛内运动的距离大于v2t =150×3×10-3m =0.45 m ,故选项C 错误,D 正确;故选D .答案:D1-2.(2017·广元市高三统考)如图所示为A 、B 两质点在同一直线上运动的位移-时间(x -t )图像.A 质点的图像为直线,B 质点的图像为过原点的抛物线,两图像交点C 、D 坐标如图所示.下列说法正确的是( )A .t 1时刻B 追上A ,t 2时刻A 追上BB .t 1~t 2时间段内B 质点的平均速度小于A 质点的平均速度C .质点A 做直线运动,质点B 做曲线运动D .两物体速度相等的时刻一定在t 1~t 2时间段内的某时刻解析:图象的交点表示同一时刻到达同一位置而相遇,t 1时刻A 追上B ,t 2时刻B 追上A ,故A 错误;t 1~t 2时间段内,两质点通过的位移相等,则B 质点的平均速度与A 质点匀速运动的速度相等,故B 错误;两物体的速度均为正值,故两质点均做直线运动,选项C 错误;因曲线的切线的斜率等于物体的速度,故由图像可知两物体速度相等的时刻一定在t 1~t 2时间段内的某时刻,故D 正确.答案:D1-3.(2017·延边州高三质检)将质量为m =0.1 kg 的小球从地面竖直向上抛出,初速度v 0=20 m/s ,小球在运动中所受空气阻力与速率的关系为f =kv ,已知k =0.1 kg/s.其在空中的速率随时间的变化规律如图所示,取g =10 m/s 2,则以下说法正确的是( )A .小球在上升阶段的平均速度大小为10 m/sB .小球在t 1时刻到达最高点,此时加速度为零C .小球落地前匀速运动,落地速度大小v 1=10 m/sD .小球抛出瞬间的加速度大小为20 m/s 2解析:根据速度时间图象与时间轴包围的面积表示位移,则从图象可以看出,位移小于阴影部分面积,而阴影部分面积是匀减速直线运动的位移,匀减速直线运动的平均速度等于v 02=10 m/s ,故小球上升过程的平均速度小于10 m/s ,故A 错误.球在t 1时刻速率为零,到达最高点,空气阻力为零,只受重力,加速度为g ,故B 错误.由图象可知,小球落地前匀速运动,由mg =f =k v 1;得v 1=10 m/s.故C 正确.小球抛出瞬间,有:mg +kv 0=ma 0;联立解得:a 0=30 m/s 2.故D 错误.答案:C图象、情境、规律是解决图象问题不可分割的三个要素,要把物理规律和物理图象相结合.利用图象解题时一定要从图象的纵、横坐标轴所代表的物理量及两个物理量间的函数关系,图象中的“点”“线”“斜率”“截距”和“面积”等方面寻找解题的突破口.解决此类问题的一般思路定图象―→明确图象是x -t 图象还是v -t 图象等 ↓明意义―→充分理解图象的截距、斜率、交点等的物理意义,根据图象判断物体的运动情况及物体之间的相互关系↓用规律―→根据在运动图象中找出的各物理量之间的关系,运用相应的运动学规律进行求解高频考点2 匀变速直线运动规律的应用1.此类问题考查直线运动的运动学知识,一般不涉及力的问题,因此主要应用运动学规律进行求解,解题的一般步骤如下:(1)弄清题意,划分过程→根据题意,弄清楚物体的运动经历了几个过程.(2)依据已知,分析过程→依据题目中给出的已知条件,对划分出的物体运动的每个过程进行运动学分析. (3)结合已知,列出方程→结合题中给出的已知条件,列出物体运动的每个过程所对应的运动学方程.2.求解匀变速直线运动问题时的方法技巧在涉及匀变速直线运动的题目中,如果出现相等时间关系,则要优先使用中间时刻速度公式v t 2=v -=x t =v 0+v2及相邻相等时间T 内位移差公式x n -x m =(n -m )aT 2;如果题中给出初(或末)速度为0,则要优先使用初速度为0的匀变速直线运动的“比例公式”.随着机动车数量的增加,交通安全问题日益凸显.如图所示为某型号货车紧急刹车时(假设做匀减速直线运动)的v 2-x 图像(v 为该货车的速度,x 为制动距离),其中图线1为满载时符合安全要求的制动图像,图线2为严重超载时的制动图像.某路段限速72 km/h 是根据该型号货车满载时安全制动时间和距离确定的.现有一辆该型号的货车严重超载并以54 km/h 的速度行驶,通过计算求解下列问题.(1)求满载时制动加速度大小a 1、严重超载时制动加速度大小a 2;(2)驾驶员紧急制动时,该型号货车严重超载时的制动时间和制动距离是否符合安全要求?(3)若驾驶员从发现险情到采取紧急制动措施的反应时间为1 s ,则该型号货车满载时以72 km/h 的速度正常行驶的跟车距离至少应为多远?[思路点拨](1)通过图像可确定加速度的大小;(2)由运动学规律可求货车满载和严重超载时的制动时间和制动距离; (3)货车在反应时间内做匀速直线运动.【解析】 (1)根据题意由匀变速直线运动的速度位移公式可得:v 2=2ax ,则a =v 22x,由图可知,满载时加速度大小a 1=5 m/s 2,严重超载时加速度大小a 2=2.5 m/s 2.(2)由题意可知,该型号货车严重超载时的初速度大小为v 0=54 km/h =15 m/s ,满载的最大安全速度为v m =72 km/h =20 m/s.由匀变速直线运动的规律可得其严重超载时制动时间t 1=v 0a 2=6 s ,制动距离x 1=v 202a 2=45 m .满载时安全减速时间为t 2=v m a 1=4 s ,制动距离为x 2=v 2m2a 1=40 m .由于t 1>t 2,x 1>x 2,故该型号货车严重超载时的制动时间和制动距离均不符合安全要求.(3)货车驾驶员在反应时间内匀速行驶的距离为x 3=v m t =20 m .匀减速过程行驶的距离为x 4=v 2m2a 1=40 m ,从发现险情到货车停止运动,货车行驶距离为x =x 3+x 4=60 m ,故从安全的角度考虑,跟车距离至少应为60 m .【答案】 (1)a 1=5 m/s 2 a 2=2.5 m/s 2(2)均不符合安全要求 (3)60 m2-1.(2017·长沙市中学一模)某质点从静止开始做匀加速直线运动,已知第3秒内通过的位移是x ,则质点运动的加速度为( )A .3x2B .2x3C .2x5B .5x 2解析:3秒内的位移x =12at 2= 92a,2秒内的位移12at ′2=2a .则9a 2-2a =x ,解得:a =2x5.故A 、B 、D 错误,C 正确.答案:C2-2.(2017·宁夏六盘山高级中学二模)在娱乐节目《幸运向前冲》中,有一个关口是跑步跨栏机,它的设置是让挑战者通过一段平台,再冲上反向移动的跑步机皮带并通过跨栏,冲到这一关的终点.现有一套跑步跨栏装置,平台长L 1=4 m ,跑步机皮带长L 2=32 m ,跑步机上方设置了一个跨栏(不随皮带移动),跨栏到平台末端的距离L 3=10 m ,且皮带以v 0=1 m/s 的恒定速率转动,一位挑战者在平台起点从静止开始以a 1=2 m/s 2的加速度通过平台冲上跑步机,之后以a 2=1 m/s 2的加速度在跑步机上往前冲,在跨栏时不慎跌倒,经过2 s 爬起(假设从摔倒至爬起的过程中挑战者与皮带始终相对静止),然后又保持原来的加速度a 2,在跑步机上顺利通过剩余的路程,求挑战者全程所需要的时间?解析:挑战者匀加速通过平台:L 1=12a 1t 21通过平台的时间:t 1=2L 1a 1=2 s 冲上跑步机的初速度:v 1=a 1t 1=4 m/s 冲上跑步机至跨栏:L 3=v 1t 2+12a 2t 22解得t 2=2 s摔倒至爬起随跑步机移动距离: x =v 0t =1×2 m =2 m(向左)取地面为参考系,则挑战者爬起向左减速过程有:v 0=a 2t 3 解得:t 3=1 s对地位移为:x 1=v 0t 3-12a 2t 23=0.5 m(向左)挑战者向右加速冲刺过程有:x +x 1+L 2-L 3=12a 2t 24解得:t4=7 s挑战者通过全程所需要的总时间为:t总=t1+t2+t+t3+t4=14 s.答案:14 s高频考点3牛顿运动定律的应用3-1.(多选)(2017·厦门市质检)小车上固定有一个竖直方向的细杆,杆上套有质量为M的小环,环通过细绳与质量为m的小球连接,当车水平向右作匀加速运动时,环和球与车相对静止,绳与杆之间的夹角为θ,如图所示()A.细绳的受到的拉力为mg/cos θB.细杆对环作用力方向水平向右C.细杆对小环的静摩擦力为MgD.细杆对环弹力的大小为(M+m)g tan θ解析:对小球受力分析可知,细绳受到的拉力为T=mgcos θ,选项A正确;环受到杆水平向右的弹力和竖直向上的摩擦力作用,故细杆对环作用力方向斜向右上方,选项B错误;对小球和圆环的整体,竖直方向分析可知,细杆对小环的静摩擦力为(M+m)g,选项C错误;对小球受力分析可知:mg tan θ=ma;对球和环的整体:N=(M+m)a,解得:N=(M+m)g tan θ,选项D正确;故选AD.答案:AD3-2.(2017·宁德市质检)如图所示,质量为0.2 kg的物体A静止在竖直的轻弹簧上,质量为0.6 kg的物体B由细线悬挂在天花板上,B与A刚好接触但不挤压,现突然将细线剪断,则剪断后瞬间A、B间的作用力大小为(g取10 m/s2)()A.0.5 N B.2.5 NC.0 N D.1.5 N解析:剪断细线前,A、B间无压力,则弹簧的弹力F=m A g=0.2×10=2 N,剪断细线的瞬间,对整体分析,整体加速度:a =(m A +m B )g -Fm A +m B=(0.2+0.6)×10-20.2+0.6=7.5 m/s 2,隔离对B 分析:m B g -N =m B a ,解得:N =m B g -m B a =0.6×10-0.6×7.5 N =1.5 N .故选D .答案:D3-3.(多选)(2017·桂林、崇左联合调研)水平力F 方向确定,大小随时间的变化如图a 所示,用力F 拉静止在水平桌面上的小物块,在F 从0开始逐渐增大的过程中,物块的加速度a 随时间变化的图象如图b 所示.重力加速度大小为10 m/s 2,最大静摩擦力大于滑动摩擦力.由图示可知( )A .物块与水平桌面间的最大静摩擦力为3 NB .物块与水平桌面间的动摩擦因数为0.1C .物块的质量m =2 kgD .在0~4 s 时间内,合外力的冲量为12 N·S解析:由图b 可知,t =2 s 时刻物体刚开始运动,静摩擦力最大,最大静摩擦力等于此时的拉力,由图a 读出最大静摩擦力为6 N ,故A 错误.由图知:当t =2 s 时,a =1 m/s 2,f =6 N ,根据牛顿第二定律得:F -μmg =ma ,代入得:6-μm ×10=m .当t =4 s 时,a =3 m/s 2,F =12 N ,根据牛顿第二定律得:F -μmg =ma ,代入得:12-μm ×10=3 m .联立解得μ=0.1,m =3 kg ,故B 正确,C 错误.a -t 图象与时间轴所围的面积表示速度的变化量,则得0-4 s 内物体速度的增量为Δv =1+32×(4-2)=4 m/s ,t =0时刻速度为0,则物块在第4 s 末的速度为4 m/s ;根据动量定理,得0-4 s 内合外力的冲量为:ΔI =ΔP =m Δv =3×4=12 N·s.故D 正确.答案:BD3-4. (多选)(2017·包头市高三模拟)如图所示,一个质量为m 的刚性圆环套在粗糙的竖直固定细杆上,圆环的直径略大于细杆的直径,圆环的两边与两个相同的轻质弹簧的一端相连,轻质弹簧的另一端相连在和圆环同一高度的墙壁上的P 、Q 两点处,弹簧的劲度系数为k ,起初圆环处于O 点,弹簧处于原长状态且原长为L ,细杆上面的A 、B 两点到0点的距离都为L .将圆环拉至A 点由静止释放,重力加速度为g ,对于圆环从A 点运动到B 点的过程中,下列说法正确的是( )A .圆环通过O 点的加速度小于gB .圆环在O 点的速度最大C .圆环在A 点的加速度大小为g +(2-2)kLmD .圆环在B 点的速度为2gL解析:圆环在O 点只受重力,则此时加速度a =g ,A 错误;圆环在O 点时加速度向下,速度向下,仍在加速,速度不是最大值,B 错误;圆环在A 点的加速度大小为:a A =mg +2×k (L 2+L 2-L )×cos 45°m=g +(2-2)kLm ,C 正确;A 、B 两点到O 点的距离都为L ,弹簧在此过程中没有做功,只有重力做功,根据动能定理得:mg ·2L =12m v 2,即v =2gL ,D 正确.答案:CD1.整体法和隔离法的适用条件(1)整体法:连接体中各物体具有共同的加速度.(2)隔离法:当系统内各物体的加速度不同时,一般采用隔离法;求连接体内各物体间的相互作用力时必须用隔离法.2.两类模型(1)刚性绳(或接触面)——不发生明显形变就能产生弹力的物体,剪断(或脱离)后,其弹力立即消失,不需要形变恢复时间.(2)弹簧(或橡皮绳)——两端同时连接(或附着)有物体的弹簧(或橡皮绳),特点是形变量大,其形变恢复需要较长时间,在瞬时性问题中,其弹力的大小往往可以看成保持不变.高频考点4 运动图象与牛顿运动定律的综合应用为研究运动物体所受的空气阻力,某研究小组的同学找来一个倾角可调、斜面比较长且表面平整的斜面体和一个滑块,并在滑块上固定一个高度可升降的风帆,如图甲所示.他们让带有风帆的滑块从静止开始沿斜面下滑,下滑过程中帆面与滑块运动方向垂直.假设滑块和风帆总质量为m .滑块与斜面间的动摩擦因数为μ,风帆受到的空气阻力与风帆的运动速率成正比,即F f =k v .(1)写出滑块下滑过程中加速度的表达式;(2)求出滑块下滑的最大速度,并指出有哪些措施可以减小最大速度;(3)若m =2 kg ,斜面倾角θ=30°,g 取10 m/s 2,滑块从静止下滑的速度图象如图乙所示,图中的斜线为t =0时v -t 图线的切线,由此求出μ、k 的值.(计算结果保留两位有效数字)[思路点拨] (1)滑块下滑过程中受几个力作用? (2)在v - t 图象中,v =0时,加速度是否等于零?(3)能否利用v - t 图象获取物体运动的最大速度?此时物体加速度是多大? 【解析】 (1)a =mg sin θ-μmg cos θ-k v m =g sin θ-μg cos θ-k v m滑块下滑过程中加速度随速度的增大而减小,速度增大到某一定值时加速度等于零. (2)当a =0时速度最大,v max =mg (sin θ-μcos θ)k(3)当v =0时,a =g sin θ-μg cos θ=3 m/s 2,解得μ=2315=0.23最大速度v =2 m/s ,v max =mg (sin θ-μcos θ)k=2 m/s ,解得k =3 kg/s .【答案】 (1)a =g sin θ-μg cos θ-k v m (2)v max =mg (sin θ-μcos θ)k 减小滑块质量或减小斜面倾角 (3)μ=0.23k =3 kg/s动力学与图象的综合问题做好两步第1步:判别物理过程.由图象形状所描述的状态及变化规律确定质点的运动性质.第2步:选择解答方法.根据质点的运动性质,选择公式法、图象法解答试题,必要时建立函数关系并进行图象转换,或者与常见形式比较进行解答和判断.4-1.若货物随升降机运动的v - t 图象如图所示(竖直向上为正),则货物受到升降机的支持力F 与时间t 关系的图象可能是( )解析:根据v-t图象可知升降机的运动情况:加速下降→匀速下降→减速下降→加速上升→匀速上升→减速上升,根据牛顿第二定律F-mg=ma可判断支持力F的变化情况:失重→等于重力→超重→超重→等于重力→失重,故选项B正确.答案:B4-2.(2017·江西三市七校联考)某同学用位移传感器研究木块在斜面上的滑动情况,装置如图a.已知斜面倾角θ=37°.他使木块以初速度v0沿斜面上滑,并同时开始记录数据,绘得木块从开始上滑至最高点,然后又下滑回到出发处过程中的x -t图线如图b所示.图中曲线左侧起始端的坐标为(0,1.4),曲线最低点的坐标为(0.5,0.4).重力加速度g取10 m/s2.求:(1)木块上滑时的初速度v0和上滑过程中的加速度a;(2)木块与斜面间的动摩擦因数μ;(3)木块滑回出发点时的速度v t.解析:(1)物体匀减速上滑,由图象得到:末速度v=0,位移x=1.4-0.4=1.0 m,时间为t=0.5 s;根据位移时间公式,有:x=v0t+12;2at根据速度时间公式,有:v=v0+at;联立解得:v0=4 m/s,a=-8 m/s2(2)上滑过程,物体受重力支持力和滑动摩擦力,根据牛顿第二定律,有:-mg sin 37°-μmg cos 37°=ma代入数据解得:μ=0.25(3)木块下滑过程,根据牛顿第二定律,有:mg sin 37°-μmg cos 37°=ma′代入数据解得:a′=4 m/s2物体匀加速下滑,根据速度位移公式,有:v2t=2a′x答案:(1)木块上滑时的初速度为4 m/s,上滑过程中的加速度为-8 m/s2;(2)木块与斜面间的动摩擦因数为0.25;(3)木块滑回出发点时的速度为22m/s.“板块”模型由木板和物块组成的相互作用的系统统称为板块模型,题目中常涉及多物体、多过程问题,是力学中最经典、最基本的模型之一,该模型往往利用一个可视为质点的小物块在一长木板上滑动的过程,求解过程中相关的物理量.题目中可涉及静摩擦力、滑动摩擦力的方向判断和大小计算等内容,还可涉及牛顿运动定律、运动学规律,动能定理和能量的转化与守恒等知识,考查知识点较多,对考生的分析综合能力、应用数学求解物理问题的能力等要求较高.本模型在高考中常以物块—木板组合的形式出现.有时还会与斜面等结合在一起进行考查.水平面上的板块模型(2017·全国卷Ⅲ)如图,两个滑块A和B的质量分别为m A=1 kg和m B=5 kg,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为μ1=0.5;木板的质量为m=4 kg,与地面间的动摩擦因数为μ2=0.1.某时刻A、B两滑块开始相向滑动,初速度大小均为v0=3 m/s.A、B相遇时,A与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小g=10 m/s2.求(1)B与木板相对静止时,木板的速度;(2)A、B开始运动时,两者之间的距离.【解析】(1)滑块A和B在木板上滑动时,木板也在地面上滑动.设A、B和木板所受的摩擦力大小分别为f1、f2和f3,A和B相对于地面的加速度大小分别为a A和a B,木板相对于地面的加速度大小为a1,在物块B与木板达到共同速度前有f1=μ1m A g①f2=μ1m B g②f3=μ2(m+m A+m B)g③由牛顿第二定律得f1=m A a A④f 2=m B a B ⑤ f 2-f 1-f 3=ma 1⑥设在t 1时刻,B 与木板达到共同速度,其大小为v 1,由运动学公式有 v 1=v 0-a B t 1 ⑦ v 1=a 1t 1⑧联立①②③④⑤⑥⑦⑧式,代入已知数据得 v t =1 m/s⑨(2)在t 1时间间隔内,B 相对于地面移动的距离为 s B =v 0t 1-12a B t 21⑩设在B 与木板达到共同速度v 1后,木板的加速度大小为a 2,对于B 与木板组成的体系,由牛顿第二定律有 f 1+f 3=(m B +m )a 2⑪由①②④⑤式知,a A =a B ;再由⑦⑧式知,B 与木板达到共同速度时,A 的速度大小也为v 1,但运动方向与木板相反.由题意知,A 和B 相遇时,A 与木板的速度相同,设其大小为v 2.设A 的速度大小从v 1变到v 2所用的时间为t 2,则由运动学公式,对木板有v 2=v 1-a 2t 2⑫对A 有 v 2=-v 1+a A t 2⑬在t 2时间间隔内,B (以及木板)相对地面移动的距离为 s 1=v 1t 2-12a 2t 22⑭在(t 1+t 2)时间间隔内,A 相对地面移动的距离为 s A =v 0(t 1+t 2)-12a A (t 1+t 2)2⑮A 和B 相遇时,A 与木板的速度也恰好相同,因此A 和B 开始运动时,两者之间的距离为 s 0=s A +s 1+s B⑯联立以上各式,并代入数据得 s 0=1.9 m⑰(也可用如图所示的速度-时间图线求解)【答案】(1)1 m/s(2)1.9 m板块模型至少涉及两个物体,所以运动过程和解法一般比较复杂.此类模型一般的处理方法如下.(1)弄清题意,划分过程:根据题意,弄清楚物体的运动究竟经历了哪几个过程;(2)依据已知,分析过程:依据题目中给出的已知条件,对每个过程进行运动学或动力学分析;(3)结合已知,列出方程:结合题目中给出的已知条件,根据运动学规律、牛顿运动定律或能量守恒定律等列出物体运动的每个过程中对应的方程,然后进行求解.解此类模型时还要注意,要紧紧抓住过程之间的连接点,这些连接点往往是解决问题的突破口(一般要从连接点的速度、加速度以及受力情况入手进行分析).板块模型可以拓展为各种不同的形式,如将板块模型与斜面结合、滑块与传送带结合等各种不同的复合形式.但不论是哪种形式的板块模型,都需要从物理情境中确定研究对象,根据板块间的相互作用和各自的受力情况,建立物理模型,按照各自的运动过程逐一进行分析,画出运动过程的示意图,找出两物体相对运动的数学关系,挖掘隐含条件和临界条件,结合对应的物理规律进行求解.板块中的“斜面类模型”如图所示,质量M=1 kg的木板静置于倾角θ=37°、足够长的固定光滑斜面底端,质量m=1 kg的小物块(可视为质点)以初速度v0=4 m/s从木板的下端冲上木板,同时在木板上端施加一个沿斜面向上、大小为F=3.2 N 的恒力,若小物块恰好不从木板的上端滑下,求木板的长度l为多少?已知小物块与木板间的动摩擦因数为μ=0.5,重力加速度g=10 m/s2,sin 37°=0.6,cos 37°=0.8.【解析】由题意可知,小物块向上做匀减速运动,木板向上做匀加速运动,当小物块运动到木板的上端时,恰好和木板具有共同速度设小物块的加速度大小为a ,由牛顿第二定律可得mg sin θ+μmg cos θ=ma 设木板的加速度大小为a ′,由牛顿第二定律可得F +μmg cos θ-Mg sin θ=Ma ′ 设小物块和木板达到共同速度所用时间为t ,由运动学公式可得v 0-at =a ′t设小物块和木板共速时小物块的位移为x ,木板的位移为x ′,由位移公式可得x =v 0t -12at 2,x ′=12a ′t 2小物块恰好不从木板的上端滑下,有x -x ′=l 以上各式联立并代入数据求解可得l =0.714 m . 【答案】 0.714 m斜面上的板块模型,主要考查已知受力情况求解运动情况的典型动力学问题.由于木板和物块均在斜面上运动,因此解决此类问题的关键除了对物体进行受力分析之外,还要注意将木板和物块的重力沿斜面方向和垂直斜面方向进行分解.另外,还要分析清楚木板和物块各自的运动过程,以及二者之间相互联系的物理量,最后结合运动学规律、牛顿运动定律或动能定理进行求解.板块中的“传送带模型”(多选) (2017·成都外国语学校高三月考)三角形传送带以1 m/s 的速度逆时针匀速转动,两边的传送带长都是2 m 且与水平方向的夹角均为37°.现有两个小物块A 、B 从传送带底端都以4 m/s 的初速度冲上传送带,物块与传送带间的动摩擦因数都是0.5,下列说法正确的是( )A .物块A 、B 都能到达传送带顶端B .两物块在传送带上运动的全过程中,物块A 、B 所受摩擦力一直阻碍物块A 、B 的运动C .物块A 运动到与传送带速度相同的过程中,物块相对传送带运动的路程为1.25 mD .物块B 在上冲过程中在传送带上留下的划痕长度为0.45 m【解析】 重力沿传送带向下的分力:G 1=mg sin 37°=35 mg ,物体与传送带间的摩擦力:f =μmg cos 37°=25 mg ;物块A 向上做匀减速直线运动,由牛顿第二定律得:a A =G 1+f m =35mg +25mg m =10 m/s 2,A 的速度减为0时的位移:x A =v 202a A =422×10=0.8 m<2 m ,A 不能到达传送带顶端,故A 错误;A 先向上做匀减速直线运动,速度变为零后,传送带对A 的摩擦力平行于传送带向下,A 向下做加速运动,摩擦力对A 做正功,摩擦力对A 不是阻碍作用,故B 错误;物块A 先向上做匀减速直线运动,物块A 减速运动时间:t 1=v 0a A =410=0.4 s ,A 速度变为零后将沿传送带向下做匀加速直线运动,加速度:a A ′=a A =10 m/s 2,物块与传送带速度相等需要的时间:t 2=v 传送带a A ′=110=0.1 s ,A 向下运动的位移:x A ′=12v t 2=12×0.1=0.05 m ,在整个过程中,传送带的位移:x 传送带=v (t 1+t 2)=1×(0.4+0.1)=0.5 m ,物块A 上冲到与传送带速度相同的过程中,物块相对传送带运动的路程:s =x A -x A ′+x 传送带=0.8-0.05+0.5=1.25 m ,故C 正确;物块B 向上做匀减速直线运动,由牛顿第二定律得:a B =G 1+f m =35 mg +25mg m =10 m/s 2,物块B 减速到与传送带速度相等需要的时间:t B =v 0-v a B =4-110=0.3 s ,物体B 的位移:x B =v 0+v 2t B =4+12×0.3=0.75 m ,该过程传送带的位移:x =v t B =1×0.3=0.3 m ,物块B 在上冲过程中在传送带上留下的划痕长度:s =x B -x =0.75-0.3=0.45 m ,故D 正确.【答案】 CD传送带问题中往往是传送带匀速转动,传送带上面的物块做匀变速直线运动,此类问题的一般解决办法:首先选取研究对象(一般为传送带上的物块),然后对研究对象进行隔离处理,分析物块在传送带上运动时的动力学特征,最后结合运动学规律、牛顿运动定律以及功能关系等列出相应的方程进行求解.。
1.(多选)(2017·新课标全国Ⅰ·20)如图1(a),一物块在t=0时刻滑上一固定斜面,其运动的v -t图线如图(b)所示.若重力加速度及图中的v0、v1、t1均为已知量,则可求出()图1A.斜面的倾角B.物块的质量C.物块与斜面间的动摩擦因数D.物块沿斜面向上滑行的最大高度2.(2017·山东理综·14)距地面高5m的水平直轨道上A、B两点相距2m,在B点用细线悬挂一小球,离地高度为h,如图2所示.小车始终以4m/s的速度沿轨道匀速运动,经过A点时将随车携带的小球由轨道高度自由卸下,小车运动至B点时细线被轧断,最后两球同时落地.不计空气阻力,取重力加速度的大小g=10 m/s2.可求得h等于()图2A.1.25m B.2.25mC.3.75m D.4.75m3.(多选)(2017·海南单科·9)如图3所示,升降机内有一固定斜面,斜面上放一物块.开始时,升降机做匀速运动,物块相对于斜面匀速下滑.当升降机加速上升时()图3A .物块与斜面间的摩擦力减小B .物块与斜面间的正压力增大C .物块相对于斜面减速下滑D .物块相对于斜面匀速下滑4.(2017·新课标全国Ⅱ·25)下暴雨时,有时会发生山体滑坡或泥石流等地质灾害.某地有一倾角为θ=37°(sin37°=35)的山坡C ,上面有一质量为m 的石板B ,其上下表面与斜坡平行;B上有一碎石堆A (含有大量泥土),A 和B 均处于静止状态,如图4所示.假设某次暴雨中,A 浸透雨水后总质量也为m (可视为质量不变的滑块),在极短时间内,A 、B 间的动摩擦因数μ1减小为38,B 、C 间的动摩擦因数μ2减小为0.5,A 、B 开始运动,此时刻为计时起点;在第2s 末,B 的上表面突然变为光滑,μ2保持不变.已知A 开始运动时,A 离B 下边缘的距离l =27m ,C 足够长,设最大静摩擦力等于滑动摩擦力.取重力加速度大小g =10m/s 2.求:图4(1)在0~2s 时间内A 和B 加速度的大小; (2)A 在B 上总的运动时间.1.题型特点牛顿第二定律是高考中每年必考的热点内容,既会单独考查,又会与电磁学内容结合考查学生的综合处理问题的能力.近几年高考主要考查匀变速直线运动的公式、规律及运动图象的应用,题型多以选择题和计算题为主,题目新颖,与生活实际联系密切.考查直线运动和力的关系时大多综合牛顿运动定律、受力分析、运动过程分析等内容.2.应考技巧抓住“两个分析”和“一个桥梁”.“两个分析”是指受力分析和运动情景分析,“一个桥梁”是指加速度是联系运动和受力的桥梁.综合应用牛顿运动定律和运动学公式解决问题.考题一匀变速直线运动基本规律的应用1.(2017·新余二模)一质点做匀加速直线运动时,速度变化Δv时发生位移x1,紧接着速度变化同样的Δv时发生位移x2,则该质点的加速度为()A.(Δv)2(1x1+1x2) B.2(Δv)2x2-x1C.(Δv)2(1x1-1x2) D.(Δv)2x2-x12.(2017·益阳四月调研)有一辆卡车在一个沙尘暴天气中以15m/s的速度匀速行驶,司机突然看到正前方十字路口有一个小孩跌倒在地,该司机刹车的反应时间为0.6 s,刹车后卡车匀减速前进,最后停在小孩前1.5 m处,避免了一场事故的发生.已知刹车过程中卡车加速度的大小为5 m/s2,则()A.司机发现情况时,卡车与该小孩的距离为31.5mB.司机发现情况后,卡车经过3s停下C.从司机发现情况到停下来的过程中卡车的平均速度为11m/sD.若卡车的初速度为20m/s,其他条件都不变,则卡车将撞到小孩3.(2017·上饶三模)2017年12月26日,我国东部14省市ETC联网正式启动运行,ETC是电子不停车收费系统的简称.汽车分别通过ETC通道和人工收费通道的流程如图5所示.假设道路上有并行的甲、乙两辆汽车都以v1=20m/s朝收费站沿直线正常行驶,现甲车过ETC 通道,需要在某位置开始做匀减速运动,到达EF处速度正好减为v2=4 m/s,在虚线EF与收费站中心线之间以4m/s 的速度匀速行驶,通过收费站中心线后才加速行驶离开,已知甲匀减速过程的加速度大小为a 1=1 m/s 2,虚线EF 处与收费站中心线距离d =10m .乙车过人工收费通道,需要在中心线前某位置开始做匀减速运动,至中心线处恰好速度为零,经过缴费成功后再启动汽车行驶离开.已知乙车匀减速过程的加速度大小为a 2=2m/s 2.求:图5(1)甲车过ETC 通道时,从开始减速到收费站中心线过程中的位移大小; (2)乙车比甲车提前多少时间到收费站中心线.1.基本公式v =v 0+at x =v 0t +12at 2 v 2-v 20=2ax常用推论Δx=aT2v t2=v0+v t2=v vx2=v20+v222.总结:应用运动学规律解题的基本步骤第一步:根据题意确定研究对象.第二步:分析运动过程,明确物体做什么运动,构建运动情景,必要时画出运动示意图.第三步:明确题中的已知量、未知量及其关系,选用合适的运动规律.第四步:若运动包含多个阶段,要分阶段逐个分析,各段交接点处的速度是衔接各段运动的关键物理量,也是解题的突破口.第五步:选取正方向,由运动学公式列方程求解.考题二牛顿运动定律的应用4.(多选)(2017·海南单科·8)如图6,物块a、b和c的质量相同,a和b,b和c之间用完全相同的轻弹簧S1和S2相连,通过系在a上的细线悬挂于固定点O,整个系统处于静止状态.现将细线剪断.将物块a的加速度的大小记为a1,S1和S2相对于原长的伸长分别记为Δl1和Δl2,重力加速度大小为g.在剪断的瞬间()图6A.a1=3g B.a1=0C.Δl1=2Δl2D.Δl1=Δl25.(多选)(2017·银川一模)如图7甲所示,用粘性材料粘在一起的A、B两物块静止于光滑水平面上,两物块的质量分别为m A=1kg、m B=2kg,当A、B之间产生拉力且大于0.3N时,A、B将会分离.t=0时刻开始对物块A施加一水平推力F1,同时对物块B施加同一方向的拉力F2,使A、B从静止开始运动,运动过程中F1、F2方向保持不变,F1、F2的大小随时间变化的规律如图乙所示.则下列关于A、B两物块受力及运动情况的分析,正确的是()图7A.t=2.0s时刻A、B之间作用力大小为0.6NB.t=2.0s时刻A、B之间作用力为零C.t=2.5s时刻A对B的作用力方向向左D.从t=0时刻到A、B分离,它们运动的位移为5.4m6.(2017·山东临沂一中二模)如图8所示,在倾角为θ=37°的足够长固定斜面底端,一质量m =1kg的小物块以某一初速度沿斜面上滑,一段时间后返回出发点.物块上滑所用时间t1和下滑所用时间t2大小之比为t1∶t2=1∶5,取g=10m/s2,sin37°=0.6,cos37°=0.8.求:图8(1)物块由斜面底端上滑时的初速度v1与下滑到底端时v2的大小之比;(2)物块和斜面之间的动摩擦因数;(3)若给物块施加一大小为55N、方向与斜面成适当角度的力,使物块沿斜面向上加速运动,求加速度的最大值.1.研究对象的选取方法在实际解题过程中整体法和隔离法经常交替使用,一般是选用整体法求加速度,再用隔离法求物体间的相互作用力.2.受力分析的处理方法(1)合成法:若物体只受两个力作用而产生加速度时,应用力的合成法较简单,合外力的方向就是加速度方向.(2)正交分解法:当物体受到两个以上的力作用而产生加速度时,常用正交分解法解题,多数情况下把力正交分解在加速度方向和垂直加速度方向上,此时有F x=ma,F y=0,特殊情况下分解加速度比分解力更简单.3.运动情景分析法(1)程序法:对于研究对象按时间的先后经历了几个不同的运动过程的一类问题的解决方法叫程序法.运用程序法时,要注意前一个过程的结束是后一个过程的开始,两个过程的交接点的速度往往是解决问题的关键.(2)图象法:图象能形象地表达物理规律,能直观地描述物理过程,能鲜明地表示物理量之间的关系.应用图象,不仅能进行定性分析,比较判断,也适宜于定量计算、论证,而且,通过图象的启发常能找到巧妙的解题途径.考题三运动学图象问题7.(2017·湖北八校联考二模)如图9所示,为甲、乙两物体在同一直线上运动的位置坐标x 随时间t变化的图象,已知甲做匀变速直线运动,乙做匀速直线运动,则0~t2时间内下列说法正确的是()图9A.两物体在t1时刻速度大小相等B.t1时刻乙的速度大于甲的速度C.两物体平均速度大小相等D.甲的平均速度小于乙的平均速度8.(2017·安康二模)图象法可以形象直观地描述物体的运动情况.对于图10两质点运动的位移-时间图象和速度-时间图象,分析结果正确的是()图10A.由图甲可知,质点做曲线运动,且速度逐渐增大B.由图甲可知,质点在前10s内的平均速度大小为4m/sC.由图乙可知,质点在第4s内加速度的方向与物体运动的方向相反D.由图乙可知,质点在运动过程中,加速度的最大值为15m/s29.一滑块从固定的斜面底端冲上粗糙的斜面,到达某一高度后返回斜面底端.下列各图分别表示滑块在斜面上运动的速度v、加速度a、重力势能E p、机械能E随时间t变化的图象,则下列图象可能正确的是()1.x-t、v-t、a-t的关系2.图象问题的五看一看:轴;二看:线;三看:斜率;四看:面积;五看:特殊点.3.注意:x-t图象和v-t图象描述的都是直线运动,而a-t图象描述的并非一定是直线运动.考题四应用动力学方法分析传送带问题10.(多选)(2017·江苏省盐城中学高三上学期期末考试)如图11所示,以速度v逆时针匀速转动的足够长的传送带与水平面的夹角为θ,现将一个质量为m的小木块轻轻地放在传送带的上端,小木块与传送带间的动摩擦因数为μ,则下列选项中能够正确地描述小木块的速度随时间变化关系的图线是()图1111.如图12所示,有一条沿顺时针方向匀速传送的传送带,恒定速度v=4m/s,传送带与水平面的夹角θ=37°,现将质量m=1 kg的小物块轻放在其底端(小物块可视作质点),与此同时,给小物块施加沿传送带方向向上的恒力F=8 N,经过一段时间,小物块运动到了离地面高为h=2.4 m的平台上.已知物块与传送带之间的动摩擦因数μ=0.5,(g取10 m/s2,sin37°=0.6,cos37°=0.8).问:图12(1)物块从传送带底端运动到平台上所用的时间?(2)若在物块与传送带达到相同速度时,立即撤去恒力F,计算小物块还需经过多长时间离开传送带以及离开时的速度?1.水平放置运行的传送带处理水平放置的传送带问题,首先应对放在传送带上的物体进行受力分析,分清物体所受摩擦力是阻力还是动力;然后对物体进行运动状态分析,即对静态→动态→终态进行分析和判断,对其全过程作出合理分析、推导,进而采用有关物理规律求解.这类问题可分为:①运动学型;②动力学型;③图象型.2.倾斜放置运行的传送带处理这类问题,同样是先对物体进行受力分析,再判断摩擦力的方向是解题关键,正确理解题意和挖掘题中隐含条件是解决这类问题的突破口.这类问题通常分为:运动学型;动力学型;能量守恒型.考题五应用动力学方法分析“滑块—木板模型”问题12.(多选)(2017·安康二模)如图13所示,一足够长的木板静止在光滑水平面上,一物块静止在木板上,木板和物块间有摩擦.现用水平拉力向右拉木板,在物块相对木板运动过程中,撤掉拉力,此后木板和物块相对于水平面的运动情况为()图13A.物块向右运动,速度逐渐增大,直到做匀速运动B.物块先向左运动,再向右运动C.木板向右运动,速度逐渐变小,直到做匀速运动D.木板和物块的速度都逐渐变小,直到为零13.(2017·大连二模)如图14甲所示,地面上有一长为l=1m,高为h=0.8m,质量M=2kg 的木板,木板的右侧放置一个质量为m=1kg的木块(可视为质点),已知木板与木块之间的动摩擦因数为μ1=0.4,木板与地面之间的动摩擦因数为μ2=0.6,初始时两者均静止.现对木板施加一水平向右的拉力F,拉力F随时间t的变化如图乙所示,求木块落地时距离木板左侧的水平距离Δx.(取g=10m/s2)图141.抓住两个分析(1)对物体在初态时(静止释放或有初速度的释放)所受滑动摩擦力的方向分析.(2)二者达到共速时摩擦力的有无及方向的分析,其方法是:假设刚好达到最大静摩擦力求出临界的加速度a0与实际的加速度a比较.①若a>a0则发生相对滑动.②若a≤a0则能相对静止.2.解题关键:以动力学分析为切入点,弄清物体的运动过程.专题综合练1.(2017·皖南八校联考)如图15所示为甲、乙两物体运动的图象,在0~t2时间内甲一直做匀加速直线运动,乙先做匀减速到速度为零,再做匀加速直线运动,t2<2t1,关于两物体在0~t2时间内运动的位移大小关系正确的是()图15A.x甲=2x乙B.x甲>2x乙C.x甲<2x乙D.以上三种情况都有可能2.(2017·贵州八校二次联考)如图16所示,吊篮A、物体B、物体C的质量均为m,B和C 分别固定在竖直弹簧两端,弹簧的质量不计.整个系统在轻绳悬挂下处于静止状态,现将悬挂吊篮的轻绳剪断,在轻绳刚断的瞬间()图16A .物体B 的加速度大小为g B .物体C 的加速度大小为2g C .吊篮A 的加速度大小为3gD .A 、C 间的弹力大小为0.5mg3.(多选)(2017·河北衡水中学三调)如图17是汽车运送圆柱形工件的示意图.图中P 、Q 、N 是固定在车体上的压力传感器,假设圆柱形工件表面光滑,汽车静止不动时Q 传感器示数为零,P 、N 传感器示数不为零.当汽车向左匀加速启动过程中,P 传感器示数为零而Q 、N 传感器示数不为零.已知sin15°=0.26,cos15°=0.97,tan15°=0.27,g =10m/s 2.则汽车向左匀加速启动的加速度可能为( )图17A .4m/s 2B .3 m/s 2C .2m/s 2D .1 m/s 24.(多选)(2017·湖北八校联考二模)质量分别为M 和m 的物块形状大小均相同,将它们通过轻绳和光滑定滑轮连接,如图18甲所示,绳子在各处均平行于倾角为α的斜面,M 恰好能静止在斜面上,不考虑M 、m 与斜面之间的摩擦.若互换两物块位置,按图乙放置,然后释放M ,斜面仍保持静止.对图乙,下列说法正确的是( )图18A .轻绳的拉力等于MgB .轻绳的拉力等于mgC .M 运动加速度大小为(1-sin α)gD .M 运动加速度大小为M -m Mg5.(2017·沈阳四校联考)如图19所示,弹簧左端固定,右端自由伸长到O 点并系住物体m .现将弹簧压缩到A 点,然后静止释放,物体一直可以运动到B 点.如果物体受到的阻力恒定,则( )图19A.物体从A到O先加速后减速B.物体从A到O加速运动,从O到B减速运动C.物体运动到O点时所受合力为零D.物体从A到O的过程加速度逐渐减小6.(2017·福建·20)一摩托车由静止开始在平直的公路上行驶,其运动过程的v-t图象如图20所示.求:图20(1)摩托车在0~20s这段时间的加速度大小a;(2)摩托车在0~75s这段时间的平均速度大小v.7.(2017·重庆五区二模)在研究摩擦力特点的实验中,将木块放在足够长的固定的水平长木板上,如图21甲所示.用力沿水平方向拉木块,拉力从0开始逐渐增大,分别用力传感器采集拉力和木块所受到的摩擦力,并用计算机绘制出摩擦力F f随拉力F变化的图象,如图乙所示.已知木块质量为0.78kg,取g=10m/s2,sin37°=0.60,cos37°=0.80.求:(1)木块与长木板间的动摩擦因数;(2)若木块在与水平方向成θ=37°斜向右上方的恒定拉力F作用下,以a=2.0m/s2的加速度从静止开始做匀变速直线运动,如图丙所示,则拉力F的大小应为多大?(3)在(2)中力作用2s后撤去拉力F,木块还能滑行多远?图218.(2017·皖东三校5月联考)如图22所示,传送带水平部分长L=23.5m.以v=12m/s向右匀速运行.质量为m=1 kg的小物块(可视为质点),以v0=2 m/s的速度从传送带水平部分的左端滑上传送带,物块与传送带之间的动摩擦因数μ=0.4,重力加速度取g=10m/s2.图22(1)求物块通过传送带水平部分的时间;(2)若物块刚滑上传送带时传送带即以a=1m/s2的加速度制动(其他条件不变),求物块与传送带相对滑动过程中产生的热量.9.(2017·青岛质检)如图23所示,质量M=5kg的木板A在恒力F的作用下以速度v0=12m/s 向右做匀速直线运动,某时刻在其右端无初速度地放上一质量为m=1 kg的小物块B.已知木板与地面间的动摩擦因数μ1=0.6,物块与木板间的动摩擦因数μ2=0.4.(物块可看作质点,木板足够长,取g=10 m/s2)试求:图23(1)放上物块后木板发生的位移;(2)物块与木板之间产生的摩擦热.答案精析专题2 力与直线运动真题示例1.ACD [由v -t 图象可求出物块沿斜面向上滑行时的加速度大小为a =v 0t 1,根据牛顿第二定律得mg sin θ+μmg cos θ=ma ,即g sin θ+μg cos θ=v 0t 1.同理向下滑行时g sin θ-μg cos θ=v 1t 1,两式联立得sin θ=v 0+v 12gt 1,μ=v 0-v 12gt 1cos θ,可见能计算出斜面的倾斜角度θ以及动摩擦因数,选项A 、C 正确;物块滑上斜面时的初速度v 0已知,向上滑行过程为匀减速直线运动,末速度为0,那么平均速度为v 02,所以沿斜面向上滑行的最远距离为x =v 02t 1,根据斜面的倾斜角度可计算出向上滑行的最大高度为x sin θ=v 02t 1×v 0+v 12gt 1=v 0(v 0+v 1)4g ,选项D 正确;仅根据v -t图象无法求出物块的质量,选项B 错误.] 2.A [小车上的小球自A 点自由落地的时间t 1=2H g,小车从A 到B 的时间t 2=dv ;小车运动至B 点时细线轧断,小球下落的时间t 3=2hg;根据题意可得时间关系为t 1=t 2+t 3,即2H g =dv+2hg解得h =1.25m ,选项A 正确.] 3.BD [当升降机加速上升时,物块有竖直向上的加速度,则物块与斜面间的正压力增大,根据滑动摩擦力公式F f =μF N 可知物块与斜面间的摩擦力增大,故A 错误,B 正确;设斜面的倾角为θ,物块的质量为m ,当匀速运动时有mg sin θ=μmg cos θ,即sin θ=μcos θ,假设物块以加速度a 向上运动时,有F N =m (g +a )cos θ,F f =μm (g +a )cos θ,因为sin θ=μcos θ,所以m (g +a )sin θ=μm (g +a )cos θ,故物块仍做匀速下滑运动,C 错误,D 正确.] 4.(1)3m/s 2 1 m/s 2 (2)4s解析 (1)在0~2s 时间内,A 和B 的受力如图所示,其中F f1、F N1是A 与B 之间的摩擦力和正压力的大小,F f2、F N2是B 与C 之间的摩擦力和正压力的大小,方向如图所示.由滑动摩擦力公式和力的平衡条件得 F f1=μ1F N1① F N1=mg cos θ② F f2=μ2F N2③ F N2=F N1+mg cos θ④规定沿斜面向下为正.设A 和B 的加速度分别为a 1和a 2,由牛顿第二定律得 mg sin θ-F f1=ma 1⑤ mg sin θ-F f2+F f1=ma 2⑥联立①②③④⑤⑥式,并代入题给条件得 a 1=3m/s 2⑦ a 2=1m/s 2⑧(2)在t 1=2s 时,设A 和B 的速度分别为v 1和v 2,则 v 1=a 1t 1=6m/s ⑨ v 2=a 2t 1=2m/s ⑩2s 后,设A 和B 的加速度分别为a 1′和a 2′.此时A 与B 之间摩擦力为零,同理可得a 1′=6m/s 2⑪ a 2′=-2m/s 2⑫由于a 2′<0,可知B 做减速运动.设经过时间t 2,B 的速度减为零,则有v 2+a 2′t 2=0⑬ 联立⑩⑫⑬式得t 2=1s在t 1+t 2时间内,A 相对于B 运动的距离为 x =⎝⎛⎭⎫12a 1t 21+v 1t 2+12a 1′t 22- ⎝⎛⎭⎫12a 2t 21+v 2t 2+12a 2′t 22=12m <27m ⑮ 此后B 静止不动,A 继续在B 上滑动.设再经过时间t 3后A 离开B ,则有l -x =(v 1+a 1′t 2)t 3+12a 1′t 23⑯ 可得t 3=1s(另一解不合题意,舍去)⑰ 设A 在B 上总的运动时间t 总,有 t 总=t 1+t 2+t 3=4s考题一 匀变速直线运动基本规律的应用1.D [如图所示Δv =aT x 2-x 1=aT 2 解得a =(Δv )2x 2-x 1.]2.D [已知反应时间t 1=0.6s ,x 1=v 0t 1=9m 刹车时间t 2=0-15-5s =3s ,x 2=0-1522×(-5)m =22.5m所以卡车经3.6s 停下, x =9m +22.5m +1.5m =33m , v =x 1+x 2t=8.75m/s ,若v 0=20 m/s , x 2′=0-2022×(-5)m =40m>33m ,所以会撞到小孩.]3.(1)202m (2)3.4s解析 (1)甲车过ETC 通道时,减速过程的位移为:x 甲=v 21-v 222a 1可得x 甲=192 m所以总的位移:x 总=x 甲+d =202 m (2)甲车减速过程的时间t 甲1=v 1-v 2a 1=16 s 甲车匀速过程的时间t 甲2=dv 2=2.5 s乙车过人工收费通道减速过程的时间t 乙2=v 1a 2=10 s乙车过人工收费通道减速过程的位移x 2=v 212a 2=100 m乙车在甲车开始减速后匀速过程的位移x 1=x 总-x 2=102 m 乙车在甲车开始减速后匀速过程的时间t 乙1=x 1v 1=5.1 s则乙车提前甲车到中心线的时间为Δt =(t 甲1+t 甲2)-(t 乙1+t 乙2)=3.4 s.考题二 牛顿运动定律的应用4.AC [设物体的质量为m ,剪断细线的瞬间,细线的拉力消失,弹簧还没有来得及改变,所以剪断细线的瞬间a 受到重力和弹簧S 1的拉力T 1,剪断前对b 、c 和弹簧组成的整体分析可知T 1=2mg ,故a 受到的合力F =mg +T 1=mg +2mg =3mg ,故加速度a 1=Fm =3g ,A 正确,B 错误;设弹簧S 2的拉力为T 2,则T 2=mg ,根据胡克定律F =k Δx 可得Δl 1=2Δl 2,C 正确,D 错误.]5.AD [设t 时刻AB 分离,分离之前AB 物块共同运动,加速度为a ,以整体为研究对象,则有:a =F 1+F 2m A +m B =3.6+01+2m/s 2=1.2 m/s 2,分离时:F 2-F =m B a ,得:F 2=F +m B a =0.3N +2×1.2N =2.7N , 经历时间:t =43.6×2.7s =3s ,根据位移公式:x =12at 2=5.4m ,则D 正确;当t =2.0s 时,F 2=1.8N ,F 2+F ′=m B a ,得: F ′=m B a -F 2=0.6N ,A 正确,B 错误. 当t =2.5s 时,F 2=2.25N ,F 2+F ″=m B a ,得: F ″=m B a -F 2>0,C 错误.] 6.(1)5∶1 (2)0.5 (3)2.5m/s 2解析 (1)设物块上滑的最大位移为L ,根据运动学公式 上滑过程:L =v 1+02t 1下滑过程:L =0+v 22t 2整理得:v 1v 2=5∶1(2)设上滑时加速度为a 1,下滑时加速度为a 2, 根据牛顿第二定律得上滑时:mg sin θ+μmg cos θ=ma 1 下滑时:mg sin θ-μmg cos θ=ma 2 由位移时间公式得:L =12a 1t 21=12a 2t 22 联立三式代入数据得:μ=0.5(3)设F 与斜面的夹角为α,加速度为a ,由牛顿第二定律得: F cos α-mg sin θ-μ(mg cos θ-F sin α)=ma 即:F (cos α+μsin α)-mg (sin θ+μcos θ)=ma整理得:F 1+μ2(11+μ2cos α+μ1+μ2sin α) -mg (sin θ+μcos θ)=ma令tan β=1μ,则:F 1+μ2sin(α+β)-mg (sin θ+μcos θ)=masin(α+β)的最大值为1,设加速度最大值为a m , 得:F 1+μ2-mg (sin θ+μcos θ)=ma m 代入数据得:a m =2.5 m/s 2考题三 运动学图象问题7.C [根据位移图象的斜率等于速度,则在t 1时刻,甲图象的斜率大于乙图象的斜率,所以甲的速度大于乙的速度,故A 、B 错误;坐标的变化量等于位移,根据图象可知,甲、乙位移大小相等,方向相反,而时间相等,则平均速度的大小相等,故C 正确,D 错误.] 8.D [运动图象反映物体运动的规律,不是运动轨迹,无论速度—时间图象还是位移—时间图象都只能表示物体做直线运动,故A 错误;由图甲可知,质点在前10s 内的位移x =20m -0m =20m ,所以平均速度v =x t =2010m/s =2 m/s ,故B 错误;由图乙可知,质点在第4s 内加速度和速度都为负,方向相同,故C 错误;v -t 图线的斜率表示物体运动的加速度,由图乙可知,质点在运动过程中,加速度的最大值出现在2~4s 内,最大加速度大小为a =Δv Δt =151m/s 2=15 m/s 2,故D 正确.]9.B [滑块在斜面上运动过程中,由于存在摩擦力,机械能不断减小,经过同一点时下滑的速度小于上滑的速度,回到出发点时的速度比出发时的初速度小.故A 错误;设斜面的倾角为α.滑块在上滑与下滑两个过程中,所受的合力方向均沿斜面向下,加速度方向相同.设上滑与下滑两个过程加速度大小分别为a 1和a 2.根据牛顿第二定律得:mg sin α+μmg cos α=ma 1;mg sin α-μmg cos α=ma 2;则得:a 1=g sin α+μg cos α,a 2=g sin α-μg cos α.则有:a 1>a 2,故B 正确;上滑过程中:上滑的位移大小为:x 1=v 0t -12a 1t 2,重力势能为:E p =mgx 1sin α=mg sin α(v 0t-12a 1t 2),E p -t 图象为抛物线.下滑过程:重力势能为:E p =mg [H -12a 2(t -t 0)2sin α],H 为滑块所能到达的最大高度,t 0是上滑的时间,此为开口向下的抛物线方程,故C 错误;由于滑块克服摩擦力做功,其机械能不断减小,根据功能关系得:E =E 0-F f1x =E 0-F f1·(v 0t -12a 1t 2),可知0~t 1时间内E -t 图象应为抛物线.故D 错误.]考题四 应用动力学方法分析传送带问题10.CD [木块放上后一定先向下加速,由于传送带足够长,所以一定有木块速度大小等于传送带速度大小的时刻,此时若重力沿传送带向下的分力大小大于最大静摩擦力,则之后木块继续加速,但加速度变小了;而若重力沿传送带向下的分力大小小于或等于最大静摩擦力,则木块将随传送带匀速运动,故C 、D 正确,A 、B 错误.] 11.(1)43s (2)6-233s 433m/s解析 (1)对物块受力分析可知,物块先是在恒力作用下沿传送带方向向上做初速度为零的匀加速运动,摩擦力的方向沿斜面向上,直至速度达到传送带的速度,由牛顿第二定律: ma 1=F +μmg cos 37°-mg sin 37°,计算得:a 1=6 m/s 2 t 1=v a 1=23 sx 1=v 22a 1=43m物块与传送带速度相同时,物块未到顶端,物块受到的摩擦力的方向改变,对物块受力分析发现,因为F =8 N 而重力沿斜面向下的分力和最大静摩擦力之和为10 N ,故不能相对斜面向上加速.故得:a 2=0 t 2=x -x 1v =23 s得t =t 1+t 2=43s(2)若达到速度相等后撤去F ,对物块受力分析,因为mg sin 37°>μmg cos 37°,故物块减速上行,ma 3=mg sin 37°-μmg cos 37°,得a 3=2 m/s 2 物块还需t ′离开传送带,离开时的速度为v t ,则: v 2-v 2t =2a 3x 2,x 2=x -x 1 v t =433m/st ′=v -v t a 3=6-233 s考题五 应用动力学方法分析“滑块—木板模型”问题12.AC [由题知:当物块相对木板滑动了一段距离仍有相对运动时撤掉拉力,此时物块的速度小于木板的速度,两者之间存在滑动摩擦力,物块受到木板的滑动摩擦力方向向右,与其速度方向相同,向右做加速运动,而木板受到物块的滑动摩擦力方向向左,与其速度方向相反,向右做减速运动,当两者速度相等时一起向右做匀速直线运动.]13.1.68m解析 因为木块的最大加速度为a 1=μ1mgm=4 m/s 2所以前2 s 二者一起做匀加速运动,a =F -μ2(m +M )gm +M =2 m/s 22 s 末二者的速度为v =at 1=4 m/s 2 s 后木块和木板发生相对滑动 木块加速度a 1=μ1mgm=4 m/s 2木板加速度a 2=F ′-μ1mg -μ2(m +M )gM =6 m/s 2经时间t 2二者分离:v t 2+12a 2t 22-(v t 2+12a 1t 22)=l 得t 2=1 s ,此时v 块=8 m/s ,v 板=10 m/s 再经t 3=2hg=0.4 s 木块落地,在0.4 s 内 x 块=v 块t 3=3.2 m木板a 3=F ′-μ2MgM =11 m/s 2x 板=v 板t 3+12a 3t 23=4.88 m所以,木块落地时距离木板左侧的水平距离Δx =x 板-x 块=1.68 m专题综合练1.B [由于图线与时间轴围成的面积表示位移,我们现在将图象的范围分成6个部分如图,则甲的位移:x 甲=x 1+x 2+x 3+x 4+x 5 乙的位移:x 乙=x 1+x 4其中由于x 1=x 2,x 4=x 3+x 6,由图象可知: x 5>x 6,所以:x 1+x 2+x 3+x 4+x 5=2x 1+(x 4-x 6)+x 4+x 5>2(x 1+x 4) 则:x 甲>2x 乙]2.D [在轻绳刚断的瞬间,弹簧的弹力不能突变,则物体B 受力情况不变,故物体B 的加速度大小为零,A 错误;将C 和A 看成一个整体,根据牛顿第二定律得,a AC =F +2mg2m =mg +2mg2m =1.5g ,即A 、C 的加速度均为1.5g .故B 、C 错误.剪断轻绳的瞬间,A 受到重力和C 对A 的作用力,对A :F C +mg =ma ,得:F C =ma -mg =0.5mg .故D 正确.]。
专题二 力与直线运动考点1| 匀变速直线运动规律的应用 难度:中档 题型:选择题、计算题 五年1考(对应学生用书第5页)1.(2015·江苏高考T 5)如图2-1所示,某“闯关游戏”的笔直通道上每隔8 m 设有一个关卡,各关卡同步放行和关闭,放行和关闭的时间分别为5 s 和2s .关卡刚放行时,一同学立即在关卡1处以加速度2 m/s 2由静止加速到2m/s ,然后匀速向前,则最先挡住他前进的关卡是( )【:17214015】图2-1A .关卡2B .关卡3C .关卡4D .关卡5【解题关键】解此题抓住两点: (1)该同学先匀加速再匀速运动.(2)该同学在关卡开启前若已到该关卡则被关卡挡住.C [同学加速到2 m/s 时所用时间为t 1,由v 1=at 1,得t 1=v1a =1 s ,通过的位移x 1=12at 21=1 m ,然后匀速前进的位移x 2=v 1(t -t 1)=8 m ,因x 1+x 2=9 m>8m ,即这位同学已通过关卡2,距该关卡1 m ,当关卡关闭t 2=2 s 时,此同学在关卡2、3之间通过了x 3=v 1t 2=4 m 的位移,接着关卡放行t =5 s ,同学通过的位移x 4=v 1t =10 m ,此时距离关卡4为x 5=16 m -(1+4+10) m =1 m ,关卡关闭2 s ,经过t 3=x5v1=0.5 s 后关卡4最先挡住他前进.]1.解决匀变速直线运动问题的四种常用方法2.求解追及问题的技巧●考向1 匀变速直线运动基本公式的应用1.(2017·如皋期末)目前我省交警部门开展的“车让人”活动深入人心,不遵守“车让人”的驾驶员将受到罚款、扣分的严厉处罚.如图2-2所示,以8m/s 的速度匀速行驶的汽车即将通过路口,有一位老人正在过人行横道,此时汽车的车头距离停车线8m .该车减速时的加速度大小为5m/s 2.则下列说法中正确的是( )【:17214016】图2-2A .如果驾驶员立即刹车制动,则t =2 s 时,汽车车头离停车线的距离为2 mB .如果在距停车线6 m 处开始刹车制动,汽车车头能在停车线处停下C .如果驾驶员的反应时间为0.4 s ,汽车车头刚好能在停车线处停下D .如果驾驶员的反应时间为0.2 s ,汽车车头刚好能在停车线处停下D [汽车速度减为零所需的时间t 0=0-v0a =-8-5 s =1.6 s ,则2 s 内的位移等于1.6 s 内的位移,x =v02t 0=82×1.6 m =6.4 m ,此时离停车线的距离Δx =(8-6.4) m =1.6 m ,故A 错误;因为汽车速度减为零时的位移为6.4 m ,大于6 m ,可知汽车车头不能在停车线处停下,故B 错误;若驾驶员的反应时间为0.4 s ,则在反应时间内的位移x ′=v 0t =8×0.4 m =3.2 m ,到停止时的位移x =6.4 m +3.2 m =9.6 m ,大于8 m ,汽车车头不能在停车线处停下,故C 错误;若驾驶员的反应时间为0.2 s ,则在反应时间内的位移x ′=v 0t =8×0.2 m =1.6 m ,到停止时的位移x =6.4 m +1.6 m =8 m ,汽车车头刚好能在停车线处停下,故D 正确.]●考向2 匀变速直线运动推论的应用2.(2017·苏锡常二模)战机在平直跑道上由静止开始做匀加速运动,经时间t 达到起飞速度v ,则它在时间t 内的位移为( )【:17214017】A.v t B.vt 2C.2v t D.不能确定B [战机在平直跑道上由静止开始做匀加速运动,经时间t达到起飞速度v,则它在时间t内的位移为:x=v t=0+v2t=vt2,故B正确,A、C、D错误.]●考向3追及相遇问题3.(2017·普宁市模拟)1935年在苏联的一条直铁轨上,有一列火车因蒸气不足而停驶,驾驶员将货车厢甲留在现场,只拖着几节车厢向前面不远的车站开进,但他忘了将货车车厢刹好,以致货车厢在斜坡上以4m/s的速度匀速后退,此时另一列火车乙正在以16m/s的速度向该货车厢驶来,驾驶技术相当好的驾驶员波尔西列夫立即刹车,紧接着加速倒退,结果恰好接住了货车厢甲,从而避免了相撞,设列车乙刹车过程和加速倒退过程均为匀变速直线运动,且加速度大小均为2m/s2,求波尔西列夫发现货车厢甲向自己驶来而立即开始刹车时,两车相距多远?【:17214018】图2-3【解析】当两车恰好不相撞时,速度相同.取向右方向为正方向,则有对乙车:t=v甲-v乙a=错误!s=10 s在这段时间内,甲车的位移为x甲=v甲t=4×10 m=40 m乙车的位移为x乙=v0t +12at2=⎝⎛⎭⎪⎫-16×10+12×2×102m=-60 m所以,波尔西列夫发现货车厢甲向自己驶来而立即开始刹车时,两车的距离L=x甲+|x乙|=100 m.【答案】波尔西列夫发现货车厢甲向自己驶来而立即开始刹车时,两车相距100 m.考点2| 运动图象问题难度:中档题型:选择题、计算题五年2考(对应学生用书第6页)2.(2016·江苏高考T5)小球从一定高度处由静止下落,与地面碰撞后回到原高度再次下落,重复上述运动.取小球的落地点为原点建立坐标系,竖直向上为正方向.下列速度v和位置x的关系图象中,能描述该过程的是( )【:17214019】【解题关键】解此题要抓住以下两点:(1)小球与地面碰撞后回到原高度再次下落,说明小球的加速度为g.(2)位置坐标x的正方向竖直向上,原点在地面.A [由题意知在运动过程中小球机械能守恒,设机械能为E,小球离地面高度为x时速度为v,则有mgx+12m v2=E,可变形为x=-v22g+Emg,由此方程可知图线为开口向左、顶点在(Emg,0)的抛物线,故选项A正确.] 3.(2014·江苏高考T5)一汽车从静止开始做匀加速直线运动,然后刹车做匀减速直线运动,直到停止.下列速度v和位移x的关系图象中,能描述该过程的是( )【:17214020】A [根据匀变速直线运动速度与位移的关系解题.根据v2-v20=2ax及v0=0得汽车做匀加速直线运动时的速度v=2ax,做匀减速直线运动时的速度v=v20-2ax,根据数学知识知选项A正确.]1.v-t图象提供的信息2.处理力学图象问题的思路(1)明确什么性质的图象,看纵横两轴表示的物理量.(2)分析图线的意义,提取图象的关键信息.(3)将物体的运动过程与图象对应起来.(4)较复杂的图象,可通过列解析式的方法进行判断.●考向1图象的选取4.(2017·扬州模拟)某物体以一定的初速度沿足够长的斜面从底端向上滑去,此后该物体的v-t图象不可能的是( )【:17214021】ABCDC [若斜面光滑,则物体先向上做匀减速直线运动,后向下做匀加速直线运动,整个过程中,由牛顿第二定律得:mg sin α=ma,得a=g sin α,加速度一定,v-t图象的斜率一定,则A图是可能的,故A正确;若斜面粗糙,物体可能先向上做匀减速直线运动,后向下做匀加速直线运动,根据牛顿第二定律;下滑时有:mg sin α-μmg cos α=ma 得:上滑时有:mg sin α+μmg cos α=ma上;可知上滑的加速度大于下滑的加速度,根据v-t图象中图象的斜率等于加速下度,可知上滑时图象的斜率较大,则B图是可能的,C图不可能,故B正确,C错误;物体可能先向上做匀减速直线运动,后停在最高点,则D图是可能的,故D正确.]●考向2图象的转换5.(2017·南京一模)如图2-4所示,E为斜面的中点,斜面上半段光滑,下半段粗糙,一个小物体由顶端静止释放,沿斜面下滑到底端时速度为零.小物体下滑过程中位移x、速度v、合力F、加速度a与时间t的关系如图所示.以沿斜面向下为正方向,则下列图象中可能正确的是( )【:17214022】图2-4ABCDB [物体在光滑的斜面上做匀加速直线运动,位移-时间图线的开口向上,然后做匀减速直线运动,故A错误;物体在前半段做匀加速直线运动,后半段做匀减速直线运动,由于到达底端的速度为零,则前半段和后半段的平均速度相等,由位移相等,则在前半段和后半段的运动时间相等,故B正确;由B 选项知,前半段和后半段的时间相等,匀加速直线运动的末速度等于匀减速直线运动的初速度,则匀加速和匀减速直线运动的加速度大小相等,方向相反,则合力大小相等,方向相反,故C、D错误.]●考向3图象信息的应用6.(2017·徐州期中)甲、乙两物体从同一地点同时出发,其v-t图象如图2-5所示.下列说法正确的是( )【:17214023】图2-5A.两物体的加速度方向相同B.前2 s内两物体的平均速度相等C.前4 s内两物体的位移相等D.第1 s末两物体相遇B [在v-t图象中,斜率代表加速度,故甲、乙的加速度方向相反,故A错误;物体做匀变速直线运动,平均速度等于初末速度和的一半,故甲、乙的平均速度v=1+22m/s=1.5 m/s,故B正确;在v-t图象中,图线与时间轴所围面积为物体通过的位移,前4 s内,乙所围面积大于甲所围面积,故前4 s内两物体的位移不相等,故C错误;第1 s末两图线所围面积不同,故不可能相遇,故D错误.] 7.(2017·徐州模拟)某人乘电梯下楼,在竖直下降的过程中,电梯速度的平方v2与下降的位移x的关系如图2-6所示,则人对地板的压力( )【:17214024】图2-6A.x=1 m时大于人的重力B .x =11 m 时大于人的重力C .x =21 m 时大于人的重力D .x =21 m 时等于人的重力C [根据v 2=2ax 可知,图象的斜率表示加速度的2倍,则由图可知,x =1 m 时,加速度a 1=42×2=1 m/s 2;因电梯下降,故人的加速度向下,人处于失重状态,人对地板的压力小于人的重力,故A 错误;x =11 m 时,加速度为零,故人对地板的压力等于人的重力,故B 错误;x =21 m 时,加速度a 2=0-42×3 m/s 2=-23m/s 2,负号说明加速度向上,故人处于超重状态,人对地板的压力大于人的重力,故C 正确,D 错误.]考点3| 牛顿第二定律的应用 难度:较难 题型:选择题 五年5考(对应学生用书第7页)4.(多选)(2016·江苏高考T 9)如图2-7所示,一只猫在桌边猛地将桌布从鱼缸下拉出,鱼缸最终没有滑出桌面.若鱼缸、桌布、桌面两两之间的动摩擦因数均相等,则在上述过程中( )【:17214025】图2-7 A .桌布对鱼缸摩擦力的方向向左B .鱼缸在桌布上的滑动时间和在桌面上的相等C .若猫增大拉力,鱼缸受到的摩擦力将增大D .若猫减小拉力,鱼缸有可能滑出桌面【解题关键】误;由于鱼缸与桌布和桌面之间动摩擦因数相等,鱼缸在桌布上运动和在桌面上运动时加速度的大小相等,根据v =at ,鱼缸在桌布上和在桌面上的滑动时间相等,选项B 正确;鱼缸与桌布之间的摩擦力为滑动摩擦力,猫增大拉力,鱼缸所受的摩擦力不变,选项C 错误;若猫减小拉力,鱼缸可能随桌布一起运动,而滑出桌面,选项D 正确.]5.(多选)(2015·江苏高考T 6)一人乘电梯上楼,在竖直上升过程中加速度a 随时间t 变化的图线如图2-8所示,以竖直向上为a 的正方向,则人对地板的压力( )图2-8A .t =2 s 时最大B .t =2 s 时最小C .t =8.5 s 时最大D .t =8.5 s 时最小AD [人受重力mg 和支持力F N 的作用,由牛顿第二定律得F N -mg =ma .由牛顿第三定律得人对地板的压力F ′N =F N =mg +ma .当t =2 s 时a 有最大值,F ′N 最大;当t =8.5 s 时,a 有最小值,F ′N 最小,选项A 、D 正确.]6.(多选)(2014·江苏高考T 8)如图2-9所示,A、B 两物块的质量分别为2m和m ,静止叠放在水平地面上.A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为12μ.最大静摩擦力等于滑动摩擦力,重力加速度为g .现对A 施加一水平拉力F ,则( )【:17214026】图2-9 A .当F <2μmg 时,A 、B 都相对地面静止B .当F =52μmg 时,A 的加速度为13μgC .当F >3μmg 时,A 相对B 滑动D .无论F 为何值,B 的加速度不会超过12μgBCD [根据牛顿第二定律、力与运动的关系解题.当0<F ≤32μmg 时,A 、B 皆静止;当32μmg <F ≤3μmg 时,A、B 相对静止,但两者相对地面一起向右做匀加速直线运动;当F >3μmg 时,A 相对B 向右做加速运动,B 相对地面也向右加速,选项A 错误,选项C 正确.当F=52μmg 时,A 与B 共同的加速度a =F -32μmg 3m=13μg ,选项B 正确.F 较大时,取物块B 为研究对象,物块B 的加速度最大为a 2=2μmg -32μmgm =12μg ,选项D 正确.]7.(多选)(2014·江苏高考T 15)如图2-10所示,生产车间有两个相互垂直且等高的水平传送带甲和乙,甲的速度为v 0.小工件离开甲前与甲的速度相同,并平稳地传到乙上,工件与乙之间的动摩擦因数为μ.乙的宽度足够大,重力加速度为g .图2-10(1)若乙的速度为v 0,求工件在乙上侧向(垂直于乙的运动方向)滑过的距离s ;(2)若乙的速度为2v 0,求工件在乙上刚停止侧向滑动时的速度大小v ;(3)保持乙的速度2v 0不变,当工件在乙上刚停止滑动时,下一只工件恰好传到乙上,如此反复.若每个工件的质量均为m ,除工件与传送带之间摩擦外,其他能量损耗均不计,求驱动乙的电动机的平均输出功率P -.【:17214027】【解析】根据牛顿第二定律、匀变速直线运动的规律、运动的合成与分解、能量守恒定律解决问题.小工件由传送带甲传到乙上时,考虑其运动的相对性知: (1)摩擦力与侧向的夹角为45°侧向加速度大小:a x =μg cos 45°;在侧向上由匀变速直线运动规律知-2a x s =0-v 20,解得小工件侧向滑动距离s =2v202μg. (2)设t =0时刻摩擦力与侧向的夹角为θ,侧向、纵向加速度的大小分别为a x 、a y ,则ayax =tan θ,很小的Δt 时间内,侧向、纵向的速度增量Δv x =a x Δt ,Δv y =a y Δt 解得Δvy Δvx =tan θ且由题意知tan θ=vy vx则v′y v′x =vy -Δvyvx -Δvx=tan θ 所以摩擦力方向保持不变则当v ′x =0时,v ′y =0,即工件停止侧向滑动时的速度为v =2v 0. (3)工件在乙上滑动时侧向位移为x ,沿乙方向的纵向位移为y , 由题意知:a x =μg cos θ,a y =μg sin θ 由匀变速运动规律知 在侧向上:-2a x x =0-v 20 在纵向上:2a y y =(2v 0)2-0 工件滑动时间:t =2v0ay乙前进的距离:y 1=2v 0t 工件相对乙的位移:L =错误! 则系统摩擦生热:Q =μmgL电动机做功:W =12m (2v 0)2-12m v 20+Q由P -=W t ,解得电动机的平均输出功率为:P -=45μmgv05.【答案】(1)2v202μg (2)2v 0 (3)P -=45μmgv058.(2013·江苏高考T 14)如图2-11所示,将小砝码置于桌面上的薄纸板上,用水平向右的拉力将纸板迅速抽出,砝码的移动很小,几乎观察不到,这就是大家熟悉的惯性演示实验.若砝码和纸板的质量分别为m 1和m 2,各接触面间的动摩擦因数均为μ,重力加速度为g .图2-11(1)当纸板相对砝码运动时,求纸板所受摩擦力的大小;(2)要使纸板相对砝码运动,求所需拉力的大小;(3)本实验中,m 1=0.5kg ,m 2=0.1 kg ,μ=0.2,砝码与纸板左端的距离d =0.1m ,取g =10m/s 2.若砝码移动的距离超过l =0.002m ,人眼就能感知.为确保实验成功,纸板所需的拉力至少多大?【:17214028】【解析】(1)砝码对纸板的摩擦力f 1=μm 1g ,桌面对纸板的摩擦力f 2=μ(m 1+m 2)g f =f 1+f 2,解得f =μ(2m 1+m 2)g .(2)设砝码的加速度为a 1,纸板的加速度为a 2,则 f 1=m 1a 1,F -f 1-f 2=m 2a 2发生相对运动a 2>a 1,解得F >2μ(m 1+m 2)g . (3)纸板抽出前,砝码运动的距离x 1=12a 1t 21纸板运动的距离d +x 1=12a 2t 21纸板抽出后,砝码在桌面上运动的距离x 2=12a 3t 2l =x 1+x 2由题意知a 1=a 3,a 1t 1=a 3t 2解得F=2μ[m1+(1+dl)m2]g代入数据得F=22.4 N.【答案】(1)μ(2m1+m2)g(2)F>2μ(m1+m2)g(3)22.4 N1.牛顿第二定律应用的三点注意(1)瞬时问题要注意绳、杆弹力和弹簧弹力的区别,前者能突变后者不能.(2)连接体问题要充分利用“加速度相等”这一条件或题中特定条件,交替使用隔离法与整体法.(3)两类动力学基本问题的解决关键是运动分析、受力分析,充分利用加速度“桥梁”作用.2.用运动学公式和牛顿第二定律解题的步骤●考向1瞬时加速度的分析与计算8.(2017·徐州一模)如图2-12所示,用两根细线AC和BD悬挂一薄板.下列说法正确的是( )图2-12A.薄板的重心一定在AC和BD的延长线交点处B.BD的拉力大于AC的拉力C.剪断BD瞬间,薄板的加速度方向一定沿BD斜向下D.若保持AC位置不变,缓慢移动BD至竖直方向,则AC的拉力一直减小D [薄板受到重力、AC细线的拉力和BD细线的拉力三个力作用,三个力不平行,平衡时力所在的直线交于一点,所以薄板的重心一定在通过AC和BD延长线的交点的竖直线上,但不一定在AC和BD的延长线交点处,故A错误;根据水平方向受力平衡可得:T BD sin 60°=T AC sin 45°,可得T BD<T AC,故B错误;剪断BD瞬间,薄板的速度为零,向心力为零,合力等于重力垂直于AC向下的分力,所以此瞬间,板的加速度方向一定垂直于AC方向向下,而不是沿BD斜向下,故C错误;若保持AC位置不变,缓慢移动BD至竖直方向,作出三个不同位置板的受力合成图,AC的拉力T和BD拉力F的合力与重力G总等大反向,T一直减小,故D正确.]●考向2连接体问题9.(2017·徐州二模)如图2-13所示,质量为m2的物块B放置在光滑水平桌面上,其上放置质量为m1的物块A,A通过跨过光滑定滑轮的细线与质量为M的物块C连接.释放C,A和B一起以加速度a从静止开始运动,已知A、B间动摩擦因数为μ1,则细线中的拉力大小为( )图2-13A.Mg B.Mg+MaC.(m1+m2)a D.m1a+μ1m1gC [以C为研究对象,则Mg-T=Ma,解得T=Mg-Ma,故A、B错误;以A、B为整体,根据牛顿第二定律可知T=(m1+m2)a,故C正确;A、B间为静摩擦力,对B根据牛顿第二定律可知,f=m2a,对A可知T-f=m1a联立解得T=m1a+m2a,故D错误.]●考向3动力学的两类基本问题10.(2017·泰州三模)如图2-14甲所示,长木板B静置于光滑水平面上,其上放置物块A,木板B受到水平拉力F作用时,其加速度a与拉力F的关系图象如图2-14乙所示,设最大静摩擦力等于滑动摩擦力,则物块A的质量为( )甲 乙图2-14A .4 kgB .3 kgC .2 kgD .1 kgB [设A 、B 的质量分别为m 和M . 当F =4 N 时,加速度为:a =1 m/s 2,对整体分析,由牛顿第二定律有:F =(M +m )a代入数据解得:M +m =4 kg当F >4 N 时,A 、B 发生相对滑动,对B ,根据牛顿第二定律得:a =F -μmg M=1M F -μmg M知a -F 图线的斜率 k =1M=1,解得:M =1 kg ,所以A 的质量为:m =3 kg . 故B 正确,A 、C 、D 错误.]11.如图2-15所示为一滑草场某条滑道的侧面图,由高均为h、与水平面倾角分别为45°和37°的两段直滑道组成.一辆滑草车由静止开始从上滑道顶端处滑下,不计车在滑道交接处的能量损失.已知滑草车与上、下滑道草地之间的动摩擦因数均为μ,重力加速度为g ,sin 37°=0.6,cos37°=0.8,计算结果请用μ、h 和g 表示.图2-15 (1)求滑草车在下滑道上运动的加速度;(2)求滑草车在整个运动过程中最大速度的大小;(3)如果μ=67,请通过计算来判断滑草车能否到达下段滑道的最底端.【:17214029】【解析】(1)根据牛顿第二定律F合=ma得:滑草车在下滑道上有:mg sin 37°-μmg cos 37°=ma 解得:a=(0.6-0.8μ)g.(2)滑草车通过上滑道末端时速度最大由动能定理得:mgh-μmg cos 45°·hsin 45°=12m v2m解得最大速度v m=错误!.(3)根据动能定理W合=ΔE k得:对全过程:2mgh-μmg cos 45°·hsin 45°-μmg cos 37°·hsin 37°=12m v2解得:v=0说明滑草车刚好到达下段滑道的最底端.【答案】(1)滑草车在下段滑道上运动的加速度是(0.6-0.8μ)g(2)滑草车在整个运动过程中最大速度的大小是错误!(3)见解析●考向4动力学中的临界、极值问题12.(2017·南京四模)远距离运输鸡蛋时,为减少颠簸引起的破裂损失,通常将鸡蛋放置在如图2-16所示的泡沫槽内.设一只鸡蛋质量为m,蛋壳能承受最大压力是F0,已知当地的重力加速度为g,为保证汽车在水平路面行驶时鸡蛋不致于损坏,汽车的刹车加速度不能超过( )【:17214030】图2-16A.F0m-g B.g+F0mC .⎝ ⎛⎭⎪⎫F0m 2-g2D .⎝ ⎛⎭⎪⎫F0m 2+g2C [对鸡蛋进行受力分析,受到重力和泡沫槽的支持力两个力的作用,根据牛顿第二定律,有:错误!=ma 解得:a =⎝ ⎛⎭⎪⎫F0m 2-g2,选项C 正确,A 、B 、D 错误.]规范练高分| 动力学中多过程问题(对应学生用书第10页)[典题在线](2015·全国卷ⅡT 25)(20分)下暴雨时,有时会发生山体滑坡或泥石流等地质灾害.某地有一倾角为θ=37°(sin37°=35)的山坡C ,上面有一质量为m 的石板B ,其上下表面与斜坡平行;B 上有一碎石堆A (含有大量泥土),A 和B 均处于静止状态,如图2-17所示.假设某次暴雨中,A 浸透雨水后总质量也为m (可视为质量不变的滑块),在极短时间、A ,5.0为减小2μ间的动摩擦因数C 、B ,38减小为1μ间的动摩擦因数B 、A ①内,B 开始运动,此时刻为计时起点;在第2下B 离A ③开始运动时,A 保持不变.已知2μ,为光滑的上表面突然变B ②末,s 足够长.设最大静摩擦力等于滑动摩擦力.取重力加C ,m _27=l 边缘的距离速度大小g =10 m/s 2.求:图2-17(1)在④0~2_s 时间内A 和B 加速度的大小; (2)⑤A 在B 上总的运动时间. [信息解读]①摩擦因数突变,A 与B 会相对滑动,分别隔离A 、B 进行受力分析.②A与B、B与C相对运动情况发生变化,重新分别隔离A、B进行受力分析.③A与B的相对位移为27 m.④隔离法进行受力分析,由牛顿第二定律求加速度.⑤整个过程中A在B上的运动,分段受力研究A、B的运动特点.[考生抽样][阅卷点评]【解析】 (1)在0~2 s 时间内,A 和B 的受力如图所示,其中f 1、N 1是A 与B 之间的摩擦力和正压力的大小,f 2、N 2是B 与C 之间的摩擦力和正压力的大小,方向如图所示.由滑动摩擦力公式和力的平衡条件得f 1=μ1N 1①(1分)N 1=mg cos θ②(1分)f 2=μ2N 2③(1分)N 2=N ′1+mg cos θ④(1分)规定沿斜面向下为正.设A 和B 的加速度分别为a 1和a 2,由牛顿第二定律得mg sin θ-f 1=ma 1⑤(1分)mg sin θ-f 2+f ′1=ma 2⑥(1分)N 1=N ′1f 1=f ′1联立①②③④⑤⑥式,并代入题给数据得a 1=3 m/s 2⑦(1分)a 2=1 m/s 2.⑧(1分)(2)在t 1=2 s 时,设A 和B 的速度分别为v 1和v 2,则v 1=a 1t 1=6 m/s ⑨(1分)v 2=a 2t 1=2 m/s ⑩(1分)t >t 1时,设A 和B 的加速度分别为a ′1和a ′2.此时A 与B 之间的摩擦力为零,同理可得a ′1=6 m/s 2⑪(1分)a ′2=-2 m/s 2⑫(1分)B 做减速运动.设经过时间t 2,B 的速度减为零,则有v 2+a ′2t 2=0⑬(1分)联立⑩⑫⑬式得t 2=1 s ⑭(1分)在t 1+t 2时间内,A 相对于B 运动的距离为s =⎝ ⎛⎭⎪⎫12a1t21+v1t2+12a′1t 2-⎝ ⎛⎭⎪⎫12a2t21+v2t2+12a′2t 2 =12 m <27 m ⑮(2分)此后B 静止,A 继续在B 上滑动.设再经过时间t 3后A 离开B ,则有l -s =(v 1+a ′1t 2)t 3+12a ′1t 23⑯(2分) 可得t 3=1 s(另一解不合题意,舍去)⑰(1分)设A 在B 上总的运动时间为t 总,有t 总=t 1+t 2+t 3=4 s .⑱(1分)【答案】 (1)3 m/s 2 1 m/s 2 (2)4 s[评分标准]第(1)问:(1)不列②式和④式而合并成f 1=μ1mg cos θ和f 2=2μ2mg cos θ也可分别得2分.(2)若不列①②③④式,而是根据受力图直接写出mg sin θ-μ1mg cos θ=ma 1和mg sin θ-2μ2mg cos θ+μ1mg cos θ=ma 2可分别得3分.第(2)问:(1)列式时没有出现⑨⑩式而是合并在⑮式并计算正确,可得4分.(2)对2秒后A、B运动状态的分析没有利用公式,而借助其它方式(如v-t图象).只要合理正确,可参考规范解答给分.。
板块一专题突破复习第二讲力与物体的直线运动(2)(3)(4)考向一 匀变速直线运动的应用[归纳提炼]1.匀变速直线运动问题求解思路2.解答匀变速直线运动的常用技巧(1)基本公式法:v=v0+at,x=v0t+12at2,v2-v2=2ax.(2)重要推论法:v t2=v0+v t2(利用平均速度求瞬时速度);vx2=v20+v2t2;Δx=aT2(用逐差法求加速度).(3)逆向思维法:“匀减速至速度为零的过程”可逆向处理为“由静止开始做匀加速运动的过程”.(4)图象法:利用v-t图象或x-t图象求解.(5)比例法:初速度为零的匀变速直线运动规律1T末、2T末、3T末……nT末瞬时速度之比为1∶2∶3∶…∶n;1T内、2T内、3T内……nT内位移之比为12∶22∶32∶…∶n2;第1T内、第2T内、第3T内……第nT内位移之比为1∶3∶5∶…∶(2n-1);从静止开始通过连续相等位移所用时间之比为1∶(2-1)∶(3-2)∶…∶(n-n-1);从静止开始连续相等位移末速度之比为1∶2∶3∶…∶n.(2017·全国卷Ⅱ)为提高冰球运动员的加速能力,教练员在冰面上与起跑线相距s0和s1(s1<s0)处分别放置一个挡板和一面小旗,如图所示.训练时,让运动员和冰球都位于起跑线上,教练员将冰球以初速度v0击出,使冰球在冰面上沿垂直于起跑线的方向滑向挡板;冰球被击出的同时,运动员垂直于起跑线从静止出发滑向小旗.训练要求当冰球到达挡板时,运动员至少到达小旗处.假定运动员在滑行过程中做匀加速运动,冰球到达挡板时的速度为v1,重力加速度大小为g.求(1)冰球与冰面之间的动摩擦因数;(2)满足训练要求的运动员的最小加速度.[思路路线][解析](1)假设冰球与冰面之间的动摩擦因数为μ,冰球运动的加速度大小为a,冰球运动到挡板处时间为t,由于已知冰球运动的初速度和末速度及运动的位移.解法一:应用牛顿运动定律求解.根据匀变速直线运动规律可得v20-v21=2as0a =fm =μg解得μ=v 20-v 212gs 0解法二:应用动能定理求解.对于冰球依动能定理,恒定不变的摩擦力所做负功引起冰球动能减少量为μmgs 0=12m v 20-12m v 21解得 μ=v 20-v 212gs 0可看出解法二的解题步骤较为简炼.(2)求冰球运动到挡板的时间有多种思路,简析如下:解法一:最直接的想法就是利用匀变速直线运动的速度规律求解.v 1=v 0-at ,a =μg且μ=v 20-v 212gs 0,可以求得t =2s 0v 0+v 1解法二:如果利用平均速度与位移的关系会比较简便. s 0=v 0+v 12t ,t =2s 0v 0+v 1解法三:用图象方法列方程式,会更直观清晰,如下图.方程同解法二.解法四:可以使用动量定理求解. μmgt =m v 0-m v 1且μ=v 20-v 212gs 0,可以求得t =2s 0v 0+v 1.然后依题设条件,要求在冰球到达挡板的同时,运动员运动的最小距离应等于起跑线到小旗的距离s 1,则冰球运动的最小位移s 1=12a m t 2可以解得加速度的最小值为a m =s 1(v 0+v 1)22s 20.[答案] (1)v 20-v 212gs 0 (2)s 1(v 1+v 0)22s 2多物体的多过程问题的解题思路:(1)明确各个物体在各个过程中的运动特点. (2)确定各个过程中物体间已知量的关系.(3)选用合适的公式分别列出各个物体遵循的关系式并求解. [熟练强化]迁移一 以生产、生活实际为背景考查1.2017年5月9日,位于浦东陆家嘴的上海中心突然有玻璃掉落下来,玻璃砸落到东泰路后炸开.高空坠物危害极大,在这之前,也常有媒体报道高空坠物伤人的事件.某建筑工地有一根长为l 的直钢筋突然从高空坠下,垂直落地时,恰好被检查安全生产的随行记者用相机拍到钢筋坠地瞬间的照片.为了查询钢筋是从几楼坠下的,检查人员将照片还原后测得钢筋的影像长为L ,且L >l ,查得当时相机的曝光时间为t ,楼房每层高为h ,重力加速度为g .则由此可以求得( )A .钢筋坠地瞬间的速度约为Lt B .钢筋坠下的楼层为(L -l )22ght 2+1C .钢筋坠下的楼层为gt 22h+1D .钢筋在整个下落时间内的平均速度约为l2t[解析] 钢筋坠下垂直落地时的影像长度包括钢筋长度和钢筋坠地前在曝光时间t 内下落的距离,因此在时间t 内的平均速度为v =L -l t ,可认为此速度就等于钢筋坠地时的速度v ,因此A 选项错误;由v 2=2gH 、v =v ,钢筋坠下的楼层n =H h +1,解得n =(L -l )22ght 2+1,B 选项正确,C 选项错误;钢筋在整个下落时间内的平均速度约为v ′=0+v 2=L -l 2t,D 选项错误.[答案] B迁移二 以追及、相遇模型考查2.2017年8月1日,宁波市32家驾校105辆教练车正式推行“计时培训、计时收费”的新型学驾模式.不同的车型有不同的刹车性能,因此在驾校学习的过程中,除了常规的驾驶技术外,还要学习和积累一些适应不同车型的驾驶经验.现有甲、乙两辆汽车正沿同一平直公路同向匀速行驶,甲车在前,乙车在后,它们行驶的速度大小均为v=10 m/s.当两车快要到十字路口时,甲车司机看到绿灯已转换成了黄灯,于是紧急刹车(反应时间忽略不计),乙车司机为了避免与甲车相撞也紧急刹车,但乙车司机反应较慢(反应时间t0=0.5 s).甲车司机之前为了熟悉车况,驾驶车辆进行了一段空挡滑行,根据经验计算出滑行加速度大小为a0=0.5 m/s2,已知乙车紧急刹车时加速度大小为a2=5 m/s2.(1)若甲车司机看到黄灯时车头距停车线x=16 m,他在刹车过程中发现预计的停车位置离停车线还有一段距离,于是在车头离停车线x′=4 m时停止刹车让车做空挡滑行,车头恰好停在停车线前,则甲车紧急刹车时的加速度为多大?(2)在(1)的情况下,为保证两车在紧急刹车过程中不相撞,甲、乙两车在行驶过程中至少应保持多大距离?[解析](1)设甲车空挡滑行前的速度大小为v1,则v21=2a0x′①设甲车紧急刹车时的加速度为a1,则v2-v21=2a1(x-x′)②联立①②解得a1=4 m/s2.(2)甲车紧急刹车的时间t1=v-v1a1=2 s③设甲、乙两车在行驶过程中至少应保持的距离为x0,在乙车开始刹车后经过t2时间两车速度相等,所以v-a1(t2+t0)=v-a2t2④解得t 2=2 s(不符合题意)所以速度相等的时刻在甲车空挡滑行的时间内,上式应为 v 1-a 0(t 2-t 1+t 0)=v -a 2t 2⑤ 解得t 2=1.61 s甲车的位移x 甲=(x -x ′)+v 1(t 2+t 0-t 1)-12a 0(t 2+t 0-t 1)2=12.2m ⑥乙车的位移x 乙=v t 2-12a 2t 22=9.6 m ⑦x 0=x 甲-x 乙=2.6 m. [答案] (1)4 m/s 2 (2)2.6 m考向二 运动图象的应用[归纳提炼]1.图象问题常见的是x -t 和v -t 图象,在处理特殊图象的相关问题时,可以把处理常见图象的思想以及方法加以迁移,通过物理情境遵循的规律,从图象中提取有用的信息,根据相应的物理规律或物理公式解答相关问题.处理图象问题可参考如下操作流程:2.处理特殊图象的问题时,在必要时可将该图象所反映的物理过程转换为常见的x-t或v-t图象进行处理.(2017·宁夏银川一中二模)甲、乙两车在平直公路上行驶,其速度—时间图象如右图所示,则下列说法正确的是()A.8 s末,甲、乙两车相遇B.甲车在0~4 s内的位移小于乙车在4~8 s内的位移C.4 s末,甲车的加速度小于乙车的加速度D.在0~8 s内,甲车的平均速度小于乙车的平均速度[解析]由于两车的初始位置关系未知,无法判断8 s末甲、乙两车是否相遇,选项A错误;连接图中(0,0)和(8,40)两点,根据“速度—时间图象中图线与时间轴所围成的面积表示位移”及对称性可知,甲车在0~4 s内的位移(小于40 m)小于乙车在4~8 s内的位移(等于40 m),选项B正确;根据“速度—时间图象的切线斜率表示加速度”可知,4 s末,甲车的加速度大于乙车的加速度,选项C错误;由右图结合对称性可以得出,在0~8 s内,两车的位移x大小相等,由v=xt知,两车的平均速度大小相等,选项D错误.[答案] B“面积法”是图象分析中重要的方法之一,而添加辅助线判断、比较更具新意.追及相遇问题常涉及图象的应用,而近四年全国卷中都出现了图象问题,其中速度图象四年四考,足见其重要性.关于速度图象的命题主要围绕三个方面进行.(1)利用速度图象结合相关情境直接设问:解决此类问题的关键要清楚图线对应的点、线、截距(初速度或开始计时的时间)、面积(位移)、拐点(加速度方向变化)等表示的意义.(2)图象转化:已知速度图象设问加速度图象,或者反其道而行之,解决处理问题的关键是利用时间段分段作出对应的图象.(3)巧用图象:对一些变速类问题,如雨滴在空气中坠落、弹簧变化过程等,巧用速度图象辅助分析问题往往会更快捷.处理运动图象时同学们容易出现的错误有以下几点:(1)对于x-t图象,图线在纵轴上的截距表示t=0时物体的位置;对于v-t和a-t图象,图线在纵轴上的截距并不表示t=0时物体的位置.(2)在v-t图象中,两条图线的交点不表示两物体相遇,而是表示两者速度相同.(3)v-t图象中两条图线在v轴上的截距不同,不少同学误认为两物体的初始位置不同,位置是否相同应根据题中条件确定.[熟练强化]1.(多选)(2017·广西三市联考)甲、乙两质点在同一时刻、从同一地点沿同一方向做直线运动.质点甲做初速度为零,加速度大小为a1的匀加速直线运动.质点乙做初速度为v0,加速度大小为a2的匀减速直线运动至速度减为零保持静止.甲、乙两质点在运动过程中的位置(x)—速度(v)图象如图所示,虚线与对应的坐标轴垂直.则下列判断正确的是()A.在x-v图象中,图线a表示质点甲的运动B.质点乙的初速度v0=6 m/sC.质点甲的加速度大小a1=1 m/s2D.质点乙的加速度大小a2=1 m/s2[解析]由速度与位移公式v2-v20=2ax分析题中x-v图象可知,图线a表示质点甲以加速度a1做匀加速直线运动,图线b表示质点乙以加速度a2做匀减速直线运动,选项A正确;由于甲、乙两质点是同一时刻、从同一地点沿同一方向做直线运动,所以从图线b 可知当位移为零时,质点乙的初速度v0=6 m/s,选项B正确;设图线a上横坐标为8的点对应的纵坐标为x0,图线a、b交点的横坐标为v1,由运动学规律并结合x-v图象有(6 m/s)2-(2 m/s)2=2a2x0,(8 m/s)2=2a1x0,可得甲、乙两质点加速度大小关系是a1=2a2,又从x-v图象知v21=2a1·6 m,v20-v21=2a2·6 m,解得a2=1 m/s2,a1=2 m/s2,选项C错误,D正确.[答案]ABD2.(2017·江西南昌3月模拟)一辆汽车做直线运动,其v2—x图象如图所示.关于汽车的运动,下列说法错误的是() A.汽车的初速度为4 m/sB.汽车的加速度大小为0.5 m/s2C.汽车第4 s末的速度为2 m/sD.汽车前10 s内的位移为15 m[解析]由图可知初始时速度的平方为16 m2/s2,则汽车的初速度v0=4 m/s,A项正确.由题图可知v2与x的关系式为v2-42=-x,再与公式v2-v20=2ax对比可知汽车做匀减速直线运动,加速度a =-0.5 m/s2,B项正确.由v=v0+at,可得汽车第4 s末的速度为v 4=4 m/s -0.5×4 m/s =2 m/s ,C 项正确.因0-v 0a =8 s ,则知第8 s末车停止,汽车前10 s 内位移x =0-v 202a=16 m ,D 项错误,故选D. [答案] D3.如图甲所示,物体受到水平推力F 的作用,在粗糙水平面上由静止开始做直线运动.通过传感器监测到加速度a 随时间t 变化的规律如图乙所示.取开始运动的方向为正方向,则下列说法正确的是( )A .在2~6 s 内,推力F 小于阻力,物体做减速运动B .在0~7 s 内,6 s 末时物体的速度最大,大小为12 m/sC .在2~7 s 内,物体做匀变速直线运动D .在0~7 s 内,物体先沿正方向运动,后沿负方向运动[解析] 在0~6 s 内,加速度为正,物体沿正方向运动,故2~6 s 内推力F 大于阻力,物体做加速度减小的加速运动;在6~7 s 内,加速度为负,物体沿正方向做减速直线运动,故A 、D 错误.在2~7 s 内,物体的加速度一直在变化,故C 错误.a -t 图线与t 轴围成的面积表示速度变化量,0~6 s 内物体一直在加速,6 s 末加速度反向,此时速度最大,v =12×6×4 m/s =12 m/s ,故B 正确.[答案] B考向三动力学的连接体问题[归纳提炼]1.加速度相同的连接体问题(1)若求解整体的加速度,可用整体法.整个系统看作一个研究对象,分析整体受外力情况,再由牛顿第二定律求出加速度.(2)若求解系统内力,可先用整体法求出整体的加速度,再用隔离法将内力转化成外力,由牛顿第二定律求解.2.加速度不同的连接体问题若系统内各个物体的加速度不同,一般应采用隔离法.以各个物体分别作为研究对象,对每个研究对象进行受力和运动情况分析,分别应用牛顿第二定律建立方程,并注意各个物体的相互作用关系,联立求解.水平地面上有质量分别为m和4m的物块A和B,两者与地面的动摩擦因数均为μ.细绳的一端固定,另一端跨过轻质、光滑动滑轮与A 相连,动滑轮与B相连,如图所示.初始时,细绳处于水平拉直状态.若物块A在水平向右的恒力F作用下向右移动了距离s,重力加速度大小为g.求:(1)物块B受到的摩擦力;(2)物块A、B的加速度大小.[思路点拨]运动关系:由于细绳的长度不变,故A前进距离s时,A 、B 间的细绳上面部分长了12s ,下面部分短了12s ,由于细绳的固定端位置不动,故B 的位移为12s ,因此有a A =2a B . 受力关系:考虑到滑轮质量不计,设细绳中的张力为T ,动滑轮对B 的作用力T B =2T .[解析] (1)物块A 移动了距离s ,则物块B 移动的距离为s 1=12s 物块B 受到的摩擦力大小为f =4μmg(2)设物块A 、B 的加速度大小分别为a A 、a B ,细绳中的张力为T .由牛顿第二定律得F -μmg -T =ma A2T -4μmg =4ma B由A 和B 的位移关系得a A =2a B联立解得a A =F -3μmg 2ma B =F -3μmg 4m. [答案] (1)4μmg (2)F -3μmg 2m F -3μmg 4m从上面的例题可以看出,解决有相对运动的连接体问题,要找到连接体中物体间的位移关系、速度关系和加速度关系,要充分考虑两物体的受力关系.滑轮质量不计,可得作用在滑轮上的绳子的受力关系,这是解题的关键,两物体加速度的关系是突破的难点.该题常见的易错点是不从位移关系入手,直接认为两物体速度相等,或者把B 的位移错认为A 的位移的2倍,从而错误地得到a B =2a A .[熟练强化]1.(2017·湖南衡阳联考)质量不等的两木块A 、B ,用跨过一轻质定滑轮的轻绳相连,在图示情况下,木块A 、B 一起做匀速运动.若木块A 、B 的位置互相交换,则木块A 运动的加速度为(木块A 、B 与桌面间的动摩擦因数均为μ,且μ<1,重力加速度为g ,空气阻力、滑轮摩擦均不计)( )A .(1-μ)gB .(1-μ2)gC.1-μ2μg D .与木块A 、B 的质量有关[解析] A 、B 匀速运动过程,有m A g =μm B gA 、B 互相交换后,对A 、B 整体受力分析后有m B g -μm A g =(m A +m B )a解得a =(1-μ)g .故选A.[答案] A2.(多选)(2017·河北六校联考)如图所示,一轻弹簧的劲度系数为k ,其一端固定在倾角为θ的光滑斜面底端,另一端与物块A 连接,物块B 紧挨着物块A 放置,两物块A 、B 的质量均为m ,初始时均静止.现用平行于斜面向上的力F 拉动物块B ,使物块B 做加速度为a 的匀加速运动,重力加速度为g ,则( )A .拉力F 一定是恒力B .A 、B 分离时刻,弹簧形变量为mg sin θ+ma kC .整个过程中物块A 与弹簧组成的系统机械能守恒D .从开始到A 、B 分离时刻,拉力F 做的功比弹簧弹力做的功少[解析] 对A 、B 整体受力分析可知,在A 和B 分离前该整体在沿斜面方向的拉力F 、总重力、斜面的支持力和弹簧弹力作用下做匀加速运动,运动过程中弹簧弹力发生变化,而重力沿斜面方向的分力不变,故F 一定是变力,A 错误;A 、B 分离时刻,A 、B 间的作用力为0,A 的加速度仍是a ,设弹簧弹力大小为F T ,根据牛顿第二定律有F T -mg sin θ=ma ,由胡克定律有F T =kx ,解得弹簧的形变量为mg sin θ+ma k,B 正确;从开始到A 、B 分离前,弹簧弹力对A 、B 整体做正功,故A 与弹簧组成的系统机械能不守恒,C 错误;从开始到A 、B 分离时刻,拉力F 由2ma 随位移均匀增大到ma +mg sin θ,而弹簧弹力由2mg sin θ随位移均匀减小到ma +mg sin θ,所以拉力F做的功比弹簧弹力做的功少,D正确.[答案]BD对连接体中的临界极值问题可采用下列三种方法分析解决:(1)极限法:把物理问题(或过程)推向极端,从而使临界现象(或状态)暴露出来,以达到正确解决问题的目的.(2)假设法:临界问题存在多种可能,特别是非此即彼两种可能时,或变化过程中可能出现临界条件,也可能不出现临界条件时,往往用假设法解决问题.(3)数学法:将物理过程转化为数学表达式,根据数学表达式解出临界条件.考向四牛顿第二定律的综合应用[归纳提炼]应用牛顿第二定律解题的思路[熟练强化]1.(多选)(2017·江西新余二模)如图所示为运送粮袋的传送装置,已知A、B间长度为L,传送带与水平方向的夹角为θ,工作时运行速度为v,粮袋与传送带间的动摩擦因数为μ,正常工作时工人在A 点将粮袋放到运行中的传送带上,关于粮袋从A到B的运动,以下说法正确的是(已知最大静摩擦力等于滑动摩擦力,重力加速度为g)()B.粮袋开始运动的加速度为g sinθ-μg cosθ,若L足够大,则粮袋最终将以速度v做匀速运动C.若μ<tanθ,则粮袋从A到B一直做加速运动D.不论μ大小如何,粮袋从A到B一直做匀加速运动,且a>g sinθ[解析]粮袋在传送带上可能一直做匀加速运动,到达B点时的速度不大于v;也可能先匀加速运动,当速度与v相同后,粮袋做匀速运动,到达B点时速度与v相同;也可能先做加速度较大的匀加速运动,当速度与传送带相同后做加速度较小的匀加速运动,到达B 点时的速度大于v,故A正确;粮袋开始时受到沿传送带向下的滑动摩擦力,大小为μmg cosθ,根据牛顿第二定律得加速度a=g sinθ+μg cosθ,故B错误;若μ<tanθ,则粮袋重力沿传送带方向的分力大于滑动摩擦力,故加速度的方向一直向下,粮袋从A到B一直做加速运动(可能一直以g sinθ+μg cosθ的加速度加速运动,也可能先以g sinθ+μg cosθ的加速度加速运动,后以g sinθ-μg cosθ的加速度加速运动),故C正确;由上分析可知,粮袋从A到B不一定一直匀加速运动,故D错误.[答案]AC2.如图甲所示,静止在光滑水平面上的长木板B(长木板足够长)的左端放着小物块A,某时刻,B受到水平向左的外力F的作用.F 随时间t的变化规律如图乙所示,即F=kt,其中k为已知常数.若A、B之间的滑动摩擦力F f的大小等于最大静摩擦力,且A、B的质量相等,则下列图中可以定性描述物块A的运动情况的v-t图象是()[解析] 刚开始时外力F 较小,A 、B 保持相对静止,加速度大小为a =F 2m =kt 2m,可见加速度a 的大小随着时间t 逐渐增大,这个过程对应的v -t 图线的斜率逐渐增加,C 、D 错误;随着时间t 的增加,外力F 增大,当物块和木板之间的摩擦力大小达到最大静摩擦力时,物块A 与木板B 之间刚好发生相对运动,此时有F f =ma ,F-F f =ma ,解得F =2F f ,即kt =2F f ,可见t >2F f k 后物块将在大小恒定的摩擦力的作用下做匀加速直线运动,其对应的v -t 图线是倾斜的直线,A 错误、B 正确.[答案] B滑块临界问题处理方法[考点归纳]板块模型中动力学问题的解题思路[典题示例](20分)(2017·全国卷Ⅲ)如图,两个滑块A和B的质量分别为m A=1 kg和m B=5 kg,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为μ1=0.5;木板的质量为m=4 kg,与地面间的动摩擦因数为μ2=0.1.某时刻A、B两滑块开始相向滑动,初速度大小均为v0=3 m/s.A、B相遇时,A与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小g=10 m/s2.求(1)B与木板相对静止时,木板的速度;(2)A、B开始运动时,两者之间的距离.[审题指导]第一步 读题干—提信息1) }⇒ ⎭⎪⎬⎪⎫板向右运动B 向右运动⇒t 1时刻B 与板共速 错误!―→求解[满分答案] (1)滑块A 和B 在木板上滑动时,木板也在地面上滑动,设A 、B 和木板所受的摩擦力大小分别为f 1、f 2和f 3,A 和B 相对于地面的加速度大小分别为a A 和a B ,木板相对于地面的加速度大小为a 1.在物块B 与木板达到共同速度前有f 1=μ1m Ag ①(1分)f 2=μ1m Bg ②(1分)f 3=μ2(m +m A +m B )g ③(2分)由牛顿第二定律得f 1=m A a A ④f 2=m B a B ⑤f 2-f 1-f 3=ma 1⑥(2分)设在t1时刻,B与木板达到共同速度,其大小为v1.由运动学公式有v1=v0-a B t1⑦v1=a1t1⑧(2分)联立①②③④⑤⑥⑦⑧式,代入已知数据得v1=1 m/s⑨(2分)(2)在t1时间间隔内,B相对于地面移动的距离为s B=v0t1-12a B t21⑩(2分)设在B与木板达到共同速度v1后,木板的加速度大小为a2.对于B与木板组成的体系,由牛顿第二定律有f1+f3=(m B+m)a2⑪由①②④⑤式知,a A=a B;再由⑦⑧式知,B与木板达到共同速度时,A的速度大小也为v1,但运动方向与木板相反.由题意知,A和B相遇时,A与木板的速度相同,设其大小为v2.设A的速度大小从v1变到v2所用的时间为t2,则由运动学公式,对木板有v2=v1-a2t2⑫对A有v2=-v1+a A t2⑬(2分)在t2时间间隔内,B(以及木板)相对地面移动的距离为s1=v1t2-12a2t22⑭在(t1+t2)时间间隔内,A相对地面移动的距离为s A=v0(t1+t2)-12a A(t1+t2)2⑮(2分)A和B相遇时,A与木板的速度也恰好相同,因此A和B开始运动时,两者之间的距离为s0=s A+s1+s B⑯(2分)联立以上各式,并代入数据得s0=1.9 m⑰(2分)(也可用如图的速度-时间图线求解)[答案](1)1 m/s(2)1.9 m(1)慢审题,快答题,只有认真审题,透彻理解命题的意图、试题给定的物理情境、各物理量间的对应关系、物理过程所遵循的物理规律,才能快速正确答题.所谓审题要慢,就是要仔细,要审透,关键的词句理解要到位,深入挖掘试题的条件,提取解题所需要的相关信息,排除干扰因素.要做到这些,必须通读试题,特别是括号内的内容,千万不要忽视.(2)习惯画图,分段处理,对综合性强、过程较为复杂的题,要习惯画草图,采用“分段”处理,所谓的“分段”处理,就是根据问题的需要和研究对象的不同,将问题涉及的物理过程,按照时间和空间的发展顺序,合理地分解为几个彼此相对独立又相互联系的阶段,再根据各个阶段遵从的物理规律逐个建立方程,最后通过各阶段的联系综合起来解决,从而使问题化整为零、各个击破.[满分体验] (2017·河南五校联考)如下图所示,可视为质点的物体A 叠放在长木板B 上,A 、B 的质量分别为m 1=10 kg 、m 2=10 kg ,B 长为L =16 m ,开始时A 在B 的最右端;A 与B 、B 与地之间的动摩擦因数分别为μ1=0.4、μ2=0.4;现将一水平恒力F =200 N 作用在B 上,使A 、B 由静止开始运动,当A 恰好运动到B 的中点时撤去外力F ,g 取10 m/s 2.求:(1)力F 作用的时间,及此时B 前进的距离;(2)撤去外力F 后B 还能走多远?[解析] (1)力F 开始作用时,设A 、B 的加速度分别为a 1、a 2, 对A :μ1m 1g =m 1a 1,a 1=4 m/s 2对B :F -μ1m 1g -μ2(m 1+m 2)g =m 2a 2,a 2=8 m/s 2,设力F 作用的时间为t ,对应此时A 、B 的速度为v A 、v B则有12a 2t 2-12a 1t 2=12L 代入数据得,t =2 s ,v A =8 m/s ,v B =16 m/s此时B 前进的距离为x B =12a 2t 2=16 m. (2)撤去外力F 后,对A 有μ1m 1g =m 1a 3,a 3=4 m/s 2对B有μ1m1g+μ2(m1+m2)g=m2a4,a4=12 m/s2设A、B经过时间t1达到共同速度v1则有v A+a3t1=v B-a4t1解得:t1=0.5 s,v1=10 m/s此过程中B前进的距离为x1=v2B-v212a4=6.5 mA、B共速后一起匀减速的加速度为a5μ2(m1+m2)g=(m1+m2)a5,a5=4 m/s2此时B前进的距离为x2=v212a5=12.5 m撤去F后B前进的总距离为x=x1+x2=19 m. [答案](1)2 s16 m(2)19 m。
5.高考真题[真题1] (2016·高考全国卷Ⅰ)(多选)甲、乙两车在平直公路上同向行驶,其v -t 图象如图所示.已知两车在t =3 s 时并排行驶,则( )A .在t =1 s 时,甲车在乙车后B .在t =0时,甲车在乙车前7.5 mC .两车另一次并排行驶的时刻是t =2 sD .甲、乙车两次并排行驶的位置之间沿公路方向的距离为40 m解析:选BD.由题图知,甲车做初速度为0的匀加速直线运动,其加速度a 甲=10 m/s 2.乙车做初速度v 0=10 m/s 、加速度a 乙=5 m/s 2的匀加速直线运动.3 s 内甲、乙车的位移分别为:x 甲=12a 甲t 23=45 m x 乙=v 0t 3+12a 乙t 23=52.5 m由于t =3 s 时两车并排行驶,说明t =0时甲车在乙车前,Δx =x 乙-x 甲=7.5 m ,选项B 正确;t =1 s 时,甲车的位移为5 m ,乙车的位移为12.5 m ,由于甲车的初始位置超前乙车7.5 m ,则t =1 s 时两车并排行驶,选项A 、C 错误;甲、乙车两次并排行驶的位置之间沿公路方向的距离为52.5 m -12.5 m =40 m ,选项D 正确.[真题2] (2015·高考全国卷Ⅱ)(多选)在一东西向的水平直铁轨上,停放着一列已用挂钩连接好的车厢.当机车在东边拉着这列车厢以大小为a 的加速度向东行驶时,连接某两相邻车厢的挂钩P 和Q 间的拉力大小为F ;当机车在西边拉着车厢以大小为23a 的加速度向西行驶时,P 和Q 间的拉力大小仍为F .不计车厢与铁轨间的摩擦,每节车厢质量相同,则这列车厢的节数可能为( )A .8B .10C .15D .18 解析:选BC.设P 、Q 西边有n 节车厢,每节车厢的质量为m ,则F =nma ①P 、Q 东边有k 节车厢,则F =km ·23a ②联立①②得3n =2k ,由此式可知n 只能取偶数,当n =2时,k =3,总节数为N =5当n =4时,k =6,总节数为N =10当n =6时,k =9,总节数为N =15当n =8时,k =12,总节数为N =20,故选项B 、C 正确.[预测题3] 一长木板置于粗糙水平地面上,木板左端放置一小物块;在木板右方有一墙壁,木板右端与墙壁的距离为4.5 m,如图(a)所示.t=0时刻开始,小物块与木板一起以共同速度向右运动,直至t=1 s时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1 s时间内小物块的v-t图线如图(b)所示.木板的质量是小物块质量的15倍,重力加速度大小g取10 m/s2.求:(1)木板与地面间的动摩擦因数μ1及小物块与木板间的动摩擦因数μ2;(2)木板的最小长度;(3)木板右端离墙壁的最终距离.解析:(1)规定向右为正方向.木板与墙壁相碰前,小物块和木板一起向右做匀变速运动,设加速度为a1,小物块和木板的质量分别为m和M.由牛顿第二定律有-μ1(m+M)g=(m+M)a1①由题图(b)可知,木板与墙壁碰撞前瞬间的速度v1=4 m/s,由运动学公式有v1=v0+a1t1②s0=v0t1+12a1t21③式中,t1=1 s,s0=4.5 m是木板碰撞前的位移,v0是小物块和木板开始运动时的速度.联立①②③式和题给条件得μ1=0.1④在木板与墙壁碰撞后,木板以-v1的初速度向左做匀变速运动,小物块以v1的初速度向右做匀变速运动.设小物块的加速度为a2,由牛顿第二定律有-μ2mg=ma2⑤由题图(b)可得a2=v2-v1 t2-t1⑥式中,t2=2 s,v2=0,联立⑤⑥式和题给条件得μ2=0.4⑦(2)设碰撞后木板的加速度为a3,经过时间Δt,木板和小物块刚好具有共同速度v3.由牛顿第二定律及运动学公式得μ2mg+μ1(M+m)g=Ma3⑧v 3=-v 1+a 3Δt ⑨v 3=v 1+a 2Δt ⑩碰撞后至木板和小物块刚好达到共同速度的过程中,木板运动的位移为s 1=-v 1+v 32Δt ⑪小物块运动的位移为s 2=v 1+v 32Δt ⑫ 小物块相对木板的位移为Δs =s 2-s 1⑬联立⑥⑧⑨⑩⑪⑫⑬式,并代入数值得Δs =6.0 m ⑭因为运动过程中小物块没有脱离木板,所以木板的最小长度应为6.0 m.(3)在小物块和木板具有共同速度后,两者向左做匀变速运动直至停止,设加速度为a 4,此过程中小物块和木板运动的位移为s 3.由牛顿第二定律及运动学公式得μ1(m +M )g =(m +M )a 4⑮0-v 23=2a 4s 3⑯碰后木板运动的位移为s =s 1+s 3⑰联立⑥⑧⑨⑩⑪⑮⑯⑰式,并代入数值得 s =-6.5 m ⑱木板右端离墙壁的最终距离为6.5 m.答案:(1)0.1 0.4 (2)6.0 m (3)6.5 m。
专题限时集训(二) 力与直线运动(对应学生用书第119页)(建议用时:40分钟)一、选择题(本题共8小题,每小题6分.在每小题给出的四个选项中,第1~5题只有一项符合题目要求,第6~8题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分.)1.(2018·济南2月质检)甲、乙两物体从同一点出发且在同一条直线上运动,它们的位移—时间(x-t)图象如图2-18所示,由图象可以看出在0~4 s内()【导学号:17214181】图2-18A.甲、乙两物体始终同向运动B.第4 s末时,甲、乙两物体间的距离最大C.甲的平均速度等于乙的平均速度D.乙物体一直做匀加速直线运动C[x-t图象图线斜率的绝对值等于速度的大小,由题图可知在0~2 s内,甲、乙都沿正向运动,同向运动;在2~4 s内甲沿负向运动,乙仍沿正向运动,两者反向运动,选项A错误;4 s末两物体相遇,两物体间的距离不是最大,选项B错误;由题图知在0~4 s内,甲、乙的位移都是2 m,故平均速度相等,选项C正确;根据图线斜率的绝对值等于速度的大小,可知乙物体一直做匀速直线运动,选项D错误.]2.如图2-19所示,一截面为椭圆形的容器内壁光滑,其质量为M,置于光滑水平面上,内有一质量为m的小球,当容器受到一个水平向右的力F作用向右匀加速运动时,小球处于图示位置,此时小球对椭圆面的压力大小为()图2-19A .mg 2-⎝ ⎛⎭⎪⎫F M +m 2 B .m g 2+⎝ ⎛⎭⎪⎫F M +m 2 C .m g 2+⎝ ⎛⎭⎪⎫F m 2 D .(mg )2+F 2B [先以整体为研究对象,根据牛顿第二定律得:加速度为a=F M +m再对小球研究,分析受力情况,如图,由牛顿第二定律得到:N =(mg )2+(ma )2=m g 2+⎝ ⎛⎭⎪⎫F M +m 2.] 3.长途客运站的安检机中输送行李的水平传送带匀速转动,乘客把一袋面粉无初速度放在传送带上,在出安检机之前已经和传送带相对静止,结果在传送带上留下了一段白色的径迹,对此分析正确的是( )A .传送带的速度越大,径迹越长B .面粉质量越大,径迹越长C .动摩擦因数越大,径迹越长D .释放的位置距离安检机越远,径迹越长A [根据牛顿第二定律得,面粉的加速度大小a =μg ,设传送带的速度为v 0,则面粉速度达到传送带速度时经历的时间t =v 0μg ,位移x 1=v 202a =v 202μg ,在这段时间内传送带的位移x 2=v 0t =v 20μg ,则相对位移,即径迹的长度Δx =x 2-x 1=v 202μg ,与面粉的质量无关,传送带运动的速度越大,径迹越长.动摩擦因数越大,径迹越小.故A 正确,B 、C 、D 错误.]4.(2018·江苏高考T 5)如图2-20所示,一夹子夹住木块,在力F 作用下向上提升.夹子和木块的质量分别为m 、M ,夹子与木块两侧间的最大静摩擦力均为f .若木块不滑动,力F 的最大值是( )【导学号:17214182】图2-20A .2f (m +M )M B .2f (m +M )mC .2f (m +M )M-(m +M )g D .2f (m +M )m+(m +M )g A [由题意知当M 恰好不能脱离夹子时,M 受到的摩擦力最大,F 取最大值,设此时提升加速度为a ,由牛顿第二定律得,对M 有:2f -Mg =Ma ①对m 有:F -2f -mg =ma ②联立①②两式解得F =2f (M +m )M,选项A 正确.] 5.(2018·合肥二模)如图2-21所示,有一半圆,其直径水平且与另一圆的底部相切于O 点,O 点恰好是下半圆的圆心,它们处在同一竖直平面内.现有三条光滑轨道AOB 、COD 、EOF ,它们的两端分别位于上下两圆的圆周上,轨道与竖直直径的夹角关系为α>β>θ,现让一小物块先后从三条轨道顶端由静止下滑至底端,则小物块在每一条倾斜轨道上滑动时所经历的时间关系为( )图2-21A .t AB =t CD =t EFB .t AB >t CD >t EFC .t AB <t CD <t EF D .t AB =t CD <t EFB [设上部圆的直径为D ,下部半圆的半径为R ,对轨道AOB ,其长度为L 1=D cos α+R ,在其上运动的加速度a 1=g cos α,由L 1=12a 1t 2AB ,解得:t AB =2(D cos α+R )g cos α=2D g +2R g cos α.对轨道COD 、EOF ,同理可解得:t CD =2D g +2R g cos β,t EF =2D g +2R g cos θ.由轨道与竖直线的夹角关系为α>β>θ可知,t AB >t CD >t EF ,选项B 正确.]6.如图2-22所示,卡车沿水平路面向左做直线运动,车厢上平放着质量为m 的木箱,与卡车保持相对静止.车厢尾部的竖直支架上用细线悬挂有一个质量也为m 的小球,频闪相机拍下的某一张照片上发现小球偏向后方,细线与竖直方向夹角为θ,则关于这一瞬间的分析正确的是( )【导学号:17214183】图2-22A .车一定做加速运动B .木箱受到的摩擦力为mg tan θC .细线的拉力可能为mg cos θD .小球不可能受力平衡CD [若小球与车相对静止,两者的加速度相同,取小球为研究对象,受力如图,由牛顿第二定律知,小球的合力水平向左,加速度水平向左,则小球向左做加速运动,或向右做匀减速运动,也可能卡车做匀速运动,小球振动,故A 错误.若小球与车相对静止,以小球为研究对象,根据牛顿第二定律得mg tan θ=ma ,得 a =g tanθ,细线的拉力为 T =mg cos θ,再以木箱为研究对象,由牛顿第二定律得:木箱受到的摩擦力 f =ma =mg tan θ,由于车的运动情况不清楚,所以木箱受到的摩擦力可能为mg tan θ,细线的拉力可能为mgcos θ,故B错误,C正确.由于此瞬间的合力不为零,所以受力一定不平衡,故D正确.]7.应用物理知识分析生活中的常见现象,可以使物理学习更加深入有趣.有一块橡皮静止于平整的水平桌面上,现用手指沿水平方向推橡皮,橡皮将由静止开始运动,并且在离开手指后还会在桌面上滑行一段距离才停止运动.关于橡皮从静止到离开手指的运动过程,下列说法中正确的是()【导学号:17214184】A.橡皮离开手指瞬间加速度不为0B.橡皮离开手指前一直做加速运动C.水平推力越大,橡皮受到的摩擦力越大D.橡皮一定在与手指分离之前出现最大速度AD[橡皮离开手指瞬间,橡皮受摩擦力,加速度不为0,故A正确.当手指作用在橡皮上时,橡皮发生形变,所以橡皮离开手指前先静止再加速运动,故B错误.橡皮运动前,属于静摩擦力,水平推力越大,橡皮受到的摩擦力越大;运动后,属于滑动摩擦力,正压力不变,滑动摩擦力不变,故C错误.橡皮离开手指后在摩擦力作用下做减速运动,所以橡皮一定在与手指分离之前出现最大速度,故D正确.]8.(2018·海南七校联盟二联)如图2-23所示,a、b分别是A、B两物体的v-t图象,以下说法正确的是()图2-23A.A物体在5 s内一直做匀减速直线运动,B物体在5 s内一直做匀速直线运动B.在5 s内A、B两物体的位移差是35 mC.A物体在第3 s末的速度为12 m/sD .前3 s 内A 物体的位移为60 mBD [从v -t 图象可知A 物体在前1 s 内和后4 s 内加速度不同,所以A 物体在5 s 内一直做匀减速直线运动的说法是错误的,选项A 错误;在5 s 内,可由v -t 图象面积法求得A 、B 两物体的位移差Δs =102×1 m +1+52×10 m =35m ,选项B 正确;由v -t 图象可知A 物体在1 s 末速度是20 m/s ,在1~3 s 内加速度大小是a A 2=Δv Δt =104 m/s 2=2.5 m/s 2,则A 物体在第3 s 末的速度v ′=v 0-a A 2t ′=(20-2.5×2) m/s =15 m/s ,选项C 错误;前3 s 内A 物体的位移s A =s 1+v 0t ′-12a A 2t ′2=20+302×1 m +(20×2-12×2.5×22) m =60 m ,选项D 正确.]二、计算题(共2小题,32分)9.(12分)如图2-24所示,质量均为m =3 kg 的物块A 、B 紧挨着放置在粗糙的水平地面上,物块A 的左侧连接一劲度系数为k =100 N/m 的轻质弹簧,弹簧另一端固定在竖直墙壁上,开始时两物块压紧弹簧并恰好处于静止状态,现使物块B 在水平外力F 作用下向右做a =2 m/s 2的匀加速直线运动直至与A 分离,已知两物块与地面间的动摩擦因数均为0.5,最大静摩擦力等于滑动摩擦力,g =10 m/s 2,求:图2-24(1)物块A 、B 静止时,弹簧的形变量;(2)物块A 、B 分离时,所加外力F 的大小;(3)物块A 、B 由静止开始运动到分离作用的时间.【导学号:17214185】【解析】 (1)A 、B 静止时,对A 、B 整体应用平衡条件可得kx 1=2μmg 解得 x 1=0.3 m .(2)物块A 、B 分离时,对B ,根据牛顿第二定律可知:F -μmg =ma 解得F =ma +μmg =(3×2+0.5×30) N =21 N .(3)A 、B 静止时,对A 、B ,根据平衡条件可知:kx 1=2μmgA 、B 分离时,对A ,根据牛顿第二定律可知:kx 2-μmg =ma此过程中物体的位移为x 1-x 2=12at 2解得 t =0.3 s .【答案】 (1)0.3 m (2)21 N (3)0.3 s10.(20分)(2018·全国卷ⅠT 25)一长木板置于粗糙水平地面上,木板左端放置一小物块;在木板右方有一墙壁,木板右端与墙壁的距离为4.5 m ,如图2-25(a)所示.t =0时刻开始,小物块与木板一起以共同速度向右运动,直至t =1 s 时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1 s 时间内小物块的v -t 图线如图(b)所示.木板的质量是小物块质量的15倍,重力加速度大小g 取10 m/s 2.求:(a) (b)图2-25(1)木板与地面间的动摩擦因数μ1及小物块与木板间的动摩擦因数μ2;(2)木板的最小长度;(3)木板右端离墙壁的最终距离.【导学号:17214186】【解析】 (1)规定向右为正方向.木板与墙壁相碰前,小物块和木板一起向右做匀变速运动,设加速度为a 1,小物块和木板的质量分别为m 和M .由牛顿第二定律有-μ1(m +M )g =(m +M )a 1①由题图(b)可知,木板与墙壁碰撞前瞬间的速度v 1=4 m/s ,由运动学公式有v 1=v 0+a 1t 1②s 0=v 0t 1+12a 1t 21③式中,t 1=1 s ,s 0=4.5 m 是木板碰撞前的位移,v 0是小物块和木板开始运动时的速度.联立①②③式和题给条件得μ1=0.1④在木板与墙壁碰撞后,木板以-v 1的初速度向左做匀变速运动,小物块以v 1的初速度向右做匀变速运动.设小物块的加速度为a 2,由牛顿第二定律有 -μ2mg =ma 2⑤由题图(b)可得a 2=v 2-v 1t 2-t 1⑥ 式中,t 2=2 s ,v 2=0,联立⑤⑥式和题给条件得μ2=0.4.⑦(2)设碰撞后木板的加速度为a 3,经过时间 Δt ,木板和小物块刚好具有共同速度v 3.由牛顿第二定律及运动学公式得μ2mg +μ1(M +m )g =Ma 3⑧v 3=-v 1+a 3Δt ⑨v 3=v 1+a 2Δt ⑩碰撞后至木板和小物块刚好达到共同速度的过程中,木板运动的位移为s 1=-v 1+v 32Δt ⑪ 小物块运动的位移为s 2=v 1+v 32Δt ⑫小物块相对木板的位移为Δs =s 2-s 1⑬联立⑥⑧⑨⑩⑪⑫⑬式,并代入数值得Δs =6.0 m ⑭因为运动过程中小物块没有脱离木板,所以木板的最小长度应为6.0 m .(3)在小物块和木板具有共同速度后,两者向左做匀变速运动直至停止,设加速度为a 4,此过程中小物块和木板运动的位移为s 3.由牛顿第二定律及运动学公式得μ1(m +M )g =(m +M )a 4⑮0-v23=2a4s3⑯碰后木板运动的位移为s=s1+s3⑰联立⑥⑧⑨⑩⑪⑮⑯⑰式,并代入数值得s=-6.5 m⑱木板右端离墙壁的最终距离为6.5 m.【答案】(1)0.10.4(2)6.0 m(3)6.5 m。
高考研究(二) 聚焦选择题考法——力与直线运动1.[多选](2016·全国Ⅰ卷T21)甲、乙两车在平直公路上同向行驶,其v-t图象如图所示。
已知两车在t=3 s时并排行驶,则()A.在t=1 s时,甲车在乙车后B.在t=0时,甲车在乙车前7.5 mC.两车另一次并排行驶的时刻是t=2 sD.甲、乙车两次并排行驶的位置之间沿公路方向的距离为40 m解析:选BD由题图知,甲车做初速度为0的匀加速直线运动,其加速度a甲=10 m/s2。
乙车做初速度v0=10 m/s、加速度a乙=5 m/s2的匀加速直线运动。
3 s内甲、乙车的位移分别为:x甲=12a甲t32=45 m,x乙=v0t3+12a乙t32=52.5 m,由于t=3 s时两车并排行驶,说明t=0时甲车在乙车前,Δx=x乙-x甲=7.5 m,选项B正确;t=1 s时,甲车的位移为5 m,乙车的位移为12.5 m,由于甲车的初始位置超前乙车7.5 m,则t=1 s时两车并排行驶,选项A、C错误;甲、乙车两次并排行驶的位置之间沿公路方向的距离为52.5 m-12.5 m=40 m,选项D正确。
2.[多选](2016·全国Ⅰ卷T18)一质点做匀速直线运动。
现对其施加一恒力,且原来作用在质点上的力不发生改变,则()A.质点速度的方向总是与该恒力的方向相同B.质点速度的方向不可能总是与该恒力的方向垂直C.质点加速度的方向总是与该恒力的方向相同D.质点单位时间内速率的变化量总是不变解析:选BC质点原来做匀速直线运动,说明所受合外力为0,当对其施加一恒力后,恒力的方向与原来运动的速度方向关系不确定,则质点可能做直线运动,也可能做曲线运动,但加速度的方向一定与该恒力的方向相同,选项B、C正确。
3.[多选](2016·全国Ⅱ卷T19)两实心小球甲和乙由同一种材料制成,甲球质量大于乙球质量。
两球在空气中由静止下落,假设它们运动时受到的阻力与球的半径成正比,与球的速率无关。
1.[2016·浙江卷] 如图1-3所示为一种常见的身高体重测量仪.测量仪顶部向下发射波速为v 的超声波,超声波经反射后返回,被测量仪接收,测量仪记录发射和接收的时间间隔.质量为M 0的测重台置于压力传感器上,传感器输出电压与作用在其上的压力成正比.当测重台没有站人时,测量仪记录的时间间隔为t 0,输出电压为U 0,某同 站上测重台,测量仪记录的时间间隔为t ,输出电压为U ,则该同 的身高和质量分别为( )图1-3A .v (t 0-t ),M 0U 0UB.12v (t 0-t ),M 0U 0UC .v (t 0-t ),M 0U 0(U -U 0)D.12v (t 0-t ),M 0U 0(U -U 0)2.[2016·全国卷Ⅱ] 两实心小球甲和乙由同一种材料制成,甲球质量大于乙球质量.两球在空气中由静止下落,假设它们运动时受到的阻力与球的半径成正比,与球的速率无关.若它们下落相同的距离,则( )A .甲球用的时间比乙球长B .甲球末速度的大小大于乙球末速度的大小C .甲球加速度的大小小于乙球加速度的大小D .甲球克服阻力做的功大于乙球克服阻力做的功【答案】BD 【解析】 设f =kR ,则由牛顿第二定律得F 合=mg -f =ma ,而m =43πR 3·ρ,故a =g -k 43πR 2·ρ,由m 甲>m 乙、ρ甲=ρ乙可知a 甲>a 乙,故C 错误;因甲、乙位移相同,由v 2=2ax 可知,v 甲>v 乙,B 正确;由x =12at 2可知,t 甲<t 乙,A 错误;由功的定义可知,W 克服=f ·x ,又f 甲>f 乙,则W 甲克服>W 乙克服,D 正确.3. [2016·全国卷Ⅲ] 一质点做速度逐渐增大的匀加速直线运动,在时间间隔t 内位移为s ,动能变为原 的9倍.该质点的加速度为( )A.s t 2B.3s2t 2 C.4s t 2 D.8s t 24.[2016·四川卷] 避险车道是避免恶性交通事故的重要设施,由制动坡床和防撞设施等组成,如图竖直平面内,制动坡床视为与水平面夹角为θ的斜面.一辆长12 m 的载有货物的货车因刹车失灵从干道驶入制动坡床,当车速为23 m/s 时,车尾位于制动坡床的底端,货物开始在车厢内向车头滑动,当货物在车厢内滑动了4 m 时,车头距制动坡床顶端38 m ,再过一段时间,货车停止.已知货车质量是货物质量的4倍,货物与车厢间的动摩擦因数为0.4;货车在制动坡床上运动受到的坡床阻力大小为货车和货物总重的0.44倍.货物与货车分别视为小滑块和平板,取cos θ=1,sin θ=0.1,g =10 m/s 2.求:(1)货物在车厢内滑动时加速度的大小和方向; (2)制动坡床的长度.图1-【答案】(1)5 m/s2,方向沿制动坡床向下(2)98 m【解析】(1)设货物的质量为m,货物在车厢内滑动过程中,货物与车厢间的动摩擦因数μ=0.4,受摩擦力大小为f,加速度大小为a1,则f+mg sin θ=ma1f=μmg cos θ联立以上二式并代入数据得a1=5 m/s2a1的方向沿制动坡床向下.(2)设货车的质量为M,车尾位于制动坡床底端时的车速为v=23 m/s.货物在车厢内开始滑动到车头距制l=l0+s0+s2联立并代入数据得l=98 m.5.[2016·全国卷Ⅰ] 甲、乙两车在平直公路上同向行驶,其v -t图像如图1-所示.已知两车在t=3 s时并排行驶,则()图1-A.在t=1 s时,甲车在乙车后B.在t=0时,甲车在乙车前7.5 mC.两车另一次并排行驶的时刻是t=2 sD.甲、乙车两次并排行驶的位置之间沿公路方向的距离为40 m【答案】 BD 【解析】在t =3 s 时,两车并排,由图可得在1~3 s 两车发生的位移大小相等,说明在t =1 s 时,两车并排,由图像可得前1 s 乙车位移大于甲车位移,且位移差Δx =x 2-x 1=5+102×1 m =7.5 m ,在t =0时,甲车在乙车前7.5 m ,选项A 、C 错误,选项B 正确;在1~3 s 两车的平均速度v =v 1+v 22=20 m/s ,各自的位移x =v 1+v 22t =40 m ,选项D 正确. + -*6.[2016·天津卷](2)某同 利用图示装置研究小车的匀变速直线运动. ①实验中,必要的措施是________.图1-A .细线必须与长木板平行B .先接通电 再释放小车C .小车的质量远大于钩码的质量D .平衡小车与长木板间的摩擦力②他实验时将打点计时器接到频率为50 Hz 的交流电 上,得到一条纸带,打出的部分计数点如图1-所示(每相邻两个计数点间还有4个点,图中未画出).s 1=3.59 cm ,s 2=4.41 cm ,s 3=5.19 cm ,s 4=5.97 cm ,s 5=6.78 cm ,s 6=7.64 cm ,则小车的加速度a =________m/s 2(要求充分利用测量的数据),打点计时器在打B 点时小车的速度v B =________m/s.(结果均保留两位有效数字)图1-【答案】 ①AB ②0.80 0.40点时小车的速度v B =s 1+s 22T =0.40 m/s.7.[2016·江苏卷] 小球从一定高度处由静止下落,与地面碰撞后回到原高度再次下落,重复上述运动,取小球的落地点为原点建立坐标系,竖直向上为正方向,下列速度v 和位置x 的关系图像中,能描述该过程的是( )图1-【答案】A 【解析】 由于取小球的落地点为原点建立坐标系,竖直向上为正方向,位置总是大于零且最远只能到刚下落处,不会无限增加,选项C 、D 错误;小球与地面碰撞后做竖直上抛运动,此时位移的数值就代表小球的位置x ,加速度a =-g ,根据运动 公式v 2-v 20=2ax 得v 2=v 20-2gx ,这里v 0为做竖直上抛运动的初速度,是定值,故v -x 图像是抛物线,故选项B 错误,选项A 正确.8.[2016·全国卷Ⅰ] 一质点做匀速直线运动,现对其施加一恒力,且原 作用在质点上的力不发生改变,则( )A .质点速度的方向总是与该恒力的方向相同B .质点速度的方向不可能总是与该恒力的方向垂直C .质点加速度的方向总是与该恒力的方向相同D .质点单位时间内速率的变化量总是不变9. [2016·全国卷Ⅱ] 两实心小球甲和乙由同一种材料制成,甲球质量大于乙球质量.两球在空气中由静止下落,假设它们运动时受到的阻力与球的半径成正比,与球的速率无关.若它们下落相同的距离,则( )A .甲球用的时间比乙球长B .甲球末速度的大小大于乙球末速度的大小C .甲球加速度的大小小于乙球加速度的大小D .甲球克服阻力做的功大于乙球克服阻力做的功【答案】BD 【解析】 设f =kR ,则由牛顿第二定律得F 合=mg -f =ma ,而m =43πR 3·ρ,故a =g -k 43πR 2·ρ,由m 甲>m 乙、ρ甲=ρ乙可知a 甲>a 乙,故C 错误;因甲、乙位移相同,由v 2=2ax 可知,v 甲>v 乙,B 正确;由x =12at 2可知,t 甲<t 乙,A 错误;由功的定义可知,W 克服=f ·x ,又f 甲>f 乙,则W 甲克服>W 乙克服,D 正确.10.[2016·全国卷Ⅱ] 如图1-,小球套在光滑的竖直杆上,轻弹簧一端固定于O 点,另一端与小球相连.现将小球从M 点由静止释放,它在下降的过程中经过了N 点.已知在M 、N 两点处,弹簧对小球的弹力大小相等,且∠ONM <∠OMN <π2.在小球从M 点运动到N 点的过程中( )图1-A .弹力对小球先做正功后做负功B .有两个时刻小球的加速度等于重力加速度C .弹簧长度最短时,弹力对小球做功的功率为零D .小球到达N 点时的动能等于其在M 、N 两点的重力势能差11. [2016·全国卷Ⅲ] 如图1-所示,在竖直平面内有由14圆弧AB 和12圆弧BC 组成的光滑固定轨道,两者在最低点B 平滑连接.AB 弧的半径为R ,BC 弧的半径为R2.一小球在A 点正上方与A 相距R4处由静止开始自由下落,经A 点沿圆弧轨道运动.(1)求小球在B 、A 两点的动能之比;(2)通过计算判断小球能否沿轨道运动到C 点.图1-【答案】(1)5 (2)能【解析】 (1)设小球的质量为m ,小球在A 点的动能为E k A ,由机械能守恒得E k A =mg R4 ①由机械能守恒有mg R 4=12mv 2C ⑦由⑥⑦式可知,小球恰好可以沿轨道运动到C 点.12.(2017·全国卷Ⅰ,25)真空中存在电场强度大小为E 1的匀强电场,一带电油滴在该电场中竖直向上做匀速直线运动,速度大小为v 0,在油滴处于位置A 时,将电场强度的大小突然增大到某值,但保持其方向不变。
持续一段时间t 1后,又突然将电场反向,但保持其大小不变;再持续同样一段时间后,油滴运动到B 点。
重力加速度大小为g 。
(1)求油滴运动到B 点时的速度;(2)求增大后的电场强度的大小;为保证后 的电场强度比原 的大,试给出相应的t 1和v 0应满足的条件。
已知不存在电场时,油滴以初速度v 0做竖直上抛运动的最大高度恰好等于B 、A 两点间距离的两倍。
解析 (1)设油滴质量和电荷量分别为m 和q ,油滴速度方向向上为正。
油滴在电场强度大小为E 1的匀强电场中做匀速直线运动,故匀强电场方向向上。
在t =0时,电场强度突然从E 1增加至E 2时,油滴做竖直向上的匀加速运动,加速度方向向上,大小a 1满足由①②③④式得 v 2=v 0-2gt 1⑤(2)由题意,在t=0时刻前有qE1=mg⑥油滴从t=0到时刻t1的位移为s1=v0t1+12a1t21⑦油滴在从时刻t1到时刻t2=2t1的时间间隔内的位移为s2=v1t1-12a2t21⑧由题给条件有v20=2g(2h)⑨式中h是B、A两点之间的距离。
若B点在A点之上,依题意有.. // s1+s2=h⑩由①②③④⑤⑥⑦⑧⑨⑩式得E2=[2-2v0gt1+14(v0gt1)2]E1⑪为使E2>E1,应有2-2v0gt1+14(v0gt1)2>1⑫即当0<t1<(1-32)v0g⑬或t1>(1+32)v0g⑭另一解为负,不符合题意,已舍去。
答案(1)v0-2gt1(2)见解析13.(2017·全国卷Ⅲ,25)如图6,两个滑块A和B的质量分别为m A=1 kg和m B=5 kg,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为μ1=0.5;木板的质量为m=4 kg,与地面间的动摩擦因数为μ2=0.1。