高电压技术6
- 格式:ppt
- 大小:1.07 MB
- 文档页数:35
高电压技术速记版专题1-6专题一:高电压下气体、液体、固体放电原理1、绝缘的概念:将不同电位的导体分开,使之在电气上不相连接。
具有绝缘作用的材料称为电介质或绝缘材料。
2、电介质的分类:按状态分为气体、液体和固体三类。
3、极化的概念:在外电场作用下,电介质的表面出现束缚电荷的现象叫做电介质极化。
4、极化的形式:电子式极化、离子式极化、偶极子式极化;夹层式极化。
(前三种极化均是在单一电介质中发生的。
但在高压设备中,常应用多种介质绝缘,如电缆、变压器、电机等)5、电子式极化:由于电子发生相对位移而发生的极化。
特点:时间短,弹性极化,无能量损耗。
[注]:存在于一切材料中。
6、离子式极化:离子式极化发生于离子结构的电介质中。
固体无机化合物(如云母、陶瓷、玻璃等)多属于离子结构。
特点:时间短,弹性极化,无能量损耗。
[注]:存在于离子结构物质中。
7、偶极子极化:有些电介质具有固有的电矩,这种分子称为极性分子,这种电介质称为极性电介质(如胶木、橡胶、纤维素、蓖麻油、氯化联苯等)。
特点:时间较长,非弹性极化,有能量损耗。
[注]:存在于极性材料中。
8、夹层式极化特点:时间很长,非弹性极化,有能量损耗。
[注]:存在于多种材料的交界面;当绝缘受潮时,由于电导增大,极化完成时间将大大下降;对使用过的大电容设备,应将两电极短接并彻底放电,以免有吸收电荷释放出来危及人身安全。
9、为便于比较,将上述各种极化列为下表:10、介电常数:[注]:用作电容器的绝缘介质时,希望些好。
大些好。
用作其它设备的绝缘介质时,希望小11、电介质电导:电介质内部带点质点在电场作用下形成电流。
金属导体:温度升高,电阻增大,电导减小。
绝缘介质:温度升高,电阻减小,电导增大。
12、绝缘电阻:在直流电压作用下,经过一定时间,当极化过程结束后,流过介质的电流为稳定电流称为泄漏电流,与其对应的电阻称为绝缘电阻。
(1)介质绝缘电阻的大小决定了介质中泄漏电流的大小。
1.简述流注放电理论和汤逊放电理论的不同之处并比较两者自持放电的条件。
答:1.流注理论认为,电子的碰撞电离和空间光电离是形成自持放电的主要因素,而汤逊理论则没有考虑放电本身所产生的空间光电离对整个放电过程的影响。
2.流注理论特别强调空间电荷对电场的畸变作用。
3.汤逊放电理论适用于低气压短间隙的均匀电场,流注放电理论适用于高气压长间隙或者不均匀电场。
4.汤逊理论的自持放电条件是在气隙中形成连续的电子崩,而流注放电理论中自持放电的条件即形成流注的条件,他要求初始电子崩头部的空间电荷数量达到某一临界值才能使电场得到足够的加强,并造成足够的空间光电离使流注得以形成。
2.简述相对介电常数,电导率,介质损耗因数和击穿场强在工程实际应用中的意义答:介电常数:在制造电容器时为其能拥有较小体积和较大容量,会选择相对介电常数较大的电介质;而在设计绝缘结构时,为减小通过绝缘的电容电流和由极化引起的发热损耗,则不宜选择介电常数太大的电介质;在交流和冲击电压的作用下,多层串联电介质的电场分布与介电常数成反比,则可利用不同电介质的组合来改善绝缘中的电场分布使之趋于均匀,如电缆芯线中心电场强,边缘弱,应使内层绝缘的相对介电常数大于外层。
电导率:在绝缘预防性试验中通过测量绝缘电阻和泄漏电流来反映绝缘的电导特性,以判断绝缘是否受潮或存在劣化现象;对于串联的多层绝缘结构,在在直流电压下的稳态电流分布与各层介质的电导成反比,在设计时用于直流的绝缘设备要注意与电介质的电导搭配,并考虑温度对其的影响(电介质的电导随温度的升高而升高);表面电阻对绝缘电阻有所影响,了解其电导率能合理的利用表面电阻,为减小表面电流,应设法提高表面电阻,如清洁/干燥处理或涂敷憎水性涂料,而为了减小某部分电场强度时则需减小表面电阻(在高压套管的法兰附近涂敷半导体釉等)。
介质损耗因数:工程上通过测量绝缘的介质损耗因数,做出他与电压的关系曲线,当外加电压超过某一电压时,介质损耗因数急剧上升,此时极为介质产生局部放电的起始电压。
《高电压技术》课程标准一、课程说明二、课程定位本课程为“发电厂及电力系统”专业的一门职业拓展课程。
主要阐述了典型绝缘材料的电气特性、绝缘的预防性试验、雷电和防雷设备、雷电过电压的防护。
通过本课程的学习,使学生掌握常用电介质的电气性能,会做电气设备绝缘预防性试验,并能根据试验数据做出绝缘性能的初步判断;能理解过电压产生的原因,熟悉发电厂、变电站及线路的过电压保护装置的作用,能配置发电厂、变电站及线路的过电压保护装置。
三、设计思路安全用电课程根据电力企业的实际需求和从业岗位调研,与企业能工巧匠、技术主管一起,根据工作领域和岗位的任职要求,参照相关的职业资格标准,通过对从事安全工作的岗位进行分析,归纳出安全员工种岗位的工作任务,以岗位任务为培养导向,以安全员职业资格标准为培养目标。
四、课程培养目标完成本课程学习后能够获得的理论知识、专业能力、方法能力、社会能力。
1.专业能力(1)掌握高电压下气体、液体及固体绝缘介质的击穿特性;(2)掌握高电压技术试验的方法及测量结果;(3)掌握电力系统过电压产生的原因;(4)了解电力系统绝缘的配合;(5)能正确理解国际、行业及企业标准,并能根据标准要求进行高电压试验;(6)能阅读各种技术手册及规程。
(7)能结合现场实际情况,合理选择过电压防护设别,以保证电气从业人员、电网运行以及电气设备的安全性。
(8)能进行高电压电气设备的基本维护和检修2.方法能力(1)资料收集与整理能力;(2)一定的绘制与识图能力;(3)理论知识的运用能力;(4)一定抽象思维的能力;3.社会能力(1)通过课程学习,培养学生严谨求实的工作态度,爱岗敬业,对待工作和学习一丝不苟、精益求精的精神。
(2)具有较强的事业心和责任感,具有良好的心理素质和身体素质。
具有理论联系实际的良好学风,具有发现问题、分析问题和解决问题的能力,以及团结协作和互相沟通的能力。
(3)通过学习养成积极思考问题、自主学习和解决问题的习惯和能力;具备团队协作能力,吃苦耐劳、诚实守信的优秀品质。
华北电力大学高电压技术模拟试题六一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内。
每小题1分,共10分)1.由于光辐射而产生游离的形式称为( )。
A.碰撞游离B.光游离C.热游离D.表面游离2.解释电压较高、距离较长的间隙中的气体放电过程可用( )。
A.流注理论B.汤逊理论C.巴申定律D.小桥理论3.测量绝缘电阻不能有效发现的缺陷是( )。
A.绝缘整体受潮B.存在贯穿性的导电通道C.绝缘局部严重受潮D.绝缘中的局部缺陷4.随着输电线路长度的增加线路的波阻抗将( )。
A.不变B.增大C.减小D.可能增大也可能减小5.保护间隙动作后会形成截波,对变压器类设备构成威胁的是( )。
A.对地绝缘B.主绝缘C.匝间绝缘D.相间绝缘6.发电机突然甩负荷引起的过电压属于( )。
A.操作过电压B.谐振过电压C.暂时过电压D.工频过电压7.设S1、S2分别为某避雷器及其被保护设备的伏秒特性曲线,要使设备受到可靠保护必须( )。
A.S1高于S2B.S1低于S2C.S1等于S2D.S1与S2相交8.若固体电介质被击穿的时间很短、又无明显的温升,可判断是( )。
A.电化学击穿B.热击穿C.电击穿D.各类击穿都有9.表示某地区雷电活动强度的主要指标是指雷暴小时与( )。
A.耐雷水平B.雷暴日C.跳闸率D.大气压强10.不能用于测量直流高压的仪器设备是( )。
A.电容分压器B.电阻分压器C.静电电压表D.高阻微安表二、填空题(每空1分,共15分)11.气体中带电粒子消失的方式有复合、__________及受电场的作用流入电极。
12.用测量绝缘电阻判断电介质绝缘的好坏时,绝缘电阻值越大说明绝缘__________。
13.用西林电桥测量tanδ时,常用的接线方式中__________接线适用于被试品接地的情况。
14.变压器绕组中电压起始分布的最大电位梯度出现在绕组的__________。
第一章作业■ 解释下列术语(1)气体屮的自持放电;(2)电负性气体;(3)放电时延;(4) 50%冲击放电电压;(5)爬电比距。
答:(1)气体中的自持放电:当外加电场足够强时,即使除左•外界电离因子,气体中的放电仍然能够维持的现象;(2)电负性气体:电子与某些气体分子碰撞时易于产生负离子,这样的气体分子组成的气体称为电负性气体;(3)放电时延:能引起电了崩并最终导致间隙击穿的电了称为有效电子,从电压上升到静态击穿电压开始到出现第一个有效电子所需的时间称为统计时延,出现有效电子到间隙击穿所需的时间称为放电形成时延,二者之和称为放电时延;(4)50%冲击放电电压:使间隙击穿概率为50%的冲击电压,也称为50%冲击击穿电压;(5)爬电比距:爬电距离指两电极间的沿而最短距离,其与所加电压的比值称为爬电比距,表示外绝缘的绝缘水平,单位cm/kV°J■1-2汤逊理论与流注理论对气体放电过程和口持放电条件的观点有何不同?这两种理论各适用于何种场合?答:汤逊理论认为电了碰撞电离是气体放电的主要原因,二次电子来源于正离了撞击阴极使阴极表面逸出电子,逸岀电了是维持气休放电的必雯条件。
所逸出的电子能否接替起始电子的作川是自持放电的判据。
流汴理论认为形成流注的必要条件是电了崩发展到足够的程度后,电子崩中的空间电荷足以使原电场明显畸,流注理论认为二次电子的主要来源是空间的光电离。
汤逊理论的适川范围是短间隙、低气压气隙的放电;流注理论适用于高气压、长间隙电场气隙放电。
在一极间距离为1cm的均匀电场电场气隙屮,电子碰撞电离系数a =11cm-1o 今有一初始电子从阴极表而出发,求到达阳极的电子崩中的电子数冃。
解:到达阳极的电子崩屮的电子数忖为n(l— e(xd =e}M =59874答:到达阳极的电子崩屮的电子数冃为59874个。
1・5近似估算标准大气条件卜•半径分别为1cm和1mm的光滑导线的电晕起始场强。
解:对半径为1cm的导线(03、£ =30/7^ l + -y= =30xlxlx I 后丿对半径为1mm的导线( 03 'E =30xlxlx 1+• ‘ •=5&5(kV/cm)答:半径1cm导线起晕场强为39kV/cm,半径1mm Y线起晕场强为58.5kV/cm1-10简述绝缘污闪的发展机理和防止对策。
高电压技术高电压技术是电力系统中的重要领域,涉及到电力输配、电力设备、电力安全等方面。
本文将介绍高电压技术的基本概念、应用领域以及未来的发展趋势。
一、高电压技术的基本概念高电压技术是指在电力系统中,对电压进行控制、检测和保护的一门技术。
电压是电力系统中的重要参数之一,它决定了电力传输的范围和效率。
高电压技术主要是针对高压电力设备和高压输电线路的设计、运行和维护,旨在确保电力系统的安全稳定运行。
在电力系统中,一般将电压分为低压、中压和高压三个级别。
低压一般指1000伏以下的电压,主要用于民用电力供应和室内设备。
中压一般指1000伏到11000伏之间的电压,主要用于城市电网和工业电力供应。
而高压则指11000伏及以上的电压,主要用于长距离输电和电力设备供电。
高电压技术主要涉及到高压输电、绝缘技术、电力设备的耐压试验等方面。
二、高电压技术的应用领域高电压技术在电力系统中有着广泛的应用领域。
首先是高压输电,高电压技术能够确保远距离电力输送的稳定性和有效性。
通过提高电压等级,可以减小线路上的传输损失,降低电力损耗。
其次是电力设备供电,高电压技术可以保证电力设备正常运行,提高设备的效率和可靠性。
另外,高电压技术还用于电磁场辐射的控制、输电线路的绝缘和保护等。
在工业领域中,高电压技术主要应用于电力设备的制造和维护。
例如,变压器、继电器、断路器等电力设备都离不开高电压技术的支持。
高电压技术能够提供安全可靠的电力供应,确保电力设备的正常运行。
此外,高电压测试也是电力设备质量检验的必要环节,通过对设备的耐压试验,可以评估设备的性能和可靠性。
三、高电压技术的发展趋势随着科技的不断进步和电力需求的增长,高电压技术也在不断发展和创新。
未来,高电压技术的发展趋势主要体现在以下几个方面:1. 高压直流输电技术的应用。
高压直流输电技术可以将电力损耗降到最低,提高电力传输的效率。
未来,随着电力需求的增长和跨区域输电的需要,高压直流输电技术将得到更广泛的应用。
对高电压技术的认识和理解
高电压技术是一门涉及物理学、材料学、电气工程等多个领域的学科,主要研究如何提高电压、减小电流、降低损耗,以及保证电力系统的安全和稳定运行。
最初,高电压技术主要用于解决高压输电中的绝缘问题,但随着科技的不断进步,高电压技术已经发展出多个应用领域,如过电压、脉冲功率技术、电磁兼容、静电技术、放电、脉冲电场的应用等。
在电力传输中,高电压远距离输电是一种常用的方式。
由于能源基地通常远离用电负荷中心,为了实现电能的传输和分配,需要搭设输电和配电线路,织成全国电力网。
这种情况下,高电压技术可以有效地减小线损和发热,提高输电容量,同时保证用户侧的电压在合理的运行范围之内。
高电压技术在未来仍然具有广阔的发展前景。
随着能源结构的不断变化,清洁能源的占比将不断增加,而清洁能源的发电电压普遍较低,需要高电压技术来进行输送和匹配。
此外,随着人工智能、物联网等技术的不断发展,高电压技术在电力系统的智能化管理、故障诊断和预测等方面的应用也将得到进一步提升。
1 - 7 气体介质在冲击电压下的击穿有何特点?其冲击电气强度通常用哪些方式来表示?在持续作用电压下,每个气隙的击穿电压均为一确定的数值,通常都以这一击穿电压来表征该气隙的击穿电压或电气强度。
但气隙在冲击电压作用下的击穿就复杂多了,冲击电压下的气隙击穿电压不是一个确定的数值,亦即在冲击电压作用下,气隙的击穿电压不确定,在同一冲击电压下,气隙有可能击穿也有可能不被击穿。
表示方法:50%冲击击穿电压:即采用击穿百分比为50%时的电压来表征气隙的冲击击穿特性;伏秒特性:表示该气隙的冲击击穿电压与放电时间的关系。
1 - 8 试述50%冲击击穿电压和50%伏秒特性两个术语中的“50%”所指的意义有何不同?这两个术语之间有无关系?50%冲击击穿电压是指对气隙施加10次电压有4~6次击穿,即击穿概率为50%50%伏秒特性是指以放电时间为横坐标,纵坐标为电压形成的曲线图,50%概率放电时间的含义是在伏秒特性曲线的上下包络线间选择某一时间数值,使在每个电压下的多次击穿中放电时间小于该数值的恰占一半。
两个术语应用于不同的场合:U50%是不考虑放电时延情况下表征间隙冲击击穿特性,而50%伏秒特性是考虑时延情况下的表征。
U,它1 - 9 设某一“球一球”气隙和某一“棒一板”气隙的静态击穿电压均为s们的伏秒特性分别如习图-2中的曲线a与b所示。
试回答:(1)它们的伏秒特性有何差别?为什么有这样的差别?(2)图中“棒一板”气隙的伏秒特性处于“球一球”气隙之上,这是否说明“棒一板”气隙的绝缘强度优于“球一球”气隙?为什么?)kV (b U)μs (t b )习图-2 题1-9图它们的伏秒特性的差别是:球-球“气隙的伏秒特性较平坦,而“棒-板”气隙的伏秒特性较陡。
这是因为“球-球”气隙的电场分布为稍不均匀电场,平均击穿场强较高,放电发展较快,放电时延较短;而“棒-板”气隙的电场分布为极不均匀电场,平均击穿场强较低,放电形成时延受电压影响大,放电时延较长且分散性也大,所以其伏秒特性曲线在放点时间还相当大时,便随时间减少而明显上翘,比较陡。
1. 气体中带点质点的产生,激发与游离2. 游。
离的方式有:碰撞游离、光游离、热游离和表面游离。
3. 由碰撞银翼的游离称为碰撞游离。
气体在热状态下引起的游离过程称为热游离。
电子从金属电极表面逸出来的过程称为表面游离4。
. 导致带点质点从游离区域消失或者削弱的过程称为去游离。
去游离的方式:带点质点的扩散,带点质点的复合以及电子的附着效应5。
. 汤逊放电理论认为放电起始于有效电子通过碰撞形成电子崩,通过正离子撞击阴极,不断从阴极金属表面溢出自由电子来弥补引起电子碰撞游离所需的有效电子。
适用于低气压、短间隙均匀电场中的气体放电过程和现象6。
. 气体间隙的击穿电压 UF 是气体压力 P 和间隙距离S 乘积的函数 ,这一规律称为巴申定律7. 流注理论认为放电起始于有效电子通过碰撞形成电子崩,形成电子崩后,由于正负空间电荷对电场的畸变作用导致正负空间电荷的复合,复合过程中所释放的光能又引起光游离,光游离结果所得到的自由电子又引起新的碰撞游离,形成新的电子崩且汇合到最初电子崩中构成流注通道。
适用于大气压下,非短间隙均匀电场中的气体放电过程和现. 电子崩一个电子在电场作用下由阴极向阳极运动时,将与气体原子(或分子)碰撞,如果电场很强、电子的能量足够大时 ,会发生碰撞电离,使原子分解为正离子和电子 ,此时空间出现两个电子。
这两个电子又分别与两个原子发生碰撞电离,出 4 个自由子。
如此进行下去 ,空间中的自由电子将迅速增加类似于电子雪崩,故名,电子崩9。
. 非自持放电:当外加电压较低时,只有由外界电离因素所造成的带电粒子在电场中运动而形成气体放电电流,一旦外界电离作用停止,气体放电现象即随之中断,这种放电称为非自持放1电0. U50%就是在该冲击电压作用下,放电的概率为50%。
其可用来反应绝缘耐受冲击电压的能力11. 。
同一波形。
不同幅值的冲击电压作用下,间隙上出现的电压最大值和放电时间的关系曲线称为间隙的伏秒特性曲线。