§3 相似矩阵
- 格式:ppt
- 大小:3.63 MB
- 文档页数:22
03第三节相似矩阵第三节相似矩阵分布图⽰★相似矩阵与相似变换的概念★例1 ★相似矩阵的性质★例2 ★相似矩阵的特征值与特征向量★矩阵与对⾓矩阵相似的条件★例3★例4★矩阵可对⾓化的条件★矩阵对⾓化的步骤★例5★例6★利⽤矩阵对⾓化计算矩阵多项式★矩阵对⾓化在微分⽅程组中的应⽤★例7 ★约当形矩阵的概念★例8 ★例9★例10★内容⼩结★课堂练习★习题4-3内容要点⼀、相似矩阵的概念定义1 设B A ,都是n 阶矩阵, 若存在可逆矩阵P ,使BAP P=-1,则称B 是A 的相似矩阵, 并称矩阵A 与B 相似.记为B A ~.对A 进⾏运算AP P 1-称为对A 进⾏相似变换, 称可逆矩阵P 为相似变换矩阵. 矩阵的相似关系是⼀种等价关系,满⾜:(1) 反⾝性: 对任意n 阶矩阵A ,有A A 与相似; (2) 对称性: 若B A 与相似, 则B 与A 相似;(3) 传递性: 若A 与B 相似, 则B 与C 相似, 则A 与C 相似. 两个常⽤运算表达式: (1) ))((111BP P AP P ABP P ---=;(2) BP lP AP kP P lB kA P 111)(---+=+, 其中l k ,为任意实数.⼆、相似矩阵的性质定理1 若n 阶矩阵A 与B 相似,则A 与B 的特征多项式相同,从⽽A 与B 的特征值亦相同.相似矩阵的其它性质: (1) 相似矩阵的秩相等;(2) 相似矩阵的⾏列式相等;(3) 相似矩阵具有相同的可逆性, 当它们可逆时,则它们的逆矩阵也相似.三、矩阵与对⾓矩阵相似的条件定理2=Λn λλλ21相似的充分必要条件为矩阵A 有n 个线性⽆关的特征向量.注: 定理的证明过程实际上已经给出了把⽅阵对⾓化的⽅法.推论1 若n 阶矩阵A 有n 个相异的特征值n λλλ,,,21 ,则A 与对⾓矩阵=Λn λλλ21 相似.对于n 阶⽅阵A ,若存在可逆矩阵P , 使Λ=-AP P 1为对⾓阵, 则称⽅阵A 可对⾓化. 定理3 n 阶矩阵A 可对⾓化的充要条件是对应于A 的每个特征值的线性⽆关的特征向量的个数恰好等于该特征值的重数. 即设i λ是矩阵A 的i n 重特征值, 则A 与Λ相似),,2,1()(n i n n E A r i i =-=-?λ。
相似矩阵的性质及应用毕业论文一.相似矩阵的定义定义:设A 、B 为数域P 上两个n 级矩阵,如果可以找到数域P 上的n 级可逆矩阵X ,使得B=1-X AX ,就说A 相似于B ,记做B A ~.二.相似矩阵的重要性质性质1 数域P 上的n 阶方阵的相似关系是一个等价关系.证明:1〉(反身性) 由于单位矩阵E 是可逆矩阵,且A=1-E AE ,故任何方阵A 与A 相似.2〉(对称性) 设A 与B 相似,即存在数域P 上的可逆方阵C ,使得B=1-C AC ,由此可得A=CB 1-C =11)(--C B 1-C ,显然可逆,所以B 与A 相似.3〉(传递性)设A 与B 相似,B 与C 相似,即存在数域P 上的n 阶可逆方阵P 、Q ,使B=1-P AP ,C=1-Q BQ ,则 C=BQ=1-Q 1-P APQ=1)(-PQ A (PQ ),从而A 与C 相似.〈证毕〉 性质2 相似矩阵有相同的行列式.证明:设A 与B 相似,即存在数域P 上的可逆矩阵C ,使得B=1-C AC ,两边取行列式得:|B |=|1-C AC |=|1-C ||A ||C |=|A ||1-C C |=|A |.从而相似矩阵有相同的行列式. 〈证毕〉 下面先介绍两个引理引理1:设A 是数域P 上的n ×m 矩阵,B 是数域P 上m ×s 矩阵,于是秩(AB )≤min[秩(A ),秩(B )] (1)即乘积的秩不超过各因子的秩.证明:为了证明(1),只需要证明秩(AB )≤秩(A ),同时,秩(AB )≤秩(B ).现在来分别证明这两个不等式.设A=⎪⎪⎪⎪⎪⎭⎫⎝⎛nm n n m m a a a a a a a a a 212222111211,B=⎪⎪⎪⎪⎪⎭⎫⎝⎛ms m m s s b b b b b b b b b212222111211令1B ,2B ,…,m B 表示B 的行向量,1C ,2C ,…n C ,表示AB 行向量.由计算可知,i C 的第j 个分量和m im i i B a B a B a +++ 2211的第j 个分量都等于kj mk ikb a∑=1,因而i C =m im i i B a B a B a +++ 2111 (i=1,2,…n ).即矩阵AB 的行向量组n C C C ,,,21 可经B 的行向量组线性表出.所以AB 的秩不能超过B 的秩,也即, 秩(AB )≤秩(B ).同样,令m A A A ,,21 表示A 的列向量,s D D D ,,21表示AB 的列向量,由计算可知i D =11A b i +22A b i +…+m mi A b (i=1,2,…,s ).这个式子表明,矩阵AB 的列向量可以经矩阵A 的列向量组表出,前者的秩不可能超过后者的秩,这就是说,秩(AB )≤秩(A ). <证毕>引理2:A 是一个s ×n 矩阵,如果P 是个s ×s 可逆矩阵,Q 是n ×n 可逆矩阵,那么秩(A )=秩(PA )=秩(AQ ).证明:令 B=PA,由引理1知秩(B )≤秩(A ); 但是由A=1-P B,又由秩(A )≤秩(B ),所以秩(A )=秩(B )=秩(PA ).同理可证, 秩(A )=秩(AQ ).从而, 秩(A )=秩(PA )=秩(AQ ). 〈证毕〉 性质3 相似矩阵有相同秩.证明:设A,B 相似即存在数域P 上的可逆矩阵C,使得 B=1-C AC , 由引理2可知秩(B )=秩(1-C AC )=秩(AC )=秩(A ). 〈证毕>性质4 相似矩阵或同时可逆或同时不可逆.证明:设A 与B 相似,由性质3可知B A = .若A 可逆,即0≠A ,从而0≠B 故B 可逆; 若A 不可逆,即0=A ,从而0=B ,故B 不可逆. 〈证毕〉性质5 若A 与B 相似,则n A 相似于n B .(n 为正整数)证明:由于A 与B 相似,即存在数域P 上的可逆矩阵X,使得AX X B 1-=,从而X A X AX X AX X AX X n n 1111----=•••个,即 n A 相似于n B . 〈证毕〉性质6 设A 相似于B,)(x f 为任一多项式,则)(A f 相似于)(B f . 证明:设0111)(a x a x a x a x f n n n n ++++=-- 于是Ea B a Ba B a B f E a A a A a A a A f n n nn n n n n 01110111)()(++++=++++=----由于A 相似于B,由性质5可知k A 相似于k B ,(k 为任意正整数) ,即存在可逆矩阵X,使得X A X B K k 1-=,因此)()()(01110111111011111B f Ea B a B a B a E a AX X a X A X a X A X a X E a A a A a A a X X x f X n n nn n n n n n n n n =++++=++++=++++=-----------这就是说)(A f 相似于)(B f . 〈证毕〉性质7 相似矩阵有相同的特征多项式.证明:设A 相似于B ,即存在数域P 上的可逆矩阵C ,使得AC C B 1-=, 则AE C C A E C A E CACC EC C AC C C C AC C E B E -=-=-=-=-=-=--------λλλλλλλ1111111由此可见,B 与A 有相同的特征多项式. 〈证毕〉 性质8:相似矩阵有相同的迹.证明:设A 相似于B 。
矩阵相似成立条件矩阵相似是线性代数中的一个重要概念,它在矩阵理论和应用中有着广泛的应用。
相似矩阵的概念源自于矩阵变换的相似性,两个矩阵如果相似,则它们表示着相同的线性变换,只是在不同的坐标系下进行表示。
本文将围绕着矩阵相似的定义、性质和成立条件展开详细的阐述。
一、矩阵相似的定义矩阵A和B是n阶的方阵,如果存在一个可逆矩阵P,使得P^{-1}AP=B成立,那么矩阵A和B就称为相似矩阵。
可以直观地解释为,如果存在一个可逆矩阵P,对矩阵A进行线性变换后得到的结果与矩阵B相同,那么这两个矩阵就是相似矩阵。
相似矩阵的概念使得我们可以在不同的坐标系下进行对同一线性变换的表示,从而对矩阵的特征值、特征向量等性质进行更深入的研究。
二、矩阵相似的性质1. 相似关系是一个等价关系相似矩阵的定义满足等价关系的三个条件,即自反性、对称性和传递性。
自反性是指矩阵A和自己相似,即存在可逆矩阵P,使得P^{-1}AP=A成立。
对称性是指如果矩阵A和B相似,则矩阵B和A也相似。
传递性是指如果矩阵A和B相似,矩阵B和C相似,那么矩阵A和C也相似。
矩阵相似关系满足等价关系的性质。
2. 相似矩阵的特征值性质相同如果矩阵A和B相似,那么它们的特征多项式相同,从而有相同的特征值。
矩阵相似关系保持了矩阵特征值的性质,这一性质在矩阵的特征值分解、对角化等问题中具有重要的意义。
3. 相似矩阵的特征向量关系相似矩阵具有相同的特征向量,即如果矩阵A和B相似,它们的特征向量可以通过相同的线性变换关系得到。
这一性质在矩阵对角化和特征值问题的研究中有着重要的应用。
三、矩阵相似的成立条件1. 充分条件若n阶矩阵A与n阶矩阵B相似,即A∼B,则A与B有相同的特征值。
证明:设A与B相似,即存在非奇异矩阵P,使得P^{-1}AP=B,设x是A的一个特征向量,那么Px是B的一个特征向量。
A与B有相同的特征值。
2. 必要条件若n阶矩阵A与n阶矩阵B有相同的特征值,即A与B有相同的特征值。
相似矩阵与合同矩阵在线性代数中,矩阵是一种非常重要的数学工具,它在各个领域都有着广泛的应用。
在研究矩阵的性质和特征时,相似矩阵和合同矩阵是两个重要的概念。
本文将分别介绍相似矩阵和合同矩阵的定义、性质和应用,并对它们进行比较和分析。
相似矩阵是指具有相同特征值的矩阵,它们之间的关系可以由线性代数中的相似变换来描述。
设A和B是n阶矩阵,如果存在一个可逆矩阵P,使得P^-1AP=B,那么称矩阵A和B是相似的,记作A∼B。
相似矩阵具有以下性质:1. 相似矩阵具有相同的特征值。
设A∼B,如果λ是矩阵A的特征值,那么λ也是矩阵B的特征值。
2. 相似矩阵的特征多项式相同。
设A∼B,那么矩阵A和B的特征多项式相同。
3. 相似矩阵的迹和行列式相同。
设A∼B,那么矩阵A和B的迹和行列式相同。
相似矩阵的概念在矩阵的对角化和矩阵的相似标准型等问题中有着重要的应用。
在实际问题中,我们通常通过求解矩阵的特征值和特征向量来判断矩阵的相似性,从而简化矩阵的运算和分析。
合同矩阵是指通过非奇异矩阵的相似变换得到的矩阵。
设A和B是n阶矩阵,如果存在一个可逆矩阵P,使得P^TAP=B,那么称矩阵A和B是合同的,记作A≈B。
合同矩阵具有以下性质:1. 合同矩阵具有相同的惯性指数。
设A≈B,那么矩阵A和B的正惯性指数和负惯性指数相同。
2. 合同矩阵的秩相同。
设A≈B,那么矩阵A和B的秩相同。
3. 合同矩阵的对称性相同。
设A≈B,如果矩阵A是对称矩阵,那么矩阵B也是对称矩阵。
合同矩阵的概念在二次型和正定矩阵等问题中有着重要的应用。
在实际问题中,我们通常通过求解矩阵的合同变换来简化矩阵的分析和求解。
相似矩阵和合同矩阵都是矩阵的重要概念,它们在矩阵的性质和特征分析中有着广泛的应用。
在实际问题中,我们常常需要判断矩阵的相似性和合同性,从而简化矩阵的运算和分析。
通过对相似矩阵和合同矩阵的深入理解和应用,我们可以更好地理解矩阵的性质和特征,为实际问题的求解和分析提供更加有效的方法和工具。
第三章 矩阵的相似标准形矩阵的相似标准形有着广泛的应用.在线性代数中,已讨论了可对角化方阵的相似标准形——对角形矩阵.但并不是所有方阵都可对角化,本章将从任意方阵的特征矩阵入手,介绍矩阵相似的判别法和两种常用的相似标准形,并进一步讨论方阵可对角化的条件,最后给出一类特殊矩阵的对角化方法.§3.1 λ矩阵及其Smith 标准形一、λ矩阵的基本概念定义 3.1 设()(1,2,,,1,2,,)ij a i m j n λ== 是数域F 上的多项式,以()ij a λ为元素的m n ⨯矩阵111212122212()()()()()()()()()()n n m m mn a a a a a a A a a a λλλλλλλλλλ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭称为多项式矩阵或λ矩阵,多项式()(1,2,,,1,2,,)ij a i m j n λ== 中的最高次数称为()A λ的次数,数域F 上m n ⨯λ矩阵的全体记为[]m n F λ⨯.为了与λ矩阵相区别,我们把以数域F 中的数为元素的矩阵称为数字矩阵.显然,数字矩阵是λ矩阵的特例.数字矩阵A 的特征矩阵E A λ-就是1次λ矩阵.如果m n ⨯的λ矩阵()A λ的次数为k ,则()A λ可表示为1110()k k k k A A A A A λλλλ--=++++ ,其中(0,1,,)i A i k = 是m n ⨯数字矩阵,并且0k A ≠,例如22221()1A λλλλλλλλλλ⎛⎫-+ ⎪=- ⎪ ⎪+-⎝⎭2010101100000111000111000100λλ-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=+-+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭.如果另一个m n ⨯的λ矩阵()B λ可表示为1110()λλλλ--=++++ l l l l B B B B B ,则当且仅当k l =,(0,1,,)j j A B j k == 时()A λ与()B λ相等,记为()()A B λλ=. 由于λ的多项式可作加法、减法、乘法三种运算,并且它们与数的运算有相同的运算规律;而矩阵的加法、减法、乘法和数量乘法的定义仅用到其元素的加法、减法、乘法.因此,我们可以同样定义λ矩阵的加法、减法、乘法和数量乘法,并且λ矩阵的这些运算同数字矩阵的加法、减法、乘法和数量乘法具有相同的运算规律.矩阵行列式的定义也仅用到其元素的加法与乘法,因此,同样可以定义一个n 阶λ矩阵的行列式,一般说来λ矩阵的行列式是λ的多项式,λ矩阵的行列式与数字矩阵的行列式有相同的性质,例如,对两个n 阶λ矩阵()A λ与()B λ,有()()()()A B A B λλλλ=有了λ矩阵行列式的概念,可以同样定义λ矩阵的子式、代数余子式.定义2 设()[]m n A P λλ⨯∈,如果()A λ中有一个(1min{,})≤≤r r m n 阶子式不为零,而所有1r +阶子式(如果有的话)全为零,则称()A λ的秩为r ,记为(())rank A r λ=.规定零矩阵的秩为0.例1 设A 是n 阶数字矩阵,则λ-E A 是λ的n 次多项式,因此A 的特征矩阵λ-E A 的秩为n ,即λ-E A 总是满秩的.定义3 设()[]λλ⨯∈n n A P ,如果存在一个n 阶λ矩阵()B λ,使得()()()()λλλλ==A B B A E , (1)则称λ矩阵()A λ是可逆的,并称()B λ为()A λ的逆矩阵,记作1()λ-A .容易证明:如果n 阶λ矩阵()A λ可逆,则它的逆矩阵是唯一的.定理1 设()[]n n A P λλ⨯∈,则()A λ是可逆的充分必要条件是()A λ是一个非零常数.证 必要性:设()A λ可逆,则存在n 阶λ矩阵()B λ满足(1),从而()()1A B λλ=. 因为()A λ与()B λ都是λ的多项式,则由上式可知()A λ与()B λ都是零次多项式,故()A λ是非零常数. 充分性:设()A d λ=是非零常数,*()A λ是()A λ的伴随矩阵,则*1()A dλ是一个n 阶λ矩阵,并且**11()()()()λλλλ==A A A A E d d, 因此()A λ可逆,并且1*1()()λλ-=A A d. 二、λ矩阵的初等变换与等价 与数字矩阵类似,对于λ矩阵,也可进行初等变换.定义4 下列三种变换称为λ矩阵的初等变换.(1) 互换λ矩阵的两行(列);(2) 用非零常数k 乘以λ矩阵的某一行(列);(3) 将λ矩阵的某一行(列)的()ϕλ倍加到另一行(列),(其中()ϕλ是λ的多项式).对单位矩阵施行上述三种初等变换便得相应的三种λ矩阵的初等矩阵(,),(()),(,())P i j P i k P i j ϕ,即11011(,)11011⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭iP i j j ,11(())11⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭P i k k i ,11()(,())11ϕλϕ⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭i P i c j .与数字矩阵的情形完全一样,对一个m n ⨯λ矩阵()A λ作一次初等行变换相当于在()A λ左边乘上相应的m 阶初等矩阵;对()A λ作一次初等列变换相当于在()A λ的右边乘上相应的n 阶初等矩阵.容易证明:初等矩阵都是可逆的,并且1111(,)(,),(())(()),(,())(,())P i j P i j P i k P i k P i j P i j ϕϕ----===-.为方便起见,我们用下列记号表示初等变换:[,]i j 表示第,i j 行(列)互换位置;[()]i k 表示用非零常数k 乘第i 行(列);[()]i j ϕ+表示将第j 行(列)的()ϕλ倍加到第i 行(列).定义5 设(),()[]m n A B P λλλ⨯∈,如果()A λ经过有限次初等变换化为()B λ,则称λ矩阵()A λ与()B λ等价,记为()()A B λλ≅由初等变换的可逆性可知,等价是λ矩阵之间的一种等价关系.利用初等变换与初等矩阵的对应关系可得定理3.2.2 设(),()[]m n A B P λλλ⨯∈,则()A λ与()B λ等价的充分必要条件为存在m 阶初等矩阵1(),,()t P P λλ 与n 阶初等矩阵1(),,()t Q Q λλ 使得111()()()()()()t A P P B Q Q λλλλλλ=与数字矩阵不同,具有相同秩的两个λ矩阵未必等价,例如22(),()02A B λλλλλλ-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭因为2(),()4A B λλλλ==,所以()A λ与()B λ的秩均为2,因为初等变换是可逆的,则由定理 3.2.2知,两个等价的λ方阵的行列式只能相差一个非零常数,故()A λ与()B λ不等价,因此,秩相等不是λ矩阵等价的充分条件.3.2.3 λ矩阵在等价下的标准形现在我们讨论λ矩阵在初等变换下的标准形,为此,先证明一个引理. 引理3.2.1 设λ矩阵()(())ij A a λλ=的左上角元素11()0a λ≠,并且()A λ中至少有一个元素不能被11()a λ整除,则存在一个与()A λ等价的λ矩阵()(())ij B b λλ=使得11()0b λ≠且1111(())(())b a λλ∂<∂.证明:根据()A λ中不能被11()a λ整除的元素所在的位置,分三种情形来讨论.(1)若在()A λ的第一列中有一个元素1()i a λ不能被11()a λ整除,则由定理3.1.1知,存在多项式()q λ和()r λ使得111()()()()i a q a r λλλλ=+其中()0r λ≠且11(())(())r a λλ∂<∂,对()A λ作两次初等行变换,首先将()A λ第1行的()q λ-倍加到第i 行,这时第i 行第1列位置的元素是()r λ;然后将第1行与第i 行互换即得所要求的λ矩阵()B λ.(2)在()A λ的第一行中有一个元素1()i a λ不能被11()a λ整除,这种情形的证明与(1)类似.(3)()A λ的第一行与第一列中的元素都能被11()a λ整除,但()A λ中有一个元素()ij a λ(1,1)i j >>不能被11()a λ整除,因为111()|()j a a λλ,所以存在一个多项式()ϕλ使得111()()()i a a λϕλλ=,对()A λ作两次初等列变换,首先将()A λ第1列的()ϕλ-倍加到第j 列,这时第1行第j 列位置的元素是0,第i 行第j 列位置的元素变为1()()()ij i a a λϕλλ-;然后把j 列的1倍加到第1列,此时第1行第1列位置的元素仍是11()a λ,而第i 行第1列位置的元素变为1()[1()]()ij i a a λϕλλ+-,它不能被11()a λ整除,这就化为已经证明的情形(1).定理 3.2.3 设()(())[]m n ij A a P λλλ⨯=∈,且(())ran A r λ=,则()A λ等价于如下“对角形”矩阵.12()()()00r d d d λλλ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭(3.2.3) 其中()(1,,)i d i r λ= 是首项系数为1的多项式,并且1()|()(i i d d i λλ+= 1,,1)r - .证明:若0r =,则()A λ为零矩阵,结论显然成立,现设0r >,且()A λ= (())ij a λ的左上角元素11()0a λ≠,否则可通过行、列交换做到这一点,由引理3.1.1知,()A λ进行一系列初等变换可得一个与()A λ等价的λ矩阵()(())ij B b λλ=,并且11()b λ是首项系数为1的多项式,11()b λ整除()B λ的全部元素,即有11()()(),1,,;1,,ij ij b q b i m j n λλλ===则可对()B λ作一系列初等变换,使得第1行、第1列除对角元11()b λ外全为零,即11()000()()0d B A λλλ⎛⎫ ⎪ ⎪ ⎪≅ ⎪ ⎪ ⎪ ⎪⎝⎭其中1111()(),()d b A λλλ=是(1)(1)m n -⨯-矩阵,因为1()A λ的元素是()B λ中元素的组合,而11()b λ(即1()d λ)整除()B λ的所有元素,所以1()d λ整除1()A λ的所有元素.如果1()0A λ≠,则对1()A λ重复上述过程,进而把矩阵化成122()000()000()00d d A λλλ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭其中12(),()d d λλ都是首项系数为1的多项式,并且122()|(),()d d d λλλ整除2()A λ的全部元素,继续上述过程,最后把()A λ化成所要求的形式. 定理 3.2.3中的“对角形”矩形(3.2.3)称为λ矩阵()A λ在等价下的标准形Smith 标准形.定义3.2.6 λ矩阵()[]m n A P λλ⨯∈的Smith 标准形“主对角线”上非零元12(),(),,()r d d d λλλ 称为()A λ的不变因子.例3.2.2 用初等变换把λ矩阵22221()1A λλλλλλλλλλ⎛⎫-+ ⎪=- ⎪ ⎪+-⎝⎭化为标准形解222[31(1)][13(1)]222[3(1)][32(1)][21()][31()]2211()0011010010000000A λλλλλλλλλλλλλλλλλλλλλλλλ+-+-++-+-⎛⎫⎛⎫ ⎪ ⎪−−−→-−−−−→- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎛⎫⎛⎫ ⎪ ⎪−−−−→-−−−→- ⎪ ⎪ ⎪ ⎪--+⎝⎭⎝⎭例3.2.3 用初等变换将λ矩阵100010()001000a a A a a λλλλλ--⎛⎫ ⎪-- ⎪= ⎪-- ⎪-⎝⎭[43()]33[3,4]41000100001000100001()001()000000()a a a a a λλλλλ+-⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪−−−→−−−−→ ⎪ ⎪---- ⎪ ⎪--⎝⎭⎝⎭3[43(())][3(1)]4111()a a λλ+--⎛⎫ ⎪ ⎪−−−−−→ ⎪- ⎪-⎝⎭一般地1111()m m na a a a λλλλ⨯--⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪≅ ⎪ ⎪- ⎪ ⎪--⎝⎭⎝⎭ §3.3 λ矩阵的行列式因子和初等因子本节讨论λ矩阵Smith 标准形的惟一性,并给出两个λ矩阵等价的条件.因此,需要引进λ矩阵的行列式因子.定义3.3.1 设()[]m n A P λλ⨯∈且(())rank A r λ=,对于正整数(1)k k r ≤≤,()A λ的全部k 阶子式的最大公因式称为()A λ的k 阶行列式因子,记为()k D λ.例3.3.1 求22221()1A λλλλλλλλλλ⎛⎫-+ ⎪=- ⎪ ⎪+-⎝⎭的各项行列式因子.解:由于(1,)1λλ-=,所以1()1D λ=又化为标准形[1,2]100010()001000a a A a a λλλλλ--⎛⎫ ⎪-- ⎪−−−→ ⎪-- ⎪-⎝⎭2[21()]1000()10001000a a a a a λλλλλ+---⎛⎫ ⎪-- ⎪−−−−→ ⎪-- ⎪-⎝⎭ 2[1(1)][21()]10000()10001000a a a a λλλλ-+-+⎛⎫ ⎪-- ⎪−−−−−→ ⎪-- ⎪-⎝⎭2[2,3]100001()0001000a a a λλλ⎛⎫ ⎪-- ⎪−−−→ ⎪-- ⎪-⎝⎭2[32()]3100001()000()1000a a a a λλλλ+-⎛⎫ ⎪-- ⎪−−−−→ ⎪-- ⎪-⎝⎭23[32(()][2(1)]1000010000()1000a a a λλλ+--⎛⎫ ⎪ ⎪−−−−−→ ⎪-- ⎪-⎝⎭ 2211(1)()λλλλλϕλλλ-+=--+=, 23221(1)()1λλλλϕλλλ-+=--=+故(12((),())ϕλϕλλ=其余的二阶子式(还有7个)都包含因子λ,所以2()D λλ=最后,由于32det(())A λλλ=--,所以323()D λλλ=+行列式因子的重要性在于它在初等变换下是不变的.定理3.3.1 等价的λ矩阵具有相同的秩和相同的各阶行列式因子. 证明:只要证明λ矩阵经过一次初等变换后,其秩与行列式因子不变. 设λ矩阵()A λ经过一次初等变换后变成()B λ,()f λ和()g λ分别是()A λ和()B λ的k 阶行列式因子,针对3种初等变换来证明()()f g λλ=.(1)交换()A λ的某两行得到()B λ,这时()B λ的每个k 阶子式或者等于()A λ的某个k 阶子式,或者是()A λ的某个k 阶子式的1-倍.因此()f λ是()B λ和k 阶子式的公因子,从而()|()f g λλ.(2)用非零数α乘()A λ的某一行得到()B λ,这时()B λ的每个k 阶子式或者等于()A λ的每个k 阶子式,或者等于()A λ的每个k 阶子式的α倍,因此()f λ是()B λ和k 阶子式公因子,从而()|()f g λλ.(3)将()A λ第j 行的()ϕλ倍加到第i 行得到()B λ,这时,()B λ中那些包含第i 行与第j 行的k 阶子式和那些不包含第i 行的k 阶子式等于()A λ中对应的k 阶子式;()B λ中那些包含第i 行但不包含第j 行的k 阶子式等于()A λ中对应的一个k 阶子式与另一个k 阶子式的()ϕλ±倍之和,也就是()A λ的两个k 阶子式组合,因此()f λ是()B λ的k 阶子式的公因式,从而()|()f g λλ. 由初等变换的可逆性,()B λ也可以经过一次初等行变换变成()A λ,由上面的讨论,同样有()|()g f λλ,所以()()f g λλ=.对于初等列变换,可以完全一样地讨论,总之,如果()A λ经过一次初等变换变成()B λ,则()()f g λλ=.当()A λ的全部k 阶子式为零时,()0f λ=,则()0g λ=,()B λ的全部k 阶子式也为零;反之亦然,因此()A λ与()B λ既有相同的行列式因子,又有相同的秩.由定理3.3.1知,任意λ矩阵的秩和行列式因子与其Smith 标准形的秩和行列式因子是相同的.设λ矩阵()A λ的Smith 标准形为12()()()00r d d d λλλ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭(3.3.1) 其中()(1,i d i r λ= 是首项系数为1的多项式,并且1()|()(1,,1)i i d d i r λλ+=- . 容易求得()A λ的各阶行列式因子如下:11212212()()()()()()()()()r D d D d d D d d d λλλλλλλλλ=⎧⎪=⎪⎨⎪⎪=⎩ (3.3.2) 于是有12231112211(1)()|(),()|(),,()|()(2)()(),()()/(),,()()/()r r r r r D D D D D D d D d D D d D D λλλλλλλλλλλλλλ--⎧⎨===⎩ (3.3.3) 从而得如下结论:定理3.3.2 λ矩阵()A λ的Smith 标准形是惟一的.证明:因为()A λ的各阶行列式因子是惟一的,则由(3.3.3)知()A λ的不变因子也是惟一的,因此()A λ的Smith 标准形是惟一的.应用λ矩阵的Smith 标准形,可以证明如下定理.定理3.3.3 设(),()[]m n A B P λλλ⨯∈,则()A λ与()B λ和同一Smith 标准形等价,因此()A λ与()B λ等价.一般说来,应用行列式因子求不变因子比较复杂,但对一些特殊的λ矩阵,先求行列式因子再求不变因子反而简单.例3.3.2 求100()100m ma a A a λλλλ⨯--⎛⎫ ⎪- ⎪= ⎪- ⎪-⎝⎭ 的行列式因子和不变因子.解: 由于()A λ的一个1m -阶子式111(1)1m a a λλ----=---故1()1m D λ-=,由(3.3.3)的第一式,即行列式因子的“依次”整除性,有122()()()1m D D D λλλ-====而()()m m D a λλ=-,因此()A λ的不变因子为121()()()1,()()m m m d d d d a λλλλλ-=====-由此可知()A λ的标准形为1()1()m m mA a λλ⨯⎛⎫ ⎪ ⎪≅ ⎪ ⎪-⎝⎭ 定理3.3.4 设()[]n n A P λλ⨯∈,则()A λ可逆的充分必要条件是()A λ可表示为一系列初等矩阵的乘积.证明:必要性:设()A λ为一n 阶可逆矩阵,则由定理3.2.1知()0A d λ=≠,从而()A λ的行列式因子为12()()()1n D D D λλλ====于是()A λ的不变因子为12()()()1n d d d λλλ====因此()A λ与单位矩阵等价,即存在一系列初等矩阵1(),,(),t P P λλ 1(),,()t Q Q λλ 使得1111()()()()()()()()()l t l t A P P IQ Q P P Q Q λλλλλλλλλ==充分性.设()A λ可表示为一系列初等矩阵的乘积,即存在一系列初等矩阵1(),,(),t P P λλ 1(),,()t Q Q λλ 使得11()()()()()l t A P P Q Q λλλλλ=则()A λ的行列式是一个非零常数,因此由定理3.2.1知()A λ可逆. 利用定理3.2.2和定理3.3.4容易证明下面定理.定理3.3.5 设(),()[]m n A B P λλλ⨯∈,则()A λ与()B λ等价的充分必要条件是存在两个可逆λ矩阵()[]m n P P λλ⨯∈与()[]n n Q P λλ⨯∈使得()()()()B P A Q λλλλ=.下面再引进λ矩阵的初等因子,设λ矩阵()A λ的不变因子为1(),d λ 2(),,()r d d λλ ,在复数域内将它们分解成一次因式的幂的乘积:111122212212112212212()()()()()()()()()()()()ssrs r r e e e s e e e s e e e s d d d λλλλλλλλλλλλλλλλλλλλλ⎧=---⎪=---⎪⎨⎪⎪=---⎩ (3.3.4) 其中1,,s λλ 是互异的复数,ij e 是非负整数,因为1()|()(1,,1)i i d d i r λλ+=- ,所以ij e 满足如下关系112111222212000r r s s rse e e e e e e e e ≤≤≤≤⎧⎪≤≤≤≤⎪⎨⎪⎪≤≤≤≤⎩ 定义3.3.2 在(3.3.4)式中,所有指数大于零的因子(),0,1,,,1,,)ij eij e i r j s λλ->==称为λ矩阵()A λ的初等因子.例如,若λ矩阵()A λ的不变因子为 122232334()1()(1)()(1)(1)()(1)(1)(2)d d d d λλλλλλλλλλλλλ=⎧⎪=-⎪⎨=-+⎪⎪=-+-⎩ 则()A λ的初等因子为22323,,,1,(1),(1),(1),(1),2λλλλλλλλλ---++-. 由定义3.3.2知,若给定λ矩阵()A λ的不变因子,则可惟一确定其初等因子;反过来,如果知道一个λ矩阵的秩和初等因子,则也可惟一确定它的不变因子,事实上λ矩阵()A λ的秩r 确定了不变因子的个数,同一个一次因式的方幂作成的初等因子中,方次最高的必在()r d λ的分解中,方次次高的必在1()r d λ-的分解中,如此顺推下去,可知属于同一个一次因式的方幂的初等因子在不变因子的分解式中出现的位置是惟一确定的.例如,若已知56⨯λ矩阵()A λ的秩为4,其初等因子为22333,,,1,(1),(1),(1),()i λλλλλλλλ---+-则可求得()A λ的不变因子23334()(1)()()d i i λλλλλ=-+-23()(1)d λλλ=-2()(1)d λλλ=-1()1d λ=从而()A λ的Smith 标准形为223231000000(1)000000(1)00000(1)(1)0000000λλλλλλλ⎛⎫ ⎪- ⎪ ⎪- ⎪-+ ⎪ ⎪⎝⎭由定期3.3.3以及不变因子与初等因子之间的关系容易导出如下定理. 定理 3.3.6 设(),()[]m n A B P λλλ⨯∈.则()A λ与()B λ等价的充分必要条件是它们有相同的秩和相同的初等因子.对块对角矩阵()0()0()B A C λλλ⎛⎫= ⎪⎝⎭ 不能从()B λ与()C λ的不变因子求得()A λ的不变因子,但是能从()B λ与()C λ的初等因子求得()A λ的初等因子.()0()0()B A C λλλ⎛⎫= ⎪⎝⎭(3.3.5) 为块对角矩阵,则()B λ与()C λ的初等因子的全体是()A λ的全部初等因子. 证明:将()B λ与()C λ分别化为Smith 标准形1()()()00B r b b B λλλ⎛⎫ ⎪ ⎪ ⎪≅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭1()()()00C r c c C λλλ⎛⎫ ⎪ ⎪ ⎪≅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭其中1(()),(()),(),,()B B C r r r a n k B r r a n k C b b λλλλ== 与1(),,()C r c c λλ 分别为()B λ与()C λ的不变因子,则(())B C rank A r r r λ==+把()i b λ和()i c λ分解为不同的一次因式的方幂的乘积1212()()()(),1,,i i is b b b i s B b i r λλλλλλλ=---=1212()()()(),1,,j j js c c ci s C c i r λλλλλλλ=---=则()B λ与()C λ的初等因子分别为 1212()()(),1,,i i is b b b s B i r λλλλλλ---=1212()()(),1,,j j js c c cs C i r λλλλλλ---=中非常数的多项式我们先证明()B λ与()C λ的初等因子是()A λ的全部初等因子,不失一般性,仅考虑()B λ与()C λ中只含1λλ-的方幂的那些初等因子,将1λλ-的指数.1111211121,,,,,,,B C r r b b b c c c按由小到大的顺序排列,记为120r j j j ≤≤≤≤ ,由(3.3.5)可知,对()B λ与()C λ进行初等变换实际上是对()A λ进行初等变换,于是11()()()()()00B C r r b b c A c λλλλλ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪≅ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭12111212()()()()()()00r j j j λλϕλλλϕλλλϕλ⎛⎫- ⎪- ⎪ ⎪ ⎪≅- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭其中多项式1(),,()r ϕλϕλ 都不含因式1λλ-.设()A λ的行列式因子和不变因子分别为12(),(),,()r D D D λλλ 和12(),(),,()r d d d λλλ ,则在这些行列式因子中因子1λλ-的幂指数分别为111211,,,,r ri i i i j j j j j -==+∑∑ ,而由行列式因子与不变因子的关系(3.3.3)知,12(),(),,()r d d d λλλ 中因子1λλ-的幂指数分别为121,,,,r r j j j j - 因此()A λ中与1λλ-相应的初等因子是1(),0,1,,i j j i r λλ->=也就是()B λ、()C λ中与1λλ-相应的全部初等因子.对23,,,r λλλλλλ--- 进行类似的讨论,可得相同结论,于是()B λ、()C λ的全部初等因子都是()A λ的初等因子.下面证明,除()B λ、()C λ的初等因子外,()A λ再没有其他的初等因子. 因为()r D λ为()A λ的所有初等因子的乘积,而11()()()()()B C r r r D b b c c λλλλλ=如果()k a λ-是()A λ的初等因子,则它必包含在某个()(1,,)i B b i r λ= 或()j c λ(1,,C j r = )中,即()A λ的初等因子包含在()B λ与()C λ的初等因子中,因此,除()B λ、()C λ的全部初等因子外,()A λ再没有别的初等因子.定理3.3.7可推广为定理3.3.8 若λ矩阵()A λ等价于块对角阵12()()()()t A A A A λλλλ⎛⎫⎪ ⎪≅ ⎪ ⎪⎝⎭则122(),(),,()t A A A λλλ 各个初等因子的全体就是()A λ的全部初等因子. 对t 应用数学归纳法,请读者自行证明.例3.3.3 求λ矩阵22000000()00(1)10022A λλλλλλλ⎛⎫+ ⎪⎪= ⎪++ ⎪ ⎪--⎝⎭的初因子,不变因子和标准形解:记22123(1)1(),(),()22A A A λλλλλλλλλ⎛⎫++=+== ⎪--⎝⎭,则 123()00()0()000()A A A A λλλλ⎛⎫ ⎪= ⎪ ⎪⎝⎭对于3()A λ,其初等因子为,1,1λλλ-+,利用定理3.3.8,可得()A λ的初等因子,,,1,1,1λλλλλλ-++因为()A λ的秩为4,故()A λ的不变因子为4321()(1)(1),()(1),,()1d d d d λλλλλλλλλ=-+=+==因此()A λ的Smith 标准形为1000000()00(1)0000(1)(1)A λλλλλλλ⎛⎫ ⎪ ⎪≅ ⎪+ ⎪+-⎝⎭ §3.4 矩阵相似的条件设A 是n 阶数字矩阵,其特征矩阵I A λ-是λ矩阵,它是研究数字矩阵的重要工具,应用特征矩阵可以给出两个n 阶数字矩阵A 与B 之间相似性的判断准则,为此,我们先证明两个引理.引理3.4.1 设,A B 是两个n 阶数字矩阵,如果存在n 阶数字矩阵,P Q 使得()I A P I B Q λλ-=- (3.4.1)A 与B 相似证明 比较(3.4.1)两边λ的同次幂的系数矩阵,得,PQ I A PBQ ==由此11,Q P A PBP --==,故A 与B 相似.引理3.4.2 设A 是n 阶非零数字矩阵,()U λ与()V λ是n 阶λ矩阵,则存在n 阶λ矩阵()Q λ与()R λ以及n 阶数字矩阵0U 及0V ,使得0()()()U I A Q U λλλ=-+ (3.4.2)0()()()V R I A V λλλ=-+ (3.4.3)证明(3.4.2)与(3.4.3)的证明类似,这里仅证(3.4.2)式,把()U λ改写成1011()m m m m U D D D D λλλλ--=++++其中01,,,m D D D 都是n 阶数字矩阵,并且00D ≠(1)若0m =,则取()0Q λ=及00U D =,它们满足要求,并且(3.4.2)成立.(2)若0m >,令120121()m m m m Q Q Q Q Q λλλλ----=++++其中011,,,m Q Q Q - 是待定的n 阶数字矩阵,由1010()()()m m I A Q Q Q AQ λλλλ--=+-+1121()()m k k k m m m Q AQ Q AQ AQ λλ-----+-++--取0011022111201,,,,m m m m m Q D Q D AQ Q D AQ Q D AQ U D AQ ----==+=+=+=+ 则(3.4.2)成立.定理 3.4.1 n 阶矩阵A 和B 相似的充分必要条件是它们的特征矩阵I A λ-和I B λ-.充分性 设I A λ-和I B λ-等价,由定理 3.3.5知存在可逆的λ矩阵(),()U V λλ使()()()I A U I B V λλλλ-=-由引理3.4.2,存在λ矩阵()Q λ与()R λ以及数字矩阵0U 与0V 使得0()()()U I A Q U λλλ=-+0()()()V R I A V λλλ=-+则(3.4.4)式改写为1()()()()U I A I B V λλλλ--=-1()()()()I A V U I B λλλλ--=-将()V λ的表达式(3.4.6)代入(3.4.7),得10[()()()]()()U I B R I A I B V λλλλλ----=-因为上式右边的λ的次数1≤,所以1()()()U I B R λλλ---是数字矩阵,记为T ,即1()()()T U I B R λλλ-=-- (3.4.9)0()()T I A I B V λλ-=-T (3.4.10)由(3.4.9),并利用(3.4.5)和(3.4.8),得()()()()I U T U I B R λλλλ=+-1()()()()U T I A V R λλλλ-=+-10[()()]()()()I A Q U T I A V R λλλλλ-=-++-10()[()()()]U T I A Q T V R λλλλ-=+-+上式右边第二项必为零;否则右边λ的次数至少是1,等式不可能成立,因此0I U T =,从而0,U T 可逆,并且10T U -=,由(3.4.10)得00()I A U I B V λλ-=-由引理3.4.1知A 和B 相似定义3.4.1 设A 是n 阶数字矩阵,其特征矩阵I A λ-的行列式因子,不变因子和初等因子分别称为矩阵A 的行列式因子,不变因子和初等因子. 由定理3.3.3和定理3.4.1立即得定理3.4.2 n 阶矩阵A 和B 相似的充分必要条件是它们有相同的行列式因子,或者它们有相同的不变因子.由例3.2.1,定理3.3.6和定理3.4.1得定理3.4.3 n 阶矩阵A 和B 相似的充分必要条件是它们有相同的等初因子. §3.5 矩阵的Jordan 标准形定义3.5.1 形状为1010i ii i i n n J λλλ⨯⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭ (3.5.1) 的矩阵称为Jordan 块,其中i λ为复数,由若干个Jordan 块为对角块组成的块对角矩阵称为Jordan 形矩阵例如,矩阵110000010000004000000100000100000i i i ⎛⎫ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪- ⎪ ⎪-⎝⎭ 是一个Jordan 形矩阵.容易验证,i n 阶Jordan 块i J 具有如下性质:(1)i J 具有一个i n 重特征值i λ,对应于特征值i λ仅有一个线性无关的特征向量.(2)i J 的乘幂有明显的表示式(1)11()()()2!(1)!()(),1,2,1()2!()()i n p i p i p i p i p i p i p i p i p i p i f f f f n f f J p f f f λλλλλλλλ-⎛⎫''' ⎪- ⎪ ⎪ ⎪' ⎪ ⎪=='' ⎪ ⎪ ⎪ ⎪' ⎪ ⎪⎝⎭其中()p p f λλ=(3)i J 的不变因子为11()()1,()()i i i n n n i d d d λλλλλ-====-从而i J 的初等因子为()i n i λλ-设12(,,,)s J diag J J J =是Jordan 形矩阵,其中i J 为形如(3.5.1)的Jordan 块,J 的特征矩阵为11(,,)sn n s I J diag I J I J λλλ-=-- 由定理3.3.8知Jordan 形矩阵J 的初等因子为1212(),(),,()s n n n s λλλλλλ---可见,Jordan 形矩阵的全部初等因子由它的全部Jordan 块的初等因子组成,而Jordan 块被它的初等因子惟一决定,因此,Jordan 形矩阵除去其中Jordan 块排列的次序外被它的初等因子惟一决定.定理3.5.1 设n n A C ⨯∈,则A 与一个Jordan 形矩阵相似,并且Jordan 形矩阵除去其中Jordan 块的排列次序是被矩阵A 惟一决定的.12(),(),,()s n s λλλλλλ--- (3.5.2)其中1,,s λλ 可能有相同的,1,,s n n 也可能有相同的,每个初等因子()i n i λλ-对应于一个Jordan 块101,1,,1i ii i i i n n J i s λλλ⨯⎛⎫ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪⎝⎭ 这些Jordan 块构成一个Jordan 形矩阵12(,,,)s J diag J J J = (3.5.3) 其初等因子也是(3.5.2),因为J 与A 有相同的初等因子,由定理3.4.3知J 与A 相似,Jordan 形矩阵(3.5.3)称为矩阵A 的Jordan 标准形. 若有另一个Jordan 形矩阵J 与A 相似,则J 与A 有相同的初等因子,因此,J '与J 除去其中Jordan 块排列的次序外是相同的,这就证明了惟一性. 利用矩阵在相似变换下的Jordan 标准形,可得线性变换的结构. 定理 3.5.2 设A 是复数域上n 维线性空间V 的线性变换,则在V 中存在一组基使得A 在这组基下的矩阵是Jordan 形矩阵.证明 在V 中任取一组基12,,,n εεε ,设线性变换A 在这组基下的矩阵是A ,由定理3.5.1知,存在可逆矩阵P 使得1P AP J -=为Jordan 形矩阵,令1212(,,,)(,,,)n n P εεεεεε=则线性变换,A 在基12,,,n εεε 下的矩阵是1P AP J -=为Jordan 形矩阵 如果1i n =,则i i J λ=是一阶Jordan 块,当矩阵A 的Jordan 标准形中的Jordan 块都是一阶块时,A 的Jordan 标准形就是对角矩阵,因为一阶Jordan 块的初等因子是一次的,所以对角矩阵的初等因子都是一次的,由此得 定理3.5.3 设n n A C ⨯∈,则A 与一个对角矩阵相似的充分必要条件是A 的初等因子都是一次的.例3.5.1 求矩阵126103114A --⎛⎫ ⎪=- ⎪ ⎪--⎝⎭的Jordan 标准形解 因为21261001301011400(1)I A λλλλλλ+-⎛⎫⎛⎫ ⎪ ⎪-=-≅- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭则A 的初等于因子为1λ-,2(1)λ-,故A 的Jordan 标准形为100011001J ⎛⎫ ⎪= ⎪ ⎪⎝⎭由定理3.5.1知,对任意的n 阶矩阵A ,存在n 阶可逆矩阵P 使得1P AP J -=为Jordan 标准形,下面介绍求变换矩阵P 的方法,先看一下例子. 例3.5.2 求化矩阵126103114A --⎛⎫ ⎪=- ⎪ ⎪--⎝⎭为Jordan 标准形的变换矩阵.解 由例3.5.1知,存在3阶可逆矩阵P 使得1100011001P AP J -⎛⎫ ⎪== ⎪ ⎪⎝⎭记123(,,)P p p p =,则得123123100(,,)(,,)011001Ap Ap Ap p p p ⎛⎫ ⎪= ⎪ ⎪⎝⎭比较上式两边得1122323Ap p Ap p Ap p p =⎧⎪=⎨⎪=+⎩ 由此可见,12,p p 是A 的对应于特征值1的两个线性无关的特征向量. 从方程组()0I A x -=可求得两个线性无关的特征向量131,001ξη-⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭可取1p ξ=,但不能简单地取2p η=,因此2p 的选取应保证非齐次线性方程组32()I A p p -=-有解,由于,ξη的线性组合仍是()0I A x -=的解,因此我们选取212p k k ξη=+,其中待定常数12,k k 只要保证1p 和2p 线性无关,且使得32()I A p p -=-有解,因为2121212(3,,)T p k k k k k k ξξ=+=-+,所以选取12,k k 使得方程组11221322263113113x k k x k x k --⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪-=- ⎪⎪ ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭有解,容易看出,当12k k =时方程组有解,且其解为12313x x x k =-+-其中1k 是任意非零常数,取11k =,可得23221,011p p ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,于是122110011P -⎛⎫ ⎪= ⎪ ⎪⎝⎭使得1100011001P AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭一般地,设n n A C ⨯∈,则存在n 阶可逆矩阵P 使得112s J P AP J J J -⎛⎫ ⎪== ⎪ ⎪⎝⎭ (3.5.4)其中i J 为形如(3.5.1)的Jordan 块,记12(,,,)s P P P P = (3.5.5) 其中i n n iP C ⨯∈,由(3.5.4)和(3.5.5)得 121122(,,,)(,,,)s s s AP AP AP PJ P J P J =比较上式两边得,1,,i i i AP PJ i s == (3.5.6) 记()()()12(,,,)i i i i i n P p p p = ,由(3.5.6)可得()()11()()()221()()()1,,j ii i i i i i i i i n i i i n i n n Ap p Ap p p Ap p p λλλ--⎧=⎪=+⎪⎨⎪⎪=+⎩ 由上式可见,()1i p 是矩阵A 对应于特征值i λ的特征向量,且由()1i p 可依次求得()()2,,ji i n p p ,由例3.5.2可知,特征向量()1i p 的选取应保证()2i p 可以求出,类似地()2i p 的选取(因为()2i p 的选取一般不惟一,只要适当选取一个即可)也应保证()3i p 可以求出,依次类推,并且使()()()12,,ii i i n p p p 线性无关. §3.6 Cayley-Hamilton 定理与最小多项式 设A 为任意n 阶矩阵,其特征多项式为12121()det()n n n n n f I A a a a a λλλλλλ---=-=+++++ 矩阵A 与其特征多项式之间有如下重要关系.定理3.6.1(Cayley-Hamilton 定理)设A 是n 阶矩阵,()f λ是A 的特征多项式,则()0f A =证明 考虑特征矩阵I A λ-的伴随矩阵*()I A λ-,其元素至多是λ的1n -次多项式,则*()I A λ-可表示为*12121()n n n n I A C C C C λλλλ----=++++其中12,,,n C C C 都是n 阶数字矩阵因为*()()()I A I A f I λλλ--=,即12121()()n n n n I A C C C C λλλλ----++++111n n n n I a I a I a I λλλ--=++++比较两边λ的同次幂的系列矩阵,得1C I =211C AC a I -=322C AC a I -=…11n n n C AC a I ---=n n AC a I -=用1,,,,n n A A A I - 分别左乘上面各式,再两边相加,得 12121321()()()n n n n n n A C A C AC A C AC A C AC AC ---+-+-++-- 111()n n n n A a A a A a I f A --=++++=因为上式左边为零矩阵,所以()0f A =定义3.6.1 设A 为n 阶矩阵,如果存在多项式()ϕλ使得()0A ϕ=,则()ϕλ为A 的化零多项式.对任意n 阶矩阵A ,()f λ是A 的特征多项式,由定理3.6.1知()f λ为A 的化零多项式,如果()g λ是任意多项式,则()()g f λλ也是A 的化零多项式.因此,任意n 阶矩阵A 的化零多项式总存在,并且A 的化零多项式有无穷多个.定义 3.6.2 n 阶矩阵A 的所有化零多项式中,次数最低且首项系数为1的多项式称为A 的最小多项式.由定理3.6.1知,任意n 阶矩阵A 的最小多项式存在且次数不会超过n . 定理3.6.2 设A 是n 阶矩阵,则(1)A 的最小多项式()m λ能整除A 的任一化零多项式()ϕλ,特别地,()m λ能整除A 的特征多项式()f λ;(2)A 的最小多项式()m λ的零点是A 的特征值;反之,A 的特征值是()m λ的零点;(3)A 的最小多项式是惟一的.证明(1)设()m λ是A 的最小多项式,()ϕλ是A 的任一化零多项式,由定理3.1.1有()()()()q m r ϕλλλλ=+其中(),()q r λλ是多项式,并且()0r λ=或者()0r λ≠但(())(())r m λλ∂<∂,因此()0r λ=;否则与()m λ是A 的最小多项式矛盾,于是()|()m λϕλ.(2)设()f λ是A 的特征多项式,由(1)知()()()f q m λλλ=,其中()q λ是一个多项式,因此()0m λ=的根必为()0f λ=的根,即A 的特征值.反过来,设0λ是A 的任一特征值,相应的特征向量为0ξ≠,即0A ξλξ=则0()()m A m ξλξ=因为()0,0m λξ=≠,所以0()0m λ=,即0λ是0()0m λ=的根.(3)设A 有两个最小多项式12(),()m m λλ,则它们的次数相同,如果12()()m m λλ≠,则12()()()0m m m λλλ=-≠且1(())(())m m λλ∂<∂.设()m λ的着项系数为a ,则3()()m m aλλ=是首项系数1的多项式且31(())(())m m λλ∂<∂由于31211()()(()())0m A m A m A m A a a==-= 于是,3()m λ是A 的化零多项式,这与12(),()m m λλ是A 的最小多项式的假设矛盾,因此A 的最小多项式是惟一的.定理3.6.3 相似的矩阵具有相同的最小多项式.证明 设n 阶矩阵A 与B 相似,则存在非奇异矩阵P 使得1B P AP -=对任意多项式()g λ恒有1()()g B P g A P -=可见,A 与B 有相同的化零多项式,从而它们具有相同的最小多项式. 例3.6.1 求Jordan 块1010i ii i i i n n J λλλ⨯⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭ 的最小多项式 解:因为i J 的特征多项式()()i n i f λλλ=-,则由定理3.6.2知i J 的最小多项式()m λ具有如下形式()()k i m λλλ=-其中正整数i k n ≤,但当i k n <时0100()()0100k i i i m J J I λ⎛⎫ ⎪ ⎪ ⎪=-=≠ ⎪ ⎪ ⎪⎝⎭因此()()i n i m λλλ=-定理3.6.4 块对角矩阵1(,,)s A diag A A = 的最小多项式等于其诸对角块的最小多项式的最小公倍式.证明 设i A 的最小多项式为()(1,,)i m i s λ= ,由于对任意多项式()ϕλ1()((),,())s A dia A A ϕϕϕ=如果()ϕλ为A 的化零多项式.则()ϕλ必为(1,,)i A i s = 的化零多项式,从而()|()(1,,)i m i s λϕλ= ,因此()ϕλ为1(),,()s m m λλ 的公倍式.反过来,如果()ϕλ为1(),,()s m m λλ 的任一公倍式,则()0(1,,)i A i s ϕ== , 从而()0A ϕ=,因此,A 的最小多项式为1(),,()s m m λλ 的公倍式中次数最低者,即它们的最小公倍式.定理3.6.5 n n A C ⨯∈,则A 的最小多项式为A 的第n 个不变因子()n d λ. 证明 由定理3.5.1知A 相似于Jordan 标准形1(,,)s J diag J J = ,其中i J 为形如(3.5.1)的Jordan 块,由定理3.4.2和定理3.6.3知A 与J 有相同的不变因子和最小多项式,而由定理3.6.4知J 的最小多项式为1,,s J J 的最小多项式式的最小公倍式,因此i J 的最小多项式为()(1,,)i n i i s λλ-= 而1212(),(),,()s n n n s λλλλλλ--- 的最小公倍式是J 的第n 个不变因子()n d λ,因此A 的最小多项式就是A 的第n 个不变因子()n d λ.由定理3.5.3和定理3.6.5可得如下定理.定理 3.6.6 n 阶矩阵A 相似于对角矩阵的充分必要条件是A 的最小多项式()m λ没有重零点.例 3.6.2如果n 阶矩阵A 满足2A A =,则称A 为幂等矩阵.证明幂等矩阵A 一定相似于对角矩阵.证明2()ϕλλλ=-,则()ϕλ是A 的化零多项式,由定理3.6.2知A 的最小多项式()m λ整除()ϕλ,因为()0ϕλ=没有重根,所以()0m λ=也没有重根,据定理3.6.6知A 相似于对角矩阵.。
相似矩阵的必要条件1. 相似矩阵的必要条件之一就是它们的特征值得一样啊!就好比两个人都喜欢同一种口味的冰淇淋,这不是很重要的相似点嘛!比如矩阵 A 和矩阵 B,它们的特征值都是 1、2、3,那它们就可能是相似矩阵呀。
2. 相似矩阵的行列式值也是个关键条件呢!这就好像两个球队的实力相当,行列式值就是衡量它们的一个标准呀!像矩阵 C 和矩阵 D 的行列式值相同,那它们很可能有相似之处哦。
3. 相似矩阵的秩得一样哦!这就如同两个拼图,块数相同才有可能拼出相似的图案呀!比如矩阵 E 和矩阵 F 的秩都是 4,这可不是巧合呀。
4. 相似矩阵的迹也得一致呀!哎呀,这就好像两个人走路的脚印一样,如果痕迹相似,那说明有相似性呀!矩阵 G 和矩阵 H 的迹一样,这就是个重要线索呢。
5. 相似矩阵的特征多项式也得相同呀!这就好比两首歌的旋律一样,相似的旋律才让人觉得有联系呀!矩阵 I 和矩阵 J 的特征多项式相同,那它们可能很相似哟。
6. 相似矩阵的元素之间是不是也有某种关联呢?可不是嘛,就像朋友之间总有一些共同的喜好一样!矩阵 K 和矩阵 L 的某些元素呈现出一定的相似性,这就是个信号呀。
7. 相似矩阵对于线性变换的作用也得相似呀!这就好像两个工具,都能完成类似的任务呢!矩阵 M 和矩阵 N 在某些线性变换中表现相似,那它们可能是相似矩阵呢。
8. 相似矩阵的逆矩阵也可能有相似之处哦!哇塞,就像两个镜子,能反射出相似的景象呀!矩阵 O 和矩阵 P 的逆矩阵有相似的地方,这很值得研究呀。
9. 相似矩阵的对角化情况也得考虑呀!这就如同走不同的路却能到达同一个目的地一样神奇!矩阵 Q 和矩阵 R 的对角化情况相似,那它们可能是相似矩阵呢。
10. 相似矩阵的很多方面都得有共同点呀!这不是明摆着的嘛,就像双胞胎总会有很多相似的地方!矩阵 S 和矩阵 T 在好多方面都相似,那它们极有可能是相似矩阵呀!我的观点结论:相似矩阵确实有这些必要条件,通过这些方面的观察和分析,我们就能更好地判断矩阵是否相似啦!。