牛顿运动定律
- 格式:ppt
- 大小:2.08 MB
- 文档页数:37
第二章 牛顿运动定律(Newton’s Laws of Motion )§1 牛顿运动定律▲第一定律(惯性定律)(First law ,Inertia law ): 任何物体都保持静止或作匀速直线运动的状态,除非作用在它上面的力迫使它改变这种状态。
⎩⎨⎧概念定性给出了力与惯性的定义了“惯性系” 惯性系(inertial frame ):牛顿第一定律成立的参考系。
力是改变物体运动状态的原因,而并非维持物体运动状态的原因。
▲第二定律(Second lawF ρ:物体所受的合外力。
m :质量(mass ),它是物体惯性大小的量度,也称惯性质量(inertial mass )。
若m = const. ,则有:a m F ρρ= a ρ:物体的加速度。
第一定律▲第三定律(Third Law ):2112F F ρρ-=说明:1.牛顿定律只适用于惯性系;2.牛顿定律是对质点而言的,而一般物体可认为是质点的集合,故牛顿定律具有普遍意义。
Δ§2 SI 单位和量纲(书第二章第2节)Δ§3 技术中常见的几种力(书第二章第3节)Δ§4基本自然力(书第二章第4节)m 1 m 2 F 12 F 21§5 牛顿定律应用举例书第二章第2节的各个例题一定要认真看,下面再补充一例,同时说明作题要求。
已知:桶绕z轴转动,ω= const.水对桶静止。
求:水面形状(z - r关系)解:▲选对象:任选表面上一小块水为隔离体m ;▲看运动:m作匀速率圆周运动raρρ2ω-=;▲查受力:受力gmρ及Nρ,水面⊥Nρ(∵稳定时m受周围水及空气的切向合力为零);▲列方程:⎩⎨⎧-=-=-)2(sin)1(cos2rmNrmgNzωθθ向:向:θtg为z(r)曲线的斜率,由导数关系知:rzddtg=θ(3)由(1)(2)(3)得:rgrz2ddtgωθ==分离变量: r r gz d d 2ω= 积分: ⎰⎰=zz rr r g z 002d d ω得: 0222z r g z +=ω(旋转抛物面) 若已知不旋转时水深为h ,桶半径为R ,则由旋转前后水的体积不变,有: ⎰=⋅R h R r r z 02d 2ππ⎰=+Rh R r r z r g 02022d 2)2(ππω 得 g R h z 4220ω-=▲验结果: 0222z r g z +=ω ·单位:[2ω]=1/s 2 ,[r ]=m ,[g ]=m/s 2][m m/sm )/s 1(]2[2222z g ==⋅=ω,正确。
牛 顿 运 动 定 律1、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态为止。
(1)运动是物体的一种属性,物体的运动不需要力来维持;(2)它定性地揭示了运动与力的关系,即力是改变物体运动状态的原因,(运动状态指物体的速度)又根据加速度定义:tv a ∆∆=,有速度变化就一定有加速度,所以可以说:力是使物体产生加速度的原因。
(不能说“力是产生速度的原因”、“力是维持速度的原因”,也不能说“力是改变加速度的原因”。
);(3)定律说明了任何物体都有一个极其重要的属性——惯性;一切物体都有保持原有运动状态的性质,这就是惯性。
惯性反映了物体运动状态改变的难易程度(惯性大的物体运动状态不容易改变)。
质量是物体惯性大小的量度。
(4)牛顿第一定律描述的是物体在不受任何外力时的状态。
而不受外力的物体是不存在的,牛顿第一定律不能用实验直接验证,因此它不是一个实验定律(5)牛顿第一定律是牛顿第二定律的基础,物体不受外力和物体所受合外力为零是有区别的,所以不能把牛顿第一定律当成牛顿第二定律在F =0时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。
2、牛顿第二定律:物体的加速度跟作用力成正比,跟物体的质量成反比。
公式F=ma.(1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律研究其效果,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础;(2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,力的瞬时效果是加速度而不是速度;(3)牛顿第二定律是矢量关系,加速度的方向总是和合外力的方向相同的,可以用分量式表示,Fx =max,Fy=may, 若F为物体受的合外力,那么a表示物体的实际加速度;若F为物体受的某一个方向上的所有力的合力,那么a表示物体在该方向上的分加速度;若F为物体受的若干力中的某一个力,那么a仅表示该力产生的加速度,不是物体的实际加速度。
牛顿运动定律及三大守恒定律小结一、牛顿运动定律1.牛顿第一运动定律2.牛顿第二定律:dtv m d dt p d F )( == 在低速运动的条件下,a m dtvd m F == 在平面直角坐标系中,其投影式为:22dt x d m dt dv m ma F x x x ===,22dt yd m dt dv m ma F y y y === 在自然坐标系中,其投影式为dt dv m ma F ==ττ,ρ2v m ma F n n ==4.牛顿第三定律:2112f f-=二、动量守恒2.质点的动量定理:1212v m v m p p I-=-=在直角坐标系中的投影式为:x x t t x x mv mv dt f I 1221-==⎰,y y t t y y mv mv dt f I 1221-==⎰3.质点系的动量定理:P d dt F =,式中,∑=ii F F 为系统所受合外力,∑=ii P P为系统的总动量。
4.动量守恒定律,如果系统受合外力为零,即0==∑ii F F ,常矢量===∑∑ii i ii v m P P动量守恒定律的分量式:如果系统在某个方向上受合外力为零,如0==∑iixx FF ,则系统在该方向上的动量保持不变,常量===∑∑iixi iix x vm P P .5.碰撞,碰撞前后系统总动量保持不变的碰撞称为弹性碰撞,两物体碰撞后连成一体,具有相同速度的碰撞称为完全非弹性碰撞。
三、机械能守恒1.功:r d F dA ⋅=,⎰⋅=b ar d F A,功率 v F p ⋅=2.质点的动能定理:ka kb E E A -= 质点系动能定理,ka kb E E A -=+内外A3.作用力与反作用力的功: ⎰⋅=bar d f A 21214.保守力,作功与路径无关的力称为保守力。
⎰=⋅0r d f保守5.势能。
P E A ∆-=保重力势能 m g h E P =重;万有引力势能 r GmM E P 1-=引;弹性势能 221kx E P =弹 6.系统的功能原理:a b E E A A -=+非保内外7.机械能守恒定律:如果0=+非保内外A A ,则常量=+=P K E E E 四、角动量守恒1.质点的角动量:p r v m r L⨯=⨯=质点组的角动量:i i ii i i ip r v m r L⨯=⨯=∑∑2.质点所受的力矩:F r M⨯=质点系所受的力矩:外外i i iF r M⨯=∑3. 角动量定理质点的角动量定理: dt Ld M =质点系的角动量定理:dtLd M=外4.角动量守恒定律质点的角动量守恒定律:如果0=M ,则0=dtLd,亦即常量=L 质点系的角动量守恒定律:如果0=外M ,则0=dtLd,亦即常量=⨯=⨯=∑∑i i ii i i ip r v m r L。
牛顿运动定律1、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态为止。
(1)运动是物体的一种属性,物体的运动不需要力来维持;(2)它定性地揭示了运动与力的关系,即力是改变物体运动状态的原因,(运动状态指物体的速度)又根据加速度定义:t v a ∆∆=,有速度变化就一定有加速度,所以可以说:力是使物体产生加速度的原因。
(不能说“力是产生速度的原因”(3量度。
(4(52(1(2)(3,F y =ma y ,若F 那么a 表示物体在该方向上的分加速度;若F 为物体受的若干力中的某一个力,那么a 仅表示该力产生的加速度,不是物体的实际加速度。
(4)牛顿第二定律F=ma 定义了力的基本单位——牛顿(使质量为1kg 的物体产生1m/s 2的加速度的作用力为1N,即1N=1kg.m/s 2.(5)应用牛顿第二定律解题的步骤: ①明确研究对象。
②对研究对象进行受力分析。
同时还应该分析研究对象的运动情况(包括速度、加速度),并把速度、加速度的方向在受力图旁边画出来。
③若研究对象在不共线的两个力作用下做加速运动,一般用平行四边形定则(或三角形定则)解题;若研究对象在不共线的三个以上的力作用下做加速运动,一般用正交分解法解题(注意灵活选取坐标轴的方向,既可以分解力,也可以分解加速度)。
④当研究对象在研究过程的不同阶段受力情况有变化时,那就必须分阶段进行受力分析,分阶段列方程求解。
3、牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一直线上。
理解要点:(1)作用力和反作用力相互依赖性,它们是相互依存,互以对方作为自已存在的前提;(2)作用力和反作用力的同时性,它们是同时产生、同时消失,同时变化,不是先有作用力后有反作用力;V^2-V0^2=2axT=2x/a^1/2V=v0+at,x=v0t+1/2at^2二、解析典型问题问题1:必须弄清牛顿第二定律的矢量性。
牛顿运动定律微分方程一、引言牛顿运动定律是描述物体在力作用下运动规律的基本定律,而微分方程则是数学工具中描述变化和关系的重要方法之一。
本文将结合牛顿运动定律,探讨其微分方程形式及其应用。
二、牛顿运动定律回顾牛顿运动定律是牛顿力学的核心内容,包括三个定律:1. 第一定律,也称为惯性定律,指出物体在没有外力作用时保持匀速直线运动或静止状态。
2. 第二定律,也称为运动定律,表明物体受到的力与其加速度成正比,且与物体的质量成反比。
3. 第三定律,也称为作用-反作用定律,指出两个物体之间的相互作用力大小相等、方向相反。
三、牛顿运动定律的微分方程形式根据牛顿运动定律可推导出微分方程形式,以描述物体在力作用下的运动。
1. 对于一维运动,根据第二定律可得到:F = ma = m(dv/dt),其中F为作用在物体上的力,m为物体的质量,a为物体的加速度,v为物体的速度,t为时间。
该方程可以进一步变换为:F = m(d^2x/dt^2),其中x为物体的位移。
这是物体在一维情况下的牛顿运动定律微分方程形式。
2. 对于二维或三维运动,可将物体的运动分解为各个方向上的独立运动,并分别应用牛顿运动定律得到相应的微分方程。
四、牛顿运动定律微分方程的应用牛顿运动定律微分方程在物理学和工程学中有广泛的应用,以下是几个常见的应用领域:1. 力学研究:通过解牛顿运动定律微分方程,可以研究物体在不同力作用下的运动规律,例如自由落体、抛体运动等。
2. 振动系统:振动系统中的物体受到弹簧力或重力的作用,可以通过牛顿运动定律微分方程描述其振动过程,如简谐振动、受阻尼力作用的振动等。
3. 电路分析:电路中的元件受到电压和电流的作用,可以通过牛顿运动定律微分方程描述电路中元件的响应,如电感、电容和电阻等元件的电流和电压关系。
4. 控制系统:控制系统中的物体受到外部控制力的作用,可以通过牛顿运动定律微分方程描述其动态响应,如机械控制系统、自动驾驶系统等。
牛顿运动定律知识点的总结大全牛顿运动定律必背知识点1.牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种运动状态为止。
(1)运动是物体的一种属性,物体的运动不需要力来维持。
(2)定律说明了任何物体都有惯性。
(3)不受力的物体是不存在的。
牛顿第一定律不能用实验直接验证。
但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的。
它告诉了人们研究物理问题的另一种新方法:通过观察大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律。
(4)牛顿第一定律是牛顿第二定律的基础,不能简单地认为它是牛顿第二定律不受外力时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。
2.惯性:物体保持匀速直线运动状态或静止状态的性质。
(1)惯性是物体的固有属性,即一切物体都有惯性,与物体的受力情况及运动状态无关。
因此说,人们只能"利用"惯性而不能"克服"惯性。
(2)质量是物体惯性大小的量度。
3.牛顿第二定律:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同,表达式F合=ma(1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础。
(2)对牛顿第二定律的数学表达式F合=ma,F合是力,ma是力的作用效果,特别要注意不能把ma看作是力。
(3)牛顿第二定律揭示的是力的瞬间效果。
即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬间效果是加速度而不是速度。
(4)牛顿第二定律F合=ma,F合是矢量,ma也是矢量,且ma与F合的方向总是一致的。
F合可以进行合成与分解,ma也可以进行合成与分解。
4.牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一直线上。
牛顿运动定律
牛顿运动定律是牛顿力学中最基本的定律之一,包括三条:
第一定律:一物体将保持静止或匀速直线运动,直到外力强制它改变其状态为止。
第二定律:当一个力施加在一物体上时,它将导致物体产生加速度,其大小和方向与施加力的大小和方向成正比。
第三定律:任何物体之间的相互作用力均为相等而反向的两个力,即所谓的“作用力”和“反作用力”。
这些定律描述了物体如何受力和运动,并为牛顿力学提供了基本原理和数学工具。
它们被应用于许多领域,如机械工程、天文学、航空航天和物理学等。
牛顿三大运动定律牛顿力学三大定律分别是:惯性定律、加速度定律和作用力与反作用力定律。
介绍如下:1、惯性定律任何物体都保持静止或匀速直线运动的状态,直到受到其它物体的作用力迫使它改变这种状态为止。
说明:物体都有维持静止和作匀速直线运动的趋势,因此物体的运动状态是由它的运动速度决定的,没有外力,它的运动状态是不会改变的。
物体的这种性质称为惯性。
所以牛顿第一定律也称为惯性定律。
第一定律也阐明了力的概念。
明确了力是物体间的相互作用,指出了是力改变了物体的运动状态。
因为加速度是描写物体运动状态的变化,所以力是和加速度相联系的,不是和速度相联系的。
在日常生活中不注意这点,往往容易产生错觉。
注意:牛顿第一定律并不是在所有的参照系里都成立,实际上它只在惯性参照系里才成立。
因此常常把牛顿第一定律是否成立,作为一个参照系是否惯性参照系的判据。
2、加速度定律物体在受到合外力的作用会产生加速度,加速度的方向和合外力的方向相同,加速度的大小正比于合外力的大小与物体的惯性质量成反比。
加速度定律定量描述了力作用的效果,定量地量度了物体的惯性大小。
它是矢量式,并且是瞬时关系。
要强调的是:物体受到的合外力,会产生加速度,可能使物体的运动状态或速度发生改变,但是这种改变是和物体本身的运动状态有关的。
真空中,由于没有空气阻力,各种物体因为只受到重力,则无论它们的.质量如何,都具有的相同的加速度。
因此在做自由落体时,在相同的时间间隔中,它们的速度改变是相同的。
3、作用力与反作用定律两个物体之间的作用力和反作用力,在同一条直线上,大小相等,方向相反。
说明:要改变一个物体的运动状态,必须有其它物体和它相互作用。
物体之间的相互作用是通过力体现的。
并且指出力的作用是相互的,有作用必有反作用力。
它们是作用在同一条直线上,大小相等,方向相反。
另需要注意:作用力和反作用力是没有主次、先后之分。
同时产生、同时消失。
这一对力是作用在不同物体上,不可能抵消。
牛顿运动定律牛顿第一定律牛顿第三定律基础知识归纳1.牛顿第一定律(1)内容:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态.(2)牛顿第一定律的意义①指出了一切物体都有惯性,因此牛顿第一定律又称惯性定律.②指出力不是维持物体运动的原因,而是改变物体运动状态的原因,即力是产生加速度的原因.(3)惯性①定义:物体具有保持原来匀速直线运动状态或静止状态的性质.②量度:质量是物体惯性大小的唯一量度,质量大的物体惯性大,质量小的物体惯性小.③普遍性:惯性是物体的固有属性,一切物体都有惯性.2.牛顿第三定律(1)作用力和反作用力:两个物体之间的作用总是相互的,一个物体对另一个物体施加了力,另一个物体一定同时对这个物体也施加了力.(2)内容:两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上.(3)物理意义:建立了相互作用的物体之间的联系及作用力与反作用力的相互依赖关系.4.作用力与反作用力的“四同”和“三不同”四同:(1)大小相同(2)方向在同一直线上(3)性质相同(4)出现、存在、消失的时间相同三不同:(1)方向不同(2)作用对象不同(3)作用效果不同典例精析1.牛顿第一定律的应用、【例1】如图所示,在一辆表面光滑的小车上,有质量分别为mm2的两个小球(m1>m2)随车一起匀速运动,当车停止时,如不考虑其他阻力,设车足够长,则两个小球()A.一定相碰B.一定不相碰C.不一定相碰D.难以确定是否相碰,因为不知小车的运动方向2.对惯性概念的理解【例2】做匀速直线运动的小车上,水平放置一密闭的装有水的瓶子,瓶内有一气泡,如图所示,当小车突然停止运动时,气泡相对于瓶子怎样运动?(1)若在瓶内放一小软木块,当小车突然停止时,软木块相对于瓶子怎样运动?(2)若在瓶内放一小铁块,又如何?3.作用力与反作用力和平衡力的区别【例3】如图所示,在台秤上放半杯水,台秤示数为G′=50 N,另用挂在支架上的弹簧测力计悬挂一边长a=10 cm的金属块,金属块的密度ρ=3×103kg/m3,当把弹簧测力计下的金属块平稳地浸入水中深b=4 cm时,弹簧秤和台秤示数分别为多少?(水的密度是ρ水=103 kg/m3,取g=10 m/s2)【例4】关于马拉车时马与车的相互作用,下列说法正确的是()A.马拉车而车未动,马向前拉车的力小于车向后拉马的力B.马拉车只有匀速前进时,马向前拉车的力才等于车向后拉马的力C.马拉车加速前进时,马向前拉车的力大于车向后拉马的力D.无论车是否运动、如何运动,马向前拉车的力都等于车向后拉马的力牛顿第二定律力学单位制基础知识归纳1.牛顿第二定律(1)内容:物体的加速度与所受合外力成正比,跟物体的质量成反比.(2)表达式:F=ma.(3)力的单位:当质量m的单位是kg、加速度a的单位是m/s2时,力F的单位就是N,即1 kg•m/s2=1 N.(4)物理意义:反映物体运动的加速度大小、方向与所受合外力的关系,且这种关系是瞬时的.(5)适用范围:①牛顿第二定律只适用于惯性参考系(相对地面静止或匀速直线运动的参考系).②牛顿第二定律只适用于宏观物体(相对于分子、原子)、低速运动(远小于光速)的情况.2.单位制单位制:由基本单位和导出单位一起组成了单位制.①基本单位:基本物理量的单位.力学中的基本物理量有三个,它们是长度、质量、时间;它们的国际单位分别是米、千克、秒.②导出单位:由基本量根据物理关系推导出来的其他物理量的单位.3.力和运动关系的分析分析力和运动关系问题时要注意以下几点:1.物体所受合力的方向决定了其加速度的方向,合力与加速度的大小关系是F合=ma,只要有合力,不管速度是大还是小,或是零,都有加速度,只有合力为零时,加速度才能为零,一般情况下,合力与速度无必然的联系,只有速度变化才与合力有必然的联系.2.合力与速度同向时,物体加速,反之则减速.3.物体的运动情况取决于物体受的力和物体的初始条件(即初速度),尤其是初始条件是很多同学最容易忽视的,从而导致不能正确地分析物体的运动过程.典例精析1.瞬时性问题分析【例1】如图甲所示,一质量为m的物体系于长度分别为L1、L2的两根细线上,L1的一端悬挂在天花板上,与竖直方向夹角为θ,L2水平拉直,物体处于平衡状态.(1)现将L2线剪断,求剪断瞬间物体的加速度;(2)若将图甲中的细线L1改为质量不计的轻弹簧而其余情况不变,如图乙所示,求剪断L2线瞬间物体的加速度.【拓展1】如图所示,弹簧S1的上端固定在天花板上,下端连一小球A,球A与球B之间用线相连.球B与球C之间用弹簧S2相连.A、B、C的质量分别为m A、m B、m C,弹簧与线的质量均不计.开始时它们都处于静止状态.现将A、B间的线突然剪断,求线刚剪断时A、B、C的加速度.2.应用牛顿第二定律解题的基本方法【例2】一物体放置在倾角为θ的斜面上,斜面固定于加速上升的电梯中,加速度为a,如图所示,在物体始终相对于斜面静止的条件下,下列说法正确的是()A.当θ一定时,a越大,斜面对物体的正压力越小B.当θ一定时,a越大,斜面对物体的摩擦力越大C.当a一定时,θ越大,斜面对物体的正压力越小D.当a一定时,θ越大,斜面对物体的摩擦力越小【拓展2】风洞实验中可产生水平方向的、大小可以调节的风力,先将一套有小球的细杆放入风洞实验室,小球孔径略大于细杆直径,如图所示.(1)当杆在水平方向上固定时,调节风力的大小,使小球在杆上匀速运动,这时所受风力为小球所受重力的0.5倍,求小球与杆的动摩擦因数;(2)保持小球所受风力不变,使杆与水平方向间夹角为37°并固定,则小球从静止出发在细杆上滑下距离x的时间为多少.(sin 37°=0.6,cos 37°=0.8)易错门诊3.力和运动的关系【例3】如图所示,弹簧左端固定,右端自由伸长到O点并系住物体m,现将弹簧压缩到A点,然后释放,物体一直可以运动到B点,如果物体受到的摩擦力恒定,则()A.物体从A到O加速,从O到B减速B.物体从A到O速度越来越小,从O到B加速度不变C.物体从A到O间先加速后减速,从O到B一直减速运动D.物体运动到O点时所受合力为零牛顿运动定律的应用重点难点突破一、动力学两类基本问题的求解思路两类基本问题中,受力分析是关键,求解加速度是桥梁和枢纽,思维过程如下:二、用牛顿定律处理临界问题的方法1.临界问题的分析思路解决临界问题的关键是:认真分析题中的物理情景,将各个过程划分阶段,找出各阶段中物理量发生突变或转折的“临界点”,然后分析出这些“临界点”应符合的临界条件,并将其转化为物理条件.2.临界、极值问题的求解方法(1)极限法:在题目中如出现“最大”、“最小”、“刚好”等词语时,一般隐含着临界问题,处理此类问题时,应把物理问题(或过程)推向极端,从而使临界现象(或状态)暴露出来,达到尽快求解的目的.(2)假设法:有些物理过程中没有明显出现临界问题的线索,但在变化过程中可能出现临界问题,也可能不出现临界问题,解答此类题目,一般采用假设法.此外,我们还可以应用图象法等进行求解.典例精析1.动力学基本问题分析【例1】在光滑的水平面上,一个质量为200 g的物体,在1 N的水平力F作用下由静止开始做匀加速直线运动,2 s后将此力换为相反方向的1 N的力,再过2 s将力的方向再反过来……这样物体受到的力大小不变,而力的方向每过2 s改变一次,求经过30 s物体的位移.【拓展1】质量为40 kg的雪橇在倾角θ=37°的斜面上向下滑动(如图甲所示),所受的空气阻力与速度成正比.今测得雪橇运动的v-t图象如图乙所示,且AB是曲线的切线,B点坐标为(4,15),CD是曲线的渐近线.试求空气的阻力系数k和雪橇与斜坡间的动摩擦因数μ.2.临界、极值问题【例2】如图所示,一个质量为m=0.2 kg的小球用细绳吊在倾角为θ=53°的光滑斜面上,当斜面静止时,绳与斜面平行.当斜面以10 m/s2的加速度向右做加速运动时,求绳子的拉力及斜面对小球的弹力.【拓展2】如图所示,长L=1.6 m,质量M=3 kg的木板静放在光滑水平面上,质量m=1 kg的小物块放在木板的右端,木板和物块间的动摩擦因数μ=0.1.现对木板施加一水平向右的拉力F,取g=10 m/s2,求:(1)使物块不掉下去的最大拉力F;(2)如果拉力F=10 N恒定不变,小物块的所能获得的最大速度.易错门诊3.多过程问题分析【例3】如图,有一水平传送带以2 m/s的速度匀速运动,现将一物体轻轻放在传送带上,若物体与传送带间的动摩擦因数为0.5,则传送带将该物体传送10 m的距离所需时间为多少?(取重力加速度g=10 m/s2)超重与失重整体法和隔离法基础知识归纳1.超重与失重和完全失重(1)实重和视重①实重:物体实际所受的重力,它与物体的运动状态无关.②视重:当物体在竖直方向上有加速度时,物体对弹簧测力计的拉力或对台秤的压力将不等于物体的重力.此时弹簧测力计的示数或台秤的示数即为视重.(2)超重、失重和完全失重的比较现象实质超重物体对支持物的压力或对悬挂物的拉力大于自身重力的现象系统具有竖直向上的加速度或加速度有竖直向上的分量失重物体对支持物的压力或对悬挂物的拉力小于自身重力的现象系统具有竖直向下的加速度或加速度有竖直向下的分量完全失重物体对支持物的压力或对悬挂物的拉力等于零的现象系统具有竖直向下的加速度,且a=g2.连接体问题(1)连接体两个或两个以上存在相互作用或有一定关联的物体系统称为连接体,在我们运用牛顿运动定律解答力学问题中常会遇到.(2)解连接体问题的基本方法整体法:把两个或两个以上相互连接的物体看成一个整体,此时不必考虑物体之间的内力.隔离法:当求物体之间的作用力时,就需要将各个物体隔离出来单独分析.解决实际问题时,将隔离法和整体法交叉使用,有分有合,灵活处理.典例精析1.超重和失重现象【例1】升降机由静止开始上升,开始2 s 内匀加速上升8 m ,以后3 s 内做匀速运动,最后2 s 内做匀减速运动,速度减小到零.升降机内有一质量为250 kg 的重物,求整个上升过程中重物对升降机的底板的压力,并作出升降机运动的v-t 图象和重物对升降机底板压力的F-t 图象.(g 取10 m/s 2)【拓展1】如图所示,小球的密度小于杯中水的密度,弹簧两端分别固定在杯底和小球上.静止时弹簧伸长Δx .若全套装置自由下落,则在下落过程中弹簧的伸长量将( D )A.仍为ΔxB.大于ΔxC.小于Δx ,大于零D.等于零2.整体法和隔离法的应用【例2】如图所示,质量为m =1 kg 的物块放在倾角为θ的斜面上,斜面体质量为M =2 kg ,斜面与物块间的动摩擦因数μ=0.2,地面光滑,θ=37°.现对斜面体施一水平推力F ,要使物块m 相对斜面静止,力F 应为多大?(设物块与斜面间的最大静摩擦力等于滑动摩擦力,g 取10 m/s 2)3.整体运用牛顿第二定律【例3】如图所示,倾角α=30°、质量M =34 kg 的斜面体始终停在粗糙的水平地面上,质量m A =14 kg 、m B =2 kg 的物体A 和B ,由细线通过定滑轮连接.若A 以a =2.5 m/s 2的加速度沿斜面下滑,求此过程中地面对斜面体的摩擦力和支持力各是多少?易错门诊【例4】如图所示,一个质量为M 、倾角为30°的光滑斜面体放在粗糙水平桌面上,质量为m 的小木块从斜面顶端无初速度滑下的过程中,斜面体静止不动.则下列关于此斜面体对水平桌面压力F N的大小和桌面对斜面体摩擦力F f 的说法正确的( )A.F N =Mg +mgB.F N =Mg +43mg C.F f 方向向左,大小为23mg D.F f 方向向左,大小为43mg。