材料的基本性质
- 格式:pdf
- 大小:99.03 KB
- 文档页数:3
材料基本性质1吸水性与吸湿性:材料在水中通过毛细孔隙吸收水分的性质是吸水性,材料在潮湿空气中吸收水分的性质是吸潮性。
2强度:材料在外力作用下抵抗破坏的能力3亲水性与憎水性:材料与水接触,能被水润湿的性质是亲水性,不能被水润湿是憎水性4脆性材料与韧性材料:材料受外力作用,当外力达到一定限度后,材料突然破坏,但破坏坏时没有明显塑性变形的性质,是脆性材料。
材料在冲击或振动荷载作用下,能吸收较大能量,产生较大变形而不至破坏的性质,称材料的韧性。
5耐水性及软化系数:材料长期在饱和水作用下不破坏,同时强度也不显著降低的性质为耐水性6胶体结构:物质以及其微小的颗粒分散在连续相介质中形成的结构7空隙特征:按空隙大小可分:微小空隙,细小空隙,粗大空隙,按常压下水能否进入孔隙中,可分:开口孔隙,闭口孔隙。
开口孔隙中彼此贯通的孔隙是连同孔。
8气硬性胶凝材料:只能在空气中硬化,也只能在空气中保持或发展其强度。
如石膏,石灰。
9石灰的熟化:指将生石灰加水,反应生成消石灰的过程。
10石灰的陈伏:为了消除熟石灰中过火石灰颗粒的危害,石灰浆应在储灰坑中静置2周以上再使用,此过程称为陈伏11建筑石膏:将天然二水石膏置于炉窑煅烧,得到& 型结晶的半水石膏,再经磨细,得到白色粉状物称建筑石膏。
12活性混合材料:为改善水泥性能,调节水泥等级的材料。
加入后不仅能在空气中硬化,而且能在水中继续硬化,并生成水硬性胶凝材料的水化材料。
13水泥的初凝及终凝:自加水时起至水泥浆开始失去可塑性所需的时间称初凝时间。
自加水起至水泥浆完全失去可塑性为终凝时间。
14水泥的体积安定性:水泥在凝结硬化过程中体积变化的均匀性。
15硅盐酸水泥:适当成分的生料,(石灰质原料)(黏土质原料)校正原料)烧至部分熔融,所得以硅酸钙为主要成分的水泥熟料,并掺入约0~5%的石灰石或粒化高炉矿渣,适量石膏,磨细制成的水硬性胶凝材料。
16级配:指沙子大小不同的颗粒搭配的比例情况。
材料的基本性质材料的基本性质是指材料具有的一些普遍的特性,这些特性影响着材料的使用和性能。
以下是材料的一些基本性质。
1. 密度:密度是材料单位体积的质量,通常以克/立方厘米计算。
不同材料的密度差异很大,如金属材料通常较重,而塑料和泡沫材料通常较轻。
密度会影响材料的重量以及材料所占空间的大小。
2. 强度:强度是材料抵抗外部力量的能力。
不同材料的强度差异很大,大多数金属材料具有高强度,而塑料和木材等材料的强度较低。
强度对材料的耐用性和承载能力非常重要。
3. 刚度:刚度是材料抵抗形变的能力,即材料受力时的弹性恢复能力。
刚度与材料的弹性模量密切相关,刚度越高,材料越不容易发生形变。
金属材料通常具有较高的刚度,而橡胶等弹性材料具有较低的刚度。
4. 耐磨性:材料的耐磨性指的是材料抵抗磨损的能力。
耐磨性是材料在与其他表面摩擦时不容易磨损的特性,对于需要长时间使用的材料,耐磨性非常重要。
5. 导热性:导热性是材料传导热量的能力。
金属材料通常是很好的导热材料,可以快速传导热量,而绝缘材料如塑料则具有较低的导热性。
6. 导电性:导电性是指材料导电的能力。
金属是优秀的导电材料,而塑料等绝缘材料则是不导电的。
导电性对于电子器件等应用非常重要。
7.化学惰性:化学惰性是指材料对化学物质不容易发生化学反应的特性。
化学惰性材料对化学腐蚀和化学反应具有较强的耐受能力。
8. 可加工性:可加工性是指材料经过适当的工艺流程能够制成所需形状和尺寸的能力。
不同材料的可加工性差异很大,金属材料通常是易于加工的,而陶瓷等脆性材料则较难加工。
9. 可塑性:可塑性是指材料具有在外力作用下发生塑性变形的能力,即材料能够被拉伸和压缩而不破裂。
金属材料通常具有较好的可塑性,而脆性材料如玻璃则具有较差的可塑性。
以上是材料的一些基本性质,不同材料在这些性质上的差异也是材料选择和应用的重要依据。
期末复习提纲1、材料的基本性质包括物理性质、力学性质与耐久性。
2、材料的四种含水状态包括完全干燥(烘干)状态、风干(气干)状态、饱和面干(表干)状态、潮湿(湿润)状态。
3、材料的亲水性和憎水性以润湿角θ 来判定,当θ≤90° 时为亲水性,90°<θ <180° 时为憎水性。
4、材料在潮湿空气中吸收空气中水分的性质称为材料的吸湿性。
5、材料的软化系数在0 ~ 1之间波动,轻微受潮或受水浸泡的次要建筑物需选用K软>0.75的材料,用于长期受水浸泡或处于潮湿环境中的材料,若其处于重要结构,则需选用K软>0.85的材料。
6、材料的冻融循环通常指采用-15°C 温度冻结后,再在20°C 的水中融化的过程。
7、对经常受压力水作用的工程所用材料及防水材料应进行抗渗性检验。
8、材料的导热系数越大,导热性越好,保温隔热效果越差。
9、热容量是形容材料加热时吸收热,冷却时放出热量的性质。
10、耐热性的研究包含(1)受热变质、(2)受热变形。
材料耐燃性按耐火要求规定分为非燃烧材料、难燃烧材料、燃烧材料三大类。
11、材料的力学性质包括强度、弹性、塑性、冲击韧性、脆性。
12、材料的强度大小可根据强度值大小,划分为若干标号或强度等级,强度的单位是N/mm 2或MPa 。
13、弹性的特点是外力和变形成正比例关系。
14、材料在外力作用下产生变形,当外力撤去后,仍保持变形后的形状和大小并且不产生裂缝的性质称为塑性。
15、脆性材料的特点是塑性变形小,抗压强度远大于抗拉强度。
16、材料抵抗冲击振动作用能够承受较大变形而不发生突发性破坏的性质称为材料的冲击韧性或韧性。
17、过火石灰的特点煅烧温度过高,CaO结构致密。
处理方法是陈伏。
18、欠火石灰的特点煅烧温度过低,CaCO3未完全分解。
处理方法是废渣排除。
19、石灰陈伏目的是为了保证过火石灰完全熟化。
陈伏时间要求两周以上。
密度:材料在绝对密实状态下单位体积的质量
表观密度:材料在自然状态下单位体积的质量
堆积密度:散粒状或粉状材料在自然堆积下单位体积的质量
孔隙率:材料内部孔隙体积占材料总体积的百分率,用P表示
强度、吸水性、抗渗性、抗冻性、导热性、吸声性等与孔隙率有关
开口孔隙增多会使材料的吸水性、吸湿性、透水性、吸声性提高,抗冻性和抗渗性变差,闭口孔隙增多会提高保温隔热性能和耐久性
空隙率:散粒状或粉状材料颗粒之间的空隙体积占其自然堆积体积的百分率
以上称之为材料的基本物理性质
水分的吸入会使材料体积膨胀、保温性能下降、强度降低、抗冻性变差
耐水性:材料长期在饱和水作用下而不破坏,强度也不显著降低的性质
软化系数大于0.8的材料称为耐水材料。
对于经常位于水中或处于潮湿环境中的重要建筑物所选用的材料要求其软化系数不低于0.85,对于受潮较轻或次要结构所用的材料不小于0.75 通常将λ≤0.23的材料称为绝热材料,导热系数越小,材料的隔热性能越好
强度:材料在外力作用下抵抗破坏的能力
材料的静力强度分为抗压、抗拉、抗弯、抗剪
影响材料强度的因素:试件端部约束情况、试件的尺寸和形状、加荷速度、承压面的平整度、试验环境的温湿度
比强度:按单位质量计算的材料的强度,其值等于材料的强度与其表观密度之比
弹性:材料在外力作用下产生变形。
外力取笑后,材料变形即可消失并能完全恢复原来形状的性质
塑形:材料在外力作用下产生变形。
外力取笑后,仍保持变形后的形状尺寸,且不产生裂纹的性质
耐久性:材料在使用过程中抵抗各种自然因素及其他有害物质长期作用,能长久保持其原有性质的能力。
是衡量材料在长期使用条件下的安全性能的一项综合指标。
材料的基本性质材料是构成物质世界的基本元素,它的性质直接影响着物体的特性和用途。
材料的基本性质包括物理性质、化学性质和力学性质等多个方面。
下面我们将对材料的基本性质进行详细介绍。
首先,我们来谈谈材料的物理性质。
物理性质是指材料在不改变其化学组成的情况下所表现出来的性质,包括颜色、形状、密度、热导率、电导率等。
这些性质直接影响着材料的外观和热电性能,对于材料的选择和应用具有重要意义。
例如,金属材料通常具有良好的导电性和导热性,适用于制作电子元器件和散热器材料;而塑料材料具有较低的密度和良好的耐腐蚀性,适用于制作轻量化产品和化工容器等。
其次,化学性质是材料的另一个重要方面。
材料的化学性质包括其与其他物质发生化学反应的能力和倾向,以及其在不同环境下的稳定性和耐久性。
不同材料具有不同的化学性质,这直接决定了材料在特定环境和条件下的使用寿命和安全性。
例如,金属材料在潮湿的环境中容易发生腐蚀,而聚合物材料在高温环境中容易发生老化和变形。
最后,力学性质是材料的又一重要方面。
力学性质包括材料的强度、硬度、韧性、延展性等,这些性质直接影响着材料的机械性能和耐久性。
不同材料具有不同的力学性质,这决定了材料在受力状态下的表现和应用范围。
例如,钢材具有较高的强度和硬度,适用于制作机械零件和建筑结构;而橡胶材料具有良好的韧性和延展性,适用于制作密封件和减震材料。
综上所述,材料的基本性质包括物理性质、化学性质和力学性质等多个方面,这些性质直接影响着材料的特性和用途。
了解和掌握材料的基本性质,有助于我们选择合适的材料并合理应用,从而提高产品质量和降低成本,促进科技进步和社会发展。
希望本文对您有所帮助,谢谢阅读!。
材料的基本性质
材料是构成物质世界的基本组成部分,其基本性质对于材料的应用和研究具有
重要意义。
材料的基本性质包括物理性质、化学性质和力学性质三个方面。
首先,物理性质是材料的固有属性,包括颜色、硬度、密度、导电性、热传导
性等。
这些性质直接影响材料的使用和加工。
例如,金属材料通常具有良好的导电性和热传导性,因此被广泛应用于电子设备和工程结构中。
另外,材料的硬度和密度也决定了其在工程中的使用范围,比如在汽车制造中,需要轻质且具有较高强度的材料来减轻车身重量并提高安全性能。
其次,化学性质是材料在化学反应中所表现出来的特性。
材料的化学性质直接
影响着其在不同环境中的稳定性和耐腐蚀性。
例如,金属材料在潮湿的环境中容易发生氧化反应,导致腐蚀;而聚合物材料则对酸碱等化学物质具有不同的耐受性。
因此,在材料的选择和设计中,必须考虑其化学性质以确保其在特定环境下的稳定性和耐用性。
最后,力学性质是材料在外力作用下所表现出来的性能。
包括弹性模量、屈服
强度、断裂韧性等。
这些性质直接决定了材料在工程结构中的承载能力和变形行为。
例如,在桥梁设计中,需要选择具有较高强度和韧性的材料来承受车辆和风力的作用,以确保结构的安全性和稳定性。
综上所述,材料的基本性质对于其在工程应用和科学研究中具有重要意义。
物
理性质、化学性质和力学性质三个方面相互作用,共同决定了材料的性能和行为。
因此,在材料的选择、设计和应用过程中,必须全面考虑其基本性质,以确保其能够满足特定的工程需求和使用环境。