初中数学沪科版第二章 走进代数开学考试考点.doc
- 格式:doc
- 大小:58.00 KB
- 文档页数:3
第一章数的整除1.1 整数和整除的意义1.在数物体的时候,用来表示物体个数的数1,2,3,4,5,……,叫做整数2.在正整数1,2,3,4,5,……,的前面添上“—”号,得到的数—1,—2,—3,—4,—5,……,叫做负整数3. 零和正整数统称为自然数4.正整数、负整数和零统称为整数5.整数a除以整数b,如果除得的商正好是整数而没有余数,我们就说a能被b整除,或者说b能整除a。
1.2 因数和倍数1.如果整数a能被整数b整除,a就叫做b倍数,b就叫做a的因数2.倍数和因数是相互依存的3.一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身4.一个数的倍数的个数是无限的,其中最小的倍数是它本身1.3能被2,5整除的数1.个位数字是0,2,4,6,8的数都能被2整除2.整数可以分成奇数和偶数,能被2整除的数叫做偶数,不能被2整除的数叫做奇数3.在正整数中(除1外),与奇数相邻的两个数是偶数4.在正整数中,与偶数相邻的两个数是奇数5.个位数字是0,5的数都能被5整除6. 0是偶数1.4 素数、合数与分解素因数1.只含有因数1及本身的整数叫做素数或质数2.除了1及本身还有别的因数,这样的数叫做合数3. 1既不是素数也不是合数4.奇数和偶数统称为正整数,素数、合数和1统称为正整数5.每个合数都可以写成几个素数相乘的形式,这几个素数都叫做这个合数的素因数6.把一个合数用素因数相乘的形式表示出来,叫做分解素因数。
7.通常用什么方法分解素因数: 树枝分解法,短除法1.5 公因数与最大公因数1.几个数公有的因数,叫做这几个数的公因数,其最大的一个叫做这几个数的最大公因数2.如果两个整数只有公因数1,那么称这两个数互素数3.把两个数公有的素因数连乘,所得的积就是这两个数的最大公因数4.如果两个数中,较小数是较大数的因数,那么这两个数的最大公因数较小的数5.如果两个数是互素数,那么这两个数的最大公因数是11.6公倍数与最小公倍数1.几个数公有的倍数,叫做这几个数的公倍数2.几个数中最小的公因数,叫做这几个数的最小公倍数3.求两个数的最小公倍数,只要把它们所有的公有的素因数和他们各自独有的素因数连乘,所得的积就是他们的最小公倍数4.如果两个数中,较大数是较小数的倍数,那么这两个数的最小公倍数是较大的那个数5.如果两个数是互素数,那么这两个数的最小公倍数是;两个数的乘积第二章分数2.1分数与除法1.一般地,两个正整数相除的商可用分数表示,即被除数÷除数= 被除数除数用字母表示为p÷q= pq(p、q为正整数)2.会用数轴上的点表示分数2.2 分数的基本性质1.分数的分子和分母同时乘以一个不为零的整数,分数的值不变2.分子分母只有公因数1的分数叫做最简分数3.把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分2.3 分数的比较大小1.同分母分数的大小只需要比较分子的大小,分子大的比较大,分子小的比较小2.通分的一般步骤是:(1)求公分母——求分母的最小公倍数;(2)根据分数的基本性质,将每个分数化成分母相同的分数。
第一章数的整除1。
1 整数和整除的意义1.在数物体的时候,用来表示物体个数的数1,2,3,4,5,……,叫做整数2.在正整数1,2,3,4,5,……,的前面添上“-”号,得到的数—1,-2,—3,—4,-5,……,叫做负整数3。
零和正整数统称为自然数4.正整数、负整数和零统称为整数5.整数a除以整数b,如果除得的商正好是整数而没有余数,我们就说a能被b整除,或者说b能整除a。
1.2 因数和倍数1.如果整数a能被整数b整除,a就叫做b倍数,b就叫做a的因数2.倍数和因数是相互依存的3.一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身4.一个数的倍数的个数是无限的,其中最小的倍数是它本身1。
3能被2,5整除的数1.个位数字是0,2,4,6,8的数都能被2整除2.整数可以分成奇数和偶数,能被2整除的数叫做偶数,不能被2整除的数叫做奇数3.在正整数中(除1外),与奇数相邻的两个数是偶数4.在正整数中,与偶数相邻的两个数是奇数5.个位数字是0,5的数都能被5整除6. 0是偶数1。
4 素数、合数与分解素因数1.只含有因数1及本身的整数叫做素数或质数2.除了1及本身还有别的因数,这样的数叫做合数3. 1既不是素数也不是合数4.奇数和偶数统称为正整数,素数、合数和1统称为正整数5.每个合数都可以写成几个素数相乘的形式,这几个素数都叫做这个合数的素因数6.把一个合数用素因数相乘的形式表示出来,叫做分解素因数。
7.通常用什么方法分解素因数:树枝分解法,短除法1。
5 公因数与最大公因数1.几个数公有的因数,叫做这几个数的公因数,其最大的一个叫做这几个数的最大公因数2.如果两个整数只有公因数1,那么称这两个数互素数3.把两个数公有的素因数连乘,所得的积就是这两个数的最大公因数4.如果两个数中,较小数是较大数的因数,那么这两个数的最大公因数较小的数5.如果两个数是互素数,那么这两个数的最大公因数是11。
2024年沪科版八年级数学上册知识点总结一、有理数的加减乘除运算1. 有理数的加法运算:同号相加,异号相减。
将分子分母化为最简整数形式,要注意约分。
2. 有理数的减法运算:减去一个数等于加上这个数的相反数。
3. 有理数的乘法运算:同号得正,异号得负。
将分子分母化为最简整数形式,要注意约分。
4. 有理数的除法运算:除以一个数等于乘以这个数的倒数。
5. 有理数的四则运算综合运用。
二、平方根与立方根1. 平方根:给定一个非负实数a,且a≥0,开根号的结果称为a的平方根。
记作√a。
2. 整数的平方根:如果一个整数的平方等于一个非负整数,那么这个非负整数就是该整数的平方根;否则,这个整数没有平方根。
3. 立方根:给定一个实数a,开立方根的结果称为a的立方根。
记作3√a。
三、带有根号的计算1. 同底数的相加相减:进行根号运算时,同底数的根号可以相加相减,底数不变。
2. 同底数的乘方:进行根号运算时,同底数的根号可以进行乘方运算,即合并同底数的指数。
3. 分数的根号运算:分子分母同时进行根号运算,然后约分,也可以先约分再进行根号运算。
四、代数式1. 代数式的定义:用字母表示数的式子,包含一个或多个字母和常数、运算符号组成。
2. 代数式的值:为了求代数式的值,需要给字母赋予特定的数值,将字母用数代替,然后进行计算。
3. 代数式的运算:常用的代数式运算有加法、减法、乘法和除法。
五、线性方程与方程的解1. 线性方程:只含有一次幂的方程称为线性方程。
2. 化简与解方程:对于方程要进行化简,恢复原来的形式,再解方程。
3. 解方程的方法:常用的解方程的方法有相加相减法、代入法、等式交换法和系数分离法。
六、百分数1. 百分数的概念:以分号“%”表示,百分数等于百分数的百分之一。
2. 百分数与小数的互相转化:将百分数转化为小数,就是将百分号去掉,除以100;将小数转化为百分数,就是乘以100再加上百分号。
3. 百分数的应用:常用的百分数应用有百分数的简化、比较大小和求百分数。
七年级上册∙第1章有理数o 1.1 天气预报中的数o 1.2 数轴o 1.3 有理数的大小o 1.4 有理数的加减(重点)o 1.5 有理数的乘除(重点)o 1.6 有理数的乘方(重点)o 1.7 近似数o同步练习o单元测试o本章综合∙第2章走进代数o 2.1 用字母表示数o 2.2 代数式(重点)o 2.3 整式加减(重点)o同步练习o单元测试o本章综合∙第3章一次方程与方程组(重点)o 3.1 一元一次方程及其解决方法o 3.2 二元一次方程组o 3.3 消元解方程组o 3.4 用一次方程(组)解决问题(难点)o同步练习o单元测试o本章综合∙第4章直线与角o 4.1 多彩的几何图案o 4.2 线段、射线、直线o 4.3 线段的长短比较o 4.4 角的表示与度量o 4.5 角的大小比较o 4.6 作线段与角o同步练习o单元测试o本章综合∙第5章数据处理o 5.1 数据的收集o 5.2 数据的整理o 5.3 统计图的选择o 5.4 从图表中获取信息o同步练习o单元测试o本章综合七年级下册∙第6章实数o 6.1 平方根、立方根o 6.2 实数o同步练习o单元测试o本章综合∙第7章一元一次不等式和不等式组(重点) o7.1 不等式及其基本性质o7.2 一元一次不等式o7.3 一元一次不等式组o同步练习o单元测试o本章综合∙第8章整式乘除和因式分解(重点)o8.1 冥的运算o8.2 整式乘除o8.3 平方差公式和完全平方公式o8.4 整式除法o8.5 因式分解(难点)o同步练习o单元测试o本章综合∙第9章分式(重点)o9.1 分式及其基本性质)o9.2 分式的运算o9.3 分式方程(难点)o同步练习o单元测试o本章综合∙第10章相交线、平行线和平移o10.1 相交线o10.2 平行线的判定o10.3 平行线的性质o10.4 平移o同步练习o单元测试o本章综合∙第11章(新)频数的分布o11.1 频数与频率o11.2 频数分布o同步练习o单元测试o本章综合∙第11章数据的集中趋势o11.1 平均数o11.2 中位数与众数o11.3 从部分看整体o同步练习o单元测试o本章综合八年级上册∙第12章平面直角坐标系o12.1 平面上的点坐标o12.2 图形在坐标中的平移o同步练习o单元测试o本章综合∙第13章一次函数(重点)o13.1 函数o13.2 一次函数(难点)o13.1 一次函数与一次方程、一次不等式o13.4 二元一次方程的图像解法o同步练习o单元测试o本章综合∙第14章三角形o14.1 三角形中的边角关系o14.2 命题与证明o同步练习o单元测试o本章综合∙第15章三角形的全等(重点)o15.1 全等三角形o15.2 三角形全等的判定(难点)o同步练习o单元测试o本章综合∙第16章轴对称图形和等腰三角形(重点) o16。
沪科版初中数学概念及知识点归纳沪科版初中数学概念及知识点归纳一、代数初步知识1、代数式:用字表示数或式。
2、方程:根据已知和未知量之间的关系,用等式表示的数学式。
3、一元一次方程:只有一个未知数,并且未知数的次数是1的方程。
4、一元二次方程:只有一个未知数,且未知数的最高次数是2的方程。
二、有理数1、有理数:整数和分数的统称,正数和负数的统称。
2、数轴:规定了原点、正方向和单位长度的直线。
3、相反数:绝对值相等,正负号相反的两个数互为相反数。
4、绝对值:数轴上表示一个数的点到原点的距离。
三、整式的加减1、单项式:数或字母的积组成的式子。
2、多项式:几个单项式的和组成的式子。
3、同类项:所含字母相同,且相同字母的指数也相同的项。
4、去括号法则:括号前是正号,去掉括号不变号,括号前是负号,去掉括号要变号。
5、合并同类项:把多项式中的同类项合并成一项。
四、一元一次方程1、等式的性质:等式两边加(或减)同一个数(或式子),结果仍得等式。
2、方程的解:使方程两边的值相等的未知数的值。
3、解方程:求方程的解的过程。
五、几何初步知识1、线段:直线上两点和它们之间的部分叫做线段。
2、距离:两点的连线段的长叫做这两点间的距离。
3、角:有公共端点的两条射线组成的图形叫做角。
4、余角和补角:互余、互补是指两个角的数量关系,与两个角的位置无关。
5、对顶角:有一个公共顶点并且有一条公共边的两个角互为对顶角。
六、三角形1、三角形:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2、三边关系定理:三角形任意两边的和大于第三边。
3、三角形内角和定理:三角形三个内角的和等于180度。
4、三角形分类:三角形按角分类有直角三角形、锐角三角形和钝角三角形;按边分类有等边三角形和等腰三角形。
七、全等三角形1、全等形:能够完全重合的两个图形叫做全等形。
2、全等三角形:全等形的特殊情况,它们的对应边相等,对应角相等。
3、判定全等三角形的条件:SSS、SAS、ASA、AAS。
初一数学寒假专题——走进代数某某科技版【本讲教育信息】一. 教学内容:寒假专题——走进代数[知识要点]1. 用字母表示数的意义①用字母表示数是从算术到代数的一个重大转变,为研究问题带来了方便。
②用字母表示数就是将表示基本数量关系的文字语言转化为数学语言,例如:“2πr ”简明、准确地表示圆周长的公式。
③用字母表示数的最大作用是能表示各种公式、定理、数学规律等。
2. 代数式用加、减、乘(乘方)、除等运算符号把数或表示数的字母连接而成的式子,叫做代数式。
如:2xy +1、34πr 3、2x 1y -+等都是代数式;单独的一个数或字母也是代数式,如:-5、π、a 等。
书写代数式有以下要求:(1)如果出现乘号,可以写成“•”或不写,数字与字母相乘时,数字写在字母前,如:90⨯n 写90n ,如果数字是带分数,应将带分数改写成假分数或小数,如:121⨯a 应写成23a 或,不能写成121a ,字母与字母相乘时,相同字母写成幂的形式,如:a •a 写成a 2,数字与数字相乘,“×”号不能省。
(2)如果式中出现除法,一般写成分数形式。
如s÷v 写成vs 。
(3)主体为和的形式,后有单位的要加括号。
如教材中:(2x +500)元,而不能写成2x +500元。
3. 列代数式:把与数量有关的词语,用含有数、字母、运算符号的式子表示出来,就是列代数式。
列代数式的关键:①弄清语言叙述中关键词语的意义。
如:“和、差、积、商、大小、多少、几倍、几分之几、增加、增加到”等等,以及它们之间的数量关系。
②用“先读先写”的原则写代数式③注意运算顺序与括号的使用④明确各种运算的结果4. 整式:单项式与多项式统称为整式即:整式⎩⎨⎧多项式单项式 单项式与多项式的相关概念只含有数字与字母乘积的代数式叫单项式。
如:1、a 、31πr 2h 都是单项式。
单项式中的数字因数叫单项式的系数;一个单项中所有字母的指数之和叫做这个单项式的次数。
七年级下数学知识点沪科版数学是一门非常重要的学科,对于七年级学生来说,掌握一些基础的数学知识点对于以后的学习和生活都非常有帮助。
本文将介绍七年级下数学知识点,主要以沪科版教材为基础进行讲解。
一、代数代数是数学中的一个重要分支,主要研究符号的代数运算。
在七年级下册中,涉及到代数的知识包括:1.代数式的表示方法:代数式是由变量和常数通过运算符连接起来的式子,常见的代数式包括一元一次方程、一元二次方程等。
2.一元一次方程:一元一次方程是指只含有一个未知数的一次方程,它的一般形式为ax+b=c,其中a,b,c为已知常数,x为未知数。
3.一元二次方程:一元二次方程是指只含有一个未知数的二次方程,它的一般形式为ax²+bx+c=0,其中a,b,c为已知常数,x为未知数。
二、几何几何是数学中的一个分支,主要研究空间中的形状、大小、位置等性质。
在七年级下册中,学习的几何知识主要包括:1.平面图形的性质:常见的平面图形包括三角形、四边形、圆形等,学生需要掌握它们的基本性质,如内角和、对角线等。
2.空间图形的性质:常见的空间图形包括正方体、长方体、棱锥等,学生需要掌握它们的基本性质,如表面积、体积等。
三、数据分析数据分析是现代社会必不可少的一项能力,它涉及到收集、整理、分析和表达数据的能力。
在七年级下册中,学生需要学习相关的数据分析知识,如:1. 数据的表示:学生需要学习如何将数据用表格、图表等形式表示出来,如频率分布表、条形图、折线图等。
2. 统计学指标:学生需要学习如何计算数据的平均数、中位数、众数等统计学指标,以及它们的意义和应用。
以上是七年级下数学知识点的简要介绍,当然还有其他一些知识点,如概率、函数等。
通过学习这些知识,学生可以不仅在考试中取得好成绩,更重要的是可以在日后的学习和生活中得到实际应用。
2023年沪科版初中数学知识点汇总
一、代数
1. 整式的加减
- 同类项的加减
- 括号展开
- 合并同类项
2. 带有分数系数的整式运算
- 等分原则
- 分配律
- 通项、通分
3. 方程式
- 解一元一次方程式
- 方程式中的分数
- 两步及以上的方程式
4. 负数
- 简单的负数加减
- 等式中的负数
- 负数乘除
二、空间几何
1. 立体图形
- 立体图形的分类
- 正方体、长方体、立方体
- 棱柱、棱锥、棱台、圆柱、圆锥、球2. 空间坐标系及图像变换
- 三维坐标系
- 图像变换
三、函数
1. 一元一次函数
- 函数的概念
- 直线方程式
- 函数与方程式的关系2. 一元二次函数
- 基本概念及图像
- 完全平方式
- 一般式及配方法
四、统计与概率
1. 统计
- 基本概念
- 数据的收集、整理、描述
- 中心值与散布程度的计算
2. 概率
- 基本概念
- 事件的关系与运算
- 百分数表示法
以上为初中数学的主要知识点,在掌握这些知识点的基础上,需要多进行习题练习,提高解题能力和技巧。
简单1. 当x=-1时,则代数式x3-2x+1的值为()A.2 B.-2 C.6 D.0A.12B.1 C.4 D.8A.4 B.8 C.10 D.-2 【分析】将x与y的值代入计算即可求出值.【解答】当x=2,y=-3时,原式=2x-y+3=4+3+3=10,故选C.4. 当m=1,n=2时,求多项式mn2-6mn+9n=()A.2 B.-2 C.10 D.26 【分析】把m、n的值代入代数式进行计算即可得解.【解答】当m=1,n=2时,mn2-6mn+9n,=1×22-6×1×2+9×2,=4-12+18,=22-12,=10.故选C.5. 已知当x=2,y=-3时,则代数式2x-y+3的值是()A.4 B.8 C.10 D.-2 【分析】将x与y的值代入计算即可求出值.【解答】当x=2,y=-3时,原式=2x-y+3=4+3+3=10,故选C.6若a=4,b=12,则代数式a2-ab的值等于()A.64 B.30 C.-30 D.-32A.11 B.-4 C.12 D.21(2)随着n的值逐渐变大,两个代数式的值如何变化?A.-100 B.-40 C.210 D.-210【分析】所求式子第一、三项结合,提取7后将x+y与xy的值代入计算,即可求出值.【解答】∵x+y=-10,xy=-2,∴7x-15xy+7y=7(x+y)-15xy=-70+30=-40.故选B.14. 已知,x2-2x-3=0,则代数式3+2x2-4x的值是()A.3 B.6 C.9 D.0A.7 B.3 C.1 D.-7A.-8 B.5 C.-24 D.26 【分析】本题的规律是:输入a,输出结果=a2+1.【解答】第一次输入-2,输出为(-2)2+1=5;第二次输入5,输出为52+1=26.故选D.17. 如图是一数值转换机,若输入的数为-12,则输出的结果为()A.-6 B.-3 C.0 D.3 【分析】把x的值代入数值转换机中计算即可得到输出的结果.【解答】把x=-12代入数值转换机得:(-12)×6-3=-3-3=-6.故选A.18. 根据如图中的程序,当输入x=-4时,输出结果y为()A.-1 B.-3 C.3 D.5【分析】根据图中的程序,知x=-4时,即x<0,y=-12x+1,代入求解.【解答】根据题意,得x=-4时,y=-12x+1=2+1=3.故选C.19. 有一个密码系统,其原理由框图所示:当输出为10时,则输入的x=________.【分析】由题意,此题应从后向前推算,当输出为10时,即x+6=10,那么x=10-6=4.【解答】x+6=10→x=10-6→x=4;答:输入的x是4.20. 按如图的程序计算,若开始输入的n的值为2,则最后输出的结果是()A.2 B.6 C.21 D.23 【分析】根据运算程序把n=2代入进行计算即可得解.【解答】n=2,第1次计算,2(21)2⨯+=3,第2次计算,3(31)2⨯+=6,第3次计算,3(31)2⨯+=21,∵21>20,∴输出结果是21.故选C.21. 如图所示是一个数值转换机,输入x,输出3(x-1),下面给出了四种转换步骤,其中不正确的是()A.先减去1,再乘以3 B.先乘以3,再减去1C.先乘以3,再减去3 D.先加上-1,再乘以3【分析】根据题意可得应该是先减1,再乘以3即可.【解答】根据题意可得先减去1,再乘以3,故选:B.22. 如图是一个数值转换机的示意图,若输入x的值为3,y的值为-2时,则输出的结果为________.【分析】把x=3,y=-2输入此程序即可.【解答】把x=3,y=-2输入此程序得,[3×2+(-2)2]÷2=10÷2=5.难题1. 已知x-2y=5,则5(x-2y)2-3(x-2y)-60的值为()A.50 B.10 C.210 D.40【分析】将x-2y的值代入原式计算即可得到结果.【解答】当x-2y=5时,原式=125-15-60=50.故选A.2. 当x分别等于3和-3时,多项式6x2+5x4-x6的值是()A.互为相反数B.互为倒数C.相等D.异号【分析】本题是代数式求值中的幂的运算,根据幂的运算法则可知,任何数的偶次幂都是非负的,互为相反数的两个数的偶次方相等.【解答】当x分别等于3和-3时,多项式6x2+5x4-x6的值都是-270,所以相等;故本题选C.3. 若a,b互为相反数,c,d互为倒数,m的绝对值等于1,则-(a+b)-cd-m的值为()A.0 B.-2 C.0或-2 D.任意有理数【分析】根据相反数的定义得到a+b=0,由倒数的定义得到cd=1,根据绝对值的定义得到|m|=1,将其代入-(a+b)-cd-m进行求值.【解答】∵a,b互为相反数,∴a+b=0,∵c,d互为倒数,∴cd=1,∵m的绝对值等于1,∴m=±1,当m=1时,-(a+b)-cd-m=0-1-1=-2.当m=-1时,-(a+b)-cd-m=0-1-(-1)=-1+1=0.代数式的值为0或-2.故选C.4. 如果一个数等于它的不包括自身的所有因数之和,那么这个数就叫完全数.例如,6的不包括自身的所有因数为1,2,3,而且6=1+2+3,所以6是完全数.大约2200多年前,欧几里德提出:如果2n-1是质数,那么2n-1(2n-1)是一个完全数.请你根据这个结论写出6之后的下一个完全数_________.【分析】直接利用题中所给公式计算即可.当n=2时2n-1(2n-1)=6,当n=3时,2n-1-1=3,是质数,所以2n-1(2n-1)=4×7=28,故6之后的下一个完全数是28.【解答】由题可知:2n-1(2n-1)=6,得n=2,由此可知下一个数是当n=3时完全数,即2n-1(2n-1)=4×7=28.5. 用“⊕”定义新运算:对于任意实数a、b,都有a⊕b=b2+1,例如7⊕2=22+1=5,当m为实数时,m⊕(m⊕2)的值是()A.25 B.m2+1 C.5 D.26 【解答】根据题中的新定义得:m⊕2=4+1=5,则m⊕(m⊕2)=m⊕5=25+1=26.故选D.6. 如图,某长方形广场的四角都有一块半径相同的四分之一圆形的草地.若圆的半径为r米,长方形长为a米,宽为b米(1)请用式子表示空地的面积.(2)若长方形为300米,宽为200米,圆形的半径为10米,求广场空地的面积(计算结果保留π)【分析】(1)由已知图形是长方形,四角都有一块半径相同的四分之一圆形的草地,所以四角草地构成一个正圆,则空地面积等于长方形的面积减去半径为r的圆的面积;(2)把长=300米,宽=200米,圆形的半径=10米代入(1)中式子即可.【解答】(1)长方形的面积为:ab平方米,草地的面积为:πr2平方米,所以,空地的面积为(ab-πr2)平方米;(2)当a=300,b=200,r=10时,ab-πr2=300×200-100π=60000-100π.所以广场空地的面积为60000-100π(平方米).故选D.7. 北京市电话月收费规定:月租费25元,通话每三分钟计为一次,不足三分钟的按一次计,每次计费0.18元.(1)如果每月电话费为m元,求用户交费m元与用了n次的收费公式;(2)如果用户在一个月内共打了47次电话,他该交多少电话费?【分析】(1)题中等量关系为:月收费=月租费+通话费,根据等量关系列出方程式即可;(2)根据(1)中的结论,将n=47代入即可;【解答】(1)m=0.18n+25;(2)当n=47时,m=0.18×47+25=33.46(元)8. 当a-2b=3时,求代数式4(2b-a)2-3a+6b-5的值.【分析】把(a-2b)看作一个整体,然后代入所求代数式进行计算即可得解.【解答】∵a-2b=3,∴4(2b-a)2-3a+6a-5=4(a-2b)2-3(a-2b)-5,=4×32-3×3-5,=36-9-5,=22.12. 当a=-2,b=3时,求下列代数式的值.(1)(a+b)(a-b);(2)a2+2ab+b2.【分析】(1)将a与b的值代入计算即可求出值;(2)原式利用完全平方公式化简,将a与b的值代入计算即可求出值.【解答】(1)∵a=-2,b=3,∴(a+b)(a-b)=(-2+3)(-2-3)=-5;(2)原式=(a+b)2=(-2+3)2=1.13.如图是某种细胞分裂示意图,这种细胞每过30分钟便由1个分裂成2个.根据此规律可得:(1)这样的一个细胞经过第四个30分钟后可分裂成________个细胞;(2)这样的一个细胞经过3小时后可分裂成_________个细胞;(3)这样的一个细胞经过n(n为正整数)小时后可分裂成_________个细胞.【分析】根据图形可知其规律为n小时是22n.【解答】(1)第四个30分钟后可分裂成24=16;(2)经过3小时后可分裂成22×3=26=64;(3)经过n(n为正整数)小时后可分裂成22n.14. 在计算器上按照下面的程序进行操作:下表中的x与y分别是输入的6个数及相应的计算结果:x -2 -1 0 1 2 3y -5 -2 1 4 7 10上面操作程序中所按的第三个键和第四个键应是________、________.【分析】x与y之间的对应关系在题中已经告知,可假设函数关系式为y=kx +b,任找两组对应值代入,形成一个关于k和b的二元一次方程组,进行解答,即可找到所求内容.【解答】设y=kx+b,把x=-2,y=-5;x=0,y=1代入得:1052k bk b⨯+⎧⎨--⨯+⎩==,解之得31kb⎧⎨⎩==,即y=3x+1.所以第三个键和第四个键应是+、1.15. 如图,要使输出y大于100,则输入的最小正整数x的值是()A.22 B.21 C.19 D.18【分析】分x为奇数和偶数两种情况,分别求解,再比较作出判断即可.【解答】若x为偶数,根据题意,得:x×3+35>100解之,得:x>653,所以此时x的最小整数值为22;若x为奇数,根据题意,得:x×5>100,解之,得:x>20,所以此时x的最小整数值为21,综上,输入的最小正整数x是21.故选B.16. 如图,某计算装置有一数据输入口A和一运算结果的输出口B,表格中是小明输入的一些数据和这些数据经该装置计算后输出的相应结果,按照这个计算装置的计算规律,若输入的数是10,则输出的数是()A 1 2 3 4 5B 2 5 10 17 26A.98 B.99 C.100 D.101 【分析】根据题意和表格,得出A和B的关系式,当A=n时,B=n2+1,再把n=10代入即可求出输出的数.【解答】根据题意和图表可知,当A=1时,B=2=12+1,当A=2时,B=5=22+1,当A=3时,B=10=32+1,…,当A=n时,B=n2+1,当A=10时,B=102+1=100+1=101,则当输入的数是10时,输出的数是101;故选D.17. 按下列程序计算,把答案写在表格内:(1)填写表格:输入n 3 12-2 -3 …输出答案 1 1(2)请将题中计算程序用代数式表达出来,并给予化简.【分析】(1)根据计算程序把数据代入即可求出答案;(2)把n代入计算程序后列出代数式化简即可.【解答】(1)输入n 3 12-2 -3 …输出答案 1 1 1 1…(2)(n2+n)÷n-n(n≠0)=(1)n nn-n=n+1-n=1.18. 小王利用计算机设计了一个计算程序,输入和输出的数据如下表:输入… 1 2 3 45 …输出 (1)225310417526…那么,当输入数据是8时,输出的数据是()A.861B.863C.865D.867【分析】2=12+1,5=22+1,10=32+1,17=42+1,26=52+1;输出的数字中,分子就是输入的数,分母是输入的数字的平方加1.【解答】82+1=65,所以输出的数是8 65.故选:C.19. 根据如图所示的计算程序,若输入的值x=-1,则输出的值y为()A.-6 B.0 C.2 D.-4 【分析】由于x=-1<0,则把x=-1代入y=x2+1中计算即可.【解答】当x=-1,y=x2+1=2.故选C.20. 有一数值转换器,原理如图所示.若开始输入x的值是5,可发现第一次输出的结果是8,第二次输出的结果是4,…,则第2013次输出的结果是()A.1 B.2 C.4 D.8 【分析】把x=5代入数值转换器中计算,归纳总结得到一般性规律,即可确定出第2013次输出的结果.【解答】把x=5代入得:5+3=8,把x=8代入得:12×8=4,把x=4代入得:12×4=2,把x=2代入得:12×2=1,把x=1代入得:1+3=4,依此类推,从第二项开始,以4,2,1循环,∵(2013-1)÷3=670…2,∴第2013次输出的结果是2,故选B.21. 刘谦的魔术表演风靡全国,小明同学也学起了刘谦发明了一个魔术盒,当任意有理数对(a,b)进入其中时,会得到一个新的有理数:a2+b-1.例如把(3,-2)放入其中,就会得到32+(-2)-1=6.现将有理数对(-1,-2)放入其中,则会得到()A.-1 B.-2 C.-3 D.2 【分析】此题根据题意,把实数对(-1,-2)代入a2+b-1=2中,即可求出结果.【解答】把实数对(-1,-2)代入a2+b-1=2中得:(-1)2-2-1=1-2-1=-2.故选B.22. 按下列程序计算,把答案填写在表格内,并观察有什么规律,想想为什么有这样的规律?(1)填写表内空格:输入x 3 2 -2 -3 …输出答案 1 1 …(2)发现的规律是:________.【分析】由题中给出的式子我们可得出(x2+x)÷x-x=x+1-x=1.因此在填空时,我们可以根据得出的规律进行求解.【解答】(1)输入x 3 2 -2 -3 …输出答案 1 1 1 1 …(2)发现的规律是:不论x取任意数输入程序后结果都是1,或(x2+x)÷x-x=x+1-x=1.23. 观察下表:输入x -3 -2 -1 0 1 2 3 4 5输出10 -7 -4 -1 2 5 8 11 14(1)列出符合所给表格规律的输出代数式;(2)设计出这个代数式的值的计算程序;(3)利用设计的计算程序,求当输入2014时输出的话值.【分析】(1)根据表格中数据得出:输入的数字乘3减去1得出输出的数字,由此变化规律得出答案;(2)结合(1)中所求得出代数式的值的计算程序;(3)利用(2)中所求代入得出即可.【解答】(1)代数式为3x-1;(2)输入x→x×3→-1=输出结果;(3)2014×3-1=6041.24. 按照如图所示的操作步骤,若输入的值为3,则输出的值为_________.【分析】根据运算程序列式计算即可得解.【解答】由图可知,输入的值为3时,(32+2)×5=(9+2)×5=55.。
初中数学沪科版第二章走进代数同步练习考试卷考点姓名:_____________ 年级:____________ 学号:______________题型选择题填空题解答题判断题计算题附加题总分得分一、填空题评卷人得分16.已知, 则=_______________。
17.某工厂2007年用电3千万度,比2006年减少了5%,设2006年用电度,则可列方程为______________ 10.请写出一个解为x=2的一元一次方程:______________20.(本题7分)解方程:19.计算。
(1)5+(-7)-(-2)(2)(-4)-(-5)+(+4)-(+5)(3)(-)×1.25÷(-)(4)(-)÷(-)(5)(-7)×(-3)×(-0.5)+(-12)×(-2.6)(6)(+-)÷21.解下列方程(每小题5分,共10分)(1)(2)17.-22-(1-)÷(-2)2.5.如果a与-2的和为0,那么a是( )A.2B.C.-D.-211.,,的和比它们的绝对值的和小A.B.C.4D.386.若,则的值为 ( ) A.-1B.1C.-4D.46.已知:,则N是()位正整数A.5B.8C.9D.102.若方程是一元一次方程,则等于()A.B.C.D.3.下列等式变形正确的是:()A.如果,那么B.如果,则C.如果,那么D.如果,那么11.下列方程为一元一次方程的是( )A.B.C.D.9.下列说法正确的是【】A.0.720有两个有效数字B.3.6万精确到十分位C.300有一个有效数字D.5.078精确到千分位1.下列四个数中,最小的数是【】A.2B.﹣2C.0D.﹣1.______________.20.______________(1)第5个式子等号右边应填的数是______________;(2)根据规律填空1+3+5+7+…+(2n-1)=______________;(3)计算:1+3+5+7+…+2013 =______________.19.小强在解方程组时,遇到了“奇怪”的题目。
初中数学知识点总结七年级上册七年级下册八年级上册八年级下册目录知识点重难点第18章二次根式18.1 二次根式18.2 二次根式的运算1.二次根式的概念2.二次根式性质的几个结论3.二次根式的四则运算法则4.最简二次根式5.分母有理化1.因为负数没有平方根,所以是为二次根式的前提条件2.一个非负数的算术平方根的平方等于这个非负数。
即()。
3.一个数的平方的算术平方根等于这个数的绝对值,即4.最简二次根式不含有可化为平方数或平方式的因数或因式,最终结果分母不含根号。
5.分母有理化的两种方法:分母是单项式,上下同乘分母;分母是多项式,利用平方差公式。
第19章一元二次方程19.1 一元二次方程19.2一元二次方程的解法19.3一元二次方程的根的判别式19.4一元二次方程的根与系数的关系19.5 一元二次方程的应用1.一元二次方程的一般形式2.一元二次方程的4种解法及其步骤(直接开平方法、公式法、配方法、因式分解法)3.根的判别式4.根与系数的关系5.一元二次方程解决实际问题1.一元二次方程根的判别式: 当ax2+bx+c=0 (a≠0)时,Δ=b2-4ac 叫一元二次方程根的判别式:Δ>0,有两个不等的实根;Δ=0,有两个相等的实根;Δ<0,无实根。
2.一元二次方程的根系关系:当ax2+bx+c=0 (a≠0) 时,如Δ≥0,有下列公式:.acxxabxx)2(a2ac4bbx)1(212122,1=-=+-±-=,;3.一元二次方程的解法之因式分解法:提公因式分,平方公式,平方差,十字相乘法。
4.一元二次方程的解法之公式法、配方法解题步骤。
5.当ax2+bx+c=0(a≠0)时,有以下等价命题:(1)两根互为相反数,b = 0且Δ≥0;(2)两根互为倒数,a = c且Δ≥0;(3)只有一个零根,c = 0且b≠0;(4)有两个零根,c = 0且b=0;(5)至少有一个零根,c=0;(6)两根异号,a、c异号;(7)两根异号,正根绝对值大于负根绝对值,a、c异号且a、b异号;(8)两根异号,负根绝对值大于正根绝对值,a、c异号且a、b同号;(9)有两正根,a、c同号, a、b异号且Δ≥0;(10)有两负根,a、c同号, a、b同号且Δ≥0.目录知识点重难点第20章四边形20.1 多边形内角和20.2 平行四边形20.3 矩形菱形正方形20.4 梯形1.多边形内角和的算法2.平行四边形的性质和判定3.矩形的性质和判定4.菱形的性质和判定5.正方形的性质和判定6.平行四边形、矩形、正方形、菱形的区别和联系7.梯形的性质和判定名称定义性质判定面积平行四边形两组对边分别平行的四边形叫做平行四边形。
初中数学知识点总结(沪科版)初中数学是基础数学,实践活动在新教材内容中占有一定比例。
因此,初中数学教学应为学生提供多样化的学习活动方式,在活动中让学生体验、理解和运用数学知识,并在丰富的活动中进行创新,为了能够帮大家更高效的梳理归纳。
以下是小编为大家整理归纳的内容,希望能够帮助到大家。
一、初中数学知识点总结(沪科版)第一章一元一次不等式和一元一次不等式组一、一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式。
能使不等式成立的未知数的值,叫做不等式的解. 不等式的解不唯一,把所有满足不等式的解集合在一起,构成不等式的解集. 求不等式解集的过程叫解不等式.由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组不等式组的解集:一元一次不等式组各个不等式的解集的公共部分。
等式基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式. 基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.二、不等式的基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变. (注:移项要变号,但不等号不变。
)性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.不等式的基本性质<1>、若a>b, 则a+c>b+c;<2>、若a>b, c>0 则ac>bc 若c<0, 则ac不等式的其他性质:反射性:若a>b,则bb,且b>c,则a>c三、解不等式的步骤:1、去分母; 2、去括号; 3、移项合并同类项;4、系数化为1。
四、解不等式组的步骤:1、解出不等式的解集2、在同一数轴表示不等式的解集。
五、列一元一次不等式组解实际问题的一般步骤:(1) 审题;(2)设未知数,找(不等量)关系式;(3)设元,(根据不等量)关系式列不等式(组)(4)解不等式组;检验并作答。
2.1 代数式1.用字母表示数(1)偶数与奇数的概念及表示①像0,±2,±4,±6,…,能被2整除的整数叫做偶数.如果用k表示任意一个整数,那么任意一个偶数可以用2k表示.②像±1,±3,±5,…,不能被2整除的整数叫做奇数.如果用k表示任意一个整数,那么任意一个奇数可以用2k-1(或2k+1)表示.③偶数与奇数可以是负整数;0是偶数.(2)用字母表示数的意义用字母表示数,可以把一些数量关系更简明地表示出来,把具体的数换成抽象的字母,使所得式子反映的规律具有普遍意义,从而为叙述和研究问题带来方便.①用字母表示数可以简明地表达数学运算律.用字母可以简明地表示加法交换律、乘法交换律、加法结合律、乘法结合律、分配律等.②用字母表示数可以简明地表达公式、法则.用字母可以表示三角形面积公式、正方形、长方形、圆及梯形的周长、面积等公式,分数运算法则等.③用字母表示数可以简明地表达问题中的数量关系.例如,有两个数,其中第二个数比第一个数小4.用字母可以清楚地表明这种数量关系,如果用字母a表示第一个数,则第二个数为a-4;如果用字母b表示第二个数,则第一个数为b+4.④用字母表示数可以简洁、准确地表达一些数学概念.如用a与b表示互为相反数的两个数,则a+b=0;若a+b=0,则a与b互为相反数.(3)用字母表示数应注意的问题①字母的确定性:在同一个问题中,同一个字母表示同一个量,不同的量要用不同的字母来表示.如长方形的长和宽要分别用a,b两个字母表示,面积用S表示,则有S=ab.②字母的限制性:用字母表示实际问题的某一数量时,字母的取值须使实际问题有意义,并且符合实际.如表示人的数量的字母的取值必须是非负整数.③字母具有一般性:用字母可以表示我们已经学过的和今后要学的任何一个数.④字母的不确定性:同一个式子可以表示多种实际问题中的数量关系.⑤字母的抽象性:要逐步理解和接受有些问题的结果可能就是一个用字母表示的式子.【例1-1】若n为自然数,则三个连续的自然数可表示为______,三个连续的奇数可表示为______,三个连续的偶数可表示为______.解析:(1)每两个连续自然数相差1,所以如果中间的自然数为n,则较小的自然数为n -1,较大的自然数为n+1;(2)奇数一般用2n-1或2n+1表示,偶数一般用2n表示,而且每两个连续奇数或偶数相差2.答案不唯一,只要符合连续自然数相差1,连续奇数或偶数相差2都正确.实际上在表示连续的几个数时,一般先表示中间的那一个数,再根据数的特点表示其他的数.如表示三个连续的偶数时,先表示中间一个为2n,则另外两个可以表示为:2n-2,2n+2.答案:答案不唯一,如:n-1,n,n+1;2n-3,2n-1,2n+1;2n-2,2n,2n+2.【例1-2】填空:(1)买一个篮球需要m元,买一个排球需要n元,则买3个篮球和5个排球共需要__________元;(2)今天,参加全省课改实验区的初中毕业考试的同学约有15万人,其中男生约有a 万人,则女生约有__________万人;(3)如下图是小明用火柴搭的1条、2条、3条“金鱼”……,则搭n条“金鱼”需要火柴__________根.解析:(1)显然买3个篮球需要3m 元,买5个排球需要5n 元,则买3个篮球和5个排球共需要(3m +5n )元;(2)女生的人数等于总人数减去男生的人数,由于男女同学共15万人,而男生有a 万人,则女生有(15-a )万人;(3)观察发现:搭1条“金鱼”需要火柴8根,搭2条“金鱼”需要火柴14根,搭3条“金鱼”需要火柴20根,而8=6×1+2,14=6×2+2,20=6×3+2,…,所以搭n 条“金鱼”需要火柴(6n +2)根.注意:“(3m +5n )元”、“(15-a )万人”、“(6n +2)根”中表示和或差的式子一定要加括号.答案:(1)(3m +5n ) (2)(15-a ) (3)(6n +2)2.代数式(1)代数式的概念用加、减、乘、除及乘方等运算符号把数或表示数的字母连接而成的式子,叫做代数式.如:90a ,a +b ,2k -1,4a ,a 2,s v ,13πr 2h 等都是代数式. 单个的数或字母也是代数式.如m ,-2 013也是代数式.(2)代数式的书写规定①代数式中如果出现乘号,可以写成“·”或不写.字母与字母相乘时“×”省略,按字母表顺序书写,如m ×n 写成mn ,相同字母写成幂的形式,如a ×a 写成a 2,(a +b )×(a +b )写成(a +b )2.数字与字母相乘时省略“×”,数字要写在字母的前面,若数字是带分数要化成假分数,如4×n 写成4n ,112×a 写成32a . 数字与数字相乘时乘号不能省略,也不能写成“·”,仍用“×”.②在代数式中出现除法运算时,一般按照分数的写法来写,即除号不用,改用分数线.如s÷t 写成s t ,x ÷2一般写成x 2或12x . ③若是和差形式的代数式,式子后面有单位时,要在单位前把代数式括起来.如t ℃升高2 ℃后是(t +2) ℃,不能写成t +2 ℃.(3)代数式的读法代数式的读法一般有两种:一是按运算关系来读,如x +9读作x 加9;另一种是按运算结果来读,如x +9读作x 与9的和.另外,对于含有括号的代数式,应把括号里的代数式看作一个整体按运算结果来读.谈重点 如何判断一个式子是不是代数式(1)判断一个式子是不是代数式的关键是看式子中有没有运算符号,是不是数字和字母参与运算,单独的一个数或字母可以看成是它与1的积或它除以1的商,也可以看成是这个数与0的和或差.(2)代数式中只能有运算符号,不应含有“=”或“>”“<”“≥”“≤”等符号,即等式或不等式都不是代数式.(4)列代数式列代数式就是把问题中的一些数量关系用代数式表示出来.列代数式的实质就是把文字语言转化为数学符号语言.列代数式应遵循下列关键点:①抓住“多”“少”“大”“小”“和”“差”“积”“商”“倍”“分”“平方”“比”“几分之几”“除”“除以”等关键词语,弄清各量之间的关系.②明确数量关系中的运算顺序,一般是先说的先算,后说的后算,如“和的积”是加在乘之前,而“积的和”是乘在加之前.③准确理解“的”和“与”划分的语句层次.“的”表示从属关系,“与”表示并列关系.解技巧 正确列代数式列代数式时,若先说低级运算,再说高级运算必须加括号,先说高级运算,再说低级运算,则不必使用括号.如x 与1的差的3倍应写成3(x -1),必须加括号,而x 的3倍与1的差,则写成3x -1,不必加括号.【例2-1】 “比a 的32大1的数”用代数式表示是( ). A .32a +1 B .23a +1 C .52a D .32a -1 解析:根据题意可知“a 的32”可以表示为32a ,大1,用加法,所以,“比a 的32大1的数”用代数式表示为32a +1,故选A. 答案:A【例2-2】 判断下列式子中,哪些是代数式?0,4x +5y ,x ,-40,20+5x ,3x =2y ,2+1=3,3x >0.分析:根据代数式的概念可判断4x +5y ,20+5x 是代数式,单独的一个数或一个字母也是代数式,则0,x ,-40也是代数式;而3x =2y ,2+1=3,3x >0不符合代数式的概念.因此它们不是代数式.解:0,4x +5y ,x ,-40,20+5x 是代数式.3.整式(1)单项式①单项式的概念由数与字母的乘积组成的代数式叫做单项式.如4a ,a 2,13πr 2h 等都是单项式. 单个的字母或数也是单项式.如-3,a 也是单项式.②单项式的系数单项式中的数字因数叫做这个单项式的系数.如4a ,a 2,-a ,13πr 2h 的系数分别是4,1,-1,13π. 单项式的系数是1或-1时“1”省略不写,如a 2,-a 的系数分别是1和-1,其中“1”要省略不写.③单项式的次数一个单项式中,所有字母的指数之和叫做这个单项式的次数.如4a ,a 2,13πr 2h 的次数分别是1,2,3. 析规律 判断单项式及其次数(1)判定一个代数式是否是单项式,关键是看式子中的数与字母或字母与字母之间是不是纯粹的乘积关系(乘方也是一种乘积形式).如果含有加、减、除的关系,那么它就不是单项式.凡是字母出现在分母中的代数式,也一定不是单项式.(2)单项式的次数指的是所有字母的指数的和,如果字母没有写指数,那么这个字母的指数是1,特别注意,π是常数不是字母,单项式的系数是带分数时,通常写成假分数.(2)多项式①多项式的概念几个单项式的和组成的代数式叫做多项式.如:a +b ,2k -1,x 2+2x -3等都是多项式.②多项式的项在多项式里,每个单项式叫做多项式的项.多项式的每一项都包括它前面的符号.如3x 2-2y -9的项是3x 2,-2y ,-9.③常数项不含字母的项,叫做常数项,注意常数项也包括它前面的符号.如多项式3x 2-2y -9中的常数项是-9,而不是9.④多项式的次数在多项式中,次数最高项的次数,叫做这个多项式的次数.如多项式3x 2-2y -9的次数是2,这个多项式是二次多项式.⑤一个多项式有几项,这个多项式叫做几项式如多项式3x 2-2y -9是三项式.于是可按多项式的次数与项数区分多项式.如4a 2b -3ab +2a -1是三次四项式.解技巧 对多项式及相关概念的理解(1)多项式至少是两项,多项式中一定含有加减运算;(2)一个多项式中,任意一项的次数都不大于这个多项式的次数;(3)当多项式中某项的系数是用科学记数法表示的形式时,不要把10的指数算成是该项次数的一个组成部分.(3)整式单项式与多项式统称整式.谈重点 单项式与多项式的区别(1)单项式的系数应包括前面的符号,单项式的次数是所有字母的指数相加的结果,只与字母有关,而与系数无关,数字单项式的次数是0.(2)多项式没有系数,它的次数与组成的各个单项式的次数有关,用次数最高的单项式的次数代表多项式的次数.我们可以用一个多项式的次数与项数对多项式进行分类.(3)判定一个式子是单项式还是多项式,首先判定它是否是整式,若分母中含有字母,则它一定不是整式,因此也不可能是单项式或多项式;而单项式与多项式的区别在于看是否含有加减运算,含有加减运算的整式是多项式,不含加减运算的整式是单项式.【例3-1】 找出下列各代数式中的单项式,并写出各单项式的系数和次数.23ab 2,-y ,a mn ,xy 3+5,25x 7,-3x 2y 3z ,πr 2. 分析:代数式a mn 含有分母,并且分母中有字母,所以不是单项式;xy 3+5含有加法运算,也不是单项式.解:单项式是23ab 2,-y ,25x 7,-3x 2y 3z ,πr 2. 23ab 2的系数是23,次数是3;-y 的系数是-1,次数是1;25x 7的系数是25,次数是7;-3x 2y 3z 的系数是-3,次数是6;πr 2的系数是π,次数是2.【例3-2】 下列代数式,哪些是多项式?说出多项式的项,并指出它是几次几项式.(1)x 4-2x 3+x -5;(2)a 3-ab 2+3a 2b 2-14b 3-1; (3)2a +x y ;(4)t -s +9s 2.分析:第三个代数式2a +x y 中的第二项不是单项式,所以2a +x y 不是多项式.多项式x 4-2x 3+x -5的次数是4,多项式a 3-ab 2+3a 2b 2-14b 3-1的次数是4,多项式t -s +9s 2的次数是2.解:x 4-2x 3+x -5,a 3-ab 2+3a 2b 2-14b 3-1,t -s +9s 2是多项式. x 4-2x 3+x -5的项是x 4,-2x 3,x ,-5,它是四次四项式;a 3-ab 2+3a 2b 2-14b 3-1的项是a 3,-ab 2,3a 2b 2,-14b 3,-1,它是四次五项式; t -s +9s 2的项是t ,-s,9s 2,它是二次三项式.4.代数式的值(1)代数式的值的概念①概念:用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果叫做代数式的值.②代数式的值,一般不是一个固定的数,它是随着代数式中字母取值的变化而变化的,是根据问题的需要,用具体数值代替代数式中的字母,按照代数式的运算关系计算所得的结果.(2)注意事项①代数式与代数式的值是两个不同的概念,代数式表述的是问题的一般规律,而代数式的值是这个规律下的特殊情形.②代数式的字母取值,必须使要求的代数式有意义.如在代数式s t中,当t =0时,代数式没有意义.③当代数式表示实际问题的数量关系时,字母的取值还要保证具有实际意义.如a 表示学生人数,则a 只能取正整数. (3)求代数式的值求代数式的值,其步骤有两步:①用数值代替代数式里的字母,简称“代入”;②按照代数式指明的运算,计算出结果,简称“计算”.谈重点 求代数式的值需注意的几点(1)代入时,按已知给定的数值,将相应的字母换成数字,其他的运算符号、原来的数字都不能改变.(2)代数式中原来省略的乘号,代入数字后出现数字与数字相乘时,必须添上乘号.(3)代数式的值是由所含字母取值确定的,是随着代数式中字母的取值的变化而变化的,所以求代数式的值时,在代入前,必须写出“当……时”,表示代数式的值是在这种情况下求得的.(4)如果字母给出的数值是负数,代入时必须加括号.(5)如果字母给出的数值是分数,作乘方运算时也必须添上括号.【例4】 已知a =23,b =-4,求代数式a 2-b 2+3a -b 的值. 分析:把a ,b 的值代入到代数式中,可得a 2-b 2+3a -b =⎝ ⎛⎭⎪⎫232-(-4)2+3×23-(-4),再按有理数的运算法则计算.解:当a =23,b =-4时, a 2-b 2+3a -b=⎝ ⎛⎭⎪⎫232-(-4)2+3×23-(-4) =49-16+2+4=-959.5.列代数式的方法(1)正确列代数式的关键在于:①正确理清数量关系;②善于抓住关键词语;③能正确判断数量关系中的运算顺序.(2)两种常用的列代数式的方法方法一:“翻译法”.列代数式的关键之一在于分清数量关系中的运算层次和运算顺序,一般地叙述数量关系的顺序与代数式的书写顺序基本上是一致的,即可按照“先读的先写”这种类似英语中的“翻译”的方法来列代数式.方法二:“方程法”.列代数式的关键之一在于正确地理清各数量之间的关系.一般问题中数量间的关系是容易找到的,但当题目中所涉及的各数量之间的关系不容易理清时,可借助方程的思想来帮助分析.【例5-1】用代数式表示:(1)a,b两数和的2倍与a,b两数积的差;(2)a,b两数和的平方与a,b两数平方差的商;(3)a,b两数和的倒数与它们的积的差的平方.解:(1)2(a+b)-ab;(2)a+b2a2-b2;(3)⎝⎛⎭⎪⎫1a+b-ab2.【例5-2】汛期来临时,某地区决定实施“海堤加固”工程.某工程队承包了该项目,计划每天加固60米.在施工前,得到气象部门的预报,近期有“台风”袭击该地区,于是工程队改变计划,每天加固的海堤长度是原计划的1.5倍,这样赶在“台风”来临前完成加固任务.设该地区要加固的海堤长为a米,则完成整个任务的实际时间比原计划时间少用了多少天.(用含a的代数式表示)解:完成整个任务原计划用的时间-完成整个任务的实际时间=完成整个任务的实际时间比原计划时间少用的天数.原计划用a60天,实际上用了a60×1.5天,所以少用了a60-a90=a180(天).6.用字母表示数学规律(1)数字规律一组数字或等式有一定的规律,可以用字母来表示.常见的有两类:①数字:如偶数、奇数、比某一个数的几倍多(少)多少.②等式:具有一定规律的计算等式.(2)图形规律图形中的数学规律用具体数字表示有些困难,而用字母表示非常简洁.用字母表示图形中的规律的方法及步骤:①根据题目中提供的图形分析其中蕴含的规律;②用字母列出式子.释疑点用字母表示数学规律(1)用字母表示图形中的规律与用数字表示规律本质是一致的.(2)规律探索是一种观察、归纳、猜想验证的过程,对于这样的题目要数形结合,从特殊到一般,用字母表示最终的结果,更能反映图形的变化规律.【例6-1】观察下列算式:①1×3-22=3-4=-1;②2×4-32=8-9=-1;③3×5-42=15-16=-1;④____________________;……(1)请你按以上规律写出第4个算式;(2)把这个规律用含字母的式子表示出来.解:(1)4×6-52=24-25=-1.(2)答案不唯一.如n(n+2)-(n+1)2=-1(n∈正整数).【例6-2】用火柴棒按如下方式搭图:(1)填写下表:三角形个数 1 2 3 4 5火柴棒根数(2)n分析:(1)可采用数的办法填空;(2)有两种方法:一是观察图形,确定每增加一个三角形需要增加的火柴棒的根数;二是通过观察上表中数的关系,从而找到规律.解:(1)3 5 7 9 11 (2)照题中规律搭下去,搭n个这样的三角形需要火柴棒的根数为3+2(n-1).7.代数式求值的方法求代数式的值常用的方法有:直接代入计算、整体代入计算、按指定的程序代入计算.(1)直接代入计算当已知一个代数式中各字母的取值时,可以用直接代入计算的方法.(2)整体代入计算已知含有两个字母或多个字母的代数式的值,求另一个代数式的值时,可以选用整体代入的方法.整体代入步骤:①对已知代数式或所求代数式进行适当变形;②整体代入求值.(3)按指定的程序代入计算按指定的程序代入计算,即数值转换机.给出一个代数式,或提供运算程序,给出字母的取值,代入求值即可.【例7】下图是一组数值转换机,(1)当x=-3时,写出图a的输出结果;(2)找出图b的转换步骤,并求出当x=2.5时输出的结果.分析:(1)先根据题图提供的程序写出代数式,代数式是3x-2,再将x=-3代入求值;(2)根据代数式中指明的运算顺序,先算加法再算除法,所以其步骤分别是+4和÷5.解:(1)由转换机程序可知代数式是3x-2,当x=-3时,原式=(-3)×3-2=-11.(2)观察可知转换机的步骤是:+4和÷5.当x=2.5时,原式=(2.5+4)÷5=1.3.8.代数式的应用(1)列代数式求阴影部分的面积一般有三种方法:①和差法:就是不改变图形的位置,将阴影部分的面积用规则图形的和或差来表示,经过计算后可以求出阴影部分的面积.②移动法:就是将图形的位置进行移动,以便利用和差法所提供的条件,具体的做法是平移、旋转、割补、等积变换等.③覆盖法:就是几个图形覆盖在一起,重叠的部分的面积就是阴影部分的面积.(2)探究图形排列的规律,利用代数式表示所需图形的个数.主要考查学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后用一个统一的式子表示出变化规律是此类题目中的难点.找规律的题目,要通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决此类题目的难点在于找出能够代表一般规律的代数式.很多题目考查对于数字变化规律的运算猜想能力,需要有一定的数学思想.【例8-1】 如图所示,求图中阴影部分的面积:分析:阴影部分的面积等于长方形的面积减去空白部分的面积,即:(1)长方形的面积减去长方形的面积;(2)长方形的面积减去四个正方形的面积;(3)长方形的面积减去两个长方形的面积再加上一个长方形的面积;(4)长方形的面积减去两个小扇形的面积,即a (a +b )-π4a 2-π4b 2. 解:(1)mn -pq ;(2)ab -4x 2;(3)ab -an -bm +mn ;(4)⎝⎛⎭⎪⎫1-π4a 2-π4b 2+ab . 【例8-2】 下面是由一些火柴棒拼出的一系列图形,第n 个图形由n 个正方形组成,通过观察图形:(1)用n 表示火柴棒根数s 的公式;(2)当n =20时,计算s 的值.解:(1)s =3n +1.(2)当n =20时,s =3×20+1=61(根).9.用单项式、多项式的概念求字母的值数学中的概念是通过事物的特征下的定义,因此还具有判定特征的作用,即,在知道是某种事物的前提下,我们又可以知道这种事物必备的特点,因此在整式的应用中,我们可以通过概念规定的条件,在知道是某种式子的前提下,推理认识它所具备的性质,从而通过列式,求出某些未知数的值.如:由单项式-2x 4可知它的系数是-2,次数是4,反过来若知道-ax m 的系数是-2、次数是4,就可以知道-a =-2,m =4,从而求出a =2,多项式的运用也是如此.【例9-1】 若m 3x 2y n +1是关于x ,y 的五次单项式,且系数为18,则m =______;n =______. 解析:因为单项式是关于x ,y 的五次单项式,所以m 是常数,因为系数为18,因此有m 3=18,m =12;2+n +1=5,n =2. 答案:122 【例9-2】 已知多项式5x m y 2+(m -2)xy -3x ,如果它的次数为4次,则m 应为多少?如果多项式只有两项,则m 为多少?分析:①次数最高项的次数是多项式的次数,在已知的多项式中只有5x m y2次数能成为多项式的次数,所以m+2应该等于4;②如果多项式是二项式,只有(m-2)xy这项不存在才可以,所以这项的系数只能是0.解:如果多项式的次数为4次,则m+2=4,即m=2;如果多项式只有两项,则m-2=0,即m=2.。
初中数学知识点总结沪科版一、初中数学知识点总结(沪科版)第一章一元一次不等式和一元一次不等式组一、一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式。
能使不等式成立的未知数的值,叫做不等式的解. 不等式的解不唯一,把所有满足不等式的解集合在一起,构成不等式的解集. 求不等式解集的过程叫解不等式.由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组不等式组的解集 :一元一次不等式组各个不等式的解集的公共部分。
等式基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式. 基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.二、不等式的基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变. (注:移项要变号,但不等号不变。
)性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.不等式的基本性质<1>、若a>b, 则a+c>b+c;<2>、若a>b, c>0 则ac>bc若c<0, 则ac不等式的其他性质:反射性:若a>b,则bb,且b>c,则a>c三、解不等式的步骤:1、去分母; 2、去括号; 3、移项合并同类项; 4、系数化为1。
四、解不等式组的步骤:1、解出不等式的解集2、在同一数轴表示不等式的解集。
五、列一元一次不等式组解实际问题的一般步骤:(1) 审题;(2)设未知数,找(不等量)关系式;(3)设元,(根据不等量)关系式列不等式(组)(4)解不等式组;检验并作答。
六、常考题型: 1、求4x-6 7x-12的非负数解. 2、已知3(x-a)=x-a+1r的解适合2(x-5) 8a,求a 的范围.3、当m取何值时,3x+m-2(m+2)=3m+x的解在-5和5之间。
初中数学沪科版第二章走进代数开学考试考点
姓名:_____________ 年级:____________ 学号:______________
题型选择题填空题解答题判断题计算题附加题总分
得分
一、选择题
1.如果x=2是方程x+a=-1的根,那么a的值是( )
A.0
B.2
C.-2
D.-6
8.如图,B是线段AD的中点,C是BD上一点,则下列结论中错误的是()
A.BC=AB-CD
B.BC=AD-CD
C.BC=(AD+CD)
D.BC=AC-BD
9.王先生到银行存了一笔三年期的定期存款,年利率是4.25%,若到期后取出得到本息和(本金+利息)33852元。
设王先生存入的本金为x元,则下面所列方程正确的是
A.x+3×4.25%x=33825
B.x+4.25%x=33825
C.3×4.25%x=33825
D.3(x+4.25%x)=“33825”
6.下列说法正确的是()
A.0.720有两个有效数字
B.3.6×105精确到十分位
C.300有一个有效数字
D.5.078精确到千分位
7.下列各式中值必为正数的是()
A.|a|+|b|
B.a2+b2
C.a2+1
D.a
1.比1小2的数是()
A.-3
B.-1
评卷人得分
C.1
D.3
10.下列四个等式中,一元一次方程是
A.
B.x=0
C.x2-1=0
D.x+y=1
1.的相反数是
A.
B.
C.
D.2
1.的相反数是()
A.-2
B.2
C.
D.
9.某同学集合在假期每天做6道数学题,超过的题数记为正数,不足的题数记为负数,十天中做题记录如下:-3,5,-4,2,-1,1,0,-3,8,7,那么他十天共做了数学题()
A.70道
B.71道
C.72道
D.73题
19.计算(化简):
(1)
(2)
16.计算:(π-3.14) + 2-()+︱-2010 ︱
18.计算:
21.解方程:.
15.若在数轴上到点A距离为2的点所表示的数为4,则点A所表示的数为______________.
3.一个近似数一般是通过_______法得到的,一般地一个近似数四舍五入到某一位,就说这个近似数____到哪一位.
25.填空:
(1)______________;(2)=______________;
(3)______________;(4)______________;
(5)______________;(6)______________.
18.某种零件的直径规格是20±0.02mm,经检查,一个零件的直径是18. 9mm,该零件______________填“合格”或“不合格)。
12.某日历上一竖列的相邻三个数的和为63,则中间一个的日期是______________.
3.扇形是圆的一部分. ()
4.圆的一部分是扇形. ()
5.扇形的周长等于它的弧长. ()
21.(1)用数轴上的点表示下列各数: -5、2.5、、0、.
(2)用“”号把各数从小到大连起来:
22.-5=1.
17.计算:(-2)-(-5)+(-9)-(-7)
20.计算:。