《线性代数》考试习题
- 格式:doc
- 大小:1.39 MB
- 文档页数:39
线性代数试题及详细答案线性代数试题及详细答案————————————————————————————————作者:————————————————————————————————日期:线性代数(试卷一)一、填空题(本题总计20分,每小题2分) 1. 排列7623451的逆序数是_______。
2. 若122211211=a a a a ,则=16030322211211a a a a 3. 已知n 阶矩阵A 、B 和C 满足E ABC =,其中E 为n 阶单位矩阵,则CAB =-1。
4. 若A 为n m ?矩阵,则非齐次线性方程组AX b =有唯一解的充分要条件是_________5. 设A 为86?的矩阵,已知它的秩为4,则以A 为系数矩阵的齐次线性方程组的解空间维数为__2___________。
6. 设A 为三阶可逆阵,=-1230120011A,则=*A 7.若A 为n m ?矩阵,则齐次线性方程组0Ax =有非零解的充分必要条件是8.已知五阶行列式1234532011111112140354321=D ,则=++++4544434241A A A A A 9. 向量α=(2,1,0,2)T-的模(范数)______________。
10.若()Tk 11=α与()T121-=β正交,则=k二、选择题(本题总计10分,每小题2分)1. 向量组r ααα,,,21Λ线性相关且秩为s ,则(D) A.s r = B.s r ≤C.r s ≤ D.r s <2. 若A 为三阶方阵,且043,02,02=-=+=+E A E A E A ,则=A(A)A.8 B.8-C.34 D.34-3.设向量组A 能由向量组B 线性表示,则( d )A.)()(A R B R ≤ B.)()(A R B R <C.)()(A R B R =D.)()(A R B R ≥4. 设n 阶矩阵A 的行列式等于D ,则()*kA 等于_____。
完整版)《线性代数》一、单项选择题1.设矩阵$A=\begin{bmatrix}1&2\\3&4\end{bmatrix}$,则$A^{-1}$等于(B)A。
$\begin{bmatrix}1&2\\3&4\end{bmatrix}$B。
$\begin{bmatrix}-2&1\\1.5&-0.5\end{bmatrix}$C。
$\begin{bmatrix}-2&1.5\\1&-0.5\end{bmatrix}$D。
$\begin{bmatrix}-2&1\\1&0\end{bmatrix}$2.设$A$是方阵,如有矩阵关系式$AB=AC$,则必有(D)A。
$A=0$B。
$BC$时$A=0$C。
$A$时$B=C$D。
$|A|$时$B=C$3.设$Ax=b$是一非齐次线性方程组,$\eta_1$,$\eta_2$是其任意两个解,则下列结论错误的是(A)A。
$\eta_1+\eta_2$是$Ax=0$的一个解B。
$\eta_1+\eta_2$是$Ax=b$的一个解C。
$\eta_1-\eta_2$是$Ax=0$的一个解D。
$2\eta_1-\eta_2$是$Ax=b$的一个解4.设$\lambda$是矩阵$A$的特征方程的3重根,$A$的属于$\lambda$的线性无关的特征向量的个数为$k$,则必有(A)A。
$k\leq3$B。
$k<3$XXXD。
$k>3$5.下列矩阵中是正定矩阵的为(C)A。
$\begin{bmatrix}1&-2\\-2&4\end{bmatrix}$B。
$\begin{bmatrix}1&2\\2&4\end{bmatrix}$C。
$\begin{bmatrix}2&-1\\-1&2\end{bmatrix}$D。
$\begin{bmatrix}-1&2\\2&4\end{bmatrix}$6.下列矩阵中,(B)不是初等矩阵。
线性代数单元测试卷(含答案)一、选择题(每题2分,共20分)1. 在线性代数中,什么是矩阵的秩?A. 矩阵的行数B. 矩阵的列数C. 矩阵的非零行数D. 矩阵的最大线性无关行数正确答案:D2. 下列哪个不是矩阵的运算?A. 矩阵的加法B. 矩阵的减法C. 矩阵的除法D. 矩阵的乘法正确答案:C3. 矩阵的转置满足下列哪个性质?A. (A^T)^T = AB. (AB)^T = B^T * A^TC. (A + B)^T = A^T + B^TD. (AB)^T = A^T + B^T正确答案:B4. 什么是向量的线性组合?A. 向量相加B. 向量相减C. 向量乘以常数后相加D. 向量与常数相乘正确答案:C5. 下列哪组向量线性无关?A. (1, 0)B. (0, 1)C. (1, 1)D. (1, -1)正确答案:C二、填空题(每题3分,共30分)1. 给定矩阵A = [[1, 2], [3, 4]],求A的逆矩阵。
正确答案:[[-2, 1], [1.5, -0.5]]2. 给定矩阵B = [[2, 4], [1, 3]],求B的特征值。
正确答案:[5, 0]3. 给定向量v = (1, 2, 3),求v的范数。
正确答案:sqrt(14)4. 给定矩阵C = [[1, 2, 3], [4, 5, 6]],求C的秩。
正确答案:25. 给定矩阵D = [[1, 2], [3, 4], [5, 6]],求D的转置矩阵。
正确答案:[[1, 3, 5], [2, 4, 6]]三、解答题(每题10分,共40分)1. 什么是线性相关和线性无关?线性相关表示向量之间存在线性组合的系数不全为零的情况,即存在非零向量组合得到零向量。
线性无关表示向量之间不存在这样的关系,即只有全为零的线性组合才能得到零向量。
2. 什么是矩阵的行列式?矩阵的行列式是一个标量,它是一个方阵中各个元素按照一定规律相乘再求和的结果。
行列式可以用来判断方阵的逆是否存在,以及计算方阵的特征值等。
《线性代数》 练习题一、选择题1、 设A ,B 是n 阶方阵,则必有 ……………………………………………( A )A 、|AB |=|BA | B 、2222)(B AB A B A ++=+C 、22))((B A B A B A -=-+D 、BA AB = 2、设A 是奇数阶反对称矩阵,则必有( B ) (A)、1=A (B)、0=A (C)、0≠A (D)、A 的值不确定3、向量组)0,1,1(,)9,0,3(-,)3,2,1(,)6,1,1(--的秩为____2 ________4、向量组)1,3,1,2(-,)4,5,2,4(-,)1,4,1,2(--的秩为______2__ ___.5、设A 是n m ⨯阶矩阵,r A r =)(,则齐次线性方程组O AX =的基础解系中包含解向量的个数为( C )(A)、r (B)、n (C)、r n - (D)、r m - 二、计算与证明题6、设⎪⎪⎪⎭⎫ ⎝⎛----=020212022A , ⎪⎪⎪⎭⎫⎝⎛---=221021132B 求(1)32AB A -,(2).T B A6、解(1). A AB 23-2202313212120020122--⎛⎫⎛⎫ ⎪⎪=-- ⎪⎪ ⎪⎪---⎝⎭⎝⎭2202212020-⎛⎫⎪--- ⎪ ⎪-⎝⎭2223186240-⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭2202212020-⎛⎫ ⎪--- ⎪ ⎪-⎝⎭210612622680-⎛⎫ ⎪=- ⎪ ⎪--⎝⎭(2). 220231231212120120020122122T A B ---⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=--= ⎪⎪ ⎪ ⎪⎪ ⎪-----⎝⎭⎝⎭⎝⎭222186240-⎛⎫⎪=-- ⎪ ⎪--⎝⎭7、设A ,B 是n 阶方阵满足AB B A =+,证明:E A -可逆. 7、解、1()A E B E --=-8、设方阵A 满足0332=--E A A ,证明:A 可逆,并求1-A .8、解、由2330A A E --=有A (3A E -)=3E ,于是,A [21(3A E -)]=E ,所以A 可逆,且11(3)3A A E -=-.9、计算行列式:1014300211321221---=D9、69D =-.10、计算行列式D =4232002005250230---- 10、解:D =423200200525230----0205252304--=55208---=80-=11、计算n 阶行列式abbb b a bb b a D =11、1[(1)]()n D a n b a b -=+--。
线性代数考试题及答案一、选择题(每题2分,共20分)1. 向量空间中,线性无关的向量集合的最小维度是:A. 1B. 2C. 3D. 向量的数量答案:D2. 矩阵A的行列式为0,这意味着:A. A是可逆矩阵B. A不是可逆矩阵C. A的所有行向量线性相关D. A的所有列向量线性无关答案:B3. 线性变换T: R^3 → R^3,由矩阵[1 2 3; 4 5 6; 7 8 9]表示,其特征值是:A. 1, 2, 3B. 0, 1, 2C. -1, 1, 2D. 0, 3, 6答案:D4. 矩阵A与矩阵B相乘,结果矩阵的秩最多是:A. A的秩B. B的秩C. A和B的秩之和D. A的秩和B的列数中较小的一个答案:D5. 给定两个向量v1和v2,它们的点积v1·v2 > 0,这意味着:A. v1和v2垂直B. v1和v2平行或共线C. v1和v2的夹角小于90度D. v1和v2的夹角大于90度答案:C6. 对于任意矩阵A,下列哪个矩阵总是存在的:A. 伴随矩阵B. 逆矩阵C. 转置矩阵D. 特征矩阵答案:C7. 线性方程组AX=B有唯一解的充分必要条件是:A. A是方阵B. A的行列式不为0C. B是零向量D. A是可逆矩阵答案:D8. 矩阵的特征值和特征向量之间的关系是:A. 特征向量对应于特征值B. 特征值对应于特征向量C. 特征向量是矩阵的行向量D. 特征值是矩阵的对角元素答案:A9. 一个矩阵的迹(trace)是:A. 所有元素的和B. 主对角线上元素的和C. 所有行的和D. 所有列的和答案:B10. 矩阵的范数有很多种,其中最常见的是:A. L1范数B. L2范数C. 无穷范数D. 所有上述范数答案:D二、简答题(每题10分,共20分)1. 请解释什么是基(Basis)以及它在向量空间中的作用是什么?答:基是向量空间中的一组线性无关的向量,它们通过线性组合可以表示空间中的任何向量。
线性代数考试试题一、选择题(每题3分,共30分)1. 下列矩阵中,哪个是可逆矩阵?A. [1, 2; 3, 4]B. [2, 0; 0, 1]C. [1, 1; 1, 1]D. [0, 1; 1, 0]2. 向量空间V的一组基具有n个向量,那么V的维数是:A. 0B. nC. 1D. 不确定3. 如果A和B是两个n阶方阵,那么AB和BA的行列式的值:A. 总是相等B. 只有在A和B可交换时相等C. 只有在A和B都是对角矩阵时相等D. 无法确定是否相等4. 对于任意的n维向量x,下列哪个选项是正确的?A. x^T * x是一个标量B. x^T * x是一个矩阵C. x * x^T是一个矩阵D. x + x^T是一个向量5. 特征值和特征向量的定义是什么?A. 对于矩阵A,如果存在标量λ和非零向量v,使得Av=λv,则λ是A的特征值,v是A的特征向量B. 对于矩阵A,如果存在标量λ和非零向量v,使得vA=λv,则λ是A的特征值,v是A的特征向量C. 对于矩阵A,如果存在标量λ和非零向量v,使得A^2v=λv,则λ是A的特征值,v是A的特征向量D. 以上都不是6. 下列哪个矩阵是对称矩阵?A. [1, 0; 0, -1]B. [0, 1; 1, 0]C. [1, 2; 2, 1]D. [2, 3; 3, 2]7. 对于矩阵A,其迹(trace)是:A. A的对角线元素之和B. A的行列式C. A的逆矩阵的对角线元素之和D. A的秩8. 如果矩阵A是正交矩阵,那么下列哪个陈述是正确的?A. A的行列式为1B. A的行列式为-1C. A的逆矩阵等于A的转置D. A的逆矩阵等于A本身9. 对于任意矩阵A,下列哪个选项是正确的?A. |A| 是 A 的行列式B. A^T 是 A 的转置C. A^-1 是 A 的逆矩阵D. A^* 是 A 的共轭转置10. 在线性代数中,线性无关的向量集合可以:A. 构成一个向量空间B. 构成一个基C. 确定一个唯一的解D. 以上都是二、填空题(每题4分,共20分)11. 矩阵的秩是指__________________________。
线性代数大学试题及答案一、选择题(每题2分,共20分)1. 向量空间的基是该空间的一组向量,它们满足以下哪些条件?A. 线性无关B. 向量空间中的任何向量都可以由基向量线性组合得到C. 向量空间中的任何向量都可以由基向量线性表示D. 所有选项答案:D2. 矩阵A的秩是指:A. A的行向量组的秩B. A的列向量组的秩C. A的转置矩阵的秩D. 所有选项答案:D3. 下列哪个矩阵是可逆的?A. 零矩阵B. 任何2x2的对角矩阵,对角线上的元素不全为零C. 任何3x3的单位矩阵D. 任何4x4的对称矩阵答案:B4. 线性变换可以用矩阵表示,当且仅当:A. 该变换是线性的B. 该变换是可逆的C. 变换的基向量线性无关D. 变换的输出空间是有限维的答案:C5. 特征值和特征向量是线性变换的基本概念,其中特征向量是指:A. 变换后长度不变的向量B. 变换后方向不变的向量C. 变换后保持不变的向量D. 变换后与原向量成比例的向量答案:D6. 矩阵的迹是:A. 矩阵主对角线上元素的和B. 矩阵的行列式的值C. 矩阵的秩D. 矩阵的逆的转置答案:A7. 以下哪个矩阵是正交矩阵?A. 单位矩阵B. 任何对称矩阵C. 任何对角矩阵D. 任何行列式为1的方阵答案:A8. 矩阵的行列式可以用于判断矩阵的:A. 可逆性B. 秩C. 特征值D. 迹答案:A9. 线性方程组有唯一解的条件是:A. 系数矩阵是可逆的B. 系数矩阵的秩等于增广矩阵的秩C. 方程的个数等于未知数的个数D. 所有选项答案:B10. 以下哪个矩阵是对称矩阵?A. 单位矩阵B. 对角矩阵C. 任何方阵的转置D. 任何方阵与其转置的乘积答案:D二、填空题(每题2分,共10分)1. 矩阵的______是矩阵中所有行(或列)向量生成的子空间的维数。
答案:秩2. 如果矩阵A和B可交换,即AB=BA,则称矩阵A和B是______的。
答案:可交换3. 一个向量空间的维数是指该空间的______的个数。
线性代数考试题及答案**线性代数考试题及答案**一、单项选择题(每题3分,共30分)1. 矩阵A的行列式为0,则矩阵A()A. 可逆B. 不可逆C. 可交换D. 不可交换答案:B2. 若矩阵A和B均为n阶方阵,且AB=0,则()A. A=0或B=0B. A和B至少有一个为0C. A和B都为0D. A和B可能都不为0答案:D3. 向量组α1,α2,…,αs线性无关,则()A. s ≤ nB. s > nC. s ≥ nD. s < n答案:A4. 矩阵A的特征值是()A. 矩阵A的行最简形式B. 矩阵A的列最简形式C. 矩阵A的对角线元素D. 满足|A-λE|=0的λ值答案:D5. 矩阵A和B相等的充要条件是()A. A和B的对应元素相等B. A和B的行向量组相同C. A和B的列向量组相同D. A和B的秩相等答案:A6. 若矩阵A可逆,则下列说法正确的是()A. |A|≠0B. A的秩为nC. A的行列式为1D. A的转置矩阵可逆答案:AA. r(A+B) = r(A) + r(B)B. r(AB) ≤ min{r(A), r(B)}C. r(A) = r(A^T)D. r(A) = r(A^-1)答案:C8. 向量组α1,α2,…,αn线性相关,则()A. 存在不全为0的k个向量,使得k个向量线性组合等于0B. 存在不全为0的n个向量,使得n个向量线性组合等于0C. 存在不全为0的n+1个向量,使得n+1个向量线性组合等于0D. 存在不全为0的m个向量,使得m个向量线性组合等于0,其中1≤m≤n答案:DA. r(A+B) = r(A) + r(B)B. r(AB) ≤ min{r(A), r(B)}C. r(A) = r(A^T)D. r(A) = r(A^-1)答案:B10. 若矩阵A和B均为n阶方阵,且AB=0,则()A. A=0或B=0B. A和B至少有一个为0C. A和B都为0D. A和B可能都不为0答案:D二、填空题(每题4分,共20分)1. 若矩阵A的行列式|A|=2,则矩阵A的伴随矩阵的行列式|adj(A)|= _ 。
线性代数试题及答案一、选择题(每题2分,共20分)1. 以下哪个矩阵是可逆的?A. [1 0; 0 0]B. [1 2; 3 4]C. [1 0; 0 1]D. [0 1; 1 0]2. 矩阵的秩是指什么?A. 矩阵的行数B. 矩阵的列数C. 矩阵中线性无关的行或列的最大数目D. 矩阵的对角线元素的个数3. 线性方程组有唯一解的条件是什么?A. 方程个数等于未知数个数B. 方程组是齐次的C. 方程组的系数矩阵是可逆的D. 方程组的系数矩阵的秩等于增广矩阵的秩4. 向量空间的基具有什么性质?A. 基向量的数量必须为1B. 基向量必须是正交的C. 基向量必须是线性无关的D. 基向量必须是单位向量5. 特征值和特征向量的定义是什么?A. 对于矩阵A,如果存在非零向量v,使得Av=λv,则λ是A的特征值,v是A的特征向量B. 对于矩阵A,如果存在非零向量v,使得A^Tv=λv,则λ是A 的特征值,v是A的特征向量C. 对于矩阵A,如果存在非零向量v,使得A^-1v=λv,则λ是A 的特征值,v是A的特征向量D. 对于矩阵A,如果存在非零向量v,使得Av=v,则λ是A的特征值,v是A的特征向量6. 线性变换的矩阵表示是什么?A. 线性变换的逆矩阵B. 线性变换的转置矩阵C. 线性变换的雅可比矩阵D. 线性变换的对角矩阵7. 以下哪个不是线性代数中的基本概念?A. 向量B. 矩阵C. 行列式D. 微积分8. 什么是线性方程组的齐次解?A. 方程组的所有解B. 方程组的特解C. 方程组的零解D. 方程组的非平凡解9. 矩阵的迹是什么?A. 矩阵的对角线元素的和B. 矩阵的行列式C. 矩阵的秩D. 矩阵的逆10. 什么是正交矩阵?A. 矩阵的转置等于其逆矩阵B. 矩阵的所有行向量都是单位向量C. 矩阵的所有列向量都是单位向量D. 矩阵的所有行向量都是正交的答案:1-5 C C C C A;6-10 D D C A A二、简答题(每题10分,共20分)11. 请简述线性代数中的向量空间(Vector Space)的定义。
线性代数试题(完整试题与详细答案)一、单项选择题(本大题共10小题,每小题2分,共20分)1.行列式111101111011110------第二行第一列元素的代数余子式21A =( )A .-2B .-1C .1D .22.设A 为2阶矩阵,若A 3=3,则=A 2( ) A .21 B .1 C .34 D .23.设n 阶矩阵A 、B 、C 满足E ABC =,则=-1C ( ) A .AB B .BA C .11--B AD .11--A B4.已知2阶矩阵⎪⎪⎭⎫ ⎝⎛=d c b a A 的行列式1-=A ,则=-1*)(A ( ) A .⎪⎪⎭⎫⎝⎛----d c b aB .⎪⎪⎭⎫⎝⎛--a c b dC .⎪⎪⎭⎫ ⎝⎛--a cb d D .⎪⎪⎭⎫ ⎝⎛d c b a5.向量组)2(,,,21≥s s ααα 的秩不为零的充分必要条件是( ) A .s ααα,,,21 中没有线性相关的部分组 B .s ααα,,,21 中至少有一个非零向量 C .s ααα,,,21 全是非零向量D .s ααα,,,21 全是零向量6.设A 为n m ⨯矩阵,则n 元齐次线性方程组0=Ax 有非零解的充分必要条件是( )A .n r =)(AB .m r =)(AC .n r <)(AD .m r <)(A 7.已知3阶矩阵A 的特征值为-1,0,1,则下列矩阵中可逆的是( ) A .A B .AE - C .A E -- D .A E -2 8.下列矩阵中不是..初等矩阵的为( )A .⎪⎪⎪⎭⎫ ⎝⎛101010001B .⎪⎪⎪⎭⎫⎝⎛-101010001C .⎪⎪⎪⎭⎫⎝⎛100020001D .⎪⎪⎪⎭⎫⎝⎛1010110019.4元二次型4332412143212222),,,(x x x x x x x x x x x x f +++=的秩为( ) A .1B .2C .3D .410.设矩阵⎪⎪⎪⎭⎫ ⎝⎛=001010100A ,则二次型Ax x T 的规范形为( )A .232221z z z ++ B .232221z z z ---C .232221z z z --D .232221z z z -+二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
线性代数大学试题及答案一、选择题(每题5分,共20分)1. 设A是一个3阶方阵,且满足A^2 = A,则下列说法正确的是:A. A是可逆矩阵B. A是幂等矩阵C. A是正交矩阵D. A是单位矩阵答案:B2. 若矩阵A的特征值为1,则下列说法正确的是:A. 1是A的迹B. 1是A的行列式C. 1是A的一个特征值D. 1是A的秩答案:C3. 设向量组α1, α2, ..., αn线性无关,则下列说法正确的是:A. 向量组中任意向量都可以用其他向量线性表示B. 向量组中任意向量都不可以被其他向量线性表示C. 向量组中任意向量都可以被其他向量线性表示D. 向量组中任意向量都不可以被其他向量线性表示,除非它们线性相关答案:B4. 若矩阵A的秩为2,则下列说法正确的是:A. A的行向量组线性无关B. A的列向量组线性无关C. A的行向量组线性相关D. A的列向量组线性相关答案:A二、填空题(每题5分,共30分)1. 若矩阵A的行列式为0,则A的______。
答案:秩小于矩阵的阶数2. 设向量空间V的一组基为{v1, v2, ..., vn},则任意向量v∈V可以唯一地表示为______。
答案:v = c1v1 + c2v2 + ... + cnn,其中ci为标量3. 设矩阵A和B可交换,即AB = BA,则A和B的______。
答案:特征值相同4. 若线性变换T: R^n → R^m,且T是可逆的,则T的______。
答案:行列式不为零5. 设A为n阶方阵,若A的特征多项式为f(λ) = (λ-1)^2(λ-2),则A的特征值为______。
答案:1, 1, 26. 若向量组α1, α2, ..., αn线性无关,则向量组α1, α2, ..., αn, α1+α2也是______。
答案:线性相关三、简答题(每题10分,共20分)1. 简述什么是矩阵的秩,并给出如何计算矩阵的秩的方法。
答案:矩阵的秩是指矩阵行向量或列向量组中线性无关向量的最大个数。
线性代数习题和答案第一部分选择题 (共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出の四个选项中只有一个是符合题目要求の,请将其代码填在题后の括号内。
错选或未选均无分。
1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于( )A。
m+n B. —(m+n) C. n-m D. m—n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A。
130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C。
13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D。
120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3。
设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是Aの伴随矩阵,则A *中位于(1,2)の元素是()A. –6 B。
6C。
2 D. –24。
设A是方阵,如有矩阵关系式AB=AC,则必有( )A。
A =0 B. B≠C时A=0C. A≠0时B=C D。
|A|≠0时B=C5。
已知3×4矩阵Aの行向量组线性无关,则秩(A T)等于( )A. 1 B。
2C。
3 D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则( )A。
有不全为0の数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0の数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0の数λ1,λ2,…,λs使λ1(α1—β1)+λ2(α2—β2)+…+λs(αs-βs)=0D。
有不全为0の数λ1,λ2,…,λs和不全为0の数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07。
设矩阵Aの秩为r,则A中( )A.所有r-1阶子式都不为0B.所有r—1阶子式全为0C。
第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( ).(A) 24315 (B) 14325 (C) 41523 (D)243512.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C)k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项.(A) 0 (B)2-n (C) )!2(-n (D) )!1(-n4.=0001001001001000( ).(A) 0 (B)1- (C) 1 (D) 25.=0001100000100100( ).(A) 0 (B)1- (C) 1 (D) 26.在函数1323211112)(x x xxx f ----=中3x 项的系数是( ).(A) 0 (B)1- (C) 1 (D) 27. 若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若a a a a a =22211211,则=21112212ka a ka a ( ).(A)ka (B)ka - (C)a k 2 (D)a k 2-9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ).(A) 0 (B)3- (C) 3 (D) 210. 若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)011. 若2235001011110403--=D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)012. k 等于下列选项中哪个值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x kx x kx x kx x x 有非零解.( )(A)1- (B)2- (C)3- (D)0二、填空题1. n 2阶排列)12(13)2(24-n n 的逆序数是.2.在六阶行列式中项261365415432a a a a a a 所带的符号是.3.四阶行列式中包含4322a a 且带正号的项是.4.若一个n 阶行列式中至少有12+-n n 个元素等于0, 则这个行列式的值等于.5. 行列式=100111010100111.6.行列式=-000100002000010n n .7.行列式=--001)1(2211)1(111n n n n a a a a a a .8.如果M a a a a a a a a a D ==333231232221131211,则=---=323233312222232112121311133333 3a a a a a a a a a a a a D .9.已知某5阶行列式的值为5,将其第一行与第5行交换并转置,再用2乘所有元素,则所得的新行列式的值为.10.行列式=--+---+---1111111111111111x x x x .11.n 阶行列式=+++λλλ111111111.12.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3,2,1,则该行列式的值为.13.设行列式5678123487654321=D ,j A 4)4,3,2,1(=j 为D 中第四行元的代数余子式,则=+++44434241234A A A A .14.已知db c a cc a b b a b c a cb a D =, D 中第四列元的代数余子式的和为.15.设行列式62211765144334321-==D ,j A 4为)4,3,2,1(4=j a j 的代数余子式,则=+4241A A ,=+4443A A .16.已知行列式nn D001030102112531-=,D 中第一行元的代数余子式的和为.17.齐次线性方程组⎪⎩⎪⎨⎧=+-=+=++0020232121321x x x kx x x x kx 仅有零解的充要条件是.18.若齐次线性方程组⎪⎩⎪⎨⎧=+--=+=++0230520232132321kx x x x x x x x 有非零解,则k =.三、计算题1.cb a db a dc a dc bd c b a d c ba d cb a++++++++33332222; 2.yxyx x y x y y x y x +++;3.解方程0011011101110=x x xx ; 4.111111321321221221221----n n n n a a a a x a a a a x a a a a xa a a a x ;5. na a a a 111111111111210(n j a j ,,1,0,1 =≠); 6. bn b b----)1(1111211111311117. n a b b b a a b b a a a b 321222111111111; 8.xa a a a x a a a a x a a a a x n nn 321212121;9.2212221212121111nn n nnx x x x x x x x x x x x x x x +++; 10. 21000120000021001210001211.aa a a a a aa a D ---------=110001100011000110001.四、证明题1.设1=abcd ,证明:011111111111122222222=++++dddd c c c c b b b b a a a a .2.3332221112333332222211111)1(c b a c b a c b a x c b x a x b a c b x a x b a c b x a xb a -=++++++.3.))()()()()()((111144442222d c b a c d b d b c a d a c a b d c b a d c b adc b a +++------=.4.∏∑≤<≤=----=nj i i jni innn nn nn n nna aa a a a a a a a a a a a a 1121222212222121)(111.5.设c b a ,,两两不等,证明0111333=c b a c ba 的充要条件是0=++cb a .参考答案一.单项选择题A D A C C D ABCD B B 二.填空题1.n ;2.”“-;3.43312214a a a a ;4.0;5.0;6.!)1(1n n --;7.1)1(212)1()1(n n n n n a a a ---; 8.M 3-; 9.160-; 10.4x ; 11.1)(-+n n λλ; 12.2-;13.0; 14.0; 15.9,12-; 16.)11(!1∑=-nk k n ; 17.3,2-≠k ; 18.7=k三.计算题1.))()()()()()((c d b d b c a d a c a b d c b a ------+++-; 2. )(233y x +-; 3. 1,0,2-=x ; 4.∏-=-11)(n k kax5.)111()1(00∑∏==-+-nk k nk k a a ; 6. ))2(()1)(2(b n b b ---+- ;7. ∏=--nk k kna b1)()1(; 8. ∏∑==-+nk k nk k a x a x 11)()(;9. ∑=+nk k x 11; 10. 1+n ;11. )1)(1(42a a a ++-. 四. 证明题 (略)第二章 矩阵一、单项选择题1. A 、B 为n 阶方阵,则下列各式中成立的是( )。
线性代数考试题及答案一、选择题(每题2分,共20分)1. 向量空间中,向量组的线性相关性指的是:A. 向量组中的向量可以相互表示B. 向量组中存在非零向量可以表示为其他向量的线性组合C. 向量组中的向量线性无关D. 向量组中的向量可以线性独立答案:B2. 矩阵A的秩是指:A. A的行向量组的极大线性无关组所含向量个数B. A的列向量组的极大线性无关组所含向量个数C. A的行数D. A的列数答案:B3. 对于矩阵A,若存在矩阵B,使得AB=BA=I,则B是A的:A. 逆矩阵B. 伴随矩阵C. 转置矩阵D. 正交矩阵答案:A4. 线性变换的特征值是指:A. 变换后向量的长度B. 变换后向量的方向C. 变换后向量与原向量的比值D. 变换后向量与原向量的夹角答案:C5. 一个矩阵的特征多项式是:A. 矩阵的行列式B. 矩阵的逆矩阵C. 矩阵的伴随矩阵D. 矩阵的迹答案:A6. 线性方程组有唯一解的条件是:A. 系数矩阵的秩等于增广矩阵的秩B. 系数矩阵的秩小于增广矩阵的秩C. 系数矩阵的秩大于增广矩阵的秩D. 系数矩阵的行列式不为零答案:D7. 矩阵的迹是:A. 矩阵的对角线元素之和B. 矩阵的行列式C. 矩阵的逆矩阵D. 矩阵的伴随矩阵答案:A8. 矩阵的伴随矩阵是:A. 矩阵的转置矩阵B. 矩阵的逆矩阵C. 矩阵的对角线元素的乘积D. 矩阵的行列式答案:B9. 向量空间的基是指:A. 向量空间中的一组向量B. 向量空间中线性无关的一组向量C. 向量空间中线性相关的一组向量D. 向量空间中任意一组向量答案:B10. 矩阵的转置是:A. 矩阵的行列互换B. 矩阵的行列互换C. 矩阵的行向量变成列向量D. 矩阵的列向量变成行向量答案:A二、填空题(每空2分,共20分)1. 一个向量空间的维数是指该空间的_________。
答案:基的向量个数2. 矩阵A的行列式表示为_________。
答案:det(A)3. 线性变换的矩阵表示是_________。
《线性代数》题库及答案一、选择题1.如果D=333231232221131211a a a a a a a a a ,则行列式33323123222113121196364232a a a a a a a a a 的值应为: A . 6D B .12D C .24D D .36D 2.设A 为n 阶方阵,R (A )=r<n,那么:A .A 的解不可逆B .0=A中所有r 阶子式全不为零 D. A 中没有不等于零的r 阶子式 3.设n 阶方阵A 与B 相似,那么:A .存在可逆矩阵P ,使B AP P =-1B .存在对角阵D ,使A 与B 都相似于DC .E B E A λλ-=-D .B A ≠、4.如果3333231232221131211==a a a a a a a a a D ,则131211332332223121333231323232a a a a a a a a a a a a ---等于A . 6B . -9C .-3D .-6 5.设矩阵n m ij a A ⨯=)(,m<n,且R (A )=r,那么:A .r<mB .r<nC .A 中r 阶子式不为零D .A 的标准型为⎪⎪⎭⎫⎝⎛0E , 其中E 为r 阶单位阵。
6.A 为n 阶可逆矩阵,λ是A 的一个特征根,则A 的伴随矩阵*A 的特征根之一是:A .nA1-λ B .A λ C .A 1-λD .nA λ7.如果⎪⎩⎪⎨⎧=--=+=++050403z y kx z y z ky x 有非零解,则k 应为:____________。
A . k =0B . k =1C . k =2D . k =-2 8.设A 是n 阶方阵,3≥n 且2)(-=n A R ,*A 是A 的伴随阵,那么:___________。
》A . 0≠*AB . ()0R A *= C . 1-*=n AA D . 2)(≤*A R9.设A 为n m ⨯矩阵,齐次线性方程组0=AX 仅有零解的充要条件是:A . A 的列向量线性无关B . A 的列向量线性相关C . A 的行向量线性相关D . A 的行向量线性相关10.如果⎝⎛=+-=++=+02020z y kx z ky x z kx 有非零解,则k 应为:________。
《线性代数》练习测试题库一.选择题1、=-0000000000121nn a a a a ( B )A. n n a a a 21)1(-B. n n a a a 211)1(+-C. n a a a 212、n 阶行列式0000000000a a a a= ( B )A.na B. (1)2(1)n n n a -- C. (1)n n a -3、n21= ( B )A. (1)!nn - B. (1)2(1)!n n n -- C. 1(1)!n n +-4、 A 是n 阶方阵,m, l 是非负整数,以下说法不正确的是 ( C ). A. ()m l mlA A = B. mlm lA A A+⋅= C. m m mB A AB =)(5、A 、B 分别为m n ⨯、s t ⨯矩阵, ACB 有意义的条件是 ( C ) A. C 为m t ⨯矩阵; B. C 为n t ⨯矩阵; C. C 为n s ⨯矩阵6、下面不一定为方阵的是 (C )A.对称矩阵.B.可逆矩阵.C. 线性方程组的系数矩阵.7、 ⎥⎦⎤⎢⎣⎡-1021 的伴随矩阵是 (A ) A. ⎥⎦⎤⎢⎣⎡1021 B. ⎥⎦⎤⎢⎣⎡-1201 C. ⎥⎦⎤⎢⎣⎡-1021 8、 分块矩阵 00A B ⎡⎤⎢⎥⎣⎦(其中A 、B 为可逆矩阵)的逆矩阵是 ( A )A. 1100A B --⎡⎤⎢⎥⎣⎦ B. 00BA ⎡⎤⎢⎥⎣⎦ C. 1100B A --⎡⎤⎢⎥⎣⎦9、线性方程组Ax b = 有唯一解的条件是 ( A )A.()()r A r A b A ==的列数B.()()r A r A b = .C.()()r A r A b A ==的行数10、线性方程组 ⎪⎩⎪⎨⎧=++=++=++23213213211a ax x x a x ax x x x ax 有唯一解的条件是 (A )A. 2,1-≠aB. 21-==a a 或.C. 1≠a11、 的是则下面向量组线性无关),,,=(),,,=()6,2,4(054312--=--γβα(B )A. 0,,βα B. γβ, C. γα, 12、设A 为正交矩阵,下面结论中错误的是 ( C )A. A T 也为正交矩阵.B. A -1也为正交矩阵.C. 总有 1A =-13、二次型()233221214321342,,,,x x x x x x x x x x f --+=的矩阵为 ( C )A 、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---340402021B 、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---320201011 C 、⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---0000032002010011 14、设r 是实二次型),,,(21n x x x f 的秩,p 是二次型的正惯性指数,q 是二次型的负惯性指数,s 是二次型的符号差,那么 ( B )A. q p r -=;B. q p r +=;C. q p s +=; 15、下面二次型中正定的是 ( B )A. 21321),,(x x x x x f =B.2322213212),,(x x x x x x f ++= C.22213212),,(x x x x x f +=二、判断题1、若行列式主对角线上的元素全为0,则此行列式为0. ( ⨯ )2、A 与B 都是3×2矩阵,则A 与B 的乘积也是3×2矩阵。
线性代数自考试题及答案一、选择题(每题2分,共20分)1. 向量空间中的基是一组向量,以下哪个不是基的性质?A. 线性无关B. 线性相关C. 张成整个空间D. 可以是空间中的任意向量2. 矩阵A和矩阵B相乘,结果矩阵的行列式等于:A. A的行列式乘以B的行列式B. B的行列式乘以A的行列式C. 两个矩阵的行列式之和D. 无法确定3. 对于线性变换,以下哪个说法是错误的?A. 线性变换保持向量的加法运算B. 线性变换保持标量的乘法C. 线性变换保持向量的长度D. 线性变换保持向量的点积4. 一个矩阵的特征值是指:A. 矩阵的对角线元素B. 矩阵的行列式C. 使得矩阵的某个特征向量不为零的标量D. 矩阵的迹5. 以下哪个矩阵是可逆的?A. 零矩阵B. 单位矩阵C. 奇异矩阵D. 任意矩阵6. 矩阵的秩是指:A. 矩阵中非零行的最大数量B. 矩阵中非零列的最大数量C. 矩阵中最大的线性无关行或列的数量D. 矩阵的行数或列数7. 线性方程组的解集可以是:A. 一个点B. 一条直线C. 一个平面D. 无限多个解8. 矩阵的迹是:A. 矩阵的对角线元素之和B. 矩阵的行列式C. 矩阵的逆矩阵的对角线元素之和D. 矩阵的转置矩阵9. 向量空间的维数是指:A. 空间中向量的个数B. 空间中基的向量个数C. 空间中任意向量的个数D. 空间中线性无关向量的最大个数10. 线性变换的核是指:A. 变换后为零向量的集合B. 变换后为单位向量的集合C. 变换后为任意向量的集合D. 变换后为非零向量的集合二、简答题(每题10分,共30分)1. 解释什么是线性相关和线性无关,并给出一个例子。
2. 描述如何计算矩阵的特征值和特征向量。
3. 解释什么是正交矩阵,并给出正交矩阵的一个性质。
三、计算题(每题25分,共50分)1. 给定矩阵A = \[\begin{pmatrix} 4 & 2 \\ 1 & 3 \end{pmatrix}\],求矩阵A的逆矩阵。
线性代数考试题及答案一、选择题(共10小题,每题2分,共20分)1. 在线性空间R^3中,向量的维数是()。
A. 1B. 2C. 3D. 无穷大2. 已知向量组{v1, v2, v3}线性无关,向量v4可以由向量组{v1, v2,v3}线性表示,那么向量组{v1, v2, v3, v4}()。
A. 线性无关B. 线性相关C. 只存在部分线性相关D. 无法确定3. 若A是一个n×n矩阵,且满足A^2 = -I,其中I为n阶单位矩阵,则矩阵A的特征值为()。
A. -1B. 1C. iD. -i4. 设A为n×n矩阵,若A^2=0,则()。
A. A非奇异B. A是零矩阵C. A的特征值全为0D. A的特征向量全为05. 设A为3×3矩阵,若A的秩为2且|A|=0,则()。
A. A的特征值必为0B. A的特征值至少有2个为0C. A的特征值可能全为非零数D. A的特征值全为非零数6. 设A为m×n矩阵,若齐次线性方程组Ax = 0有非零解,则()。
A. A的列向量组线性无关B. A的行向量组线性无关C. A的列向量组线性相关D. A的行向量组线性相关7. 设A、B为m×n矩阵,若AB=0,则()。
A. A=0或B=0B. A和B至少有一方为0C. AB为零矩阵D. AB不一定为零矩阵8. 若二次型f(x) = x^T Ax恒大于等于零,其中x为非零向量且A为n×n对称矩阵,则A()。
A. 不一定是正定矩阵B. 一定是正定矩阵C. 一定是半正定矩阵D. 不一定是半正定矩阵9. 若矩阵A=(a1,a2,a3,...,an)为方阵,并且满足AtA=In,其中In为n阶单位矩阵,则()。
A. A非奇异B. A为对角阵C. A为正交阵D. A为对称阵10. 对于线性方程组Ax = b,若方程组有解,则()。
A. A的行向量数等于b的个数B. A的列向量数等于b的个数C. A的秩等于b的个数D. A的秩小于等于b的个数二、简答题(共4题,每题15分,共60分)1. 请证明:若n×n矩阵A与B的秩相等,即rank(A)=rank(B),则AB与BA的秩也相等。
线性代数试题及答案一、选择题1. 线性代数是数学的一个分支,主要研究向量空间、线性变换以及它们之间的关系。
以下哪个选项不是向量空间的基本性质?A. 封闭性B. 结合律C. 交换律D. 单位元存在性答案:C2. 设A是一个3级方阵,且det(A) = 2,那么det(2A)等于多少?A. 4B. 6C. 8D. 10答案:C3. 在线性代数中,线性变换可以通过什么来表示?A. 矩阵B. 行列式C. 特征值D. 坐标答案:A4. 特征值和特征向量在描述线性变换时具有重要意义。
一个矩阵的特征值和特征向量分别表示什么?A. 变换后矩阵的行列式,变换前矩阵的行列式B. 变换后矩阵的行列式,变换前向量的方向C. 变换前矩阵的行列式,变换后向量的方向D. 变换前矩阵的行列式,变换后向量的方向答案:B5. 线性代数中的欧几里得空间是一个完备的度量空间,它满足哪些性质?A. 可数性B. 完备性C. 可加性D. 所有上述性质答案:D二、填空题1. 在线性代数中,若一个向量空间的基包含n个向量,则该向空间的维数为______。
2. 设矩阵A = [a_ij],其中i表示行索引,j表示列索引。
如果A的逆矩阵存在,则A的行列式det(A)不等于______。
3. 对于一个n级方阵A,若存在一个非零向量v,使得Av=λv,其中λ为一个标量,则称λ为A的______,v为对应于λ的______。
三、计算题1. 给定矩阵B = [1 2 3; 4 5 6; 7 8 9],求矩阵B的秩。
2. 设线性方程组如下:a_1 + 2a_2 + 3a_3 = 64a_1 + 5a_2 + 6a_3 = 127a_1 + 8a_3 + 9a_3 = 18求该方程组的解。
3. 给定一个3级方阵C,其特征值为1,-2和3,求矩阵C。
四、论述题1. 讨论线性变换在几何上的意义,并给出一个具体的例子来说明其作用。
2. 解释何为线性空间,以及线性空间的同构关系是如何定义的。
《线性代数》考试习题一、单项选择题1.设矩阵A=,则A-1等于( B )A. B.C. D.2.设A是方阵,如有矩阵关系式AB=AC,则必有( D )A. A =0B. B C时A=0C. A0时B=CD. |A|0时B=C3.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是( A )A.η1+η2是Ax=0的一个解 B.η1+η2是Ax=b的一个解C.η1-η2是Ax=0的一个解 D.2η1-η2是Ax=b的一个解4.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有( A )A. k≤3B. k<3C. k=3D. k>35.下列矩阵中是正定矩阵的为( C )A. B.C. D.6.下列矩阵中,( B )不是初等矩阵。
A. B.C. D.7.设向量组线性无关,则下列向量组中线性无关的是( D )。
A. B.C. D.8.设A为n阶方阵,且。
则( C )A. B. C. D.9.设为矩阵,则有( D )。
A.若,则有无穷多解;B.若,则有非零解,且基础解系含有个线性无关解向量;C.若有阶子式不为零,则有唯一解;D.若有阶子式不为零,则仅有零解。
10.若n阶矩阵A,B有共同的特征值,且各有n个线性无关的特征向量,则( A )A.A与B相似B.,但|A-B|=0C.A=BD.A与B不一定相似,但|A|=|B|11.已知矩阵,则( C )12.设四阶行列式,则其中x的一次项的系数为( A )(A) 1 (B) -1 (C) 2 (D) -213.设分块矩阵,其中的子块A1, A2为方阵,O为零矩阵,若A可逆,则 ( C )(A) A1可逆,A2不一定可逆 (B) A2可逆,A1不一定可逆(C) A1,A2都可逆 (D) A1,A2都不一定可逆14.用初等矩阵左乘矩阵,相当于对A进行如下何种初等变换 ( B )(A) (B) (C) (D)15.非齐次线性方程组在以下哪种情形下有无穷多解. ( C )(A) (B)(C) (D)16.设矩阵A,B,C,X为同阶方阵,且A,B可逆,AXB=C,则矩阵X=( A )A.A-1CB-1B.CA-1B-1C.B-1A-1CD.CB-1A-117.设是四维向量,则( B )A.一定线性无关B.一定线性相关C.一定可以由线性表示D.一定可以由线性表出18.设A是n阶方阵,若对任意的n维向量x均满足Ax=0,则( A )A.A=0B.A=EC.r(A)=nD.0<r(A)<(n)19.设A为n阶方阵,r(A)<n,下列关于齐次线性方程组Ax=0的叙述正确的是( C )A.Ax=0只有零解B.Ax=0的基础解系含r(A)个解向量C.Ax=0的基础解系含n-r(A)个解向量D.Ax=0没有解20.设是非齐次线性方程组Ax=b的两个不同的解,则( C )A.是Ax=b的解B.是Ax=b的解C.是Ax=b的解D.是Ax=b的解21.如果矩阵A满足,则( D)A、A=0B、A=EC、A=0或A=ED、A不可逆或不可逆22.若非齐次线性方程组中,方程的个数少于未知量的个数,则( A )A、有无穷多解B、仅有零解C、有无穷多解D、有唯一解23.设是齐次线性方程组的基础解系,则下列向量组中,不的基础解系的是[ D ]A、 B、C、 D、24.设A、B是两个n阶正交阵,则下列结论不正确的是[ A ]A、是正交阵B、 AB是正交阵C、是正交阵D、是正交阵25.设秩, 不能由向量组线性表示,则[ A ]A、秩,B、秩,C、不能确定秩D、以上结论都不正确26.设均为n维向量,又线性相关,线性无关,则下列正确的是( C )A.线性相关B.线性无关C.可由线性表示D.可由线性表示27.若A为( B ),则A必为方阵.A.分块矩阵B. 可逆矩阵C. 转置矩阵D.线性方程组的系数矩阵28.当k满足( D )时,只有零解.A. k=2或k=-2B. k≠2C. k≠-2D. k≠2且k≠-229.设A为n阶可逆阵,则下列( C )恒成立.A.(2A)-1=2A-1B.(2A-1)T=(2A T)-1C.[(A-1)-1]T=[(A T)-1]-1D.[(A T)T]-1=[(A-1)-1]T30.设A是n阶方阵,则A能与n阶对角阵相似的充要条件是( C ).A. A是对角阵B. A有n个互不相同的特征向量C. A有n个线性无关的特征向量D. A有n个互不相同的特征值31.下列各式中 D 的值为0A. 行列式D中有两列对应元素之和为0B. 行列式D中对角线上元素全为0C.行列式D中有两行含有相同的公因子D.D中有一行与另一行元素对应成比例32.设,则下列 B 运算有意义A. ACB. BCC. A+BD. AB-BC33.用一初等矩阵左乘一矩阵B,等于对B施行相应的 A 变换A. 行变换B. 列变换C. 既不是行变换也不是列变换34.的秩为 AA. 5B. 4C. 3D. 235.向量组线性无关的充要条件是 BA. 向量组中不含0向量B. 向量组的秩等于它所含向量的个数C. 向量组中任意r-1个向量无关D. 向量组中存在一个向量,它不能由其余向量表出36.向量组可由线性表出,且线性无关,则s与t的关系为 DA. s=tB. s>tC. s<tD. s≥t37.如果一个线性方程组有解,则只有唯一解的充要条件是它的导出组 CA. 有解B. 设解C. 只有0解D. 有非0解38.当K= D 时,( 3)与( - K)的内积为2A. -1B. 1C.D.39.已知A2=A,则A的特征值是 CA. λ=0B. λ=1C. λ=0或=λ1D. λ=0和λ=140.的值为 DA. 1B. 0C. aD. -a2b41.设矩阵A,B,C,X为同阶方阵,且A,B可逆,AXB=C,则矩阵X=( A )A.A-1CB-1B.CA-1B-1C.B-1A-1CD.CB-1A-142.设是四维向量,则( B )A.一定线性无关B.一定线性相关C.一定可以由线性表示D.一定可以由线性表出43.设A是n阶方阵,若对任意的n维向量x均满足Ax=0,则( A )A.A=0B.A=EC.r(A)=nD.0<r(A)<(n)44.设A为n阶方阵,r(A)<n,下列关于齐次线性方程组Ax=0的叙述正确的是( C )A.Ax=0只有零解B.Ax=0的基础解系含r(A)个解向量C.Ax=0的基础解系含n-r(A)个解向量D.Ax=0没有解45.设是非齐次线性方程组Ax=b的两个不同的解,则( C )A.是Ax=b的解B.是Ax=b的解C.是Ax=b的解D.是Ax=b46.如果矩阵A满足,则( D)A、A=0B、A=EC、A=0或A=ED、A不可逆或不可逆47.若非齐次线性方程组中,方程的个数少于未知量的个数,则( A )A、有无穷多解B、仅有零解C、有无穷多解D、有唯一解48.设是齐次线性方程组的基础解系,则下列向量组中,不的基础解系的是[ D ]A、 B、C、 D、49.设A、B是两个n阶正交阵,则下列结论不正确的是[ A ]A、是正交阵B、 AB是正交阵C、是正交阵D、是正交阵50.设秩, 不能由向量组线性表示,则[ A ]A、秩,B、秩,C、不能确定秩D、以上结论都不正确51.设均为n维向量,又线性相关,线性无关,则下列正确的是( C )A.线性相关B.线性无关C.可由线性表示D.可由线性表示52.若A为( B ),则A必为方阵.A.分块矩阵B. 可逆矩阵C. 转置矩阵D.线性方程组的系数矩阵53.当k满足( D )时,只有零解.A. k=2或k=-2B. k≠2C. k≠-2D. k≠2且k≠-254.设A为n阶可逆阵,则下列( C )恒成立.A.(2A)-1=2A-1B.(2A-1)T=(2A T)-1C.[(A-1)-1]T=[(A T)-1]-1D.[(A T)T]-1=[(A-1)-1]T55.设A是n阶方阵,则A能与n阶对角阵相似的充要条件是( C ).A. A是对角阵B. A有n个互不相同的特征向量C. A有n个线性无关的特征向量D. A有n个互不相同的特征值56.下列各式中 D 的值为0A. 行列式D中有两列对应元素之和为0B. 行列式D中对角线上元素全为0C.行列式D中有两行含有相同的公因子D.D中有一行与另一行元素对应成比例57.设,则下列 B 运算有意义A. ACB. BCC. A+BD. AB-BC58.用一初等矩阵左乘一矩阵B,等于对B施行相应的 A 变换A. 行变换B. 列变换C. 既不是行变换也不是列变换59.的秩为 AA. 5B. 4C. 3D. 260.向量组线性无关的充要条件是 BA. 向量组中不含0向量B. 向量组的秩等于它所含向量的个数C. 向量组中任意r-1个向量无关D. 向量组中存在一个向量,它不能由其余向量表出61.向量组可由线性表出,且线性无关,则s与t的关系为 DA. s=tB. s>tC. s<tD. s≥t62.如果一个线性方程组有解,则只有唯一解的充要条件是它的导出组 CA. 有解B. 设解C. 只有0解D. 有非0解63.当K= D 时,( 3)与( - K)的内积为2A. -1B. 1C.D.64.已知A2=A,则A的特征值是 CA. λ=0B. λ=1C. λ=0或=λ1D. λ=0和λ=165.的值为 DA. 1B. 0C. aD. -a2b66.设,则下列 B 运算有意义A. ACB. BCC. A+BD. AB-BC67.向量组可由线性表出,且线性无关,则s与t的关系为 DA. s=tB. s>tC. s<tD. s≥t68.向量组是 AA. 线性相关B. 线性无关C.D.69.已知矩阵满足A2=3A,则A的特征值是 CA. λ=1B. λ=0C. λ=3或λ=0D. λ=3和λ=070.如果一个线性方程组有解,则只有唯一解的充要条件是它的导出组 CA. 有解B. 没解C. 只有零解D. 有非0解71.矩阵的秩为 AA. 5B. 4C. 3D. 272.下列各式中 D 的值为0A. 行列式D中有两列对应元素之和为0B. D中对角线上元素全为0C. D中有两行含有相同的公因子D. D中有一行元素与另一行元素对应成比例73.向量组是 AA. 线性相关B. 线性无关C.D.74.已知元线性方程组,其增广矩阵为,当( C )时,线性方程组有解。
A、,B、;C、;D、75.若线性方程组的增广矩阵经初等行变换化为当( B )时,此线性方程组有惟一解A、-1,0B、0,1C、-1,1D、1,276.若三阶行列式D的第三行的元素依次为3,它们的余子式分别为4,则D=( B )A、-8B、8C、-20D、2077.设A为n阶方阵,且|A|=4,则|A|=___A____ 。