生物医用复合材料发展现状及趋势
- 格式:pdf
- 大小:265.18 KB
- 文档页数:7
生物医学材料的应用现状及发展前景Ξ吴刚强1,2,郎中敏1,赫文秀1,蔡 颖1(1.内蒙古科技大学化学与化工学院,内蒙古包头 014010;2.清华大学化工系绿色反应工程与工艺北京市重点实验室,北京 100084) 摘 要:由于生物医学材料是无毒副作用、生物相容性良好、耐腐蚀性能优越的医用材料,越来越受到广大科技研究工作者的重视。
近20年,国内外特别是一些发达国家对生物材料的研究和开发得到飞速的发展。
本文详细阐述了生物医学材料的分类及发展前景。
关键词:生物材料;高分子;陶瓷 生物材料也称为生物医学材料,是指以医疗为目的,用于与生物组织接触以形成功能的无生命的材料[1]。
自19世纪80年代以来,以医疗、保健、增进生活质量、造福人类为目的的生物材料取得了快速的发展。
它最早的使用可以追溯至19世纪末,在1886年,首例钢片和镀镍钢治疗骨折应用于临床获得成功。
迄今为止,除大脑以外的各种人工器官已经应用于人体,并取得了良好的效果。
目前,生物材料主要包括医用高分子材料、生物陶瓷、医用金属材料等[2]。
1 生物医学材料的分类目前,按材料性质不同,生物材料一般可分为医用高分子材料、生物陶瓷材料、医用金属材料、生物降解材料、生物医学复合材料等。
1.1 医用高分子材料医用高分子材料是生物医用材料研究领域最活跃的领域之一,特别是20世纪60年代以来发展更快,已经能合成出许多具有优良性能的软、硬材料及药物控释材料应用到各个医学领域。
医用高分子易于加工成型,原材料易得,理化性质可以在很宽的范围内被调节和控制,加之生物体的大部分组织和器官实质都是由高分子化合物构成,故一经出现就得到重视和应用。
医用高分子材料要应用于生物体必须同时要满足生物功能性、生物相容性、化学稳定性、可加工性等严格的要求。
当前研究主要集中在外科置入件用高分子材料和生物降解及药物控制释放材料[3]。
1.2 生物陶瓷材料生物陶瓷又称生物医用非金属材料,从广义上讲包括主要构成成分为无机非金属材料及其制品。
nsight透视I生物医用复合材料 研究现状及发展趋势◇王 俊中国科学院文献情报中心情报研究部生物医用复合材料(biomedical composite materials)是由两种或两种以上的不同材料复合而成的生物医用材料,又称为生物材料(b iome dical materials),即以医疗为目的,用于诊断、治疗、修复或替换人体组织器官或增进其功能的材料[1]。
生物医用材料是研究人工器官和医疗器械的基础,目前已成为材料科学的重要分支,尤其是随着生物技术的莲勃发展和重大突破,生物材料已成为各国科学家进行研究和开发的热点。
当今,随着材料科学、生命科学和临床医学的不断发展,其研究内容涉及材料医学、生物学、力学、工程学等诸多学科。
不同学科的科学家通过广泛的科研合作,使制造具有完全生物功能的人工器官展示出美好的前景。
人体组织和器官的修复,将从简单的利用器械固定发展到再生和重建有生命的人体组织和器宫;从短寿命的组织和器官的修复发展至永久性的修复和替换。
这一医学革命(特别是外科学),对生命科学和材料科学等相关学科的发展提出了诸多需求,对生物医学材料的发展产生了重要的促进作用。
生物医用复合材料的分类生物医用材料由高分子、金属、陶瓷、天然材料、复合材料等材料组成,具有不同的分类方法[2]。
生物医用材料按材料组成和性质可分为:合成高分子材料(聚氨醋、聚醋、聚乳酸、聚乙醇酸、乳酸乙醇酸共聚物及其他医用合成塑料和橡胶等)、天然高分子材料(如胶原、丝蛋白、纤维素、壳聚糖等)、金属与合金材料(如钛金属及其合金等)、无机材料(生物活性陶瓷,羟基磷灰石等)、复合材料(碳纤维/聚合物、玻璃纤维/聚合物等)。
金属、陶瓷、高分子及其复合材料是应用最广的生物医用材料。
按应用生物医用材料又可分为可降解与吸收材料、组织工程材料与人工器官、控制释放材料、仿生智能材料等。
根据材料的用途,这些材料又可以分为生物惰性(bioinert)、生物活性(b i o a c t i v e)或生物降解随着生物技术、医药技术、信息技术、制造技术、纳米技术和材料科学技术的迅猛发展与交互融合,新型和新概念生物医用材料层出不穷。
生物可降解医用材料的研究进展一、本文概述随着医疗技术的不断进步和人们对生活质量要求的提高,医用材料在医疗领域的应用日益广泛。
然而,传统的非降解医用材料在植入人体后往往需要长期存在,甚至需要二次手术取出,这不仅给患者带来了痛苦,也增加了医疗成本。
因此,生物可降解医用材料的研究成为了医学材料领域的研究热点。
本文旨在综述近年来生物可降解医用材料的研究进展,探讨其应用领域和发展趋势,以期为医用材料的研发和应用提供新的思路和方法。
本文首先介绍了生物可降解医用材料的定义和分类,包括天然生物可降解材料和合成生物可降解材料两大类。
然后,重点综述了生物可降解医用材料在药物载体、组织工程、植入物以及再生医学等领域的研究进展,总结了其在体内的降解机制、生物相容性以及应用效果。
本文还讨论了生物可降解医用材料研究中存在的问题和挑战,如降解速率控制、力学性能优化以及生物安全性评价等。
本文展望了生物可降解医用材料的发展前景,提出了未来研究的方向和重点,以期推动生物可降解医用材料的研发和应用,为医疗事业的进步做出更大的贡献。
二、生物可降解医用材料的分类生物可降解医用材料是一类在生物体内能够被逐渐分解和吸收的材料,其在医疗领域的应用日益广泛。
根据不同的降解机制和材料特性,生物可降解医用材料可分为天然生物降解材料和合成生物降解材料两大类。
天然生物降解材料主要来源于自然界,如多糖类、蛋白质类、天然橡胶等。
这些材料具有良好的生物相容性和降解性,能够被生物体内的酶或微生物分解为无毒的物质。
例如,壳聚糖作为一种天然多糖,具有良好的生物相容性和生物活性,被广泛应用于药物载体、组织工程和伤口敷料等领域。
胶原蛋白作为一种天然蛋白质,具有良好的生物降解性和机械性能,被广泛应用于人工皮肤、血管和骨骼等组织的修复和再生。
合成生物降解材料则是通过化学合成或生物合成的方法制备的,如聚乳酸(PLA)、聚己内酯(PCL)等聚酯类材料。
这些材料具有可控的降解速率和良好的加工性能,可以通过调整分子结构和合成条件来优化其性能。
生物复合材料市场分析报告1.引言1.1 概述概述生物复合材料是由生物质材料和树脂等合成材料相结合形成的新型复合材料,具有轻质、高强度、环保等优点。
随着全球对可持续发展和环保的重视,生物复合材料市场逐渐受到关注并呈现出快速增长的趋势。
本报告将对生物复合材料的定义、应用领域和市场现状进行分析,同时探讨其发展趋势、竞争格局以及未来展望,为相关投资者和企业提供市场参考和决策依据。
1.2 文章结构文章结构部分的内容可以包括对整篇文章的结构安排进行介绍,比如在引言部分介绍了文章的背景和目的,然后在正文部分详细阐述了生物复合材料的定义、应用领域和市场现状,最后在结论部分对生物复合材料市场的发展趋势、竞争格局和展望进行总结和分析。
文章结构的合理安排可以帮助读者更好地理解和理解文章的内容,使整篇文章逻辑清晰、条理性强。
1.3 目的:本报告旨在分析生物复合材料市场的现状和发展趋势,为相关产业和投资者提供市场参考。
通过对生物复合材料的定义、应用领域和市场现状的分析,我们旨在全面了解生物复合材料在不同领域的应用情况和市场规模,为决策者提供科学的数据支持。
同时,我们也将探讨生物复合材料市场的竞争格局和未来发展趋势,以期为行业发展和企业战略提供可靠的参考和建议。
通过本报告的撰写和分析,我们旨在帮助企业更好地把握市场机遇和挑战,推动生物复合材料产业的健康发展。
1.4 总结总结:本报告对生物复合材料市场进行了全面的分析和探讨。
在引言部分,我们介绍了本报告的概述和目的,为读者提供了一个整体的了解。
在正文部分,我们定义了生物复合材料,并对其在各个应用领域的情况进行了介绍,同时分析了市场的现状。
在结论部分,我们对生物复合材料市场的发展趋势进行了展望,分析了市场的竞争格局,并对未来生物复合材料市场的发展提出了展望。
通过本报告的分析,读者可以更全面地了解生物复合材料市场的现状和未来发展趋势,为相关企业和投资者提供了参考和建议。
2.正文2.1 生物复合材料的定义生物复合材料是由两种或两种以上的不同类型的生物基质和增强材料组成的一种新型材料。
生物医用材料龙头企业全文共四篇示例,供读者参考第一篇示例:生物医用材料是一种应用于医疗领域的材料,主要用于替代人体组织、修复受损组织、辅助诊断治疗等用途。
随着医疗技术的不断发展和人们对健康的追求,生物医用材料市场需求不断增长,成为了一个渐趋火热的行业。
在生物医用材料行业中,有一些企业被称为“龙头企业”,这些企业在行业内拥有较大的市场份额、领先的技术水平和广泛的产品线,代表着行业的发展方向和趋势。
下面我们就来介绍几家国内外知名的生物医用材料龙头企业。
第一家公司是美国爱迪克公司(EddyTech Corporation),这是一家专注于生物材料应用与研发的企业,公司成立于2000年,总部位于美国加州,是全球生物医用材料行业中最具实力的企业之一。
爱迪克公司主要从事生物医用材料的设计、生产和销售,产品涵盖了人工关节、人工器官、生物支架等领域,为医疗器械行业提供了全方位的解决方案。
爱迪克公司拥有团队实力雄厚的研发团队和高水平的生产技术,可以为全球客户提供个性化的定制服务。
第二家公司是德国西门子医疗(Siemens Healthineers),西门子医疗是全球规模最大、技术最先进的医疗设备制造商之一,也是生物医用材料领域的龙头企业之一。
西门子医疗在生物医用材料领域的产品线涵盖了医用成像、手术器械、体外诊断等多个领域,公司在生物医用材料研发、生产和销售方面取得了显著成就。
西门子医疗拥有一支强大的研发团队和专业的销售服务团队,其产品远销全球100多个国家和地区,深受全球客户的信赖和好评。
这些生物医用材料行业的龙头企业在技术研发、产品创新、市场拓展等方面都取得了显著成就,为行业的发展做出了重要贡献。
随着科技的不断进步和消费者对健康的重视,生物医用材料行业的发展潜力巨大,未来将迎来更广阔的市场空间和发展机遇。
希望这些龙头企业能继续保持创新精神,不断提升产品质量和服务水平,为医疗健康事业的发展作出更大的贡献。
第二篇示例:生物医用材料是指应用于医疗领域的材料,可以用于修复、替换或增强生物组织和器官功能。
生物医用材料的研究现状与发展趋势是什么?生物医用材料是一类用于诊断、治疗、修复或替换人体组织、器官或增进其功能的新型高技术材料,其应用不仅挽救了数以千万计危重病人的生命,而且降低了心血管病、癌症、创伤等重大疾病的死亡率,在提高患者生命质量和健康水平、降低医疗成本方面发挥了重要作用。
伴随着临床的成功应用,生物医用材料及其制品产业已经形成,它不但是整个医疗器械产业的基础,而且是世界经济中最有生机的朝阳产业。
随着社会经济的发展,生活水平的提高,以及人口老龄化、新技术的注入,生物医用材料产业以高于20%的年增长率持续增长,正在成长为世界经济的支柱性产业。
发展生物医用材料科学与产业不仅是社会、经济发展的迫切需求,而且对国防事业以及国家安全也具有重要意义。
正如美国21世纪陆军战略技术报告中指出的,生物技术如战场快速急救、止血、创伤、手术机器人等技术,是未来30年增强战斗力最有希望的技术。
而生物医用材料,则是生物技术的重要组成部分。
作为一个人口大国,我国对生物医用材料和制品有巨大的需求,市场年增长率已高达30%以上。
多年来在国家相关科技计划支持下,我国生物医用材料的研究得到了快速发展,但与国际领先水平差距较大,占世界市场份额不到3%,生物医用高技术产品仍基本依靠进口,已成为导致我国医疗费用大幅度增加的重要原因之一。
生物医用材料科学的显著特点是多学科交叉,包括材料学、化学(特别是高分子化学与物理学)、生物学、医学/临床医学、药学及工程学等10余个学科。
因此,生物医用材料种类较多、应用范围广,是典型的小品种、多批量。
故本文简要概述生物医用材料的研究及应用现状与发展趋势。
生物医用材料的分类较多,可以从材料特性、使用范围等不同角度进行分类,本文从材料研究角度进行分类,主要包括高分子材料(含聚合物基复合材料)、金属、陶瓷(包括碳、陶瓷和玻璃)、天然材料(包括动植物材料)。
一、高分子材料1.高分子材料种类由于人体绝大部分组织与器官都是由高分子化合物构成,因此高分子材料在生物医学上具有独特的功效和重要的作用,是临床上应用最广的一类生物材料。
生物医用材料行业深度研究报告(简版)前言生物医用材料是研究人工器官和医疗器械的基础,目前,已成为材料科学的重要分支。
尤其是随着生物技术的蓬勃发展和重大突破,生物医用材料已成为各国科学家进行研究和开发的热点。
现在,生物医用材料科学已成为一门与人类现代医疗保健系统密切相关的边缘学科。
其重要性不仅因为它与人类自身密切相关,还因为它跨越了材料、医学、物理、生物化学和现代高科技等诸多学科领域。
现今对于生物医用材料的研究已从被动地适应生物环境发展到有目的地设计材料,以达到与生物组织的有机连接。
一生物医用材料行业概述1、生物医用材料定义及用途生物医用材料(BiomedicalMaterials),又称生物材料(Biomaterials),是一类用于诊断、治疗或替换人体组织、器官或增进其功能的新型高技术材料,是材料科学技术中的一个正在发展的新领域,不仅技术含量和经济价值高,而且与患者生命和健康密切相关。
生物医用材料是研究人工器官和医疗器械的基础,属于医疗器械范畴,是在材料科学、材料化学、材料物理学等领域和生物学、医学、药学等学科之间形成的交叉性边缘学科,具有知识、技术密集和多学科交叉的特点,已成为当代材料学科的重要分支,尤其是随着生物技术的蓬勃发展和重大突破,生物医用材料已成为各国科学家竞相进行研究和开发的热点。
生物医用材料的用途主要有三种:一是替代损害的器官和组织,如人造心脏瓣膜、假牙和人工血管等;二是改善和恢复器官的功能,如隐形眼镜、心脏起搏器等;三是在辅助治疗过程,如介入性治疗血管支架、用于血液透析的薄膜、药物载体与控释材料等。
2、生物医用材料分类按照材料的性质不同,生物医用材料可以分为金属材料、高分子材料、医用陶瓷、复合材料、生物衍生材料等。
图表 1 生物医用材料按材料性质分类种类主要代表材料应用领域金属材料不锈钢、贵金属、钴基合金、钛基合金、形状记忆合金以及钽、铌、锆等单位金属。
主要用于骨和牙等硬组织的修复和替换,心血管和软组织的修复以及人工器官制造中的结构元件。
生物材料的发展现状与展望随着科技的飞速发展,生物材料逐渐成为了研究热点。
尤其是高分子生物材料和医用生物材料,它们的应用前景广阔,为人类带来了新的希望。
本文将详细探讨这两个领域的现状和未来发展趋势。
高分子生物材料的发展迅速,为许多领域提供了创新解决方案。
例如,在医学领域,高分子生物材料可以用于制造人工器官、药物载体以及可降解的手术缝合线等。
在环保领域,高分子生物材料也可以用于治理污染、回收利用等方面。
目前,全球高分子生物材料市场规模正在不断扩大,预计未来将会有更多的创新成果问世。
医用生物材料在医疗领域的应用也日益广泛。
这些材料可以用于制造医疗器械,如心脏起搏器、人工关节等,也可以用于药物研发和生产。
医用生物材料的最大优势在于其能够与人体细胞和组织相互作用,从而有效地提高治疗效果。
目前,全球医用生物材料市场正以每年10% 的速度增长,预计未来几年这一趋势将继续保持。
未来,生物材料的发展将更加多元化和智能化。
一方面,随着科技的不断进步,生物材料的性能和功能将得到进一步提升,为人类提供更为优质的医疗保健服务。
另一方面,生物材料的应用领域也将不断扩展,例如在能源、农业、电子信息等新领域的应用。
因此,我们相信生物材料的未来将更加美好。
生物材料的发展现状和展望都令人充满信心。
随着科技的不断进步和应用领域的不断扩展,生物材料将会在未来的发展中发挥更加重要的作用。
生物材料作为一门新兴的跨学科领域,已经得到了广泛的和应用。
自20世纪以来,随着生命科学、材料科学和工程技术的不断发展,生物材料逐渐形成了独立的学科体系。
生物材料的发展历程中,各种新型的生物材料不断涌现,为医疗、环保、能源等领域提供了新的解决方案。
生物材料因其出色的生物相容性和功能特性,在多个领域具有广泛的应用。
医学领域:生物材料在医学领域的应用已经非常成熟。
人工关节、骨折固定器件、组织工程支架等均使用了生物材料。
生物材料还被用于药物输送、肿瘤治疗等方面,为医学发展提供了重要的支持。
生物材料的应用现状及发展前景——学院:理学院——学号:111103128——姓名:周玉娟上课老师:夏兵字数统计:5286字摘要:由于生物医学材料是无毒副作用、生物相容性良好、耐腐蚀性能优越的医用材料,越来越受到广大科技研究工作者的重视。
近20年,国内外特别是一些发达国家对生物材料的研究和开发得到飞速的发展。
本文详细阐述了生物医学材料的分类及发展前景。
关键词:生物材料、生物医学材料、羰基生物材料、应用现状、发展前景生物材料也称为生物医学材料,是指以医疗为目的,用于与生物组织接触以形成功能的无生命的材料。
自19世纪80年代以来,以医疗、保健、增进生活质量、造福人类为目的的生物材料取得了快速的发展。
它最早的使用可以追溯至19世纪末,在1886年,首例钢片和镀镍钢治疗骨折应用于临床获得成功。
迄今为止,除大脑以外的各种人工器官已经应用于人体,并取得了良好的效果。
目前,生物材料主要包括医用高分子材料、生物陶瓷、医用金属材料等。
材料科学与物理学、化学、生物学及临床科学越来越紧密地结合,并突破旧有科学的狭小范围,诞生了另一个新兴的产业--生物医学材料产业。
生物医学材料已经成为生物医学工程的4大支柱产业之一,它为医学、药物学及生物学等学科的发展提供了丰富的物质基础。
作为材料学的一个重要分支,它对于促进人类文明的发展必将作出更大的贡献。
生物医学材料指的是一类具有特殊性能、特种功能,用于人工器官、外科修复、理疗康复、诊断、治疗疾患,而对人体组织不会产生不良影响的材料。
现在各种合成和天然高分子材料、金属和合金材料、陶瓷和碳素材料以及各种复合材料,其制成产品已经被广泛地应用于临床和科研。
一般而言,临床医学对生物医学材料有以下基本的要求:无毒性,不致癌,不致畸,不引起人体细胞的突变和组织细胞的反应;与人体组织相容性好,不引起中毒、溶血凝血、发热和过敏等现象;化学性质稳定,抗体液、血液及酶的作用;具有与天然组织相适应的物理机械特性;针对不同的使用目的具有特定的功能。
生物医用高分子材料的发展现状和趋势随着科学技术的进步,生活水平的改善,人类对健康的要求也在提高,从而催生了许多新的需求,如研制人工器官、人工骨节、缓释药物等。
这些需求的出现,使得生物学、医学、化学、物理学和材料学等多学科交叉融合到一起,生物医用材料由此应运而生。
生物医用材料消耗原材料少、节能环保、技术附加值高,是典型的战略新兴产业,在近10年来保持着超过20%的年增长率。
在我国逐步走向人口老龄化社会,创伤恢复需求增多的情况下,生物医用材料将会迎来新一轮的高速发展。
本文主要针对生物医用材料中非常重要的一类——生物高分子材料展开阐述。
一、生物医用高分子材料的特点生物医用高分子材料是一种聚合物材料,主要用于制造人体内脏、体外器官、药物剂型及医疗器械。
按照来源的不同,生物医用高分子材料可以分为天然生物高分子材料和合成生物高分子材料2种。
前者是自然界形成的高分子材料,如纤维素、甲壳素、透明质酸、胶原蛋白、明胶及海藻酸钠等;后者主要通过化学合成的方法加以制备,常见的有合聚氨酯、硅橡胶、聚酯纤维、聚乙烯基吡咯烷酮、聚醚醚酮、聚甲基丙烯酸甲酯、聚乙烯醇、聚乳酸、聚乙烯等。
按照材料的性质,生物医用高分子材料可以分为非降解材料和降解材料。
前者主要包括聚乙烯、聚丙烯等聚烯烃,芳香聚酯、聚硅氧烷等;后者包括聚乙烯亚胺—聚氨基酸共聚物、聚乙烯亚胺—聚乙二醇—聚(β-胺酯)共聚物、聚乙烯亚胺—聚碳酸酯共聚物等。
生物医用高分子材料作为植入人体内的材料,必须满足人体内复杂的环境,因此对材料的性能有着严格的要求。
首先,材料不能有毒性,不能造成畸形;其次,生物相容性比较好,不能与人体产生排异反应;第三,化学稳定性强,不容易分解;第四,具备一定的物理机械性能;第五,比较容易加工;最后,性价比适宜。
其中最关键的性能是生物相容性。
根据国际标准化组织(InternationalStandardsOrganization,ISO)的解释,生物相容性是指非活性材料进入后,生命体组织对其产生反应的情况。
生物复合材料市场发展现状1. 引言生物复合材料是一种由天然或人工合成的生物基质与传统复合材料结合而成的新型材料。
随着人们对环境保护和可持续发展的关注,生物复合材料在各个领域的应用逐渐增多。
本文将介绍生物复合材料市场的发展现状,并对其未来的发展趋势进行分析。
2. 生物复合材料的分类生物复合材料可以根据其基质和填充物的性质进行分类。
常见的生物基质包括天然纤维、木材、植物纤维、动物纤维等,而填充物可以是陶瓷、金属、聚合物等。
根据不同的组合方式,生物复合材料可用于制造建筑材料、汽车零部件、包装材料等。
3. 生物复合材料市场规模近年来,生物复合材料市场呈现出快速增长的趋势。
根据市场研究报告显示,2019年全球生物复合材料市场规模达到XX亿美元,并预计到2025年将达到XX亿美元。
这一增长主要受到环境友好型材料需求的推动,以及对可持续发展的不断追求。
4. 生物复合材料的应用领域4.1 建筑领域生物复合材料在建筑领域的应用越来越广泛。
例如,利用植物纤维和生物基聚合物制造的墙板可以替代传统的石膏板和木材,具有较高的强度和耐久性。
此外,生物复合材料还可以用于制造屋顶瓦片、隔热材料等。
4.2 汽车工业生物复合材料在汽车工业中的应用也逐渐增多。
由于生物复合材料具有较低的密度和较高的强度,可以降低汽车的整体重量,提高燃油效率。
同时,生物复合材料还可以减少对有限资源的依赖,符合汽车工业向可持续发展转型的需求。
4.3 包装材料由于生物复合材料具有良好的柔韧性和耐磨性,被广泛应用于包装材料领域。
生物复合材料可以制造出更轻薄、更环保的包装材料,适用于食品、药品、化妆品等行业。
此外,生物复合材料还可以延长产品的保质期并提高产品的可持续性。
5. 生物复合材料市场发展趋势5.1 技术创新的推动随着科技的不断进步,生物复合材料的制造技术也在不断创新。
新的生物基质和填充物的出现将进一步推动生物复合材料市场的发展。
5.2 绿色经济的大势所趋绿色经济作为未来经济发展的主流方向,将为生物复合材料的发展提供广阔的市场空间。
生物医用工程材料的研究现状及其发展趋势近几年来,生物医用工程材料研究得到了广泛的关注。
这些工程材料不仅可以应用于医疗器械、医用器材等方面,还具有广泛的工业应用。
本文将探讨生物医用工程材料的研究现状及其发展趋势。
一、生物医用工程材料的定义生物医用工程材料简称生医材料,是指用于替代、修复或促进人体组织修复和再生的材料。
生医材料必须能够与人体组织相容,不引起免疫排斥反应,同时能够维持其形状、结构和性能。
二、生物医用工程材料的种类目前,生物医用工程材料可以分为两大类:生物结构材料和生物函数材料。
其中,生物结构材料的作用是为受损的组织提供支持和结构,例如:人工心脏瓣膜、骨融合材料、动脉支架等。
而生物函数材料则是指可以诱导生物组织修复和再生,例如:干细胞支架、药物缓释材料等。
三、生物医用工程材料的研究现状目前,生物医用工程材料的研究已经取得了一些重要进展。
其中,最具代表性的是3D打印技术在生物医用工程材料领域的应用。
3D打印技术可以实现复杂结构的制造,因此被广泛应用于人工器官、假肢等领域。
此外,生物医用工程材料也被广泛应用于人工心脏、人工眼等医疗器械的制造。
例如,目前人工心脏瓣膜已经被广泛使用了几十年,人工眼的研究也已经进入了临床阶段。
这些医疗器械不仅可以延长患者的寿命,还可以提高其生活质量。
四、生物医用工程材料的发展趋势未来,随着人类对于健康和生命质量的追求不断提高,对于生物医用工程材料的需求也会不断增加。
因此,生物医用工程材料的发展趋势可以总结为以下几点:1、与人体组织相容性更好生物医用工程材料应该具有更好的人体组织相容性,尤其是避免免疫排斥反应的发生,使其应用范围更广泛,更加适合不同的患者。
2、智能化随着科技的不断进步,人们希望生物医用工程材料具有更好的智能化。
例如,可以在人体内设定更好的控制装置或传感器,以便实现更好的控制和监测。
3、环保和可持续性生物医用工程材料应该更加环保和可持续,尽可能减少对环境的污染和损害。
生物医用复合材料的研究进展及趋势关键词:生物医用复合材料0 引言生物医用复合材料(biomedical composite materials)是由两种或两种以上的不同材料复合而成的生物医用材料,它主要用于人体组织的修复、替换和人工器官的制造[1]。
长期临床发现,传统医用金属材料和高分子材料不具生物活性,与组织不易牢固结合,在生理环境中或植入体内后受生理环境的,导致金属离子或单体释放,造成对机体的不良影响。
而生物陶瓷材料虽然具有良好的化学稳定性和相容性、高的强度和耐磨、耐蚀性,但材料的抗弯强度低、脆性大,在生理环境中的疲劳与破坏强度不高,在没有补强措施的条件下,它只能应用于不承受负荷或仅承受纯压应力负荷的情况。
因此,单一材料不能很好地满足临床应用的要求。
利用不同性质的材料复合而成的生物医用复合材料,不仅兼具组分材料的性质,而且可以得到单组分材料不具备的新性能,为获得结构和性质类似于人体组织的生物医学材料开辟了一条广阔的途径,生物医用复合材料必将成为生物医用材料和中最为活跃的领域。
1 生物医用复合材料组分材料的选择要求生物医用复合材料根据应用需求进行设计,由基体材料与增强材料或功能材料组成,复合材料的性质将取决于组分材料的性质、含量和它们之间的界面。
常用的基体材料有医用高分子、医用碳素材料、生物玻璃、玻璃陶瓷、磷酸钙基或其他生物陶瓷、医用不锈钢、钴基合金等医用金属材料;增强体材料有碳纤维、不锈钢和钛基合金纤维、生物玻璃陶瓷纤维、陶瓷纤维等纤维增强体,另外还有氧化锆、磷酸钙基生物陶瓷、生物玻璃陶瓷等颗粒增强体。
植入体内的材料在人体复杂的生理环境中,长期受物理、化学、生物电等因素的影响,同时各组织以及器官间普遍存在着许多动态的相互作用,因此,生物医用组分材料必须满足下面几项要求:(1)具有良好的生物相容性和物理相容性,保证材料复合后不出现有损生物学性能的现象;(2)具有良好的生物稳定性,材料的结构不因体液作用而有变化,同时材料组成不引起生物体的生物反应;(3)具有足够的强度和韧性,能够承受人体的机械作用力,所用材料与组织的弹性模量、硬度、耐磨性能相适应,增强体材料还必须具有高的刚度、弹性模量和抗冲击性能;(4)具有良好的灭菌性能,保证生物材料在临床上的顺利应用。
生物医学材料应用研究现状与发展论文(共6篇)本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!第1篇:生物医学材料研究现状与发展趋势综述科学技术的发展,各种新型生物医学材料被研制出来,并在医学领域中得应用。
到2000年为止,在全世界高达1600亿美元的医疗市场中,医用生物材料所占比率已经达到了一半,且以20%的增长速度递增。
二十世纪80年代是新型生物医学材料辈出的时代,进入到二十世纪90年代,以珊瑚为原材料的骨移植材料、人工皮肤、猪心脏瓣膜在医学领域中得以应用。
二十世纪,美国采用新型聚氨酯材料研制出人造血管。
中国在生物医学材料的研制方面起步较晚,但是应医学领域需要而对各种生物医学材料有所应用。
随着国家对生物医学材料研究的重视,国家开始启动医学生物材料项目,并将生物医学材料纳入到优先发展的产业当中[3]。
在中国的“十二五”规划中,还特别指出要将重点发展新型口腔植、人工关节、新型人工血管、人工心瓣膜以及各种人工修复材料等等生物医学材料。
一、生物医学材料研究现状(一)金属生物材料在医学领域中,医学金属材料是较早采用的,且应用材料非常广泛,包括不锈钢材料、钛合金材料等等。
其中,不锈钢材料具有较强的耐腐蚀性,因此应用效果非常好。
由于人体内为较为复杂的电解环境,随着316L不锈钢的应用,解决了这一问题,但是,却不具备生物相容性。
钛合金具有良好的耐腐蚀性和生物相容性,具有一定的生物材料强度。
钛合金的抗拉强度介于500兆帕至1100兆帕之间,使钛合金的弹性与人体的骨骼弹性更为接近,以使材料植入到人体后,与人的骨骼更为匹配。
(二)高分子生物材料医用高分子材料的出现,使得医用材料可以用于对损伤的人体器官以修复,以增强器官的恢复功能。
目前所使用的医用高分子材料分为可生物降解和非降解的高分子材料。
可生物降解的高分子材料植入人体后,可以降解被为对人体无毒无害的CO2、H2O等对人体不会产生刺激性的物质。
生物医用材料现状和发展趋势-图文一、生物医用材料概述生物医用材料(BiomedicalMaterial),又称生物材料(Biomaterial),是用于诊断、治疗、修复或替换人体组织或器官或增进其功能的一类高技术新材料,可以是天然的,也可以是合成的,或是它们的复合。
生物医用材料不是药物,其作用不必通过药理学、免疫学或代谢手段实现,为药物所不能替代,是保障人类健康的必需品,但可与之结合,促进其功能的实现。
按国际惯例,其管理划属医疗器械范畴,所占医疗器械市场份额>40%。
生物医用材料的研究与开发必须有明确的应用目标,即使化学组成相同的材料,其应用目的不同,不仅结构和性质要求不同,制造工艺也不同。
因此,生物医用材料科学与工程总是与其终端应用制品(一般指医用植入体)密不可分,通常谈及生物医用材料,既指材料自身,也包括医用植入器械。
按材料的组成和结构,生物医用材料可分为医用金属、医用高分子、生物陶瓷、医用复合材料、生物衍生材料等。
按临床用途,可分为骨科材料,心脑血管系统修复材料,皮肤掩膜、医用导管、组织粘合剂、血液净化及吸附等医用耗材,软组织修复及整形外科材料,牙科修复材料,植入式微电子有源器械,生物传感器、生物及细胞芯片以及分子影像剂等临床诊断材料,药物控释载体及系统等。
尽管现代意义上的生物医用材料仅起源于上世纪40年代中期,产业形成在上世纪80年代,但是由于临床的巨大需求和科学技术进步的驱动,却取得了巨大的成功。
其应用不仅挽救了数以千万计危重病人的生命,显著降低了心血管病、癌症、创伤等重大疾病的死亡率,而且极大地提高了人类的健康水平和生命质量。
同时其发展对当代医疗技术的革新和医疗卫生系统的改革正在发挥引导作用,并显著降低了医疗费用,是解决当前看病难、看病贵及建设和谐稳定的小康社会的重要物质基础。
伴随着临床应用的巨大成功,一个高技术生物医学材料产业已经形成,且是一个典型的低原材料消耗、低能耗、低环境污染(一个售价5000余元的药物洗脱冠脉支架,其不锈钢用量仅≈100mg,全球不锈钢用量不超过1吨)、高技术附加值(知识成本可达总成本的50-70%)的新兴产业,近十余年来以高达20%以上的年增长率持续增长,即使近年国际金融危机导致世界经济衰退,2022年美国医疗器械产业仍保持7%的年增长率,表明其发展受外部环境影响很小,对国家经济及安全具有重大意义,是世界经济中最具生气的朝阳产业。