第三章 纳米颗粒
- 格式:ppt
- 大小:4.97 MB
- 文档页数:81
华南师范人学硕:}学位论文半导体纳米颗粒载流子的超快弛豫过程摘要半导体纳米材料具有大的非线性系数及超快的光学响应速度,使其有可能成为制作未来高速信息技术器件最理想的材料。
特别是其所具有的超快响应特性,有可能突破现有电子器件的响应速度限制,从而使信息处理的速度产生质的飞跃。
近年来,围绕着半导体纳米材料超快响应特性,学者们作了大量的实验和理论工作,对超快响应的机制作了深入的研究。
针对现有研究现状中存在的问题,本文对半导体纳米材料的超快响应特性作了一些理论的探讨,主要工作有:1.简单介绍了纳米材料的主要特性和物理理论,然后对常用的实验方法进行了说明。
2.建立了载流子弛豫过程的模型。
通过分析量子限制效应及表面效应,总结了半导体纳米颗粒的能级结构,结合载流子的弛豫特征,发现载流子的弛豫过程可用电子速率方程来描述。
3.运用数值模拟方法讨论了激发密度、表面态密度及俘获态电子的弛豫率对弛豫过程的影响。
讨论结果表明,激发密度的增大及表面态的减少都会导致表面态上电子的饱和,使导带上出现电子的积累,导带电子寿命增大;深俘获态电子的弛豫是影响材料响应速度的主要因素。
最后应用此模型对近红外泵浦探测实验的结果进行分析,表明模型可望在实验结果分析上得到应用。
关键词:半导体纳米颗粒;超快载流子弛豫;速率方程;泵浦探测华南师范人学硕一lj学位论义UltrafastrelaxationprocessofphotoexcitedchargecarriersinsemiconductornanoparticlesAbstractSemiconductornanomal:erialhas1argernonlineareffectandultrafastrespondedspeed,makeitthemostpotentialmaterialforthedevicesofhighspeedinformationprocessing.Especially,theultrafastrespondedspeedmakeithastheinformationpotentialtobreakthelimitedofelectronicdevices.makeultrafastprocessingbecomepossible.Recently,alotofwork,includingtheoryanalyzingandexperimentresearching,hasbeendonetorevealthemechanismofultrafastrespond.Thisthesispresentsometheorydiscussonultrafastresponse.1.Weintroducethemainpropertyandtheoryofthenanomaterialbriefly,andthananalysissomecommentexperimenttechnologyusedinultrafaststudy.2.Basiconthequantumrestricteffectandsurfaceeffecttheory,theelectronicstructureofsemiconductornanoparticleiSmodeled,andtheultrafastrelaxationprocessofphotoexcitedchargecarriersinsemiconductornanoparticlesisdescriptedbyrateequation.3.Then,severalparameters,thatwouldaffectthisprocess,arediscussed.Theresultshowsthat.withtheincreasingofexcitedintensityorthedecreasingofsurfacestatedensity,theelectronsaturationofthesurfacestatewouldcausestheelectronbuild.upofconductionstateandleadstoa10ngerlifetime;therelaxationofdeeptrappedelectronsisthemainlimitofresponsetimefornanoparticles.Atlast,thismodelisusedtoanalyzepump-probeexperiment,showingpotentialuseinexperimentalanalysis.Keywords:Semiconductornanoparticle;ultrafastcarrierrelaxation;rateequation;pump-probe华南师范大学硕十学位论文摘要…………………ABSTRACT……………第一章绪论fI[1lllllllIllllllll[IIY1767963目录……………………………………………………………………………..11.1纳米材料的物理理论……………………………………………………………………………lJ.J.J么锅-(Kubo)厘趁…………………………………………………………………2工J.2j孽子尼矿窟毛厘乒………………………………………………………………………………2J.I.4么弛玩璃《=应…………………………………………………………………………………………………………….41.1.s宏鞠量子碰道效应…………………………………………………………………5LL6房乏将蝴鸯矛黪妒裁应…………………………………………………………………,J.J.7刃·詹厥嗨易5邑痘……………………………………………………………………………………………………..61.2半导体纳米晶……………………………………………………………………………………61.3论文主要研究内容………………………………………………………………………………8第二章超快动力学实验方法92.1超短脉冲激光发展回顾…………………………………………………………………………92.1.J锸揪老器………………………………………………………………………….,,2.L2筠哦纭≯乒敬右…………………………………………………………………………….122.L3攒锗泼长:扬震………………………………………………………………………………门2.2瞬态吸收(泵浦一探测)………………………………………………………………………一132.3瞬态荧光…………………………………………………………………………………………152.2.1.龙兕亡黝Z连术…………………………………………………………………………………….Jjzzzy当学哀匆,了芘希……………………………………………………………………………J82.3四波混频技术…………………………………………………………………………………202.4z一扫描技术(Z--SCAN)…………………………………………………………………。
本科毕业设计(论文)题目:scCO2体系中SiO2纳米颗粒自组装行为的分子模拟学生姓名:学号:专业班级:指导教师:年月日scCO2体系中SiO2纳米颗粒自组装行为的分子模拟摘要在非常规油藏的开采中,超临界CO2(scCO2)压裂正在发挥越来越重要的作用。
然而,scCO2压裂液承载支撑剂的微观行为和机制尚不清楚。
我们进行分子动力学模拟来研究二氧化硅纳米颗粒被超临界CO2中Na(diHCF4)表面活性剂自组装反胶束(RM)包覆的行为。
通过观察自组装微观过程,可以看出纳米粒子在经历与启动配置无关的三个阶段可以迅速地被包覆在自组装单层(SAM)中。
我们对溶剂结构的分析显示了SAM有规则的布局,它阻碍了大量的CO2分子渗透到二氧化硅表面,从而导致纳米颗粒在scCO2溶剂中的弱溶剂化。
进一步的机理研究表明,在二氧化碳和表面活性剂之间的强Lewis酸碱相互作用导致了表面活性剂结构的变化。
由于羰基和部分氟化基团的存在,di-HCF4表现出优异的亲二氧化碳性和包覆支撑剂能力。
这项研究将有助于新的亲CO2表面活性剂的合成,促进在非常规油藏中的scCO2压裂技术发展。
关键词:scCO2;自组装;二氧化硅纳米颗粒;分子动力学模拟Molecular dynamics studies of self-assembled reverse micelles entrapping silica nanoparticle forsupercritical CO2 fracturingAbstractSupercritical CO2 (scCO2) fracturing is playing an increasingly important role in the exploitation of unconventional reservoir. However, the micro-behavior and mechanism of scCO2 fracturing fluid carrying proppant is still not clear. We performed molecular dynamics(MD) simulations to study the behavior of the spontaneous entrapment of silica nanoparticle inside a self-assembled reverse micelle (RM) of Na(diHCF4) surfactants in supercritical CO2. By observing theself-assembled microprocess, it can be seen that the nanoparticle can be rapidly encapsulated by self-assembled monolayer (SAM) experiencing three stages irrespective with the starting configurations. The analysis of solvation structure shows an organized arrangement of SAM which precludes the large permeation of CO2 molecules onto silica surface and thereby leads to weak solvation of nanoparticle in scCO2 solvent. The further mechanism investigation indicates that the strong Lewis acid-Lewis base interactions between CO2 and surfactants lead to the change of surfactant conformations. The di-HCF4 molecule exhibits excellent CO2-philicity and ability of entrapping proppant due to the existence of carbonyl and partially fluorinated groups. This study will be helpful for the synthesizing of new CO2-philic surfactants and promote the development of scCO2 fracturing technology in unconventional reservoir.Keywords:scCO2;self-assembled;silica nanoparticle;MD目录第一章引言 (1)1.1 论文研究目的及意义 (1)1.2 国内外研究现状及分析 (1)1.3 论文主要研究内容 (2)第二章分子动力学基础 (3)2.1 分子动力学基本原理及步骤 (3)2.2 本文模拟软件及相关模块简介 (3)2.2.1 模拟软件MS介绍 (4)2.2.2 Amorphous Cell模块 (4)2.2.3 Discover模块 (4)2.2.4 Forcite模块 (4)2.3 分子动力学模拟的系综及边界条件 (4)2.3.1 分子动力学模拟的系综 (4)2.3.2 边界条件 (5)2.4 力场 (6)2.5 控温方法 (6)第三章 SiO2纳米颗粒自组装微观过程及结构研究 (8)3.1模拟细节 (8)3.2 SiO2纳米颗粒自组装微观过程 (10)3.3 自组装反胶束微观结构 (12)3.4 本章小结 (14)第四章反胶束携带纳米粒子的微观机制 (15)4.1 SAM与纳米颗粒的相互作用 (15)4.2 scCO2中的纳米粒子的溶剂化结构 (16)4.3 scCO2中的Na(di-HCF4)溶剂化行为 (18)4.4 本章小结 (23)第五章总结 (24)致谢 (25)参考文献 (26)第一章引言1.1 论文研究目的及意义超临界二氧化碳(scCO2)是一种重要的超临界流体。
(一)纳米材料的结构与形貌ZnO nanotube (一)纳米材料的结构与形貌1D ZnO nanostructures 热学性能电学性能磁学性能光学性能开热学性能开始烧结温度下降开始烧结温度下降TiO2微粒的烧结与尺寸关系纳米颗粒的晶化温度降低电阻特性介电特性压电效应电阻特性纳米金属与合金的电阻Gleiter等对纳米金属Cu,Pd,Fe块体的电阻与温度关系,电阻温度系数与颗粒尺寸的关系进行与常规材料相比,Pd纳米相固体z 随颗粒尺寸减小,电阻温度系Pd纳米固相的电阻温度系数与尺寸的关系例如,纳米银细粒径20nm18nm11nm纳米金属与合金的电阻电阻特性电阻特性介电特性是材料的基本物性•介电常数:•最新的纳米材料微波损耗机制是如今吸波材料分析的一大热点常规材料的极化都与结构的有序相联系,而纳米材料在结构上与常规粗晶材料存在很大的差别.它的介电行为(介电常数、介电损耗)有自己的特点。
介电特性减小明显增大。
在低频范围内远高于体材料。
介电特性目前,对于不同粒径的纳米非晶氮化硅、纳米钛矿、金红石和纳米(个损耗峰.损耗峰的峰位随粒径增大移向高频。
7nm27nm 84nm 258nm介电特性压电效应压电效应纳米压电电子学(Nanopiezotronics)全新研究领域和学科,有机地把压电效应和半导体效应在纳米尺度结合起来高磁化率超顺磁性:当铁磁质的磁化达到饱和之后,如果将外磁场去掉,由于介质中的掺杂内应力阻碍磁畴恢复到原来的纳米微粒尺寸高于超顺磁临界尺寸时通常呈现高的矫顽力右图为用惰性气体蒸发冷凝方法制备的Fe纳米微粒居里温度降低居里温度降低居里温度降低随粒径下降而减小,根据铁磁学,原子间距减小会随着粒径减小而对9nm Ni微粒:高磁化率巨磁电阻效应z 巨磁电阻效应巨磁电阻效应纳米材料磁学特性小结纳米材料光学特性宽频带强吸收粒子的反射率为1%,Au 纳米粒子的反射率小于10%。
纳米氮化硅对红外有一个宽频强吸收谱纳米氮化硅红外光谱Si3N4热压片的红外吸收谱Si-N 键伸缩震动宽频带强吸收吸收光谱的兰移现象吸收光谱的兰移现象激子吸收带吸收光谱的红移现象吸收光谱的红移现象:激子吸收带纳米颗粒发光现象上图曲线1和2分别为掺了粒径大于10 纳米和5纳米的CdSexS1-x的玻璃的光吸收谱,尺寸变小后出现明显的激子峰。
第4节物质的其他聚集状态精彩图文导入利用纳米技术,将普通的物质材料重新构筑成纳米级的材料后,它的物理,化学性能便会发生极大的改变。
如金属铜,具有一定的可塑性和硬度,但如果将其制成纳米级的材料后,铜就会发生超塑性变形(如上图)金属铜加工成纳米材料为什么会具有了超塑性?纳米材料和我们前面学习晶体有和不同?带着问题我们来学习物质的其他聚集状态。
一细品教材从内部结构来看,物质的状态可分为固态、液态、气态三种聚集态。
对于固态物质,原子或分子相距相近,分子难以平动和转动,但能够在一定的位置上做程度不同的振动;对液态物质而言,分子相距比较近,分子间作用力也较强,分子的转动明显活跃,平动也有所增加,使之表现出明显的流动性;至于气态物质,分子间距离大,分子运动速度快,体系处于高度无序状态。
研究表明,物质除了有固、液、气三种基本聚集状态外,还存在着其他聚集状态。
一、非晶体1.晶体与非晶体的本质区别:在固体时又分为晶体和非晶体,它们的最大区别在于物质内部的微粒能否有序地规则排列。
晶体之所以有规则的几何外形,因为其内部的微粒在空间按一定的规律周期性重复排列而表现出长程有序,就是说如果把晶体中任意一个微粒沿某个方向平移一定距离,必能找到一个同样的微粒。
而玻璃、石蜡、沥青等非晶体物质内部微粒的排列则是长程无序和短程有序,所以它们没有晶体结构所具有的对称性、各项异性和自范性。
非晶体材料常常表现出一些优异的性能。
总结:非晶体与晶体的本质区别在于内部微粒在空间是否按一定规律做周期性重复排列,但是要了解固体除了晶体和非晶体之外还存在准晶体。
【例1】关于非晶体的叙述中,错误的是()A、是物质的一种聚集状态B、内部微粒的排列是长程无序和短程有序的C、非晶体材料的所有性能都优于晶体材料D、金属形成的合金也有非晶体二、液晶1.液晶定义:在一定温度范围内存在的液体即具有液体的可流动性,又具有像晶体那样的各项异性,这种液体为液态晶体,简称为液晶。
质粒和纳米颗粒的关系-概述说明以及解释1.引言1.1 概述概述:质粒和纳米颗粒是两个在纳米科学和生物学领域中具有重要意义的概念。
质粒通常是环状DNA分子,它们存在于细胞质中,可以自主复制和传递基因信息。
而纳米颗粒是尺寸在纳米级别的微小颗粒,由于其特殊的物理和化学性质,使得它们在纳米科学、材料科学和医学等领域的应用前景广阔。
本文将讨论质粒和纳米颗粒之间的关系,并探讨它们在科学研究和应用中的相互作用和重要性。
首先,我们将介绍质粒的定义和特点,包括其结构、功能和生物学意义。
然后,我们将探讨纳米颗粒的定义和特点,包括其制备方法、物理性质和应用领域。
接下来,我们将深入探讨质粒与纳米颗粒之间的相互作用,包括它们在纳米颗粒载体和基因传递系统中的应用。
最后,我们将总结质粒和纳米颗粒的关系,并对未来的研究和应用提出展望。
通过对质粒和纳米颗粒的深入理解,我们可以更好地了解它们在生物学、医学和材料科学等领域中的潜在应用。
此外,进一步研究质粒和纳米颗粒之间的相互作用,也有助于推动纳米科学和生物学之间的交叉研究,促进科学技术的发展。
因此,本文的目的是为读者提供对质粒和纳米颗粒关系的深入理解,并为未来的研究和应用提供一些思路和启示。
1.2文章结构1.2 文章结构本文将首先介绍质粒和纳米颗粒的定义和特点,分别从微观和宏观角度观察它们的结构和性质。
随后,我们将探讨质粒与纳米颗粒之间的相互作用,包括它们在生物学、化学和材料科学中的作用机制和影响。
接着,我们将探讨质粒和纳米颗粒在不同应用领域中的关系,如药物输送、基因工程和环境治理等方面的应用。
最后,我们将总结质粒和纳米颗粒之间的关系,展望未来研究的方向和趋势。
通过本文的阐述,读者将更深入地了解质粒和纳米颗粒之间的关系,以及它们在现代科学和技术领域中的重要性和应用前景。
1.3 目的:本文旨在探讨质粒和纳米颗粒之间的关系,以及它们在生物学、医学、材料科学等领域的应用。
通过深入分析质粒和纳米颗粒的定义、特点以及相互作用,我们将揭示它们在科学研究和实际应用中的重要性和潜在的发展方向。
纳米颗粒的聚集生长规律纳米颗粒是一种具有颗粒尺寸在1到100纳米之间的微小物质。
由于其尺寸特征在这个层次的量子效应的影响,纳米颗粒具有与宏观颗粒完全不同的特性和性质。
因此,纳米颗粒的聚集生长规律也与宏观颗粒有很大的差异。
纳米颗粒的聚集主要是指在溶液中,纳米颗粒由于各种相互作用的影响,通过碰撞、吸附等方式,逐渐形成更大尺寸的聚集体。
这个过程包括凝聚、聚集和沉降等步骤。
首先,纳米颗粒的凝聚是聚集生长的基础。
凝聚是指两个或多个纳米颗粒之间的物理或化学作用而结合成为一个更大的颗粒。
这个过程既包括物理凝聚,如范德华力、静电力等的作用,也包括化学凝聚,如氧化反应、共价键形成等。
在这一阶段,纳米颗粒之间可能会碰撞带来的机械能转化为热能,从而增加颗粒之间的相互作用。
接下来,纳米颗粒通过聚集形成更大的结构单元。
聚集是指凝聚颗粒以不同的方式聚集在一起,形成更大的颗粒团簇或网状结构。
这个过程通常受到诸如浓度、温度、表面性质等因素的影响。
在高浓度下,纳米颗粒之间的碰撞频率增加,有利于颗粒聚集。
而温度的增加会增加颗粒的热运动能量,从而增加碰撞的能量,加速聚集的过程。
此外,纳米颗粒的表面性质也会影响聚集的形式和速率。
例如,带有相同电荷的颗粒会相互排斥,从而减慢聚集的速率。
最后,纳米颗粒的沉降是聚集生长过程的最后阶段。
沉降是指颗粒在流体介质中受到重力作用下,由于聚集体的尺寸增大,颗粒自身的密度增大而下沉的过程。
沉降速率和颗粒的尺寸、密度以及介质的黏度有关。
较小的纳米颗粒会受到周围介质分子的碰撞和扩散的影响,从而减缓沉降速度。
较大的聚集体则受到沉降的阻力较小,沉降速度更快。
需要注意的是,纳米颗粒的聚集过程并不是一个简单的线性过程,而是一个相当复杂的动态平衡过程。
在聚集的过程中,也易受到其他因素的干扰,如溶液的流动、离子的浓度等。
此外,纳米颗粒的表面性质也会对聚集过程产生重要的影响。
例如,带有特定功能基团的颗粒表面可能会发生反应,导致不同形式的聚集或聚合。
《纳米颗粒—量子点经嗅觉通路进入中枢神经系统的实验研究》一、引言近年来,随着纳米技术的快速发展,纳米颗粒作为药物输送系统及生物探针的应用已成为研究的热点。
尤其是量子点(QDs)制备工艺的成熟,使得其作为新型的生物标记物在生物医学领域的应用前景广阔。
而关于纳米颗粒—特别是量子点,通过嗅觉通路进入中枢神经系统的实验研究,更是为神经科学领域带来了新的研究视角。
本文旨在探讨纳米颗粒—量子点经嗅觉通路进入中枢神经系统的可行性及潜在机制,为未来相关研究提供理论依据和实验支持。
二、材料与方法1. 材料准备本实验所使用的纳米颗粒为量子点,其制备过程严格按照标准实验室操作流程进行,确保其纯度和生物相容性。
同时,实验中还使用了特定种属的动物模型,以模拟人体嗅觉通路的生理结构。
2. 方法概述(1)通过嗅觉通路给予动物模型不同浓度的量子点溶液,观察其进入中枢神经系统的过程。
(2)利用荧光显微镜和电子显微镜观察量子点在中枢神经系统的分布情况。
(3)结合电生理学技术,分析量子点对神经元活动的影响。
(4)通过细胞培养和分子生物学技术,探究量子点在神经细胞内的代谢途径和潜在毒性。
三、实验结果1. 量子点经嗅觉通路成功进入中枢神经系统通过荧光显微镜观察发现,给予动物模型量子点溶液后,量子点能够通过嗅觉通路进入中枢神经系统,并在特定区域聚集。
随着浓度的增加,量子点的分布密度也相应增加。
2. 量子点的分布与神经元活动的关系利用电生理学技术分析发现,量子点的存在对神经元活动有一定影响。
在量子点聚集的区域,神经元的电活动出现了一定程度的改变,这可能与量子点的物理化学性质及其与神经元的相互作用有关。
3. 量子点的细胞内代谢与潜在毒性通过细胞培养和分子生物学技术发现,量子点在神经细胞内能够被代谢并排出体外。
然而,高浓度的量子点可能对神经细胞产生一定的毒性作用,这需要进一步的研究来明确其机制和影响。
四、讨论本实验研究了纳米颗粒—量子点经嗅觉通路进入中枢神经系统的过程及潜在机制。