数学建模在高等数学教学中的应用
- 格式:pdf
- 大小:62.87 KB
- 文档页数:2
高等数学教学中的数学建模思想运用研究高等数学在我国高质量人才培养中的作用不可替代。
但是,其中一些抽象的概念和定理,往往令学生望而生畏。
研究数学建模思想在高中数学教学中的应用,实际问题不仅比教材上的概念、定理更加具体,而且,可以培养学生数学的应用能力和创新能力。
高等数学数学建模思想创新能力数学应用能力一、引言高等数学教学是我国高等学校非数学专业学生培养计划中的一门非常重要的基础课。
在我国高质量人才培养过程中具有不可替代的作用。
通过对高等代数的学习,可以为其它专业课或者是基础课打下非常坚实的数学基础,并且提供必要的数学概念,培养学生的数学素质和修养。
在高等数学教学过程中,在向学生传授知识的同时,还应该利用教学过程中的各种环节来培养学生的逻辑推理能力、抽象思维能力、空间想象能力以及预算能力;培养学生利用已经掌握的知识综合运用去分析问题、解决问题的能力;培养学生的自主学习能力;以及培养学生的创新能力和创新精神。
数学建模的过程,就是一个对问题进行分析、提炼、演绎推理、归纳总结的过程,改变了传统仅重视推理的数学教学模式,突出了对数学知识的深入理解和实践应用,能够将抽象的数学思想具体化、复杂的推理简单化,强调对数学知识的直观说明和解释。
将数学建模思想融入到高等数学建模过程中,可以让学生不仅能够掌握表面的数学知识,而且有助于学生学会如何“使用数学”,学会将实际问题进行数学模型化,利用所学的数学知识来解决实际问题。
因此,将数学建模思想融入到高等数学教学过程中是十分必要的。
二、高等数学教学中的数学建模思想运用的基本思路1.在概念讲授中的应用高等数学中的极限、函数、积分、级数等概念,其本质上都是从客观事物中抽象出来的数学模型。
在对这些概念进行讲授时,应该自然而然的引入生活中的一些,来让学生将抽象的数学概念与客观世界向联系。
教师应该尽可能的结合实际,在观察、操作、猜想、实验、归纳以及验证等方面为学生提供更加直观、更加丰富的背景材料,从而引导学生自主到参加到教学活动中来。
R OCCUPATION2012 08116研究ESEARCH试析数学建模思想在高等数学教学中的应用文/李培德课程标准没有规定我们所教的技术内容,不应成为我们体育教学的困惑,反而是解放了我们的手足。
我们完全可以根据所教的对象做到因材授技。
从宏观上来看,根据体育与健康课程的要求,在小学安排以游戏或身体活动为主的内容,让他们在更加愉快的活动气氛中获得一定的知识和技能。
对于初中技术教学内容的设置,理当针对学生身体机能和运动技能发展敏感期较为集中的特点,让学生比较全面地了解和学习运动技能。
到了中专学校阶段,应充分尊重学生的不同需要,引导他们根据自己的具体情况选择一、两种运动项目进行系统的学习,发展运动能力,提高运动技术。
从微观上看,任何一个授课班级的学生运动技术水平和身体素质参差不齐。
因此,对所有的学生传授同一项运动技术,甚至用统一技术标准来要求是不符合实际的,而应该根据学生的客观实际情况做到因材授技。
以排球这项运动为例,对于那些身体素质和运动技术水平较差的同学,主要帮助他们巩固和提高垫球、发球的基本技术。
而对于身体素质和运动技术水平较好的同学,在掌握垫球和发球的技术之后,完全可以传授传球、扣球,甚至是拦网的一些基本技术。
当然,因材授技还包括不同项目间的技术。
以上是从职校学生兴趣角度来配置技术教学的内容,那么科学管理技术教学的“市场”,还必须充分研究其他运动技术对学生健康所起的不同功能。
换句话说,还应从学生身心健康全面发展的角度,在科学安排他们所喜欢技术教学内容的同时,还要适当配置对身心健康发展有不可替代作用的运动项目(也许是他们现在不喜欢的)。
学生对运动技术的喜欢是建立在他们对该项运动技术了解和掌握的基础上的,而且与他们掌握技术的程度成正向关系。
不能因为他们现在不喜欢,而剥夺他将来喜欢的权力。
四、在科学管理技术教学的“市场”中,要特别注意平等地对待所有学生所谓“平等受益”是站在学生的立场上提出来的。
它反映了学生主体的呼唤,尊重学生人格,要求老师一视同仁,要求能够得到和其他人一样的尊重和帮助。
将数学建模思想融入高等数学教学摘要:将数学建模思想融入高等数学教学是创新高等数学教学方法的有力措施,数学建模思想将会大大提升高等数学教学的效率和水平。
本文主要从数学建模思想对高等数学教育的影响及将数学建模思想融入高等数学教学的对策两方面进行了探讨。
关键词:数学建模;高等数学;教学方法高等数学是一门抽象性很强的公共基础课,课程的教学不仅有助于学生其他课程的学习,而且能对学生的创新能力和思维意识产生重要影响。
高等数学在向学生传授知识和基础方法的同时,也在教学生怎样用知识去解决现实中的问题。
由于课程内容抽象、逻辑性强,很多学生对高等数学产生了一定的厌学情绪。
数学建模是将高等数学知识应用于现实中、解决实际问题的有效途径。
一、数学建模思想对高等数学教育的影响数学建模是将课堂以及书本上抽象的理论知识运用于实践当中,解决现实问题一门学科。
由于数学建模是理论知识的运用过程,相比于理论性较强的高等数学,数学建模更容易激发学生的学习兴趣。
数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画实际问题的一种有力的教学手段。
数学建模正是对高等数学教学过程的有益补充。
数学建模与高等数学的有机结合,将高等数学的理论知识运用于实践,能使学生加深对课堂传授知识的理解和掌握。
同时,在高等数学教学过程中引入数学建模,让学生参与、感受通过所学的数学知识解决实际问题的过程,激发了学生的学习兴趣,提升了学习效果。
二、将数学建模思想融入高等数学教学的对策思考1.重视数学建模在高等数学概念教学当中的运用。
高等数学中涉及了大量的基础理论和概念公式。
一般情况下,学生会对抽象的内容不感兴趣。
如果教师能够充分认识到这一点,在高等数学授课过程中将数学建模思路和方法与高等数学授课有机结合起来,将会收到意想不到的课堂效果。
一般情况下,很多基础理论、概念都是从现实中高度抽象、概括出来的。
如果教师将公式、理论、定理等的推导过程通过具体、形象的理论模型讲解给学生,并告诉学生这些定理或理论是如何从现实问题中抽象出来的,引导和启发学生用数学建模的方法和思维去思考问题,将更好地激发学生的学习兴趣和爱好。
一、引言21世纪是知识经济时代。
这个时代的最主要特征是知识与科技将成为主要资源,知识的生产、科技的创新和应用是社会发展的核心,高素质的创新人才是知识经济发展的关键。
江泽民同志曾在全国科学技术大会上提出:创新是一个民族进步的灵魂,是国家兴旺发达的不竭动力,一个没有创新能力的民族难以屹立于世界先进民族之林。
而教育是创新的生存之本,高等教育则是其发展之源[1]。
在高校教育中,高等数学的教学被认为是其他各门学科教育的基础,它所提供的数学思想、数学方法、理论知识不仅是学生学习后继课程的重要工具,也是培养学生创造能力的重要途径。
二、大学高等数学教学中存在的问题及原因分析高等数学是理工科其他专业构建专业知识体系的基础,高等数学传播的基本概念与方法、包含的数学思想以及数学文化,不仅是学生学习后继课程的重要工具,也对培养大学生的自学能力和创新能力具有重要的意义。
然而目前大学里每年参加高数补考的学生人数却在不断增加,而且随着年级的增加与《高等数学》相关的学科补考率也逐渐提高,这些学生中不乏中学阶段数学成绩较为优秀的学生。
为什么会出现这种现象呢?通过校内对学生进行问卷调查,发现进入大学后,由于各专业对《高等数学》的要求不一致,虽然大多数学生知道数学很重要,但对学习数学的兴趣却不大。
“有很多题目,老师讲的时候觉得不难,当时听懂了,但到自己去做的时候却无从下手;老师没有讲的,那就完全不会做。
”所以觉得数学学习起来特别枯燥、乏味,再加上大学教学中老师没有中学老师的监督力度,从而使得学生失去了学习数学的压力和动力。
还有些学生,在学习过程中由于不清楚学数学到底有什么实际用处,在面对数学抽象理论时产生厌学情绪,想认真学的同学,无非是想在期末考试中或为将来考研时取得一个好的分数,其结果也仅仅是学了一堆的定义及理论知识却不知道其在实际问题中的作用,更不会用所学的知识去解决相关问题,缺乏利用数学知识解决实际问题的能力。
我们对本校部分理工科学生进行了一个问卷调查,统计结果显示:真正对数学有浓厚兴趣,喜欢学习《高等数学》的人很少,不到四分之一;能够了解《高等数学》的应用价值的只有5%左右;而能够灵活运用数学知识解决实际问题的同学更少,不到3%;但同时在调查中发现高达80%的同学表示希望了解数学建模的思想与方法,并渴望学习如何使用《高等数学》知识来解决实际问题。
浅谈在高等数学教学中渗透数学建模思想【摘要】在高等数学教学中,渗透数学建模思想具有重要意义。
数学建模思想的运用能够提高学生的数学思维能力,培养他们解决实际问题的能力,并激发他们对学习的兴趣。
这种教学方式不仅能够加深学生对数学的理解,还能够有效地促进他们的学习。
数学建模思想在高等数学教学中应该得到重视,成为一种有效的教学途径。
通过渗透数学建模思想,教师可以激发学生对数学的热情,提升他们的学习效果。
在高等数学教学中,应该注重数学建模思想的应用,以促进学生的全面发展。
【关键词】关键词:高等数学教学、数学建模思想、应用、学生思维能力、实际问题解决能力、学习兴趣、数学理解、有效途径、渗透。
1. 引言1.1 高等数学教学的重要性高等数学作为大学阶段数学学科的重要组成部分,对于学生的数学思维能力和综合素质的培养起着至关重要的作用。
高等数学教学的重要性主要体现在以下几个方面:高等数学是学习其他理工科学科的基础。
在物理、化学、工程等学科中,都离不开高等数学的支撑。
高等数学教学可以帮助学生建立起扎实的数学基础,为日后学习其他相关学科打下良好的基础。
高等数学培养学生的逻辑思维和分析问题的能力。
通过高等数学的学习,学生能够提升自己的逻辑思维能力,培养出对复杂问题进行分析和解决的能力。
这种能力在日后的学习和工作中都将发挥至关重要的作用。
高等数学教学还有助于培养学生的创新意识和解决问题的能力。
数学是一门严谨的学科,通过学习高等数学,学生可以培养自己理性思维、解决问题的能力,进而培养出解决实际问题的能力。
高等数学教学的重要性在于为学生提供了扎实的数学基础,培养了他们的逻辑思维能力和问题解决能力,为他们未来的学习和工作奠定了坚实的基础。
1.2 数学建模思想的意义数学建模思想是一种将数学知识应用于实际问题解决过程中的一种思维方式,它强调将数学与现实相结合,通过建立数学模型来描述和解决实际问题。
数学建模思想的意义在于提高学生的实际问题解决能力和数学思维能力,帮助他们更好地理解数学知识和应用数学知识解决实际问题。
数学建模在高等数学教学中的应用研究作者:汪小梅朱华来源:《科教导刊·电子版》2013年第07期摘要数学建模是数学理论与实际应用相结合的重要桥梁。
高等数学的教学当中适当融入数学建模对提高学生的学习兴趣,激发学生的学习积极性,培养学生的数学素质以及综合能力都具有十分重要的作用。
关键词高等数学数学建模教学研究中图分类号:G423 文献标识码:A0 引言近年来,数学建模在实际中的应用越来越突出,其在高等数学教学中的作用也越来越受到各高等院校的重视。
数学建模是数学理论与实际应用相结合的重要桥梁。
高等数学的教学当中适当融入数学建模对提高学生的学习兴趣,激发学生的学习积极性,培养学生的数学素质以及综合能力都具有十分重要的作用。
1 传统高等数学教学方法的不足传统的高等数学教学中有不足之处:如理论性太强,实际应用不够。
传统的教学方法较重视理论的推导及证明,学生在学习的过程中不知道高等数学学习的作用,再因为理论的枯燥乏味,则很容易失去学习兴趣。
而在应用上面也只是以一些常用的结论举例阐述,主要也是为了学生掌握基本结论及基本解题技巧,高等数学在实际中的具体作用则很少通过例题表现出来。
因此很多学生在学习的过程中很难有较高的积极性,遇到困难则会大退堂鼓,甚至放弃。
2 数学建模思想融入高等数学教学的作用2.1 数学建模可以让学生感受、理解知识产生和发展的过程数学建模课程的教学模式和教学理念是:从问题出发组织教学,学生自己做,开放式的教学。
而数学建模的题目一般都是由工程技术、经济管理、社会生活等领域中的实际问题简化加工而成,有很强的实用性;数学建模的过程就是通过对实际问题进行分析,利用已知的相关知识和数学工具,发现其中的关系或规律,将它们用数学语言描述出来,从而把实际问题化成一个数学问题,得到一个数学模型的过程。
由上可知,数学建模实际上就是学生通过参与建模,感受知识的产生和发展的过程。
2.2 数学建模可以培养学生的科学精神和创新思维的习惯创新是数学建模的生命线。
Vol.28No.5
M ay 2012
赤峰学院学报(自然科学版)Journal of Chifeng University (Natural Science Edition )第28卷第5期(上)
2012年5月数学建模在高等数学教学中的应用
范媛媛
(滁州学院
数学科学学院,安徽
滁州239000)
摘要:高等数学是理工科大学生必修的一门重要专业基础课程,在高等数学教学中渗透数学建模的思想,可以培养学生的创新意识,提高学生学习高等数学的兴趣.提出了基于案例驱动的课堂教学、积极开展数学课外活动、合理利用数学软件,借助数学实验等措施把数学建模思想融入到高等数学教学的各个环节.
关键词:高等数学;数学建模;教学中图分类号:G642文献标识码:A 文章编号:1673-260X (2012)05-0026-02
1
引言
高等数学作为理工科大学生必修的一门重要的专业基础课程,对于培养大学生的理性思维能力和科学处理实际问题的严谨性等方面,具有其它课程都无法取代的作用[1].对于我们每一个讲授高等数学课程的教师来说,在上第一节课的时候,按惯例都会阐述一下课程的重要性,一方面要强调这门课程的基础性作用;另一方面,免不了都要说它在实际中有多么重要的应用价值等等.对大多数学生来说,可能对这门课程在实际中的应用更感兴趣,但是在实际教学过程中,教师却很少真正去解决一些实际问题,理论和实际有些脱节,长期以来,高等数学的教学活动还是以讲授微积分的相关理论和训练学生的计算技巧为主.如果教师能在教学过程中适当融入数学建模的思想方法,在理论讲解的同时注意培养学生应用理论知识处理实际问题的能力,不仅可以纠正部分学生所认为的“高等数学无用”的思想,而且还可以培养学生的创新能力和意识,激发学生学习高等数学的兴趣.2
数学建模思想融入高等数学教学中的必要性
数学建模就是利用数学理论解决实际问题的一种思想方法,它是将数学理论与实际问题联系起来的桥梁,也就是将实际问题用数学语言来描述和解决.数学建模的人才具有一种特有的能力———“双向翻译能力”,即可以将实际问题简化抽象为数学问题———建立数学模型;然后利用计算机等工具求解数学模型,再将求解结果返回到实际中去,并用来分析解决实际问题[2,3].
大学数学教育的思想核心应该是保证学生掌握理论基础知识的同时,注重培养学生的创新意识和创新能力,提高学生的数学素养和解决实际问题的能力,而数学建模就是实现这一目标的有效途径[4,5].在高等数学教学过程中融入数学建模的思想方法,培养学生将数学知识应用于实际问题和社会实践的意识,加强学生在解决问题的过程中养成的团结合作的精神以及交流、表达的能力.另外,还可以弥补传
统数学教学中存在的不足,促进高校数学教师对知识的更新.3
数学建模思想融入高等数学教学中的具体措施
在培养大学生的创造性思维、意识和能力等方面,数学建模的思想方法具有重要的意义和良好的效果.但在高等数学教学中融入数学建模的思想方法,我们应该注意两个问题:一是教学中必须合理安排教学内容,要以高等数学教学为主,建模过程为辅,以确保高等数学教学任务能够顺利完成;二是教学中要以介绍建模的思想、方法为主,提高建模能力为辅,因为毕竟不是数学建模课程,所以所选实例不宜过于复杂.
3.1强调数学概念与实际问题的联系
高等数学中许多概念定义的产生都是有其实际背景的,所以应该从实际问题中引入概念,在教学中重视从实际问题中抽象出数学概念的过程,加深学生对数学概念的理解和掌握以及与实际问题的联系.例如:教材中以“ε-N ”、“ε-δ”语言给出了数列极限以及函数极限概念的精确描述.但是这种描述对于初学者而言非常地抽象和难以理解,学生只能不加理解地死记硬背,而不能理解其真正的内涵.为了解决这个问题,教学中可从实际问题中引入极限的思想,如我国古代数学家刘徽的割圆术、几何图形按一定规则的变化趋势、一条曲线上点的变化过程等等.在实际问题中给学生展示极限定义的形成过程,让学生理解极限定义的本质,能够轻松掌握利用“ε-N ”、“ε-δ”语言证明有关极限问题的解题思路和解题方法.
又比如在讲授导数这个概念时,我们是利用瞬时速度和切线斜率的共性抽象出来的函数变化率给出的导数的定义,但是导数的意义远远超出了斜率和速度的范畴,它渗透到了科学技术的各个领域.教学中可以引导学生发现种群的生长率和死亡率、放射性物质的衰变率、冷却过程的温度变化率、经济学中的边际函数等等与函数变化率有关的实际问题都是与导数的概念有关的.这样学生不仅能够深刻体会
基金项目:滁州学院大学数学教学团队建设项目
26--
到数学概念的实际背景与应用价值,同时也会被导数的巨大魅力所倾倒.
3.2基于案例驱动的课堂教学
案例驱动是教师根据课堂教学目标和教学内容的需要,通过设置具体案例,引导学生参与分析、讨论、表达等活动,进而提高学生分析问题和解决问题能力的一种教学方式.其本质是理论与实践相结合的互动式教学.与传统教学相比,案例驱动的教学方式显示出理论联系实际,促进学生重视实际应用的优越性.在高等数学的教学活动中,我们可以根据不同的教学内容,选编相应的实际应用问题进行案例教学.
例如定积分的应用其实就是“元素法”的思想,在讲解定积分应用时,我们可以提出这样一个问题:
例1某城市居民人口分布密度的数学模型是
P(r)=1
r2+2r+5
,
其中r(km)是离开市中心的距离,P(r)的单位是10万人/km2.求在离市中心10km范围内的人口数.(人口分布问题)
又如微分方程建模主要用于自然科学(如捕食问题)和社会科学方面(如人口预测、新产品的推广、减肥问题等)的研究.在讲解到微分方程时,我们可以提出这样一个具体问题:例2某地区的人口数y与时间t有关,且人口增长率
与(N-y)成正比.若初始时刻t=0时的人口数为y
.求人口数与时间t的函数关系?
但是特别要注意的是,我们设计的教学案例应该要遵循以下几条原则:
(1)案例要与教学内容紧密联系,选编的教学案例要能用所学理论知识来解决;
(2)案例最好是学生感兴趣的问题,如经济中的热点问题或生活中的热门话题等;
(3)案例要具有科学性,即所选编的教学案例必须符合实际.
3.3大力开展数学课外活动,引导学生积极参加数学建模竞赛
大学生数学建模竞赛最早是1985年在美国出现的,1989年北京大学、清华大学和北京理工大学首次组织学生参加美国大学生数学建模竞赛(M CM/ICM),目前全国各理工科院校基本都开设了《数学建模》课程,并组织学生积极参与“全国大学生数学建模竞赛”和M CM/ICM的活动.
大力开展数学课外活动,引导学生积极参加数学建模竞赛是高等数学课程的延续、补充和升华,在活动中可以培养学生的团队精神和互助合作的能力,对于毕业后走上工作岗位有很大的帮助.我们可以采取每个月针对所学的内容开展一次数学建模课外活动,在数学建模活动中,学生可以巩固和加强对课堂教学内容的理解和掌握.而且从某种意义上说,数学建模就是一个小型领域的科研活动,让学生通过此项课外活动更早的接触到科研方法,能够培养学生自觉地应用数学知识、方法去观察、分析、解决生活和科技中的实际问题,全面提高学生的数学素质.而且通过此项课外活动,学生储备了一定的建模知识,为参加数学建模竞赛也打下了基础.
3.4合理利用数学软件,适当增加上机实验
随着计算机的广泛应用和数学软件的迅速发展,许多复杂的推导都可以利用计算机编程来实现,许多难以用手工画出的图形也可以在计算机屏幕上直观地显示出来,这肯定会对包括高等数学在内的许多课程的教学内容和教学手段产生深刻的影响.在教学过程中我们可以合理地利用数学软件,通过几何直观、数值分析和符号推演三者相结合的方式,促使学生加深对理论知识的理解和掌握,培养学生的应用能力,增强学习效果.
而数学实验强调的是如何培养学生将实际问题和数学理论联系起来,自觉地从一些观察到的现象中归纳数学规律、建立数学模型,并运用数学的方法予以解决,学生在这一过程中一直是参与的主体.这种创造性的学习方法在学生应用数学的意识和创新能力培养方面起到了积极的作用.所以在高等数学的教学中,可以适当增加些上机实验的课时,培养学生的应用能力和创造性思维.
4结语
总之,在高等数学教学中渗透数学建模的思想方法不仅能够激发大学生学习高等数学的兴趣,体会高等数学的实际实用价值,而且能够培养大学生的辩证逻辑思维、创造性思维以及元认知能力.在教学中融入数学建模思想,在培养和提高学生的想象力、洞察力和创造力的同时,对学生自身综合素质的提升也有着重要的意义和深远的影响.
——
——
——
——
——
——
——
——
——
—
参考文献:
〔1〕李秀林.高等数学教学中渗透数学建模的探讨[J].吉林省教育学院学报,2009,25(8):40-41.
〔2〕李薇,李卫军,戴明强.将建模思想融入数学教学,培养大学生数学素质[J].湖北师范学院学报,2009,29(3):108-111.〔3〕林昕茜.数学建模思想在高等数学教学中应用价值的研究[J].桂林电子科技大学学报,2009,29(2):155-158.
〔4〕卢喜森.数学建模思想在高等数学教学中的一个应用[J].
广西大学学报(自然科学版),2003,28(10):25-27.
〔5〕原乃冬.高等数学教学中渗透数学建模思想的尝试[J].绥化学院学报,2005,25(4):134-135.
27
--。