2017-2018学年济南市章丘市八年级下期中数学试卷(有答案)
- 格式:docx
- 大小:1.25 MB
- 文档页数:22
山东省济南市2017—2018学年八年级数学下学期期中试题本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷共2页,满分为60分;第Ⅱ卷共4页,满分为90分.本试题共6页,满分为150分.考试时间为120分钟.答卷前,考生务必用0。
5毫米黑色墨水签字笔将自己的考点、姓名、准考证号、座号填写在答题卡上和试卷规定的位置上.考试结束后,将本试卷和答题卡一并交回.本考试不允许使用计算器.第I卷(选择题共60分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.一、选择题(本大题共15个小题,每小题4分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.使分式有意义的x的取值范围是()A.x≠2B.x>2 C.x<2 D.x≥22.下列图形中,是中心对称图形的是()A.B.C.D.3.下列变形,是因式分解的是()A.x(x﹣1)=x2﹣x B.x2﹣x+1=x(x﹣1)+1C.x2﹣x=x(x﹣1)D.2a(b+c)=2ab+2ac4.若图示的两架天平都保持平衡,则对a、b、c三种物体的重量判断正确的是( )A .a >cB .a <cC .a <bD .b <c第4题图第5题图5.如图,△ABC 中,AB=AC,D 是BC 中点,下列结论中不正确的是( )A .∠B=∠CB .AD⊥BC C .AD 平分∠BAC D .AB=2BD6.下列各式中,能用完全平方公式进行因式分解的是( )A .x 2﹣2x ﹣2B .x 2+1C .x 2﹣4x+4D .x 2+4x+17.下列分式中,属于最简分式的是( )A .x 24B .122+x x C .112--x x D .1-1-x x8.如图,将直径为2cm 的半圆水平向左平移2cm ,则半圆所扫过的面积(阴影部分)为( )A .πcm 2B .4cm 2C .)(2-ππ cm 2D .)(2ππ+ cm 29.一次函数y=kx+b 图象如图所示,则关于x 的不等式kx+b <0的解集为( )A .x <﹣5B .x >﹣5C .x≥﹣5D .x≤﹣5第8题 第9题 第10题10.如图(1),在边长为a 的大正方形上剪去一个边长为b 的小正方形,可以拼出图(2)所示图形,上述过程可以验证等式( )A .(a+b )2=a 2+2ab+b 2B .(a ﹣b)2=a 2﹣2ab+b 2C .a 2﹣b 2=(a+b)(a ﹣b )D .(a+b )2﹣(a ﹣b)2=4ab11.如图,Rt△ABC 中∠C=90°,∠BAC=60°,∠BAC 的平分线AD 长为4cm ,则BC=( )A .5cmB .6cmC .7cmD .8cm第11题 第12题12.如图,将Rt△ABC 绕直角顶点C 顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=25°,则∠BAA′的度数是( )A .55°B .60°C .65°D .70°13.已知关于x的不等式组⎩⎨⎧--1250>>x a x 有且只有1个整数解,则a 的取值范围是( )A .a >0B .0≤a <1C .0<a ≤1D .a ≤114.如图,已知点A (1,0),B(4,0),将线段AB 平移得到线段CD,点B的对应点C恰好落在y轴上,且四边形ABCD的面积为9,则四边形ABCD的周长为()A.14 B.16 C.18 D.20第14题第15题15.如图,将Rt△ABC(其中∠ACB=90°)绕点C顺时针旋转90°得到△DEC,M、N分别为AB、DE的中点,若MN=4,则AB 的长为()A.24B.4 C.22D.8第Ⅱ卷(非选择题共90分)注意事项:1.第II卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.2.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.二、填空题:(本大题共6个小题,每小题3分,共18分.)16.分解因式:12 x= .17.如图所示的不等式的解集是.18.如图,PM⊥OA,PN⊥OB,PM=PN ,∠BOC=20°,则∠AOB= .19.计算:112-⋅-m m m m = .20.小菲受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如下操作,请根据图中给出的信息,量筒中至少放入 小球时有水溢出.第20题 第21题21.如图,在平面直角坐标系中,矩形OABC 的顶点A,C 分别在x 轴,y 轴上,点B 在第一象限,直线y=x+1交y 轴于点D ,且点D 为CO 中点,将直线绕点D 顺时针旋转15°经过点B ,则点B 的坐标为 .三、解答题:(本大题共7个小题,共72分.解答应写出文字说明、证明过程或演算步骤.) 22.(本题满分9分)(1)(本小题4分)因式分解:a ab ab+-22(2)(本小题5分)计算:21422---a a a . 23.(本题满分9分)解下列不等式(组).(1)(本小题4分)x x 2215≤-(2)(本小题5分)解不等式组⎩⎨⎧≤-+02221-)(<x x ,并求出整数解。
2017-2018学年度第二学期期中考试初二年级数学班级姓名学号考生须知1.本试卷共八页,共三道大题,25道小题。
满分100分。
考试时间120分钟。
2.在试卷和答题纸上准确填写班级、姓名和学号。
3.试卷答案一律书写在答题纸上,在试卷上作答无效。
4.答题纸上用黑色字迹签字笔作答,作图题请用铅笔。
一.选择题(请将唯一正确答案填入后面的括号中,每题2分,共20分)1.一元二次方程的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.无法确定2.如果方程的两个实数根分别为,那么的值是()A.3B.C.D.3.11名同学参加数学竞赛初赛,他们的得分互不相同,按从高分录到低分的原则,取前6名同学参加复赛,现在小明同学已经知道自己的分数,如果他想知道自己能否进入复赛,那么还需知道所有参赛学生成绩的()A.平均数B.中位数C.众数D.方差4.三角形的两边长分别为3和6,第三边的长是方程的一个根,则此三角形的周长为()A.10B.11C.13D.11或135.如图,□ABCD中,对角线AC、BD交于点O,点E 是BC 的中点.若OE =3cm ,则AB 的长为()A .12cmB .9cmC .6cmD .3cm6.如图,菱形花坛ABCD 的面积为12平方米,其中沿对角线AC 修建的小路长为4米,则沿对角线BD 修建的小路长为()A .3米B .6米C .8米D .10米7.将抛物线平移,得到抛物线,下列平移方式中,正确的是()A .先向左平移1个单位,再向上平移2个单位B .先向左平移1个单位,再向下平移2个单位C .先向右平移1个单位,再向上平移2个单位D .先向右平移1个单位,再向下平移2个单位8.已知二次函数的图象上有点A,B,C,则y 1、y 2、y 3的大小关系为()A .y 3>y 2>y 1B .y 3>y 1>y 2C .y 2>y 3>y 1D .y 1>y 2>y 39.在学完二次函数的图象及其性质后,老师让学生们说出的图象的一些性质,小亮说:“此函数图象开口向上,且对称轴是”;小丽说:“此函数图象肯定与x 轴有两个交点”;小红说:“此函数与y 轴的交点坐标为(0,-3)”;小强说:“此函数有最小值,”……请问这四位同学谁说的结论是错误的()A .小亮B .小丽C .小红D .小强10.如图,正方形ABCD 中,AB =8cm ,对角线AC ,BD 相交于点O ,点E ,F 分别从B ,C 两点同时出发,以1cm /s 的速度沿BC ,CD 运动,到点C ,D时停止ADOF运动.设运动时间为t(s),△OEF的面积为S(cm2),则S(cm2)与t(s)的函数关系可用图象表示为()A B C D二.填空题(每空2分,共24分)11.方程的一个根是2,那么另一根是,=_______.12.若关于x的方程有两个相等实根,则代数式的值为.13.关于x的方程有两个实数根,则实数m的取值范围是__________________.14.学校射击队计划从甲、乙两人中选拔一人参加运动会射击比赛,在选拔过程中,每人射击10次,计算他们的平均成绩及方差如下表:选手甲乙平均数(环)9.59.5方差0.0350.015请你根据上表中的数据选一人参加比赛,最适合的人选是____,理由是_________________________________________.15.请写出一个开口向下,且经过(0,3)的抛物线的解析式______________________________.16.二次函数的图象与x轴只有一个公共点,则m的值为.17.如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF.(1)四边形ABEF是_____________;(选填矩形、菱形、正方形、无法确定)(2)AE,BF相交于点O,若四边形ABEF的周长为40,BF=10,则AE的长为________,∠ABC=________.18.小明和小亮组成团队参加某科学比赛.该比赛的规则是:每轮比赛一名选手参加,若第一轮比赛得分满60则另一名选手晋级第二轮,第二轮比赛得分最高的选手所在团队取得胜利.为了在比赛中取得更好的成绩,两人在赛前分别作了九次测试,下图为二人测试成绩折线统计图,下列说法合理的是_____________.①小亮测试成绩的平均数比小明的高②小亮测试成绩比小明的稳定③小亮测试成绩的中位数比小明的高④小亮参加第一轮比赛,小明参加第二轮比赛,比较合理三.解答题(19题每小题4分,20、21、22、24题每题6分,23、25题每题8分,共56分)19.解方程:(1)(2)(3)(4)(用配方法)20.(列方程解决问题)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,某汽车零部件生产企业的利润逐年提高,据统计,2015年利润为2亿元,2017年利润为2.88亿元.求该企业从2015年到2017年利润的年平均增长率.21.关于的一元二次方程有两个不相等的实数根.(1)求实数的取值范围;(2)若,求的值.22.中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对初二年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本数最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:(1)统计表中的a=,b=,c=;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校初二年级共有600名学生,请你估计该校初二年级学生课外阅读7本及以上的人数.23.二次函数图象上部分点的横坐标,纵坐标的对应值如下表:x……y……(1)表格中的=,=;(2)求这个二次函数的表达式;(3)在右图中画出此二次函数的图象;(4)此抛物线在第一象限内的部分记为图象G,如果过抛物线顶点的直线y=mx+n(m≠0)与图象G有唯一公共点,请结合图象,写出m的取值范围_________________________________.24.在学习了正方形后,数学小组的同学对正方形进行了探究,发现:(1)如图1,在正方形ABCD中,点E为BC边上任意一点(点E不与B、C重合),点F在线段AE上,过点F的直线MN⊥AE,分别交AB、CD于点M、N.求证:AE=MN;同学们发现,过点D作DP∥MN,交AB于P,构造□DNMP,经过推理能够使问题得到解决(如图2).请你完成证明过程.xy11O(2)如图3,当点F 为AE 中点时,其他条件不变,连接正方形的对角线BD ,MN 与BD 交于点G ,连接BF ,求证:BF=FG .25.在平面直角坐标系xOy 中,对于点P (x ,y )和Q (x ,y ′),给出如下定义:如果,那么称点Q 为点P 的“关联点”.例如:点(5,6)的“关联点”为点(5,6),点(-5,6)的“关联点”为点(-5,-6).(1)点(2,1)的“关联点”为;(2)如果点(m +1,2)是一次函数y =x +3图象上点N 的“关联点”,求点N 的坐标.(3)如果点P 在函数的图象上,其“关联点”Q 的纵坐标y ′的取值范围是-4<y ′≤4,则a 的取值范围是_________________.图1图2图3参考答案:1.C2.D3.B4.C5.C6.B7.D8.A9.D10.B11.3,612.113.m≥0且m≠114.乙,方差较小,成绩相对稳定.15.如y=-x2+3等16.m=117.菱形,18.②④19.(1)5,-1(2),(3)(4)20.20%21.(1)(2)22.(1)10,0.28,50;(2)略;(3)6.4;(4)26423.(1)-5,0(2)(3)略(3)m≥1或m≤-224.略25.(1)(2,1)(2)N(-5,-2)(3)2≤a<。
最新2017至2018八年级数学下期中考试试题带答案一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将你认为正确的答案填在答题卡相应的位置上)1.下列图形中,既是中心对称图形又是轴对称图形的是………………………………(▲)A. B. C.D.2.在代数式、中,分式的个数有………………………(▲)A.2个B.3个C.4个D.5个3.若将分式中的字母的值分别扩大为原来的倍,则分式的值…………(▲)A.扩大为原来的倍B.缩小为原来的C.不变D.缩小为原来的4.若二次根式有意义,则的取值范围是………………………………………(▲)A.B.C.D.5.如果与最简二次根式是同类二次根式,那么a的值是………………(▲)A.-2B.-1C.1D.26.已知反比例函数的图像经过点(-1,2),则这个函数的图像一定经过点……(▲)A.(1,2)B.(2,1)C.(-1,-2)D.(-2,1)7.若M( ,)、N( ,)、P( , )三点都在函数(k>0)的图象上,则、、的大小关系是……………………………………………………………(▲)A. B. C. D.8.矩形具有而菱形不具有的性质是………………………………………………………(▲)A.对角线互相垂直B.对角线互相平分C.对角线相等D.每条对角线平分一组对角9.如图,点D、E、F分别是△ABC三边的中点,则下列判断错误的是……………(▲)A.四边形AEDF一定是平行四边形B.若AD平分∠A,则四边形AEDF是正方形C.若AD⊥BC,则四边形AEDF是菱形D.若∠A=90°,则四边形AEDF是矩形10.如图,等腰直角三角形ABC位于第一象限,AB=AC=2,直角顶点A在直线y=x上,其中A点的横坐标为1,且两条直角边AB、AC分别平行于x轴、y轴,若双曲线(k≠0)与有交点,则k的取值范围是………………………………………………(▲)A、B、C、D、二、填空题(本大题共8题,每小题3分,共24分,请将答案填在答题卡相应的位置上)11.当时,的值为0.12. 若分式方程有增根,则的值为.13.已知函数是反比例函数,则= .14.已知函数的图象与反比例函数的图象的一个交点为A ,则= .15.如图,□ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点.若AC+BD=24cm,△OAB的周长是18cm,则EF的长为.16.若分式方程的解为非负数,则的取值范围是.17.如图,正方形的面积是12,是等边三角形,点在正方形内,在对角线上有一点,使最小,则这个最小值为18. 如图:两个反比例函数和在第一象限内的图象如图所示,点P在的图象上,PC⊥x轴于点C,交的图象于点A,PD⊥y轴于点D,交的图象于点B,当点P在的图象上运动时,以下结论:①△ODB与△OCA的面积相等;②四边形PAOB的面积不会发生变化;③PA与PB始终相等;④当点A是PC的中点时,点B一定是PD的中点.其中一定正确的是.(把你认为正确结论的序号都填上)2017-2018学年第二学期期中试卷初二数学命题人:谢煜校对:高东一、选择题:(每题3分,共30分)1 2 3 4 5 6 7 8 9 10二、填空题:(每题3分,共24分)11. 12. 13.14. 15. 16.17. 18.三、解答题:(共76分)19. (16分)计算:①②20.(8分)解方程:①②.21. (5分)先化简,再求值:,其中.22.(6分)如图,E,F是四边形ABCD对角线AC 上的两点,AD∥BC ,DF∥BE ,AE=CF.求证:(1)△AFD △CEB;(2)四边形ABCD是平行四边形.23. (6分) 如图,在平面直角坐标系中,△ABC和△A1B1C1关于点E成中心对称.(1) 画出对称中心E,并写出点E的坐标;(2) 画出△A1B1C1绕点O逆时针旋转90°后的△A2B2C2;(3) 画出与△A1B1C1关于点O成中心对称的△A3B3C3.24.(5分)甲、乙两人每小时共做35个零件,甲做160个零件所用的时间与乙做120个零件所用的时间相等。
2017-2018学年八年级(下)期中数学试卷一、选择题(本大题共10小题,共40.0分)1.如图,平行四边形ABCD中,对角线AC和BD交于O,若AC=8,BD=6,则AB长的取值范围是()A. B. C.D.2.如图,△ABC中,AB=AC=10,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则DE的长为()A. 10B. 6C. 8D. 53.如图,Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于D,若CD=3cm,则点D到AB的距离DE是()A. 5cmB. 4cmC. 3cmD. 2cm4.如图,△ABC中,AB=AC,点D、E分别是边AB、AC的中点,点G、F在BC边上,四边形DEFG是正方形.若DE=2cm,则AC的长为()A.B. 4cmC.D.5.顺次连接菱形的各边中点所得到的四边形是()A. 平行四边形B. 菱形C. 矩形D. 正方形6.如图,矩形ABCD中,AB=12cm,BC=24cm,如果将该矩形沿对角线BD折叠,那么图中阴影部分的面积()cm2.A. 72B. 90C. 108D. 1447.下列说法中正确的是()A. 四边相等的四边形是菱形B. 一组对边相等,另一组对边平行的四边形是菱形C. 对角线互相垂直的四边形是菱形D. 对角线互相平分的四边形是菱形8.已知菱形的两条对角线长分别是6cm和8cm,则菱形的边长是()A. 12cmB. 10cmC. 7cmD. 5cm9.如图,E、F分别是正方形ABCD的边AB、BC上的点,BE=CF,连接CE、DF.将△BCE绕着正方形的中心O按逆时针方向旋转到△CDF的位置,则旋转角是()A. B. C. D.10.如图:△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=6cm,则△DEB的周长是()A. 6cmB. 4cmC. 10cmD. 以上都不对二、填空题(本大题共8小题,共32.0分)11.Rt△ABC中,∠ABC=90°,D为AC的中点,AC=10,则BD=______.12.已知三点A、B、O.如果点A′与点A关于点O对称,点B′与点B关于点O对称,那么线段AB与A′B′的关系是______.13.在矩形纸片ABCD中,AB=16,AD=12,点P在边AB上,若将△DAP沿DP折叠,使点A恰好落在矩形对角线上的点A′处,则AP的长为______.14.如图,某公园有一块菱形草地ABCD,它的边及对角线AC是小路,若AC的长为16m,边AB的长为10m,妈妈站在AC的中点O处,亮亮沿着小路C→D→A→B→C跑步,在跑步过程中,亮亮与妈妈之间的最短距离为______m.15.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,交BC于点D,若CD=1,则BD=________.16.17.如图,在四边形ABCD中,E,F分别是AB,AD的中点,若EF=2,BC=5,CD=3,则点D到直线BC的距离为______.18.如图,▱ABCD中,∠C=110°,BE平分∠ABC,则∠AEB的度数等于______.19.如图,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,若根据“HL”判定,还需要加条件______.三、解答题(本大题共8小题,共78.0分)20.如图,四边形ABCD是平行四边形,BE、DF分别是∠ABC、∠ADC的平分线,且与对角线AC分别相交于点E、F.求证:AE=CF.21.如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD.求证:四边形OCED是菱形.22.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=2,求EF的长度.23.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,CD=3.(1)求DE的长;(2)若AC=6,BC=8,求△ADB的面积.24.已知:如图,在正方形ABCD中,E是CD边上的一点,F为BC延长线上一点,且CE=CF.(1)求证:△BEC≌△DFC;(2)如果BC+DF=9,CF=3,求正方形ABCD的面积.25.如图,菱形ABCD中,对角线AC、BD交于点O,AC=24,BD=10,DE⊥AB于E.(1)求菱形ABCD的周长;(2)求菱形ABCD的面积;(3)求DE的长.26.如图,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF是平行四边形,请你只用无刻度的直尺在图中画出∠AOB的平分线.(保留作图痕迹,不要求写作法)并请说明画出的线为什么平分∠AOB?27.把一张矩形ABCD纸片按如图方式折叠,使点A与点E重合,点C与点F重合(E、F两点均在BD上),折痕分别为BH、DG.(1)求证:△BHE≌△DGF;(2)若AB=6cm,BC=8cm,求线段FG的长.答案和解析1.【答案】A【解析】解:∵四边形ABCD是平行四边形,∴AO=AC,BO=BD,∵AC=8,BD=6,∴AO=4,BO=3,∴4-3<AB<4+3,解得:1<AB<7,故选:A.根据平行四边形对角线互相平分可得AO=4,BO=3,再根据三角形的三边关系可得4-3<AB<4+3,再解即可.此题主要考查了三角形的三边关系以及平行四边形的性质,关键是掌握平行四边形的对角线互相平分.2.【答案】D【解析】解:∵AB=AC=10,AD平分∠BAC,∴BD⊥DC,∵E为AC的中点,∴DE=AC=×10=5,故选:D.由等腰三角形的性质证得BD=DC,根据直角三角形斜边上的中线的性质即可求得结论.本题主要考查了等腰三角形的性质,三角形的中位线,熟练掌握三角形的中位线是解决问题的关键.3.【答案】C【解析】解:过D作DE⊥AB于E,∵BD是∠ABC的平分线,∠C=90°,DE⊥AB,∴DE=CD,∵CD=3cm,∴DE=3cm.故选:C.过D作DE⊥AB于E,由已知条件,根据角平分线上的点到角的两边的距离相等解答.本题主要考查角平分线的性质;作出辅助线是正确解答本题的关键.4.【答案】D【解析】解:∵点D、E分别是边AB、AC的中点,∴DE=BC,∵DE=2cm,∴BC=4cm,∵AB=AC,四边形DEFG是正方形.∴△BDG≌△CEF,∴BG=CF=1,∴EC=,∴AC=2cm.故选:D.根据三角形的中位线定理可得出BC=4,由AB=AC,可证明BG=CF=1,由勾股定理求出CE,即可得出AC的长.本题考查了全等三角形的判定、勾股定理、等腰三角形的性质以及正方形的性质,是基础题,比较简单.5.【答案】C【解析】解:如图,连接AC、BD,相交于点O,∵四边形ABCD为菱形,E、F、H、G为菱形边上的中点,∴EH∥FG,EF∥HD,∴四边形EHGF为平行四边形.根据菱形的性质可得菱形的对角线互相垂直,故∠EFG=∠AOD=90°所以四边形EHGF为矩形.故选:C.本题画出辅助线,连接AC、BD,证明连接菱形的各边中点所得到的是平行四边形,再证平行四边形的一个角为直角即可.本题考查的是矩形的判定定理以及菱形的判定.考生应熟记书本上的内容,难度一般.6.【答案】B【解析】解:由折叠得到△BCD≌△BC′D,由矩形ABCD得到△ABD≌△CDB,∴△ABD≌△C′DB,∴∠C′BD=∠ADB,∴EB=DE,在△ABE和△C′DE中,,∴△ABE≌△C′DE(AAS),∴AE=C′E,设AE=C′E=xcm,则有ED=AD-AE=(24-x)cm,在Rt△ABE中,根据勾股定理得:AB2+AE2=BE2,即122+x2=(24-x)2,解得:x=9,∴AE=9cm,ED=15cm,则S△BED=ED•AB=×15×12=90(cm2).故选:B.由折叠得到△BCD≌△BC′D,由矩形ABCD得到△ABD≌△CDB,可得出△ABD≌△C′DB,利用全等三角形的对应角相等得到∠C′BD=∠ADB,利用等角对等边得到EB=ED,再由一对直角相等,一对对顶角相等,利用AAS得到△ABE≌△C′DE,利用全等三角形的对应边相等得到AE=C′E,设AE=C′E=xcm,则有ED=AD-AE=(24-x)cm,在直角三角形ABE中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出ED的长,三角形BED的面积以ED为底,AB为高,求出即可.此题考查了翻折变换(折叠问题),涉及的知识有:全等三角形的判定与性质,勾股定理,利用了方程的思想,熟练掌握翻折的性质是解本题的关键.7.【答案】A【解析】解:A、四边相等的四边形是菱形,说法正确;B、一组对边相等,另一组对边平行的四边形是菱形,说法错误;C、对角线互相垂直的四边形是菱形,说法错误;D、对角线互相平分的四边形是菱形,说法错误;故选:A.根据菱形的判定:一组邻边相等的平行四边形是菱形;四条边都相等的四边形是菱形.对角线互相垂直的平行四边形是菱形分别进行分析即可.此题主要考查了菱形的判定,关键是掌握菱形的判定定理.8.【答案】D【解析】解:如图:∵菱形ABCD中BD=8cm,AC=6cm,∴OD=BD=4cm,OA=AC=3cm,在直角三角形AOD中AD===5cm.故选:D.根据菱形的性质求得OD,OA的长,再根据勾股定理求得边长AD的长.此题主要考查学生对菱形的性质及勾股定理的理解及运用.9.【答案】C【解析】解:如图,连接AC、BD,AC与BD的交点即为旋转中心O.根据旋转的性质知,点C与点D对应,则∠DOC就是旋转角.∵四边形ABCD是正方形.∴∠DOC=90°.故选:C.首先作出旋转中心,根据多边形的性质即可求解.本题主要考查了旋转的性质,以及正多边形的性质,正确理解正多边形的性质以及旋转角(对应点与旋转中心所连线段的夹角等于旋转角)是解题的关键.10.【答案】A【解析】解:∵∠C=90°,∴DC⊥AC,又AD平分∠CAB交BC于D,DE⊥AB,∴CD=ED,在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,又AC=BC,∴AC=AE=BC,又AB=6cm,∴△DEB的周长=DB+BE+ED=DB+CD+BE=BC+BE=AE+EB=AB=6cm.故选:A.由∠C=90°,根据垂直定义得到DC与AC垂直,又AD平分∠CAB交BC于D,DE⊥AB,利用角平分线定理得到DC=DE,再利用HL证明三角形ACD与三角形AED全等,根据全等三角形的对应边相等可得AC=AE,又AC=BC,可得BC=AE,然后由三角形BED的三边之和表示出三角形的周长,将其中的DE换为DC,由CD+DB=BC进行变形,再将BC换为AE,由AE+EB=AB,可得出三角形BDE的周长等于AB的长,由AB的长可得出周长.此题考查了角平分线定理,垂直的定义,直角三角形证明全等的方法-HL,利用了转化及等量代换的思想,熟练掌握角平分线定理是解本题的关键.11.【答案】5【解析】解:∵在Rt△ABC中,∠ABC=90°,点D为AC的中点,连接BD,∴线段BD是斜边AC上的中线,∴AC=2BD,又∵AC=10,∴BD=AC=5.故答案为:5.由已知条件推知BD是直角三角形Rt△ABC斜边AC上的中线,所以根据直角三角形斜边上的中线与斜边的数量关系填空即可.此题主要考查了直角三角形的性质,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.12.【答案】关于点O对称【解析】解:∵点A′与点A关于点O对称,点B′与点B关于点O对称,∴线段AB与A′B′关于点O对称.故答案为:关于点O对称.根据中心对称的概念可知线段AB、A′B′上的对应点都关于点O对称进行解答.本题考查了中心对称,是基础题,熟记概念是解题的关键.13.【答案】6或9【解析】解:①点A落在矩形对角线BD上,如图1所示.∵AB=16,AD=12,∴BD=20,根据折叠的性质,AD=A′D=12,AP=A′P,∠A=∠PA′D=90°,∴BA′=8,设AP=x,则BP=16-x,∵BP2=BA′2+PA′2,∴(16-x)2=x2+82,解得:x=6,∴AP=6;②点A落在矩形对角线AC上,如图2所示:由折叠的性质可知PD垂直平分AA′,∴∠BAC+∠A′AD=∠PDA+∠A′AD=90°.∴∠BAC=∠PDA.∴tan∠BAC=tan∠PDA.∴即=.∴AP=9.综上所述AP的长为6或9.故答案为:6或9.分两种情况探讨:点A落在矩形对角线BD上,点A落在矩形对角线AC上,在直角三角形中利用勾股定理列出方程,通过解方程可得答案.本题考查了折叠问题、勾股定理,矩形的性质以及三角形相似的判定与性质;依据翻折的性质找准相等的量是解题的关键.14.【答案】4.8【解析】解:如图,连接BD,∵在菱形ABCD中,AC=16cm,∴OC=AC=×16=8cm,且AC⊥BD,∴OB===6cm,设点O到AB边的距离为h,则S△AOB=×6×8=×10h,解得h=4.8,所以,亮亮与妈妈之间的最短距离为4.8m.故答案为:4.8.连接BD,根据菱形的对角线互相垂直平分求出OA,然后根据勾股定理列式求出OB,再根据三角形的面积求出点O到AB边距离,即可得解.本题主要考查了菱形的对角线互相垂直平分的性质,勾股定理的应用,三角形的面积,熟记性质是解题的关键.15.【答案】2【解析】解:∵∠C=90°,∠B=30°,∴∠CAB=60°,AD平分∠CAB,∴∠BAD=30°,∴BD=AD=2CD=2,故答案为2.根据角平分线性质求出∠BAD的度数,根据含30度角的直角三角形性质求出AD即可得BD.本题考查了对含30度角的直角三角形的性质和角平分线性质的应用,求出AD的长是解此题的关键.16.【答案】【解析】解:连接BD,∵AB,AD的中点,EF=2,∴BD=2EF=4,∵BC=5,CD=3,∴DB2+CD2=BC2,∴∠BDC=90°,设点D到BC的距离为h,∴S△BDC=,∴4×3=5h,∴h=,故答案为:.根据三角形的中位线性质求出BD,根据勾股定理的逆定理求出△BDC是直角三角形,根据面积公式求出即可.本题考查了三角形的中位线性质,勾股定理的逆定理,三角形的面积的应用,能求出△BDC是直角三角形是解此题的关键.17.【答案】35°【解析】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠ABC+∠C=180°,∠AEB=∠CBE,∵∠C=110°,∴∠ABC=180°-∠C=70°,∵BE平分∠ABC,∴∠CBE=∠ABC=35°,∴∠AEB=∠CBE=35°.故答案为:35°.由平行四边形ABCD中,∠C=110°,可求得∠ABC的度数,又由BE平分∠ABC,即可求得∠CBE的度数,然后由平行线的性质,求得答案.此题考查了平行四边形的性质,属于基础题,解答本题的关键是掌握平行四边形邻角互补的性质,难度一般.18.【答案】AB=AC【解析】解:还需添加条件AB=AC,∵AD⊥BC于D,∴∠ADB=∠ADC=90°,在Rt△ABD和Rt△ACD中,,∴Rt△ABD≌Rt△ACD(HL),故答案为:AB=AC.根据斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”)可得需要添加条件AB=AC.此题主要考查了直角三角形全等的判定,关键是正确理解:斜边和一条直角边对应相等的两个直角三角形全等.19.【答案】证明:因为四边形ABCD是平行四边形,所以AB=CD,AB∥CD,∠ABC=∠ADC,所以∠BAC=∠DCF,又因为BE、DF分别是∠ABC、∠ADC的平分线,所以∠ABE=∠ABC,∠CDF=∠ADC,所以∠ABE=∠CDF,所以△ABE≌△CDF(ASA),所以AE=CF.【解析】根据平行四边形的性质得出AB=CD,AB∥CD,∠ABC=∠ADC,根据平行线的性质得出∠BAC=∠DCF,根据角平分线定义得出∠ABE=∠CDF,那么利用AAS证明△ABE≌△CDF,推出AE=CF.本题考查了平行四边形的性质,全等三角形的判定和性质,解答本题的关键寻找两条线段所在的三角形,然后证明两三角形全等.20.【答案】证明:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∵四边形ABCD是矩形,∴OC=OD,∴四边形OCED是菱形.【解析】首先根据两对边互相平行的四边形是平行四边形证明四边形OCED是平行四边形,再根据矩形的性质可得OC=OD,即可利用一组邻边相等的平行四边形是菱形判定出结论.此题主要考查了菱形的判定,矩形的性质,关键是掌握菱形的判定方法:①菱形定义:一组邻边相等的平行四边形是菱形;②四条边都相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形.21.【答案】解:作EG⊥OA于G,如图所示:∵EF∥OB,∠AOE=∠BOE=15°∴∠OEF=∠COE=15°,EG=CE=2,∵∠AOE=15°,∴∠EFG=15°+15°=30°,∴EF=2EG=4.【解析】作EG⊥OA于F,根据角平分线的性质得到EG的长度,再根据平行线的性质得到∠OEF=∠COE=15°,然后利用三角形的外角和内角的关系求出∠EFG=30°,利用30°角所对的直角边是斜边的一半解题.本题考查了角平分线的性质、平行线的性质、含30°角的直角三角形的性质;熟练掌握角平分线的性质,证出∠EFG=30°是解决问题的关键.22.【答案】解:(1)∵Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,CD=3,∴DE=CD=3;(2)∵Rt△ABC中,∠C=90°,AC=6,BC=8,∴AB==10.∵由(1)知,DE=3,∴S△ABD===15【解析】本题考查了角平分线的性质和勾股定理,熟练掌握这些性质是解决问题的关键.(1)直接根据角平分线的性质可得出结论;(2)先根据勾股定理求出AB的长,再由三角形的面积公式求解即可.23.【答案】证明:(1)∵四边形ABCD是正方形∴BC=CD,∠BCD=∠DCF=90°且CE=CF∴△BCE≌△DCF(2)∵BC+DF=9∴CD+DF=9在Rt△DCF中,DF2=DC2+CF2∴(9-CD)2=CD2+CF2∴CD=4∴S正方形ABCD=16【解析】(1)由题意可得BC=CD,∠BCD=∠DCF,且CE=CF可证结论(2)由BC+DF=9可得CD=9-DF,在Rt△DCF中,DF2=DC2+CF2,可得CD=4,即可求正方形ABCD的面积.本题考查了正方形的性质,全等三角形的判定,勾股定理,关键是通过勾股定理列出方程.24.【答案】解:(1)解:∵菱形ABCD中,BD=10,AC=24,∴OB=5,OA=12,在Rt△ABO中,AB==13,∴菱形ABCD的周长=4AB=52.(2)S菱形ABCD=•AC•BD=×24×10=120.(3)∵S菱形ABCD=•AC•BD=AB•DE,∴DE=.【解析】(1)由勾股定理即可求得AB的长,继而求得菱形ABCD的周长;(2)根据菱形的面积等于对角线乘积的一半,计算即可;=•AC•BD=AB•DE,计算即可;(3)根据S菱形ABCD本题考查菱形的性质、勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.【答案】解:(1)如图所示:(2)∵四边形AEBF是平行四边形,∴AH=BH,∵OA=OB,AH=BH,∴OH平分∠AOB.【解析】此题主要考查了平行四边形的性质以及等腰三角形的性质,关键是掌握平行四边形的对角线互相平分.(1)连接AB和EF,两对角线相交于点H,再作射线OH即可;(2)首先根据平行四边形的性质可得AH=BH,再根据等腰三角形的性质可得OH平分∠AOB.26.【答案】(1)证明:∵四边形ABCD是矩形,∴AB=CD,∠A=∠C=90°,∠ABD=∠BDC,∵△BEH是△BAH翻折而成,∴∠ABH=∠EBH,∠A=∠HEB=90°,AB=BE,∵△DGF是△DGC翻折而成,∴∠FDG=∠CDG,∠C=∠DFG=90°,CD=DF,∴∠DBH=∠ABD,∠BDG=∠BDC,∴∠DBH=∠BDG,∴△BEH与△DFG中,∠HEB=∠DFG,BE=DF,∠DBH=∠BDG,∴△BEH≌△DFG,(2)解:∵四边形ABCD是矩形,AB=6cm,BC=8cm,∴AB=CD=6cm,AD=BC=8cm,∴BD===10,∵由(1)知,FD=CD,CG=FG,∴BF=10-6=4cm,设FG=x,则BG=8-x,在Rt△BGF中,BG2=BF2+FG2,即(8-x)2=42+x2,解得x=3,即FG=3cm.【解析】(1)先根据矩形的性质得出∠ABD=∠BDC,再由图形折叠的性质得出∠ABH=∠EBH,∠FDG=∠CDG,∠A=∠HEB=90°,∠C=∠DFG=90°,进而可得出△BEH≌△DFG;(2)先根据勾股定理得出BD的长,进而得出BF的长,由图形翻折变换的性质得出CG=FG,设FG=x,则BG=8-x,再利用勾股定理即可求出x的值.本题考查的是图形翻折变换的性质及矩形的性质,全等三角形的判定,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.。
2017-2018学年度第二学期期中考试试卷八年级数学 2018.04本试卷由填空题、选择题和解答题三大题组成,共28题,满分130分.考试用时120分钟. 注意事项:1.答题前,考生务必将学校、姓名、考场号、座位号、考试号填写在答题卷相应的位置上.2.答题必须用0.5mm 黑色墨水签字笔写在答题卷指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题.3.考生答题必须在答题卷上,答在试卷和草稿纸上一律无效一、选择题:(本大题共有10小题,每小题3分,共30分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并在答题卡上将该项涂黑.)1.若分式1xx +有意义,则x 的取值范围是A. 1x ≠B. 1x ≠-C. 0x ≠D. 1x >-2.下列调查中,适宜采用普查方式的是A.了解一批灯泡的寿命B.了解全国八年级学生的睡眠时间C.考察人们保护环境的意识D.检查一枚用于发射卫星的运载火箭的各零部件3.如图,将右图的正方形图案绕中心O 旋转180︒后,得到的图案是4.反比例函数,6y x =的图像在A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限 5.下列性质中,矩形具有而平行四边形不一定具有的是 A.对角线互相平分 B.两组对角相等C.对角线相等D.两组对边平行且相等6.如图,四边形ABCD 是菱形,8,6,AC DB DH AB ==⊥于H , 则DH 等于A. 245B. 125 C. 5 D. 47.某工厂进行技术创新,现在每天比原来多生产50台机器,且现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设现在每天生产x 台机器,根据题意得方程为A. 6004505x x =+ B. 6004505x x =- C. 60045050x x =+ D. 60045050x x =- 8.已知1122(,),(,)A x y B x y 是反比例函数(0)ky k x =≠图象上的两个点,当120x x <<时,12y y >,那么一次函数y kx k =-的图象不经过A.第一象限B.第二象限C.第三象限D.第四象限 9.如图,把正方形纸片ABCD 沿对边中点所在的直线对折后展开,折 痕为MN ,再过点B 折叠纸片,使点A 落在MN 上的点F 处,折 痕为BE .若AB 的长为2,则FM 的长为 A. 2 B.3 C. 2 D. 110.如图,在以O 为原点的直角坐标系中,矩形OABC 的两边OC 、OA分别在x 轴、y 轴的正半轴上,反比例函数(0)ky x x =>与AB 相交于点D ,与BC 相交于点E ,若3BD AD =,且ODE ∆的面积是9, 则k 的值是A. 92B. 74C. 245 D. 12二、填空题:(本大题共8小题,每小题3分,共24分,把答案直接填在答题卷相对应的位置上)11.己知反比例函数(0)ky k x =≠的图像经过点(2,3)P -,k 的值为 .12.分式211a a -+的值为0,则a = .13.一个不透明的盒子中放着编号为1到10的10张卡片(编号均为正整数),这些卡片除了编号以外没有任何其他区别.搅匀后从中随机地抽出1张卡片,则“该卡片上的数字大于163”的概率是 .14.如图,延长矩形ABCD 的边BC 至点E ,使CE BD =,如果30ADB ∠=︒,则E ∠=度.15.若解关于x 的方程2111x m x x ++=--产生增根,则m 的值为 . 16.已知反比例函数10y x =,当12x <<时,y 的取值范围是.17.如图,在正方形ABCD 中,对角线AC 与BD 相交于点,O E 为BC 上一点,5,CE F =为DE 的中点.若CEF ∆的周长为18,则OF 的长为 .18.如图,己知直线1y k x b =+与x 轴、y 轴相交于P 、Q 两点,与2k y x =的图像相交于是(2,)A m -、(1,)B n 两点,连接OA 、OB .给出下列结论:①120k k <;②12m n +=;③AOP BOQS S ∆∆=;④不等式21k k x b x +>的解集是2x <-或01x <<,其中正确的结论的序号是 .三、解答题:(本大题共10小题,共76分.把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明).19.(本题满分5分)解方程: 32111x x x -=--20.(本题满分5分)已知222111x x xA x x ++=---,在1,0,1-选一个合适的数,求A 的值.21.(本题满分6分)己知1,6y x xy =-=,求111x y ++的值.22.(本题满分6分)为了解某市市民晚饭后1小时内的生活方式,调查小组设计了“阅读”、“锻炼”、“看电视”和“其它”四个选项,用随机抽样的方法调查了该市部分市民,并根据调结果绘制成如下统计图.根据统计图所提供的信息,解答下列问题: (1)本次共调查了 名市民; (2)补全条形统计图;(3)该市共有480万市民,估计该市市民 晚饭后1小时内锻炼的人数.23.(本题满分6分)一纸箱中放有大小均匀的x 只白球和y 只黄球,从中随机地取出一只白球的概率是25.(1)试写出y 与x 的函数关系式;(2)当x =10时,再往箱中放进20只白球,求随机地取出一只黄球的概率P .24.(本题满分8分)如图,将平行四边形ABCD 的边AB 延长至 点E ,使AB BE =,连接,,DE EC DE 交BC 于点O . (1)求证: ABD BEC ∆≅∆;(2)连接BD ,若2BOD A ∠=∠,求证:四边形是矩形.25.(本题满分10分)如图,在ABC ∆中,点,,D E F 分别是,,AB BC CA 的中点,AH 是边BC 上的高. (1)求证:四边形ADEF 是平行四边形; (2)求证: DHF DEF ∠=∠.26.(本题满分10分)某中学组织学生到商场参加社会实践活动,他们参与了某种品牌运动鞋的销售工作,已知该运动鞋每双的进价为120元,为寻求合适的销售价格进行了4天的试销,试销情况如表所示:21教育网(1)观察表中数据,,x y 满足什么函数关系?请求出这个函数关系式;(2)若商场计划每天的销售利润为3000元,则其单价应定为多少元?27.(本题满分10分)己知四边形ABCD 是菱形,4,60,AB ABC EAF =∠=︒∠的两边分别与射线,CB DC 相交于点,E F ,且60EAF ∠=︒.(1)如图1,当点E 是线段CB 上任意一点时(点E 不与,B C 重合),求证: BE CF =; (2)如图2,当点E 在线段CB 的延长线上,且15EAB ∠=︒时,求CF 的长.28.(本题满分10分)如图,在平面直角坐标系xOy 中,四边形OABC 是正方形,点,A C 的坐标分别为(2, 0), (0, 2), D 是x 轴正半轴上的一点,且1AD = (点D 在点A 的右边),以BD 为边向外作正方形BDEF (,E F 两点在第一象限),连接FC 交AB 的延长线于点G .(1)侧点B 的坐标为 ,点E 的坐标为 . (2)求点F 的坐标;(3)是否存在反比例函ky x =的图像同时经过点E 、G 两点?若存在,求k 值;若不存在,请说明理由.。
2017—2018学年度第二学期期中教学质量评估测试八年级数学试卷题号一 二 三 总分 得分注意事项:全卷共120分,考试时间120分钟.一、选择题:(每小题3分,共30分)1.下列二次根式中,最简二次根式的是( )A .B .C .D . 2.下列计算正确的是( ).A.2(3)9=B .822÷=C .236⨯=D .2(2)2-=-3. 下列各组数中,能构成直角三角形的是( )A. 4,5,6B. 1,1,C. 6,8,11D. 5,12,23 4. 在Rt△ABC 中,△C =90°,△B =45°,c =10,则a 的长为( )A. B. C.5 D.5.在下列给出的条件中,能判定四边形ABCD 为平行四边形的是( ) A. AB=BC,CD=DA B. AB//CD,AD=BC C. AB//CD,C A ∠=∠ D.D C B A ∠=∠∠=∠, 6.正方形面积为36,则对角线的长为( ) A.B .6C .9D. 7.如图,一棵大树在一次强台风中距地面5m 处折断,倒下后树顶端着地点A 距树底端B 的距离为12m ,这棵大树在折断前的高度为( )A. 10mB. 15mC. 18mD. 20m8.如图,在平行四边形ABCD 中,已知AD=5cm ,AB=3cm ,AE 平分△BAD 交BC 边于点E ,则EC 等于( )A .1cmB .2cmC .3cmD .4cm9.如图,菱形ABCD 中,E 、F 分别是AB 、AC 的中点,若EF=3,则菱形ABCD 的周长是( )A .12B .16C .20D .2410.如图,在矩形ABCD 中,AB=8,BC=4,将矩形沿AC 折叠,点D 落在点D′处,则重叠部分△AFC 的面积为( )A .6B .8C .10D .12二、填空题:(每小题3分,共30分)11. 木工师傅要做一个长方形桌面,做好后量得长为80cm ,宽为60cm ,对角线为100cm ,则这个桌面 .(填“合格”或“不合格” ) 12.若式子 在实数范围内有意义,则 的取值范围是 .13.在数轴上表示实数a 的点如图所示,化简()2-a 5-a 2+的结果为______.14.计算()2252-的结果是________.15.一个直角三角形的两边长分别为4与5,则第三边长为________.16.平行四边形ABCD 中一条对角线分△A 为35°和45°,则△B= 度. 17. 如右图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则EF= cm . 18. 在△ABC 中,△C=90°,AC=12,BC=16,则AB 边上的中线CD 为 .19.在平面直角坐标系中,点A (﹣1,0)与点B (0,2)的距离是 . 20.对于任意不相等的两个数a ,b ,定义一种运算△如下:a△b = ,座号得 分 评卷人 题号1 2 3 4 5 6 7 8 9 10 答案得 分 评卷人学校 年级 姓名 学号密封线内不要答题八年级 数学 第1页 (共6页) 八年级 数学 第2页 (共6页)212510252612-+x x x 8.04529a b a b+-如3△2= =5.那么12△4= .三.解答题:(本大题共60分)21. (6分)(共2小题,每小题3分)(1) (2)22.(8分)若最简二次根式31025311x x y x y -+--+和是同类二次根式. (1)求x y 、的值; (5分) (2)求22y x +的值.(3分)23.(7分)有如图所示的一块地,已知AD=4米,CD=3米,090ADC ∠=,AB=13米,BC=12米.(1)试判断以点A 、点B 、点C 为顶点的三角形是什么三角形?并说明理由. ( 4分)(2)求这块地的面积.(3分)24. (8分)如图,四边形ABCD 中,AC ,BD 相交于点O ,O 是AC 的中点,AD △BC ,AC =8,BD =6.(1)求证:四边形ABCD 是平行四边形; (4分) (2)若AC △BD ,求平行四边形ABCD 的面积. (4分)25 . (8分)如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,E 是CD 的中点,连接OE .过点C 作CF △BD 交线段OE 的延长线于点F ,连接DF . 求证:(1)△ODE △△FCE (4分)(2)四边形ODFC 是菱形 (4分)得 分 评卷人DACB八年级 数学 第3页 (共6页) 八年级 数学 第4页 (共6页)3232+-)227(328--+5232232⨯÷26.(8分)已知:如图,四边形ABCD 四条边上的中点分别为E 、F 、G 、H ,顺次连接EF 、FG 、GH 、HE ,得到四边形EFGH (即四边形ABCD 的中点四边形). (1)四边形EFGH 的形状是 ,证明你的结论;(4分)(2)当四边形ABCD 的对角线满足 条件时,四边形EFGH 是矩形(不证明)(2分) (3)你学过的哪种特殊四边形的中点四边形是矩形? (不证明)(2分)27.(6分)某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口 小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?28.(9分)观察下列等式: △ △ + = △……回答下列问题:(1)仿照上列等式,写出第n 个等式: ; (2分) (2)利用你观察到的规律,化简:(3分)(3)计算: + + +……+(4分)八年级 数学 第5页 (共6页) 八年级 数学 第6页 (共6页)23321+211+231+34)34)(34(34341-=-+-=+231+1031+)23)(23(23-+-23-2017—2018学年度第二学期期中教学质量评估测试八年级数学参考答案一、选择题1.D 2.B 3. B 4.A 5.C 6. A 7.C 8.B 9.D 10. C 二、填空题11.合格 12.x ≥﹣2且x ≠1 13. 3 14. 15.3或41 16.100 17 . 2.5 18. 10 19. . 20.1.2三、解答题:(共60分)21(1)解: + 2 ﹣(﹣ ) =2 +2 ﹣3 + ------(2分) =3 ﹣ ------(3分) (2)解: ÷ ×== ------(2分)= -------(3分) 22.(1)x=4,y=3;(5分) (2)5 (3分) 解:(1)由题意得:3x-10=2 , ---------(2分)2x+y-5=x-3y+11 ----------(4分)解得x=4 y=3 --------(5分)(2)当x=4 , y=3时22y x += =5 -----(3分) 23.解(1)以点A 、点B 、点C 为顶点的三角形是直角三角形(4分)(2)这块地的面积24m 2. (3分) 解:(1)连接AC . -------(1分) 由勾股定理可知:AC=---(2分)又∵AC 2+BC 2=52+122=132=AB 2--------(3分) ∴△ABC 是直角三角形 --------(4分) (2)这块地的面积=△ABC 的面积-△ACD 的面积 ----(1分)=×5×12- ×3×4 --- (2分) =24(m 2). ----(3分)24. (1)证明:∵O 是AC 的中点,∴OA =OC. ------(1分) ∵AD ∥BC ,∴∠DAO =∠BCO. -------(2分) 又∵∠AOD =∠COB ,∴△AOD ≌△COB ,(ASA ) -----------------(3分) ∴OD =OB ,∴四边形ABCD 是平行四边形 --------------(4分) (2)∵四边形ABCD 是平行四边形,AC ⊥BD ,∴四边形ABCD 是菱形 ---------------(2分)∴ ABCD 的面积= AC •BD = ×8×6=24 ---------------(4分)25 .证明:(1)∵CF ∥BD ∴∠ODE=∠FCE----------------(1分)∵E 是CD 中点 ∴CE=DE , -------------------(2分) 在△ODE 和△FCE 中2222435AD CD +=+=12121222410.-1.232322528528332⨯⨯10110102234+32722332235∴△ODE ≌△FCE (ASA ) --------------(4分) (2)∵△ODE ≌△FCE ∴OD=FC , -------------(1分) 又∵CF ∥BD , ∴四边形ODFC 是平行四边形-----(2分)∵矩形ABCD ∴AC=BD OC= AC,OD= BD ∴ OC=OD ----------------(3分)∴四边形ODFC 是菱形. -----------------------(4分) 26(1)平行四边形;(4分)(2)互相垂直(2分)(3)菱形.(2分)(1)证明:连结BD . -------------------- (1分)∵E 、H 分别是AB 、AD 中点,∴EH ∥BD ,EH= BD , ----------------------(2分)同理FG ∥BD ,FG= BD , ---------------------(3分)∴EH ∥FG ,EH=FG ,∴四边形EFGH 是平行四边形 --------------------------(4分) 27. 解:根据题意,得PQ=16×1.5=24(海里) - -----------(1分)PR=12×1.5=18(海里) -----------(2分) QR=30(海里)∵242+182=302, 即PQ 2+PR 2=QR 2∴∠QPR=90°. ----------------(4分) 由“远洋号”沿东北方向航行可知∠QPS=45°,则∠SPR=45°(5分) 即“海天”号沿西北方向航行. -------(6分)28. (1)(2)2311- (3)解:(1)第n 个等式 (2分)(2)原式=1121123111211=-=-+. (3分)原式=2-1+3-2+4-3+……+10-9=10-1 ( 4分)12121212=-+++=++)1)(1(11n n n n n n 101nn -+1=-+++=++)1)(1(11n n n n n n nn -+1n n -+1n n -+1。
2017-2018学年八年级(下)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.在二次根式中,字母x的取值范围是()A. B. C. D.2.若x=1是方程x2-ax+3=0的一个根,那么a值为()A. 4B. 5C.D.3.下列计算正确的是()A. B. C. D.4.A. 14,13B. 15,13C. 14,14D. 14,155.一个n边形的内角和等于它的外角和,则n=()A. 3B. 4C. 5D. 66.某厂一月份生产某机器100台,计划二、三月份共生产280台.设二、三月份每月的平均增长率为x,根据题意列出的方程是()A. B.C. D.7.如图O是边长为9的等边三角形ABC内的任意一点,且OD∥BC,交AB于点D,OF∥AB,交AC于点F,OE∥AC,交BC于点E,则OD+OE+OF的值为()A. 3B. 6C. 8D. 98.关于x的方程(a-6)x2-8x+6=0有实数根,则a的取值范围是()A. 且B. 且C.D. 且9.如图,在平面直角坐标系中,OABC的顶点A在x轴上,定点B的坐标为(6,4),若直线经过定点(1,0),且将平行四边形OABC分割成面积相等的两部分,则直线的表达式()A. B. C. D.10.如图,在平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长AB与DE的延长线交于点F.下列结论中:①△ABC≌△EAD;②△ABE是等边三角形;③AD=AF;④S△ABE=S△CEF其中正确的是()A. ①②③B. ①②④C. ②③④D. ①②③④二、填空题(本大题共6小题,共24.0分)11.标本-1,-2,0,1,2,方差是______.12.若整数满足,则的值为________.13.若x=-2是关于x的方程x2-2ax+8=0的一个根,则方程的另一个根为______.14.已知m是一元二次方程x2-9x+1=0的解,则=______.15.如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为______m.16.如图在△ABC中,∠BAC=30°,AB=AC=6,M为AC边上一动点(不与A,C重合),以MA、MB为一组邻边作平行四边形MADB,则平行四边形MADB的对角线MD的最小值是______.三、计算题(本大题共1小题,共8.0分)17.(1)已知x=2+,y=2-,求(+)(-)的值.(2)若的整数部分为a,小数部分为b,写出a,b的值并计算-ab的值.四、解答题(本大题共6小题,共58.0分)18.解方程:(1)2x2-x=0(2)(x-1)(2x+3)=1.19.某校初三对某班最近一次数学测验成绩(得分取整数)进行统计分析,将所有成绩由低到高分成五组,并绘制成如图的频数分布直方图,请结合直方图提供的信息,回答下列问题:(1)该班共有______名同学参加这次测验;(2)这次测验成绩的中位数落在______分数段内;(3)若该校一共有800名初三学生参加这次测验,成绩80分以上(不含80分)为优秀,估计该校这次数学测验的优秀人数是多少人?20.如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,下列结论中:①∠ABC=∠ADC;②AC与BD相互平分;③AC,BD分别平分四边形ABCD的两组对角;④四边形ABCD的面积S=AC•BD.(1)写出正确结论的序号;(2)证明所有正确的结论.21.银隆百货大楼服装柜在销售中发现:“COCOTREE”牌童装每件成本60元,现以每件100元销售,平均每天可售出20件.为了迎接“五•一”劳动节,商场决定采取适当的降价措施,以扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多销售2件.(1)要想平均每天销售这种童装盈利1200元,请你帮商场算一算,每件童装应定价多少元?(2)这次降价活动中,1200元是最高日利润吗?若是,请说明理由;若不是,请试求最高利润值.22.如图1,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF是平行四边形.(1)请你只用无刻度的直尺在图中画出∠AOB的平分线.(保留作图痕迹,不要求写作法)(2)如图2,请再说出两种画角平分线的方法(要求画出图形,并说明你使用的工具和依据)23.如图,在△ABC中,AB=AC=13厘米,BC=10厘米,AD⊥BC于点D,动点P从点A出发以每秒1厘米的速度在线段AD上向终点D运动,设动点运动时间为t秒.(1)求AD的长.(2)当P、C两点的距离为时,求t的值.(3)动点M从点C出发以每秒2厘米的速度在射线CB上运动.点M与点P同时出发,且当点P运动到终点D时,点M也停止运动.是否存在时刻t,使得S△PMD=S△ABC?若存在,请求出t的值;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:二次根式中,字母x的取值范围是:x-3>0,解得:x>3.故选:B.直接利用二次根式的性质分析得出答案.此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.2.【答案】A【解析】解:把x=1代入x2-ax+3=0得1-a+3=0,解得a=4.故选:A.根据一元二次方程的解的定义把x=1代入x2-ax+3=0中得到关于a的方程,然后解关于a的一次方程即可.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.3.【答案】A【解析】解:A、-=2-=,故本选项正确.B、+≠,故本选项错误;C、×=,故本选项错误;D、÷==2,故本选项错误.故选:A.根据二次根式的加法及乘法法则进行计算,然后判断各选项即可得出答案.本题考查了二次根式的混合运算,难度不大,解答本题一定要掌握二次根式的混合运算的法则.4.【答案】A【解析】解:将这组数据按大小顺序,中间一个数为13,则这组数据的中位数是13;=(24+15+13+10+8)÷5=14.故选:A.根据中位数和平均数的定义求解即可.本题为统计题,考查平均数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.【答案】B【解析】解:由题可知(n-2)•180=360,所以n-2=2,n=4.故选:B.利用等量关系式以及多边形内角和公式解答.根据题意列出方程即可.本题主要考查的是多边形的内角和与外角和,熟练掌握多边形的内角和与外角和公式是解题的关键.6.【答案】B【解析】【分析】主要考查增长率问题,一般用"增长后的量=增长前的量×(1+增长率)",如果设二、三月份每月的平均增长率为x,根据“计划二、三月份共生产280台”,即可列出方程.本题可根据增长率的一般规律找到关键描述语,列出方程;平均增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.【解析】解:设二、三月份每月的平均增长率为x,则二月份生产机器为:100(1+x),三月份生产机器为:100(1+x)2;又知二、三月份共生产280台;所以,可列方程:100(1+x)+100(1+x)2=280.故选B.7.【答案】D【解析】【分析】根据等边三角形,平行线的性质,和平行四边形的判定,并根据等腰梯形性质求解.本题考查了等边三角形的性质,关键是利用了:1、等腰三角形的性质和判定:三边相等,三角均为60度,有两角相等且为60度的三角形是等边三角形;2、平行四边形的判定的性质;3、等腰梯形的判定和性质.【解答】解:延长OD交AC于点G,∵OE∥CG,OG∥CE,∴四边形OGCE是平行四边形,有OE=CG,∠OGF=∠C=60°,∵OF∥AB,∴∠OFG=∠A=60°,∴OF=OG,∴△OGF是等边三角形,∴OF=FG,∵OD∥BC,∴∠ADO=∠B=60°∴梯形OFAD是等腰梯形,有OD=AF,即OD+OE+OF=AF+FG+CG=AC=9.8.【答案】C【解析】解:当a-6=0时,原方程为-8x+6=0,解得:x=,∴a=6符合题意;当a-6≠0时,有,解得:a≤且a≠6.综上所述,a的取值范围为:a≤.故选:C.分a-6=0和a-6≠0两种情况考虑:当a-6=0时,通过解一元一次方程可得出原方程有解,进而可得出a=6符合题意(此时已经可以确定答案了);当a-6≠0时,由二次项系数非零及根的判别式△≥0,即可得出关于a的一元一次不等式组,解之即可得出a的取值范围.综上即可得出结论.本题考查了根的判别式、一元二次方程的定义以及解一元一次方程,分a-6=0和a-6≠0两种情况考虑是解题的关键.9.【答案】C【解析】解:∵点B的坐标为(6,4),∴平行四边形的中心坐标为(3,2),设直线l的函数解析式为y=kx+b,则,解得,所以直线l的解析式为y=x-1.根据过平行四边形的中心的直线把平行四边形分成面积相等的两部分,先求出平行四边形中心的坐标,再利用待定系数法求一次函数解析式解答即可.本题考查了待定系数法求一次函数解析式,平行四边形的性质,熟练掌握过平行四边形的中心的直线把平行四边形分成面积相等的两部分是解题的关键.10.【答案】B【解析】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠EAD=∠AEB,又∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴AB=BE,∵AB=AE,∴△ABE是等边三角形;②符合题意;在∴△ABC≌△EAD(SAS);①符合题意;∵△FCD与△ABC等底(AB=CD)等高(AB与CD间的距离相等),∴S△FCD=S△ABC,又∵△AEC与△DEC同底等高,∴S△AEC=S△DEC,∴S△ABE=S△CEF;④符合题意.若AD与AF相等,即∠AFD=∠ADF=∠DEC即EC=CD=BE即BC=2CD,题中未限定这一条件∴③不符合题意;∴①②④符合题意,故选:B.由平行四边形的性质得出AD∥BC,AD=BC,由AE平分∠BAD,可得∠BAE=∠DAE,可得∠BAE=∠BEA,得AB=BE,由AB=AE,得到△ABE是等边三角形,②正确;则∠ABE=∠EAD=60°,由SAS证明△ABC≌△EAD,①正确;由△FCD与△ABD等底(AB=CD)等高(AB与CD间的距离相等),得出S△FCD=S△ABD,由△AEC与△DEC同底等高,所以S△AEC=S△DEC,得出S△ABE=S△CEF.④正确.此题考查了平行四边形的性质、等边三角形的判定与性质、全等三角形的判定与性质.此题比较复杂,注意将每个问题仔细分析.11.【答案】2【解析】解:∵==0,∴方差S2=×[(1-0)2+(2-0)2+(0-0)2+(-1-0)2+(-2-0)2]=2.故答案为:2.先计算出平均数,再根据方差的公式计算.本题考查方差的定义:一般地设n个数据,x 1,x2,…x n的平均数为,则方差S2=[(x 1-)2+(x2-)2+…+(x n-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.12.【答案】4【解析】解:∵2=,3=,∴整数n满足2<n<3,则n的值为=4.故答案为4.直接得出n最接近的二次根式,进而得出答案.此题主要考查了估算无理数的大小,正确将原数转化是解题关键.13.【答案】-4【解析】解:设方程的另一个根为x1,根据根与系数的关系有:-2x1=8,解得x1=-4.故答案为:-4.设出方程的另一个根,利用根与系数关系中的两根之积可以求出方程的另一个根.本题考查的是一元二次方程的解,知道方程的一个根,用根与系数关系中的两根的积可以求出方程的另一个根.14.【答案】17【解析】解:∵m是一元二次方程x2-9x+1=0的解,∴m2-9m+1=0,∴m2-7m=2m-1,m2+1=9m,∴=2m-1+=2(m+)-1,∵m2-9m+1=0,∴m≠0,在方程两边同时除以m,得m-9+=0,即m+=9,∴=2(m+)-1=2×9-1=17.故答案是:17.将x=m代入该方程,得m2-9m+1=0,通过变形得到m2-7m=2m-1,m2+1=9m;然后在方程m2-9m+1=0两边同时除以m,得到m+=9,代入即可求得所求代数式的值.此题主要考查了方程解的定义.此类题型的特点是:利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.15.【答案】2【解析】解:设人行通道的宽度为x米,将两块矩形绿地合在一起长为(30-3x)m,宽为(24-2x)m,由已知得:(30-3x)•(24-2x)=480,整理得:x2-22x+40=0,解得:x1=2,x2=20,当x=20时,30-3x=-30,24-2x=-16,不符合题意舍去,即x=2.答:人行通道的宽度为2米.故答案为2.设人行通道的宽度为x米,将两块矩形绿地合在一起长为(30-3x)m,宽为(24-2x)m,根据矩形绿地的面积为480m2,即可列出关于x的一元二次方程,解方程即可得出x的值,经检验后得出x=20不符合题意,此题得解.本题考查了一元二次方程的应用,根据数量关系列出关于x的一元二次方程是解题的关键.16.【答案】3【解析】解:如图,作BH⊥AC于H.在Rt△ABH中,∵AB=6,∠BHA=90°,∠BAH=30°,∴BH=AB=3,∵四边形ADBM是平行四边形,∴BD∥AC,∴当DM⊥AC时,DM的值最小,此时DM=BH=3,故答案为3.如图,作BH⊥AC于H.因为四边形ADBM是平行四边形,所以BD∥AC,所以当DM⊥AC时,DM的值最小,此时DM=BH.本题考查直角三角形30度角性质、等腰三角形的性质、平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.【答案】解:(1)原式=-==,∵x=2+,y=2-,∴x+y=4、y-x=-2、xy=1,则原式==-8;(2)∵2<<3,∴a=2、b=-2,∴-ab=-2(-2)=+2-2+4=6-.【解析】(1)将原式变形为,再根据x、y的值计算出y+x、y-x、xy的值,继而代入可得;(2)由题意得出a、b的值,代入计算可得.本题主要考查二次根式的化简求值,解题的关键是掌握二次根式混合运算顺序和运算法则.18.【答案】解:(1)2x2-x=0,x(2x-)=0,则x=0或2x-=0,解得x1=0,x2=;(2)(x-1)(2x+3)=1,2x2+x-4=0,解得:x1=,x2=.【解析】(1)提取公因式x,即可得到x(2x-)=0,再解两个一元一次方程即可;(2)先转化为一般式方程,然后利用因式分解法解方程.本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.19.【答案】40;70.5~80.5【解析】解:(1)根据题意得:该班参加这次测验的学生共有:2+9+10+14+5=40(名);故答案为:40;(2)因为共有40个数,所以中位数是第20和21个数的平均数,所以这次测验成绩的中位数落在落70.5~80.5分数段内;故答案为:70.5~80.5;(3)根据题意得:该校这次数学测验的优秀人数是800×=380(人).(1)把各分段的人数加起来就是总数;(2)根据中位数的定义得出中位数就是第20个和第21个的平均数,从而得出答案;(3)先算出40人中80分以上的人的优秀率,再乘以总人数即可.本题考查了频数分布直方图,解题的关键是能读懂统计图,从图中获得必要的信息,用到的知识点是中位数、频数、频率.20.【答案】解:(1)正确结论是①④,(2)①在△ABC和△ADC中,∵ ,∴△ABC≌△ADC(SSS),∴∠ABC=∠ADC,故①结论正确;②∵△ABC≌△ADC,∴∠BAC=∠DAC,∵AB=AD,∴OB=OD,AC⊥BD,而AB与BC不一定相等,所以AO与OC不一定相等,故②结论不正确;③由②可知:AC平分四边形ABCD的∠BAD、∠BCD,而AB与BC不一定相等,所以BD不一定平分四边形ABCD的对角;故③结论不正确;④∵AC⊥BD,∴四边形ABCD的面积S=S△ABD+S△BCD=BD•AO+BD•CO=BD•(AO+CO)=AC•BD.故④结论正确;【解析】①证明△ABC≌△ADC,可作判断;②③由于AB与BC不一定相等,则可知此两个选项不一定正确;④根据面积和求四边形的面积即可.本题考查了全等三角形的判定和性质、等腰三角形的性质,掌握全等三角形的判定方法是解题的关键,结论①可以利用等边对等角,由等量加等量和相等来解决.21.【答案】解:(1)设每件童装应降价x元,由题意得:(100-60-x)(20+2x)=1200,解得:x1=10,x2=20,因要减少库存,故取x=20,答:每件童装应定价80元.(2)1200不是最高利润,y=(100-60-x)(20+2x)=-2x 2+60x+800=-2(x-15)2+1250故当降价15元,即以85元销售时,最高利润值达1250元.【解析】(1)首先设每件降价x元,则每件实际盈利为(100-60-x)元,销售量为(20+2x)件,用每件盈利×销售量=每天盈利,列方程求解.为了扩大销售量,x应取较大值.(2)设每天销售这种童装利润为y,利用(1)中的关系列出函数关系式,利用配方法解决问题.此题考查了二次函数的应用以及一元二次方程的应用,利用基本数量关系:平均每天售出的件数×每件盈利=每天销售这种童装利润,进而列方程与函数关系解决实际问题.22.【答案】解:(1)如图2,OP为所作;(2)方法一:如图1,利用有刻度的直尺画出AB的中点M,则OM为∠AOB的平分线;方法二:如图3,利用圆规和直尺作∠AOB的平分线ON,【解析】(1)利用AB、EF,填空相交于点P,如图2,利用平行四边形的性质得到PA=PB,然后根据等腰三角形的性质可判断OP平分∠AOB;(2)方法一:如图1,利用有刻度的直尺和腰三角形的性质画图;方法二:如图3,利用圆规和直尺,根据基本作图作∠AOB的平分线ON.本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了平行四边形的性质和等腰三角形的性质.23.【答案】解:(1)∵AB=AC=13,AD⊥BC,∴BD=CD=5cm,且∠ADB=90°,∴AD2=AC2-CD2∴AD=12cm.(2)AP=t,∴PD=12-t,在Rt△PDC中,PC=,CD=5,根据勾股定理得,PC2=CD2+PD2,∴29=52+(12-t)2,∴t=10或t=14(舍).即:t的值为10s;(3)假设存在t,使得S△PMD=S△ABC.∵BC=10,AD=12,∴S△ABC=BC×AD=60,①若点M在线段CD上,即0≤t<时,PD=12-t,DM=5-2t,由S△PMD=S△ABC,即(12-t)(5-2t)=,2t2-29t+43=0解得t1=(舍去),t2=②若点M在射线DB上,即<t<12.由S△PMD=S△ABC得(12-t)(2t-5)=,2t2-29t+77=0解得t=11或t=综上,存在t的值为s或 11s或s,使得S△PMD=S△ABC.【解析】(1)根据等腰三角形性质和勾股定理解答即可;(2)根据勾股定理建立方程求解即可;(3)根据题意列出PD、MD的表达式解方程组,由于M在D点左右两侧情况不同,所以进行分段讨论即可,注意约束条件.此题是三角形综合题,主要考查了等腰三角形的性质,勾股定理,三角形的面积公式,解本题的关键为利用三角形性质勾股定理以及分段讨论,在解方程时,注意解是否符合约束条件.。
2017-2018学年度济南外国语八年级数学下学期期中试卷济南外国语学校2016—2017学年度第二学期初二数学期中试题2017年4月 第Ⅰ卷选择题(共45分)一、选择题(本大题包括15小题,每题3分,共45分) 1.下列各式中从左到右的变形,是因式分解的是( )A .2(3)(3)9a a a +-=-B .25(2)(3)1x x x x -=-+++C .211x x x x ⎛⎫= ⎪⎝⎭++D .22()a b ab ab a b =++【答案】D2.下列不等式变形正确的是( ).A .由a b >得ac bc >B .由a b >得22a b ->-C .由a b >得a b -<-D .由a b >得22a b -<-【答案】C3.若分式23x x -+的值为0,则x 的值是( ).A .3-B .2-C .0D .2【答案】D4.在数轴上表示不等式组20260x x >⎧⎨-<⎩+的解集,正确的是( ).A .32B .23C .23D .23【答案】A5.下列即是轴对称图形又是中心对称图形的是( ).A .B .C .D .【答案】C6.化简22111x x --+的结果是( ). A .21x + B .2xC .21x - D .2(1)x +【答案】A7.下列各式不能用公式法分解因式的是( ).A .22x y -B .21x --C .221x x ++D .22441x y xy -+【答案】B8.若一个等腰三角形的两边长分别是2和5,则它的周长为( ).A .12B .9C .12或9D .9或7【答案】A9.若把分式2x yx y-+中的x 和y 都扩大3倍,那么分式的值( ).A .扩大3倍B .不变C .缩小3倍D .缩小6倍【答案】B10.如图,A ,B 的坐标为(2,0),(0,1),若将线段AB 平移至11A B ,则a b +的值为( ).BA .2B .3C .4D .5【答案】A11.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a b -,x y -,x y +,a b +,22x y -,22a b -分别对应下列六个字:外、爱、我、济、威、武,现将222222()()x y a x y b ---因式分解,结果呈现的密码信息可能是( ).A .我爱武B .济外威C .爱我济外D .济外威武【答案】C12.如图,一次函数1y x b =+与一次函数24y kx =+的图象交于点(1,3)P ,则关于x 不等式x b kx >++4的解集是( ).y 2A .2x >-B .0x >C .1x >D .1x <【答案】C13.若关于x 的分式方程2233x mx x =--++有增根,则m 的值是( ).A .1m =-B .0m =C .3m =D .0m =或3m =【答案】A14.如图,点P 是AOB ∠内任意一点,5cm OP =,点M 和点N 分别是射线OA 和射线OB 上的动点,若PMN △周长的最小值是5cm ,则AOB ∠的度数是( ).MNOABA .25︒B .30︒C .35︒D .40︒【答案】B15.运行程序如图所示,规定:从“输入一个值x ”到“结果是否95>”为一次程序操作,如果程序操作进行了三次才停止,那么x 的取值范围是( ).A .11x ≥B .1123x <≤C .1123x <≤D .23x ≤【答案】C第Ⅱ卷非选择题 (共75分)二、填空题:(每小题3分,共18分)16.不等式5335x x -<+的最大整数解是__________. 【答案】317.分解因式:224ax ay -=__________. 【答案】(2)(2)a x y x y -+18.已知点(3,)P m m -在第二象限,则m 的取值范围是__________.【答案】3m > 19.如图,在ABC △中,90C ∠=︒,30B ∠=︒,AD 是ABC △的角平分线,DE AB ⊥,垂足为E ,1DE =,则BC =__________.ABEDC【答案】320.若关于x 的分式方程2122x a x -=-的解为非负数,则a 的取值范围是__________. 【答案】1a ≥且4a ≠21.如图,等边三角形的顶点(1,1)A ,(3,1)B ,规定把等边“ABC △先沿x 轴翻折,再向左平移1个单位”为一次变换,如果这样连续经过2016次变换后,等边ABC △的顶点C 的坐标为__________.【答案】(1)-三、解答题:(共57分) 22.(7分)(1)化简:22142x x x ---.(2)解不等式组:513(1)2151132x x x x -<⎧⎪⎨--⎪⎩≤++,并把它的解集表示在数轴上.【答案】 (1)2212242(2)(2)(2)(2)x x x x x x x x x -=-----+++ 2221(2)(2)(2)(2)2x x x x x x x x ---===--+++. (2)解不等式1得2x < 解不等式2得1x -≥.∴原不等式的解集为12x -<≤. 表示在数轴上:223.(7分)(1)解方程:11322x x x--=--. (2)已知3a b =+,2ab =,求代数式22222a b a b ab ++的值. 【答案】(1)方程两边同乘2x -, 得13(2)(1)x x --=-- 即1361x x -=-++, 则26x -=-, 得3x =.检验,当3x =时,左边2=-=右边. 所以,原方程的解为3x =. (2)322232a b a b ab ++ 22(2)ab a ab b =++ 2()ab a b =+,将3a b =+,2ab =代入得,22()2318ab a b =⨯=+.故代数式322232a b a b ab ++的值是18.24.(8分)如图,ABC △三个顶点的坐标分别为(1,1)A ,(4,2)B ,(3,4)C .(1)请画出将ABC △向左平移4个单位长度后得到的图形111A B C △. (2)请画出ABC △关于原点O 成中心对称的图形222A B C △(3)在x 轴上找一点P ,使PA PB +的值最小,请直接写出点P 的坐标. 【答案】(1)如图1所示:图1()(2)如图2所示:图2()(3)找出A 的对称点(3,4)A '--,连接BA ',与x 轴交点即为P ;如图3所示:点P 坐标为(2,0).图3()25.(8分)先化简:2221211x x x x x x +⎛⎫÷- ⎪-+-⎝⎭,然后再从22x -<≤的范围内选取一个合适的x 的整数值代入求值. 【答案】2221211x x x x x x +⎛⎫÷- ⎪-+-⎝⎭22(1)(1)(1)11x x x x x x x x -=⨯=--++. 其中2210(1)010x x x x x ⎧-≠⎪-≠⎨⎪≠⎩++,即1x ≠-,0,1.又∵22x -<≤且x 为整数, ∴2x =.将2x =代入21x x -中得:2224121x x ==--.26.(9分)某服装店购进一批甲、乙两种款型时尚T 恤衫,甲种款型共用了7800元,乙种款型共用了6400元.甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少20元.(1)甲、乙两种款型的T 恤衫各购进多少件?(2)商店进价提高50%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T 恤衫商店共获利多少元? 【答案】(1)这种款型T 恤衫购进x 件,则甲种款型的T 恤衫购进1.5x 件,根据题意:78006400301.5x x=+, 解得40x =,经检验,40x =是原方程的解,且符合题意,1.560x =.答:甲种款型的T 恤衫购进60件,乙种款型的T 恤衫购进40件. (2)6400160x=,16030130-=(元),[]13060%6016060%(402)1601(160%)0.5(402)⨯⨯⨯⨯÷-⨯-⨯⨯÷++468019206405960=+-=(元)答:售完这批T 恤衫商店共获利 5960元. 27.(9分)问题:如图(1),点E 、F 分别在正方形ABCD 的边BC 、CD 上,45EAF ∠=︒,试判断BE 、EF 、FD 之间的数量关系.(1)【发现证明】小聪把ABE △绕点A 逆时针旋转90︒至ADG △,从而发现EF BE FD =+,请你利用图(1)证明上述结论.(2)【类比引申】如图(2),四边形ABCD 中,90BAD ∠≠︒,AB AD =,180B D ∠∠=︒+,点E 、F 分别在边BC 、CD 上,则当EAF ∠与BAD ∠满足什么样的数量关系时,仍有EF BE FD =+,并说明理由.(3)【探究应用】如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD ,已知80AB AD ==米,60B ∠=︒,120ADC ∠=︒,150BAD ∠=︒,道路BC 、CD 上分别有景点E 、F .且AE AD ⊥,1)DF =米,现要在E 、F 之间修一条笔直道路,直接写出这条道路EF 的长.图1()FGAD EC图2()ABE CFD 图3()AD FCE B【答案】(1)证明:如图(1),CED B AGF图1()∵ADG △≌ABE △,∴AG AE =,DAG BAE ∠=∠,DG BE =,90ADG ABE ∠=∠=︒, 又∵90ADF ∠=︒∴180ADG ADF ∠∠=︒+, 即G ,D ,F 三点共线.又∵45EAF ∠=︒,即45DAF BEA EAF ∠∠=∠=︒+, ∴GAF FAE ∠=∠, 在GAF △和FAE △中,AG AE GAF FAE AF AF =⎧⎪∠=∠⎨⎪=⎩∴AFG △≌(SAS)AFE △. ∴GF EF =. 又∵DG BE =, ∴GF BE DE =+, ∴BE DF EF =+. (2)2BAD EAF ∠=∠. 理由如下:如图(2),MDFCE BA图2()延长CB 至M ,使BM DF =,连接AM , ∵180ABC D ∠∠=︒+,180ABC BAM ∠∠=︒+, ∴D ABM ∠=∠, 在ABM △和ADF △中, AB AD ABM D BM DF =⎧⎪∠=∠⎨⎪=⎩∴ABM △≌(SAS)ADF △, ∴AF AM =,DAF BAM ∠=∠. ∵2BAD EAF ∠=∠, ∴DAF BAE EAF ∠∠=∠+,∴EAB BAM EAM EAF ∠∠=∠=∠+, 在FAE △和MAE △中, AE AE FAE MAE AF AM =⎧⎪∠=∠⎨⎪=⎩∴FAE △≌(SAS)MAE △, ∴EF EM BE BM BE DF ===++, 即EF BE DF =+. (3)如图3,BE CFD A 图3()G把ABE △绕点A 逆时针旋转150︒至ADG △,连接AF .∴801)40)EF BE DF ===++(米), 即这条道路EF的长为40)米.28.(9分)对x 、y 定义一种新运算T .规定:(,)2ax byT x y x y=++(其中a 、b 均为非零常数),这里等式右边是通常的四则运算.例如:01(0,1)201a b T b ⨯⨯==⨯++.(1)已知(1,1)2T -=-,(4,2)1T =. ①求a ,b 的值.②若关于m 的不等式组(2,54)4(,32)T m m T m m p -⎧⎨->⎩≤,恰好有3个整数解,求实数p 的取值范围.(2)若(,)(,)T x y T y x =对任意实数x ,y 都成立(这里(,)T x y 和(,)T y x 均有意义),则a ,b 应满足怎样的关系式? 【答案】(1)①根据题意得:(1,1)221a bT --==--,即2a b -=-, 42(4,2)182a bT ===++,即25a b =+, 解得:1a =,3b =. ②根据题意得:23(54)4543(32)232m m m mm m p m m-⎧⎪⎪-⎨-⎪>⎪-⎩≤4①②++++,由①得:12m ≥,由②得:935pm -<,∴不等式组的解集为19325pm --<≤,∵不等式组恰好有3个整数解,即0m =,1,2, ∴93235p -<≤,解得:123p -<-≤.(2)由(,)(,)T x y T y x =,得到22ax by ay bx x y y x=++++, 整理得:22()(2)0x y b a --=, ∵(,)(,)T x y T y x =对任意实数x ,y 都成立, ∴20b a -=,即2a b =.。
2017-2018学年八年级下期中数学试卷一、选择题(本大题共12小题,每小题4分,共48分.)1.(4分)(﹣2018)0的结果是()A.﹣2018 B.﹣1 C.1 D.20182.(4分)若分式有意义,则x的取值范围是()A.x≠3 B.x≥3 C.x>3 D.x<33.(4分)一次函数y=2x﹣6的图象经过()A.第一、二、三象限B.第一、三、四象限C.第一、二、四象限D.第二、三、四象限4.(4分)若函数y=(k+1)x+k2﹣1是正比例函数,则k的值为()A.0 B.1 C.±1 D.﹣15.(4分)已知反比例函数,下列结论中,不正确的是()A.图象必经过点(1,2)B.y随x的增大而增大C.图象在第一、三象限内D.若x>1,则0<y<26.(4分)2018年3月3日,新浪综合网报道:“中科院发明首个抗癌DNA纳米机器人,可精准阻断肿瘤血管饿死肿瘤!”.中国科学家团队研发出的这种可编程、基于DNA 折纸技术的纳米机器人大小只有90×60×2nm,nm是长度计量单位,1nm=0.000000001米,则2nm用科学记数法表示为()A.2×109米 B.20×10﹣8米C.2×10﹣9米D.2×10﹣8米7.(4分)如果把分式中的x和y都扩大2倍,则分式的值()A.扩大4倍B.扩大2倍C.不变D.缩小2倍8.(4分)把分式方程﹣1=化为整式方程,正确的是()A.2(x+1)﹣1=﹣x B.2(x+1)﹣x(x+1)=﹣xC.2(x+1)﹣x(x+1)=﹣1 D.2x﹣x(x+1)=﹣x9.(4分)一次函数=kx+b(k≠0)在平面直角坐标系内的图象如图所示,则k和b的取值范围是()A.k>0,b>0 B.k>0,b<0 C.k<0,b<0 D.k<0,b>010.(4分)若关于x的分式方程+1=有增根,则k的值为()A.2 B.﹣2 C.1 D.311.(4分)某学校要种植一块面积为100m2的长方形草坪,要求两边长均不小于5m,则草坪的一边长为y(单位:m)随另一边长x(单位:m)的变化而变化的图象可能是()A. B.C.D.12.(4分)如图,点A,B分别在一次函数y=x,y=8x的图象上,其横坐标分别为a,b (a>0,b >0 ).若直线AB为一次函数y=kx+m的图象,则当是整数时,满足条件的整数k的值共有()A.1个 B.2个 C.3个 D.4个二、填空题(本大题共4小题,每小题4分,共16分.请将最后答案直接写在相应题中的横线上.)13.(4分)点P(1,﹣2)在第象限.14.(4分)当x= 时,分式的值为0.15.(4分)点P(﹣2,4)关于x轴的对称点的坐标是.16.(4分)两个反比例函数y=,y=在第一象限内的图象如图所示,点P1,P2,P3,…,P2018在反比例函数y=图象上,它们的横坐标分别是x1,x2,x3,…,x2018,纵坐标分别是1,3,5,…,共2018个连续奇数,过点P1,P2,P3,…,P2018分别作y轴的平行线,与y=的图象交点依次是Q1(x1,y1),Q2(x2,y2),Q3(x3,y3),…,Q2018(x2018,y2018),则y2018= .三、解答题(本大题共6小题,共56分)17.(9分)解答下列各题:(1)计算:(2)计算:(3)解方程:18.(7分)先化简,再求值:(﹣1)÷,其中x=﹣2.19.(12分)已知y+4与x成正比例,且x=6时,y=8.(1)求出y与x之间的函数关系式.(2)在所给的直角坐标系(如图)中画出函数的图象.(3)直接写出当﹣4≤y≤0时,自变量x的取值范围.20.(8分)2017年12月29日,国家发改委批复了昌景黄铁路项目可行性研究报告.该项目位于赣皖两省,线路起自江西省南昌市南昌东站,经上饶市、景德镇市,安徽省黄山市,终至黄山北站.按照设计,行驶180千米,昌景黄高铁列车的平均行驶速度是普通快车的1.5倍,用时比普通快车用时少20分钟,求昌景黄高铁列车的平均行驶速度.21.(10分)某批发门市销售两种商品,甲种商品每件售价为300元,乙种商品每件售价为80元.新年来临之际,该门市为促销制定了两种优惠方案:方案一:买一件甲种商品就赠送一件乙种商品;方案二:按购买金额打八折付款.某公司为奖励员工,购买了甲种商品20件,乙种商品x(x≥20)件.(1)分别写出优惠方案一购买费用y1(元)、优惠方案二购买费用y2(元)与所买乙种商品x(件)之间的函数关系式;(2)若该公司共需要甲种商品20件,乙种商品40件.设按照方案一的优惠办法购买了m件甲种商品,其余按方案二的优惠办法购买.请你写出总费用w与m之间的关系式;利用w与m之间的关系式说明怎样购买最实惠.22.(10分)如图1,直线y=﹣x+b分别与x轴、y轴交于A、B两点,与直线y=kx交于点C(2,).平行于y轴的直线l从原点O出发,以每秒1个单位长度的速度沿x轴向右平移,到C点时停止;直线l分别交线段BC、OC、x轴于点D、E、P,以DE为斜边向左侧作等腰直角△DEF,设直线l的运动时间为t(秒).(1)填空:k= ;b= ;(2)当t为何值时,点F在y轴上(如图2所示);(3)设△DEF与△BCO重叠部分的面积为S,请直接写出S与t的函数关系式(不要求写解答过程),并写出t的取值范围.参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)(﹣2018)0的结果是()A.﹣2018 B.﹣1 C.1 D.2018【解答】解:(﹣2018)0=1.故选:C.2.(4分)若分式有意义,则x的取值范围是()A.x≠3 B.x≥3 C.x>3 D.x<3【解答】解:由题意得,x﹣3≠0,解得x≠3.故选:A.3.(4分)一次函数y=2x﹣6的图象经过()A.第一、二、三象限B.第一、三、四象限C.第一、二、四象限D.第二、三、四象限【解答】解:∵一次函数y=2x﹣3中,k=2>0,∴此函数图象经过一、三象限,∵b=﹣3<0,∴此函数图象与y轴负半轴相交,∴此一次函数的图象经过一、三、四象限.故选:B.4.(4分)若函数y=(k+1)x+k2﹣1是正比例函数,则k的值为()A.0 B.1 C.±1 D.﹣1【解答】解:∵函数y=(k+1)x+k2﹣1是正比例函数,∴,解得k=1.故选:B.5.(4分)已知反比例函数,下列结论中,不正确的是()A.图象必经过点(1,2)B.y随x的增大而增大C.图象在第一、三象限内D.若x>1,则0<y<2【解答】解:A、把点(1,2)代入反比例函数y=,得2=2,正确.B、∵k=2>0,∴在每一象限内y随x的增大而减小,不正确.C、∵k=2>0,∴图象在第一、三象限内,正确.D、若x>1,则y<2,正确.故选:B.6.(4分)2018年3月3日,新浪综合网报道:“中科院发明首个抗癌DNA纳米机器人,可精准阻断肿瘤血管饿死肿瘤!”.中国科学家团队研发出的这种可编程、基于DNA 折纸技术的纳米机器人大小只有90×60×2nm,nm是长度计量单位,1nm=0.000000001米,则2nm用科学记数法表示为()A.2×109米 B.20×10﹣8米C.2×10﹣9米D.2×10﹣8米【解答】解:∵1nm=0.000000001m,∴2nm=0.000000002m=2×10﹣9m,故选:C.7.(4分)如果把分式中的x和y都扩大2倍,则分式的值()A.扩大4倍B.扩大2倍C.不变D.缩小2倍【解答】解:把分式中的x和y都扩大2倍后得:==2•,即分式的值扩大2倍.故选:B.8.(4分)把分式方程﹣1=化为整式方程,正确的是()A.2(x+1)﹣1=﹣x B.2(x+1)﹣x(x+1)=﹣xC.2(x+1)﹣x(x+1)=﹣1 D.2x﹣x(x+1)=﹣x【解答】解:﹣1=,两边乘x(x+1)得到,2(x+1)﹣x(x+1)=﹣x,故选:B.9.(4分)一次函数=kx+b(k≠0)在平面直角坐标系内的图象如图所示,则k和b的取值范围是()A.k>0,b>0 B.k>0,b<0 C.k<0,b<0 D.k<0,b>0【解答】解:∵一次函数y=kx+b(k≠0)的图象经过一、二、四象限,∴k<0,b>0.故选:D.10.(4分)若关于x的分式方程+1=有增根,则k的值为()A.2 B.﹣2 C.1 D.3【解答】解:去分母,得:3+x﹣2=k,∵分式方程有增根,∴增根为x=2,将x=2代入整式方程,得:k=3,故选:D.11.(4分)某学校要种植一块面积为100m2的长方形草坪,要求两边长均不小于5m,则草坪的一边长为y(单位:m)随另一边长x(单位:m)的变化而变化的图象可能是()A. B.C.D.【解答】解:∵草坪面积为100m2,∴x、y存在关系y=,∵两边长均不小于5m,∴x≥5、y≥5,则x≤20,故选:C.12.(4分)如图,点A,B分别在一次函数y=x,y=8x的图象上,其横坐标分别为a,b (a>0,b >0 ).若直线AB为一次函数y=kx+m的图象,则当是整数时,满足条件的整数k的值共有()A.1个 B.2个 C.3个 D.4个【解答】解:根据题意得A(a,a),B(b,8b),把A,B坐标代入函数y=kx+m,得,②﹣①得:k==8+,∵a>0,b>0,是整数,∴为整数时,k为整数;则﹣1=1或7,所以满足条件的整数k的值共有两个.故选:B.二、填空题(本大题共4小题,每小题4分,共16分.请将最后答案直接写在相应题中的横线上.)13.(4分)点P(1,﹣2)在第四象限.【解答】解:由题意知点P(1,﹣2),横坐标1>0,纵坐标﹣2<0,结合坐标特点,第四象限横坐标为正,纵坐标为负,得点P在第四象限.故答案为:四.14.(4分)当x= 2 时,分式的值为0.【解答】解:当x﹣2=0时,即x=2时,分式的值为0,故答案为:2.15.(4分)点P(﹣2,4)关于x轴的对称点的坐标是(﹣2,﹣4).【解答】解:P(﹣2,4)关于x轴的对称点的坐标是(﹣2,﹣4),故答案为:(﹣2,﹣4).16.(4分)两个反比例函数y=,y=在第一象限内的图象如图所示,点P1,P2,P3,…,P2018在反比例函数y=图象上,它们的横坐标分别是x1,x2,x3,…,x2018,纵坐标分别是1,3,5,…,共2018个连续奇数,过点P1,P2,P3,…,P2018分别作y轴的平行线,与y=的图象交点依次是Q1(x1,y1),Q2(x2,y2),Q3(x3,y3),…,Q2018(x2018,y2018),则y2018= .【解答】解:观察,发现规律:x1==6,x2==2,x3=,x4=,…,∴x n=(n为正整数),∵点Q n(x n,y n)在反比例函数y=的图象上,∴y n===.当n=2018时,y2018==,故答案为:.三、解答题(本大题共6小题,共56分)17.(9分)解答下列各题:(1)计算:(2)计算:(3)解方程:【解答】解:(1)原式===2;(2)原式==3;(3)方程两边同时乘2x(x+1)得,3(x+1)=4x,解得:x=3,经检验x=3是原方程的解,∴原方程的解为x=3.18.(7分)先化简,再求值:(﹣1)÷,其中x=﹣2.【解答】解:(﹣1)÷,===,当x=﹣2时,原式=.19.(12分)已知y+4与x成正比例,且x=6时,y=8.(1)求出y与x之间的函数关系式.(2)在所给的直角坐标系(如图)中画出函数的图象.(3)直接写出当﹣4≤y≤0时,自变量x的取值范围.【解答】解:(1)∵y+4与x成正比例,∴设y+4=kx(k≠0),∵当x=6时,y=8,∴8+4=6k,解得k=2,∴y+4=2x,函数关系式为:y=2x﹣4;(2)当x=0时,y=﹣4,当y=0时,2x﹣4=0,解得x=2,所以,函数图象经过点(0,﹣4),(2,0),函数图象如右图:(3)由图象得:当﹣4≤y≤0时,自变量x的取值范围是:0≤x≤2.20.(8分)2017年12月29日,国家发改委批复了昌景黄铁路项目可行性研究报告.该项目位于赣皖两省,线路起自江西省南昌市南昌东站,经上饶市、景德镇市,安徽省黄山市,终至黄山北站.按照设计,行驶180千米,昌景黄高铁列车的平均行驶速度是普通快车的1.5倍,用时比普通快车用时少20分钟,求昌景黄高铁列车的平均行驶速度.【解答】解:设普通快车的平均行驶速度为x千米/时,则昌景黄高铁列车的平均行驶速度为1.5x千米/时,根据题意得:,解得:x=180,经检验,x=180是所列分式方程的解,且符合题意,∴1.5x=1.5×180=270.答:高铁列车的平均行驶速度为270千米/时.21.(10分)某批发门市销售两种商品,甲种商品每件售价为300元,乙种商品每件售价为80元.新年来临之际,该门市为促销制定了两种优惠方案:方案一:买一件甲种商品就赠送一件乙种商品;方案二:按购买金额打八折付款.某公司为奖励员工,购买了甲种商品20件,乙种商品x(x≥20)件.(1)分别写出优惠方案一购买费用y1(元)、优惠方案二购买费用y2(元)与所买乙种商品x(件)之间的函数关系式;(2)若该公司共需要甲种商品20件,乙种商品40件.设按照方案一的优惠办法购买了m件甲种商品,其余按方案二的优惠办法购买.请你写出总费用w与m之间的关系式;利用w与m之间的关系式说明怎样购买最实惠.【解答】解:(1)根据题意得:y1=20×300+80×(x﹣20)=80x+4400;y2=(20×300+80x)×0.8=64x+4800.(2)设按照方案一的优惠办法购买了m件甲种商品,则按照方案二的优惠办法购买了(20﹣m)件甲种商品,根据题意得:w=300m+[300(20﹣m)+80(40﹣m)]×0.8=﹣4m+7360,∵w是m的一次函数,且k=﹣4<0,∴w随m的增加而减小,∴当m=20时,w取得最小值,即按照方案一购买20件甲种商品、按照方案二购买20件乙种商品时,总费用最低.22.(10分)如图1,直线y=﹣x+b分别与x轴、y轴交于A、B两点,与直线y=kx交于点C(2,).平行于y轴的直线l从原点O出发,以每秒1个单位长度的速度沿x轴向右平移,到C点时停止;直线l分别交线段BC、OC、x轴于点D、E、P,以DE为斜边向左侧作等腰直角△DEF,设直线l的运动时间为t(秒).(1)填空:k= ;b= 4 ;(2)当t为何值时,点F在y轴上(如图2所示);(3)设△DEF与△BCO重叠部分的面积为S,请直接写出S与t的函数关系式(不要求写解答过程),并写出t的取值范围.【解答】解:(1)把(2,)代入y=﹣x+b得:﹣+b=,解得:b=4;把(2,)代入y=kx中,2k=,解得:k=.故答案是:,4;(2)解:由(1)得两直线的解析式为:y=﹣x+4和y=x,依题意得OP=t,则D(t,﹣t+4),E(t,t),∴DE=﹣2t+4,作FG⊥DE于G,则FG=OP=t∵△DEF是等腰直角三角形,FG⊥DE,∴FG=DE,即t=(﹣2t+4),解得t=1.(3)当0<t≤1时(如图1),S△DEF=(﹣t+4﹣t)•(﹣t+4﹣t)=(﹣2t+4)2=(t﹣2)2,在y轴的左边部分是等腰直角三角形,底边上的高是:(﹣t+4﹣t)﹣t=(﹣2t+4)﹣t=2﹣2t,则面积是:(2﹣2t)2.S=(t﹣2)2﹣(2﹣2t)2=﹣3t2+4t;当1<t<2时(备用图),作FK⊥DE于点K.S=(t﹣2)2.。
2017-2018学年八年级(下)期中数学试卷一.选择题(共10小题,满分40分,每小题4分)1.下列各式属于最简二次根式的是()A.B.C.D.2.下列计算正确的是()A.+=B.3﹣=3C.÷2=D.=23.若方程(n﹣1)x2+x﹣1=0是关于x的一元二次方程,则()A.n≠1B.n≥0C.n≥0且n≠1D.n为任意实数4.方程x2=4x的根是()A.x=4B.x=0C.x1=0,x2=4D.x1=0,x2=﹣45.一个三角形的三边分别是3、4、5,则它的面积是()A.6B.12C.7.5D.106.若关于x的一元二次方程mx2﹣x=有实数根,则实数m的取值范围是()A.m≥﹣1B.m≥﹣1且m≠0C.m>﹣1且m≠0D.m≠07.中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年年收入300美元,预计2018年年收入将达到1500美元,设2016年到2018年该地区居民年人均收入平均增长率为x,可列方程为()A.300(1+x)2=1500B.300(1+2x)=1500C.300(1+x2)=1500D.300+2x=15008.能使等式成立的x的取值范围是()A.x≠2B.x≥0C.x>2D.x≥29.用配方法解方程x2﹣10x﹣1=0,正确的变形是()A.(x﹣5)2=1B.(x+5)2=26C.(x﹣5)2=26D.(x﹣5)2=2410.如图,在△ABC中,∠ACB=90°,AC=8,AB=10,CD⊥AB于D,则CD的长是()A.6B.C.D.二.填空题(共4小题,满分20分,每小题5分)11.不超过(﹣1.7)2的最大整数是.12.代数式中x的取值范围是.13.若关于x的一元二次方程(m﹣2)x2+x+m2﹣4=0的一个根为0,则m值是.14.如图,点D、E分别在等边△ABC的边AB、BC上,将△BDE沿直线DE翻折,使点B落在B1处,DB1、EB1分别交边AC于点F、G.若∠ADF=80°,则∠CEG=.三.解答题(共2小题,满分16分,每小题8分)15.计算:(1)﹣+(2)(﹣)(+)+(﹣1)216.解方程:x2﹣4x+1=0.四.解答题(共2小题,满分16分,每小题8分)17.已知关于x的二次方程x2+mx+n2+1=0.(1)若n=1,且此方程有一个根为﹣1,求m的值;(2)若m=2,判断此方程根的情况.18.若直角三角形的两直角边长为a、b,且满足+|b﹣4|=0,求该直角三角形的斜边长.五.解答题(共2小题,满分20分,每小题10分)19.小明准备用一段长30米的篱笆围成一个三角形形状的小圈,用于饲养家兔.已知第一条边长为a米,由于受地势限制,第二条边长只能是第一条边长的2倍多2米.(1)请用a表示第三条边长.(2)问第一条边长可以为7米吗?为什么?请说明理由.(3)求出a的取值范围.(4)能否使得围成的小圈是直角三角形形状,且各边长均为整数?若能,说出你的围法;若不能,请说明理由.20.“饺子“又名“交子”或者“娇耳”,是新旧交替之意,它是重庆人民的年夜饭必吃的一道美食.今年除夕,小侨跟着妈妈一起包饺子准备年夜饭,体验浓浓的团圆气氛.已知小侨家共10人,平均每人吃10个饺子,计划用10分钟将饺子包完.(1)若妈妈每分钟包饺子的速度是小侨速度的2倍少2个,那么小侨每分钟至少要包多少个饺子?(2)小侨以(1)问中的最低速度,和妈妈同时开始包饺子,妈妈包饺子的速度在(1)问的最低速度基础上提升了a%,在包饺子的过程中小侨外出耽误了分钟,返家后,小侨与妈妈一起包完剩下的饺子,所用时间比原计划少了a%,求a的值.六.解答题(共1小题,满分12分,每小题12分)21.如图,将矩形ABCD(纸片)折叠,使点B与AD边上的点K重合,EG为折痕;点C与AD边上的点K重合,FH为折痕.已知∠1=67.5°,∠2=75°,EF=+1,求BC的长.七.解答题(共1小题,满分12分,每小题12分)22.一架长2.5米的梯子AB如图所示斜靠在一面墙上,这时梯足B离墙底C(∠C=90°)的距离BC为0.7米.(1)求此时梯顶A距地面的高度AC;(2)如果梯顶A下滑0.9米,那么梯足B在水平方向,向右滑动了多少米?八.解答题(共1小题,满分14分,每小题14分)23.(14分)某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?2017-2018学年八年级(下)期中数学试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.下列各式属于最简二次根式的是()A.B.C.D.【分析】最简二次根式满足:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,由此结合选项可得出答案.【解答】解:A、含有能开方的因式,不是最简二次根式,故本选项错误;B、符合最简二次根式的定义,故本选项正确;C、含有能开方的因式,不是最简二次根式,故本选项错误;D、被开方数含分母,故本选项错误;故选:B.【点评】此题考查了最简二次根式的知识,解答本题的关键是熟练掌握最简二次根式满足的两个条件,属于基础题,难度一般.2.下列计算正确的是()A.+=B.3﹣=3C.÷2=D.=2【分析】利用二次根式的加减法对A、B进行判断;利用二次根式的除法法则对C进行判断;利用二次根式的乘法法则对D进行判断.【解答】解:A、与不能合并,所以A选项错误;B、原式=2,所以B选项错误;C、原式=,所以C选项错误;D、原式==2,所以D选项正确.故选:D.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.3.若方程(n﹣1)x2+x﹣1=0是关于x的一元二次方程,则()A.n≠1B.n≥0C.n≥0且n≠1D.n为任意实数【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),把方程化为一般形式,根据二次项系数不等于0,即可求得n的取值范围.【解答】解:∵方程(n﹣1)x2+x﹣1=0是关于x的一元二次方程,∴n≥0且n﹣1≠0,即n≥0且n≠1.故选:C.【点评】本题考查了一元二次方程的定义.一元二次方程的一般形式是:ax2+bx+c=0(a,b,c 是常数且a≠0),特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.4.方程x2=4x的根是()A.x=4B.x=0C.x1=0,x2=4D.x1=0,x2=﹣4【分析】原式利用因式分解法求出解即可.【解答】解:方程整理得:x(x﹣4)=0,可得x=0或x﹣4=0,解得:x1=0,x2=4,故选:C.【点评】此题考查了一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.5.一个三角形的三边分别是3、4、5,则它的面积是()A.6B.12C.7.5D.10【分析】由于32+42=52,易证此三角形是直角三角形,从而易求此三角形的面积.【解答】解:∵32+42=52,∴此三角形是直角三角形,=×3×4=6.∴S△故选:A.【点评】本题考查了勾股定理的逆定理.解题的关键是先证明此三角形是直角三角形.6.若关于x的一元二次方程mx2﹣x=有实数根,则实数m的取值范围是()A.m≥﹣1B.m≥﹣1且m≠0C.m>﹣1且m≠0D.m≠0【分析】将原方程变形为一般式,根据二次项系数非零及根的判别式△≥0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.【解答】解:原方程可变形为mx2﹣x﹣=0.∵关于x的一元二次方程mx2﹣x=有实数根,∴,解得:m≥﹣1且m≠0.故选:B.【点评】本题考查了根的判别式以及一元二次方程的定义,根据二次项系数非零及根的判别式△≥0,列出关于m的一元一次不等式是解题的关键.7.中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年年收入300美元,预计2018年年收入将达到1500美元,设2016年到2018年该地区居民年人均收入平均增长率为x,可列方程为()A.300(1+x)2=1500B.300(1+2x)=1500C.300(1+x2)=1500D.300+2x=1500【分析】2018年年收入=2016年年收入×(1+年平均增长率)2,把相关数值代入即可.【解答】解:设2016年到2018年该地区居民年人均收入平均增长率为x,可列方程为:300(1+x)2=1500.故选:A.【点评】此题主要考查了根据实际问题列一元二次方程;得到2018年收入的等量关系是解决本题的关键.8.能使等式成立的x的取值范围是()A.x≠2B.x≥0C.x>2D.x≥2【分析】本题需注意的是,被开方数为非负数,且分式的分母不能为0,列不等式组求出x的取值范围.【解答】解:由题意可得,,解之得x>2.故选:C.【点评】二次根式的被开方数是非负数,分母不为0,是本题确定取值范围的主要依据.9.用配方法解方程x2﹣10x﹣1=0,正确的变形是()A.(x﹣5)2=1B.(x+5)2=26C.(x﹣5)2=26D.(x﹣5)2=24【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【解答】解:x2﹣10x﹣1=0,移项,得x2﹣10x=1,方程两边同时加上25,得x2﹣10x+25=26,∴(x﹣5)2=26.故选:C.【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.10.如图,在△ABC中,∠ACB=90°,AC=8,AB=10,CD⊥AB于D,则CD的长是()A.6B.C.D.【分析】根据勾股定理求出BC,根据三角形的面积公式计算.【解答】解:∵∠ACB=90°,AC=8,AB=10,∴BC==6,△ABC的面积=×AB×CD=×AC×BC,即×10×CD=×8×6,解得,CD=,故选:C.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.二.填空题(共4小题,满分20分,每小题5分)11.不超过(﹣1.7)2的最大整数是2.【分析】先根据有理数的平方求出(﹣1.7)2的值,再找出符合条件的最大整数即可.【解答】解:∵(﹣1.7)2=2.89,∴不超过2.89的最大整数为2.故答案为:2.【点评】本题考查的是有理数的乘方及有理数的大小比较,比较简单.12.代数式中x的取值范围是x>1.【分析】根据二次根式和分式有意义的条件解答.【解答】解:依题意得:x﹣1>0,解得x>1.故答案是:x>1.【点评】此题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数是非负数,分式分母不能为零.13.若关于x的一元二次方程(m﹣2)x2+x+m2﹣4=0的一个根为0,则m值是﹣2.【分析】根据一元二次方程解的定义,将x=0代入关于x的一元二次方程(m﹣2)x2+x+m2﹣4=0,然后解关于m的一元二次方程即可.【解答】解:根据题意,得x=0满足关于x的一元二次方程(m﹣2)x2+x+m2﹣4=0,∴m2﹣4=0,解得,m=±2;又∵二次项系数m﹣2≠0,即m≠2,∴m=﹣2;故答案为:﹣2.【点评】本题考查了一元二次方程的解的定义.解答该题时,注意一元二次方程的定义中的“一元二次方程的二次项系数不为0”这一条件.14.如图,点D、E分别在等边△ABC的边AB、BC上,将△BDE沿直线DE翻折,使点B落在B1处,DB1、EB1分别交边AC于点F、G.若∠ADF=80°,则∠CEG=40°.【分析】由对顶角相等可得∠CGE=∠FGB1,由两角对应相等可得△ADF∽△B1GF,那么∠CGE 等于∠ADF的度数,进而利用三角形内角和得出答案.【解答】解:由翻折可得∠B1=∠B=60°,∴∠A=∠B1=60°,∵∠AFD=∠GFB1,∴△ADF∽△B1GF,∴∠ADF=∠B1GF,∵∠CGE=∠FGB1,∴∠CGE=∠ADF=80°.∴∠CEG=180°﹣80°﹣60°=40°,故答案为:40°【点评】本题考查了翻折变换问题;得到∠CGE等于∠ADF的度数的关系是解决本题的关键.三.解答题(共2小题,满分16分,每小题8分)15.计算:(1)﹣+(2)(﹣)(+)+(﹣1)2【分析】(1)先化简各二次根式,再合并同类二次根式即可得;(2)先利用平方差公式和完全平方公式计算,再计算加减可得.【解答】解:(1)原式=4﹣3+=;(2)原式=5﹣2+4﹣2=7﹣2.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.16.解方程:x2﹣4x+1=0.【分析】根据配方法可以解答此方程.【解答】解:x2﹣4x+1=0x2﹣4x+4=3(x﹣2)2=3x﹣2=∴x1=2+,x2=2﹣;【点评】本题考查解一元二次方程﹣配方法,解答本题的关键是会用配方法解方程的方法.四.解答题(共2小题,满分16分,每小题8分)17.已知关于x的二次方程x2+mx+n2+1=0.(1)若n=1,且此方程有一个根为﹣1,求m的值;(2)若m=2,判断此方程根的情况.【分析】(1)将x=﹣1,n=1代入原方程,可求出m的值;(2)代入m=2,根据方程的系数结合根的判别式,可得出△=﹣4n2,分n=0及n≠0两种情况找出此方程根的情况.【解答】解:(1)将x=﹣1,n=1代入原方程,得:(﹣1)2﹣m+12+1=0,解得:m=3.(2)当m=2时,原方程为x2+2x+n2+1=0,∴△=22﹣4×1×(n2+1)=﹣4n2.当n=0时,△=﹣4n2=0,此时原方程有两个相等的实数根;当n≠0时,△=﹣4n2<0,此时原方程无解.【点评】本题考查了根的判别式以及一元二次方程的解,解题的关键是:(1)代入x,n的值求出m的值;(2)分n=0及n≠0两种情况找出方程解的情况.18.若直角三角形的两直角边长为a、b,且满足+|b﹣4|=0,求该直角三角形的斜边长.【分析】先根据已知条件、算术平方根的性质和绝对值的性质求出a、b,再由勾股定理即可得出结果.【解答】解:∵+|b﹣4|=0,∴+|b﹣4|=0,∴|a﹣3|+|b﹣4|=0,∴a﹣3=0,b﹣4=0,∴a=3,b=4,∴直角三角形的斜边长===5.【点评】本题考查了勾股定理、绝对值的性质以及算术平方根的性质;熟练掌握勾股定理的运用,根据题意求出a、b是解决问题的关键.五.解答题(共2小题,满分20分,每小题10分)19.小明准备用一段长30米的篱笆围成一个三角形形状的小圈,用于饲养家兔.已知第一条边长为a米,由于受地势限制,第二条边长只能是第一条边长的2倍多2米.(1)请用a表示第三条边长.(2)问第一条边长可以为7米吗?为什么?请说明理由.(3)求出a的取值范围.(4)能否使得围成的小圈是直角三角形形状,且各边长均为整数?若能,说出你的围法;若不能,请说明理由.【分析】(1)本题需先表示出第二条边长,即可得出第三条边长;(2)本题需先根据a=7,求出三边的长,根据三角形三边关系进行判断;(3)根据三角形的三边关系列出不等式组,即可求出a的取值范围;(3)本题需先求出a的值,然后即可得出三角形的三边长.【解答】解:(1)∵第二条边长为(2a+2)米,∴第三条边长为30﹣a﹣(2a+2)=28﹣3a(米);(2)不能.当a=7时,三边长分别为7,16,7,由于7+7<16,所以不能构成三角形,即第一条边长不能为7m;(3)根据题意得:,解得:<a<,即a的取值范围是<a<.(4)能围成.在(3)的条件下,a为整数时,a只能取5或6.当a=5时,三角形的三边长分别为5,12,13.由52+122=132知,恰好能构成直角三角形.当a=6时,三角形的三边长分别为6,14,10.由62+102≠142知,此时不能构成直角三角形.综上所述,能围成满足条件的小圈,它们的三边长分别为5m,12m,13m.【点评】本题主要考查了勾股定理、三角形三边关系以及一元一次不等式组的应用,在解题时根据三角形的三边关系,列出不等式组是本题的关键.20.“饺子“又名“交子”或者“娇耳”,是新旧交替之意,它是重庆人民的年夜饭必吃的一道美食.今年除夕,小侨跟着妈妈一起包饺子准备年夜饭,体验浓浓的团圆气氛.已知小侨家共10人,平均每人吃10个饺子,计划用10分钟将饺子包完.(1)若妈妈每分钟包饺子的速度是小侨速度的2倍少2个,那么小侨每分钟至少要包多少个饺子?(2)小侨以(1)问中的最低速度,和妈妈同时开始包饺子,妈妈包饺子的速度在(1)问的最低速度基础上提升了a%,在包饺子的过程中小侨外出耽误了分钟,返家后,小侨与妈妈一起包完剩下的饺子,所用时间比原计划少了a%,求a的值.【分析】题目明确给出了工作总量为10×10个饺子,工作时间10分钟,再设一个工作速度即能列得等量关系.(1)题干中明确给出妈妈和小侨包饺子的速度关系,设一个未知数即可表示两人的速度.问题出现“至少”说明应列不等式解题,即若小侨速度加快的话,包的饺子总量有可能大于100个.(2)明确了小侨的速度,妈妈速度提升的是一个百分数,所用是原来速度再乘以(1+a%),所用时间减少的也是一个百分数,应是10×(1﹣a%).小侨速度×时间+妈妈速度×时间=100个.计算时先把含a%的式子化简,能帮助准确计算.【解答】解:(1)设小侨每分钟包x个饺子,则妈妈每分钟包(2x﹣2)个饺子,得:10x+10(2x﹣2)≥10×10解得:x≥4(2)依题意得:小侨每分钟包4个饺子,妈妈每分钟包饺子数量为6×(1+a%)=6+a,包饺子总时间为10×(1﹣a%)=10﹣a,列得方程:(6+a)(10﹣a)+4(10﹣a﹣a)=100解得:a1=0(舍去),a2=40答:(1)小侨每分钟包至少包4个饺子;(2)a的值为40.【点评】本题考查了一元一次不等式的应用和一元二次方程的应用,解题关键是(1)找准是等量关系还是不等量关系;(2)提升或减少的是一个百分数,带a%式子的准确计算.六.解答题(共1小题,满分12分,每小题12分)21.如图,将矩形ABCD(纸片)折叠,使点B与AD边上的点K重合,EG为折痕;点C与AD边上的点K重合,FH为折痕.已知∠1=67.5°,∠2=75°,EF=+1,求BC的长.【分析】由题意知∠3=180°﹣2∠1=45°、∠4=180°﹣2∠2=30°、BE=KE、KF=FC,作KM⊥BC,设KM=x,知EM=x、MF=x,根据EF的长求得x=1,再进一步求解可得.【解答】解:由题意,得:∠3=180°﹣2∠1=45°,∠4=180°﹣2∠2=30°,BE=KE、KF =FC,如图,过点K作KM⊥BC于点M,设KM=x,则EM=x、MF=x,∴x+x=+1,解得:x=1,∴EK=、KF=2,∴BC=BE+EF+FC=EK+EF+KF=3++,∴BC的长为3++.【点评】本题主要考查翻折变换,解题的关键是掌握翻折变换的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.七.解答题(共1小题,满分12分,每小题12分)22.一架长2.5米的梯子AB如图所示斜靠在一面墙上,这时梯足B离墙底C(∠C=90°)的距离BC为0.7米.(1)求此时梯顶A距地面的高度AC;(2)如果梯顶A下滑0.9米,那么梯足B在水平方向,向右滑动了多少米?【分析】(1)根据勾股定理可以求得这个梯子的顶端距地面的距离;(2)利用勾股定理可求出B′C的长,进而得到BB′=CB′﹣CB的值.【解答】解:(1)由题意可得,AC===2.4(米),即此时梯顶A距地面的高度AC是2.4米;(2)∵梯子的顶端A下滑了0.9米至点A′,∴A′C=AC﹣A′A=2.4﹣0.9=1.5(m),在Rt△A′CB′中,由勾股定理得A′C2+B′C2=A′B′2,即1.52+B′C2=2.52所以B′C=2(m)BB′=CB′﹣BC=2﹣0.7=1.3(m),即梯子的底端在水平方向滑动了1.3m.【点评】本题考查了勾股定理在实际生活中的应用,本题中根据梯子长不会变的等量关系求解是解题的关键.八.解答题(共1小题,满分14分,每小题14分)23.(14分)某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?【分析】(1)设每次降价的百分率为x,(1﹣x)2为两次降价的百分率,40降至32.4就是方程的平衡条件,列出方程求解即可;(2)设每天要想获得510元的利润,且更有利于减少库存,则每件商品应降价y元,由销售问题的数量关系建立方程求出其解即可.【解答】解:(1)设每次降价的百分率为x.40×(1﹣x)2=32.4x=10%或190%(190%不符合题意,舍去)答:该商品连续两次下调相同的百分率后售价降至每件32.4元,两次下降的百分率啊10%;(2)设每天要想获得510元的利润,且更有利于减少库存,则每件商品应降价y元,由题意,得(40﹣30﹣y)(4×+48)=510,解得:y1=1.5,y2=2.5,∵有利于减少库存,∴y=2.5.答:要使商场每月销售这种商品的利润达到510元,且更有利于减少库存,则每件商品应降价2.5元.【点评】此题主要考查了一元二次方程应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可.。
新人教版 2017-2018 学年八年级下期中数学试卷含答案解析一、选择题(本大题共12 小题,每小题 3 分,共 36 分)1.下列各式,,,,中,分式共有()个.A. 2 B.3 C. 4 D.52.若把分式中的x和y都扩大3倍,那么分式的值()A.为原来的 3 倍B.不变C.为原来的D.为原来的3.在平面直角坐标系中,点(4,﹣ 3)关于 y 轴对称的点的坐标是()A.(﹣ 4,﹣ 3)B.( 4,3)C.(﹣ 4, 3) D .( 4,﹣ 3)4.花粉的质量很小,一粒某种植物花粉的质量约为0.000037 毫克,那么 0.000037 毫克可用科学记数法表示为()A. 3.7× 10﹣5毫克B.3.7×10﹣6毫克C. 37×10﹣7毫克D.3.7×10﹣8毫克5.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.如图描述了他上学的情景,下列说法中错误的是()A.修车时间为15 分钟B.学校离家的距离为2000 米C.到达学校时共用时间20 分钟D.自行车发生故障时离家距离为1000 米6.考察反比例函数y=﹣,下列结论中不正确的是()A.图象必经过(﹣ 3, 2) B.当 x >0 时, y 随 x 的增大而增大C.图象在第二、四象限内 D.图象与直线 y=x 有两个交点7.一次函数 y=kx +b,当 k>0,b<0 时,它的图象是()A.B.C.D.8.已知平行四边形ABCD 中,∠ B=5∠A ,则∠ C=()A. 30°B.60°C. 120°D. 150°9.在平面直角坐标系中, ? ABCD 的顶点 A (0,0), B(5,0),D( 2, 3),则顶点 C 的坐标是()A.( 3,7)B.( 5,3)C.( 7,3)D.( 8,2)10.若反比例函数 y=(k<0)的图象经过点(﹣2,y1),(﹣1,y2),(2,y3),则y1,y2,y3的大小关系为()1>y2>y31>y3>y22y1> y3D.y3>y2>y1A. y B. y C.y >11.如图,在平面直角坐标系中,直线l1:y=x+3 与直线 l2:y=mx+n 交于点 A(﹣ 1,b),则关于 x、y 的方程组的解为()A.B.C.D.12.如图,直线l⊥ x 轴于点 P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于点 A ,B,连接 OA , OB,已知△ OAB 的面积为 2,则 k1﹣k2的值为()A. 2 B.3 C. 4 D.﹣ 4二、填空题(本大题共 8 小题,每小题 4 分,共 32分)13.在函数 y=中,自变量 x 的取值范围是.14.当 x=时,分式的值为零.15.化简:=.16.计算:(﹣ m3n﹣2)﹣2=.(结果不含负整数指数幂).17.一次函数 y=kx 5 的图象可由正比例函数 y=2x 的图象向上平移 5 个单位长度得到,则 k=+18.一次函数 y=(2m﹣6)x+4 中, y 随 x 的增大而减小,则 m 的取值范围是.19.如图,在平行四边形ABCD 中, BC=8cm,AB=6cm ,BE 平分∠ ABC 交 AD 边于点 E,则线段DE 的长度为.20.如图,平行四边形ABCD 的对角线相交于点O,且 AB ≠ AD ,过 O 作 OE⊥ BD 交 BC 于点 E,若平行四边形 ABCD 的周长为 20,则△ CDE 的周长为.三、解答题(本大题共7 小题,共 82 分)21.计算:( 1)(﹣)﹣2+﹣(﹣1)0( 2)( 1+)÷.22.解方程:.23.已知一次函数 y=kx +b,当 x=2 时 y 的值是﹣ 1,当 x=﹣ 1 时 y 的值是 5.(1)求此一次函数的解析式;(2)若点 P( m,n)是此函数图象上的一点,﹣ 3≤ m≤2,求 n 的最大值.24.如图, ? ABCD 中,对角线 AC 与 BD 相交于 O,EF 是过点 O 的任一直线交 AD 于点 E,交 BC 于点 F,猜想 OE 和 OF 的数量关系,并说明理由.25.列方程或方程组解应用题我区为缓解某景区的交通拥挤状况,区政府对通往景区的道路进行了改造.某施工队承包道路改造任务共3300 米,为了减少施工对周边居民及交通的影响,施工队加快了速度,比原计划每天多改造 10%,结果提前 3 天完成了任务,求原计划每天改造道路多少米?26.如图,一次函数 y=kx b 与反比例函数 y= (x> 0)的图象交于 A(m,6), B( 3, n)两点.+( 1)直接写出 m=,n=;(2)根据图象直接写出使kx b<成立的 x 的取值范围;+(3)在 x 轴上找一点 P 使 PA PB 的值最小,求出 P 点的坐标.+27.心理学家研究发现,一般情况下,一节课 40 分钟中,学生的注意力随教师讲课的变化而变化,开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y 随时间 x(分钟)的变化规律如图所示(其中 AB 、 BC 分别为线段, CD 为双曲线的一部分):( 1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?( 2)一道数学竞赛题,需要讲 16 分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?参考答案与试题解析一、选择题(本大题共12 小题,每小题 3 分,共 36 分)1.下列各式,,,,中,分式共有()个.A. 2 B.3 C. 4 D.5【考点】 61:分式的定义.【分析】根据分式的定义进行解答即可,即分母中含有未知数的式子叫分式.【解答】解:,的分母中均不含有字母,因此它们是整式,而不是分式.,,的分母中含有字母,因此是分式.故选 B.2.若把分式中的x和y都扩大3倍,那么分式的值()A.为原来的 3 倍B.不变C.为原来的D.为原来的【考点】 65:分式的基本性质.【分析】根据分式的性质,可得答案.【解答】解:分式中的x和y都扩大3倍,得==,故选: C.3.在平面直角坐标系中,点( 4,﹣ 3)关于 y 轴对称的点的坐标是()A.(﹣ 4,﹣ 3)B.( 4,3)C.(﹣ 4, 3) D .( 4,﹣ 3)【考点】 P5:关于 x 轴、 y 轴对称的点的坐标.【分析】根据关于 y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变;即点(x, y)关于 y 轴的对称点的坐标是(﹣ x,y)即可得到点( 4,﹣ 3)关于 y 轴对称的点的坐标.【解答】解:点( 4,﹣ 3)关于 y 轴的对称点的坐标是(﹣ 4,﹣ 3),故选: A.4.花粉的质量很小,一粒某种植物花粉的质量约为 0.000037 毫克,那么0.000037毫克可用科学记数法表示为()A. 3.7× 10﹣5毫克B.3.7×10﹣6毫克 C. 37×10﹣7毫克 D.3.7×10﹣8毫克【考点】 1J:科学记数法—表示较小的数.a×10﹣n,与较大数的科学记【分析】绝对值小于 1 的正数也可以利用科学记数法表示,一般形式为数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0 的个数所决定.【解答】解: 0.000037 毫克 =3.7× 10﹣5毫克;故选: A.5.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.如图描述了他上学的情景,下列说法中错误的是()A.修车时间为15 分钟B.学校离家的距离为2000 米C.到达学校时共用时间20 分钟D.自行车发生故障时离家距离为1000 米【考点】 E6:函数的图象; E9:分段函数.【分析】观察图象,明确每一段小明行驶的路程,时间,作出判断.【解答】解:由图可知,修车时间为15﹣10=5 分钟,可知 A 错误; B、 C、D 三种说法都符合题意.故选 A .6.考察反比例函数y=﹣,下列结论中不正确的是()A.图象必经过(﹣ 3, 2) B.当 x >0 时, y 随 x 的增大而增大C.图象在第二、四象限内 D.图象与直线 y=x 有两个交点【考点】 G8:反比例函数与一次函数的交点问题.【分析】根据反比例函数的图象和性质逐一判断可得.【解答】解: A、当 x=﹣3 时, y=﹣=2,即图象必经过(﹣ 3,2),此结论正确;B、∵﹣ 6<0,∴反比例函数在x>0 或 x<0 时, y 随 x 的增大而增大,此结论正确;C、由 k=﹣6<0 知函数图象在第二、四象限内,此结论正确;D、由反比例函数图象位于第二、四象限,而直线y=x 经过第一、三象限,∴图象与直线 y=x 没有交点,此结论错误;故选: D.7.一次函数 y=kx +b,当 k>0,b<0 时,它的图象是()A.B.C.D.【考点】 F7:一次函数图象与系数的关系.【分析】根据一次函数图象在坐标平面内的位置与 k、 b 的关系,可以判断出其图象过的象限,进而可得答案.【解答】解:根据题意,有k>0,b<0,则其图象过一、二、四象限;故选 C.8.已知平行四边形 ABCD 中,∠ B=5∠A ,则∠ C=( ) A . 30°B .60°C . 120° D . 150°【考点】 L5:平行四边形的性质.【分析】 首先根据平行四边形的性质可得∠ A= ∠C ,∠ A +∠ B=180°,再由已知条件计算出∠ A 的度数,即可得出∠ C 的度数.【解答】 解:∵四边形 ABCD 是平行四边形,∴ AD ∥BC ,∠ A= ∠C , ∴∠ A+∠B=180°, ∵∠ B=5∠ A ,∴∠ A+5∠ A=180°,解得:∠ A=30°, ∴∠ C=30°,故选: A .9.在平面直角坐标系中, ? ABCD 的顶点 A (0,0), B (5,0),D ( 2, 3),则顶点 C 的坐标是 ( ) A .( 3,7) B .( 5,3) C .( 7,3) D .( 8,2)【考点】 L5:平行四边形的性质; D5:坐标与图形性质.【分析】 根据题意画出图形,进而得出 C 点横纵坐标得出答案即可.【解答】 解:如图所示:∵ ? ABCD 的顶点 A ( 0, 0), B (5,0), D ( 2, 3),∴ AB=CD=5 , C 点纵坐标与 D 点纵坐标相同,∴顶点 C 的坐标是;( 7, 3).故选: C .11,y 2),( 2,y 3),则 y 1,y 2,y 310.若反比例函数 y= (k <0)的图象经过点(﹣ 2,y ),(﹣ 的大小关系为( ) 2> y 1> y 33> y 2> y 1A . y 1> y 2> y 31> y 3> y 2C .yD .yB . y【考点】 G6:反比例函数图象上点的坐标特征.【分析】先根据反比例函数的解析式判断出函数图象所在的象限及其增减性, 再由各点横坐标的值即可得出结论.【解答】 解:∵反比例函数 y= (k <0),∴此函数图象的两个分支分别位于二、四象限,并且在每一象限内,y 随 x 的增大而增大.∵(﹣ 2,y 1),(﹣ 1, y 2),( 2, y 3)三点都在反比例函数 y= (k <0)的图象上,∴(﹣ 2,y1),(﹣ 1, y2)在第二象限,点( 2, y3)在第四象限,∴y2> y1> y3.故选 C.11.如图,在平面直角坐标系中,直线 l 1:y=x 3与直线 l2:y=mx n 交于点 A(﹣ 1,b),则关于 x、++y 的方程组的解为()A.B.C.D.【考点】 FE:一次函数与二元一次方程(组).【分析】首先将点 A 的横坐标代入y=x+3 求得其纵坐标,然后即可确定方程组的解.【解答】解:∵直线l : y=x 3 与直线 l : y=mx n 交于点 A (﹣ 1,b),1+2+∴当 x=﹣1 时, b=﹣1+3=2,∴点 A 的坐标为(﹣ 1,2),∴关于 x、 y 的方程组的解是,故选 C.12.如图,直线l⊥ x 轴于点 P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于点 A ,B,连接 OA , OB,已知△ OAB 的面积为 2,则 k1﹣k2的值为()A. 2 B.3 C. 4D.﹣ 4【考点】 G5:反比例函数系数k 的几何意义.【分析】根据反比例函数k 的几何意义可知:△ AOP 的面积为,△ BOP的面积为,由题意可知△ AOB 的面积为.【解答】解:根据反比例函数k 的几何意义可知:△ AOP 的面积为,△ BOP的面积为,∴△ AOB 的面积为,∴=2,∴k1﹣k2=4,故选( C)二、填空题(本大题共8 小题,每小题 4 分,共 32 分)13.在函数 y=中,自变量x的取值范围是x≠3.【考点】 E4:函数自变量的取值范围.【分析】根据分式的意义,分母不等于0,可以求出 x 的范围.【解答】解:根据题意得: x﹣3≠0,解得: x≠3.故答案为 x≠3.14.当 x= 2时,分式的值为零.【考点】 63:分式的值为零的条件.【分析】要使分式的值为 0,必须分式分子的值为0 并且分母的值不为0.【解答】解:由分子 x2﹣4=0? x=±2;而x=2 时,分母 x+2=2+2=4≠0,x=﹣2 时分母 x+2=0,分式没有意义.所以 x=2.故答案为: 2.15.化简:= 1 .【考点】 6B:分式的加减法.【分析】首先把分式通分,然后进行同分母的分式的加减,最后把结果进行化简即可求解.【解答】解:原式 =﹣===1.故答案是: 1.16.计算:(﹣ m3n﹣2)﹣2=.(结果不含负整数指数幂)【考点】 47:幂的乘方与积的乘方;6F:负整数指数幂.【分析】直接利用积的乘方运算法则结合负指数幂的性质计算得出答案.【解答】解:(﹣ m3n﹣2)﹣2=m﹣6n4=.故答案为:.17.一次函数 y=kx 5 的图象可由正比例函数 y=2x 的图象向上平移 5 个单位长度得到,则 k= 2 .+【考点】 F9:一次函数图象与几何变换.【分析】直线 y=2x 平移时,系数 k=2 不会改变. 5 个单位长度得到,【解答】解:因为一次函数y=kx 5 的图象可由正比例函数 y=2x 的图象向上平移+所以 k=2.故答案是: 2.18.一次函数 y=(2m﹣6)x 4中, y 随 x 的增大而减小,则 m 的取值范围是m<3 .+【考点】 F7:一次函数图象与系数的关系.【分析】利用一次函数图象与系数的关系列出关于m 的不等式 2m﹣6<0,然后解不等式即可.【解答】解:∵一次函数y=(2m﹣6) x 4 中, y 随 x 的增大而减小,+∴ 2m﹣ 6< 0,解得, m< 3;故答案是: m<3.19.如图,在平行四边形 ABCD 中, BC=8cm,AB=6cm ,BE 平分∠ ABC 交 AD 边于点 E,则线段 DE 的长度为 2cm .【考点】 L5:平行四边形的性质.【分析】根据四边形ABCD 为平行四边形可得AE ∥BC,根据平行线的性质和角平分线的性质可得出∠ ABE=∠ AEB,继而可得 AB=AE ,然后根据已知可求得DE 的长度【解答】解:∵四边形 ABCD 为平行四边形,∴ AE∥ BC, AD=BC=8cm ,∴∠ AEB=∠ EBC,∵ BE 平分∠ ABC ,∴∠ ABE=∠ EBC,∴∠ ABE=∠ AEB,∴ AB=AE=6cm ,∴ DE=AD ﹣AE=8 ﹣6=2(cm);故答案为: 2cm.20.如图,平行四边形 ABCD 的对角线相交于点 O,且 AB ≠ AD ,过 O 作 OE⊥ BD 交 BC 于点 E,若平行四边形 ABCD 的周长为 20,则△ CDE 的周长为 10 .【考点】 L5:平行四边形的性质;KG:线段垂直平分线的性质.【分析】由平行四边形 ABCD 的对角线相交于点 O, OE⊥ BD ,根据线段垂直平分线的性质,可得BE=DE ,又由平行四边形 ABCD 的周长为 20,可得 BC+CD 的长,继而可得△ CDE 的周长等于BC+CD.【解答】解:∵四边形 ABCD 是平行四边形,∴OB=OD,AB=CD ,AD=BC ,∵平行四边形 ABCD 的周长为 20,∴BC+CD=10,∵OE⊥ BD ,∴ BE=DE,∴△ CDE 的周长为: CD+CE+DE=CD +CE+BE=CD+BC=10.故答案为: 10.三、解答题(本大题共7 小题,共 82 分)21.计算:( 1)(﹣)﹣2+﹣(﹣1)0( 2)( 1+)÷.【考点】 6C:分式的混合运算; 2C:实数的运算; 6E:零指数幂; 6F:负整数指数幂.【分析】(1)根据负整数指数幂、零指数幂可以解答本题;( 2)根据分式的加法和除法可以解答本题.【解答】解:( 1)(﹣)﹣2+﹣(﹣1)0=4+3﹣1=6;(2)( 1+)÷==x 1.+22.解方程:.【考点】 B3:解分式方程.x 的值,代入公分母进行检验即可.【分析】先去分母把分式方程化为整式方程,求出整式方程中【解答】解:方程两边同时乘以 2(3x﹣ 1),得 4﹣ 2( 3x﹣1)=3,化简,﹣ 6x=﹣3,解得 x=.检验: x=时, 2(3x﹣1)=2×( 3× ﹣1)≠ 0所以, x=是原方程的解.23.已知一次函数 y=kx +b,当 x=2 时 y 的值是﹣ 1,当 x=﹣ 1 时 y 的值是 5.(1)求此一次函数的解析式;(2)若点 P( m,n)是此函数图象上的一点,﹣ 3≤ m≤2,求 n 的最大值.【考点】 FA:待定系数法求一次函数解析式; F5:一次函数的性质.【分析】(1)把 x=2,y=﹣ 1 代入函数 y=kx +b,得出方程组,求出方程组的解即可;(2)把 P 点的坐标代入函数 y=﹣2x+3,求出 m 的值,根据已知得出不等式组,求出不等式组的解集即可.【解答】解:( 1)依题意得:,解得:,所以一次函数的解析式是y=﹣2x+3;( 2)由( 1)可得, y=﹣2x+3.∵点 P (m,n )是此函数图象上的一点,∴n=﹣2m 3即,+又∵﹣ 3≤m≤ 2,∴,解得,﹣ 1≤ n≤ 9,∴ n 的最大值是 9.24.如图, ? ABCD 中,对角线 AC 与 BD 相交于 O,EF 是过点 O 的任一直线交 AD 于点 E,交 BC 于点 F,猜想 OE 和 OF 的数量关系,并说明理由.【考点】 L5:平行四边形的性质.【分析】结论: OE=OF,欲证明 OE=OF,只要证明△ AOE≌△ COF 即可.【解答】解:结论: OE=OF.理由∵四边形 ABCD 是平行四边形,∴OA=OC,AD ∥ BC,∴∠ OAE=∠ OCF,在△ AOE 和△ COF 中,,∴△ AOE≌△ COF,∴OE=OF.25.列方程或方程组解应用题我区为缓解某景区的交通拥挤状况,区政府对通往景区的道路进行了改造.某施工队承包道路改造任务共3300 米,为了减少施工对周边居民及交通的影响,施工队加快了速度,比原计划每天多改造 10%,结果提前 3 天完成了任务,求原计划每天改造道路多少米?【考点】 B7:分式方程的应用.【分析】设原计划每天改造道路 x 米,实际每天改造( 1+10%)x 米,根据比原计划每天多改造 10%,结果提前 3 天完成了任务,列出方程,再进行求解即可.【解答】解:设原计划每天改造道路x 米,实际每天改造( 1+10%) x 米,根据题意得:=+3,解得: x=100,经检验 x=100 是原方程的解,且符合题意.答:原计划每天改造道路100 米.26.如图,一次函数y=kx+b 与反比例函数 y=(x>0)的图象交于A(m,6), B( 3, n)两点.(1)直接写出 m= 1 , n= 2 ;( 2)根据图象直接写出使kx+b<成立的x的取值范围0<x<1 或 x>3;( 3)在 x 轴上找一点 P 使 PA+PB 的值最小,求出P 点的坐标.【考点】 G8:反比例函数与一次函数的交点问题.【分析】(1)将点 A 、B 坐标代入即可得;(2)由函数图象即可得;(3)作点 A 关于 x 轴的对称点 C,连接 BC 与 x 轴的交点即为所求.【解答】解:( 1)把点( m,6), B(3,n)分别代入 y=(x>0)得:m=1,n=2,故答案为: 1、2;(2)由函数图象可知,使 kx+b<成立的 x 的取值范围是 0<x<1 或 x> 3,故答案为: 0<x<1 或 x> 3;(3)由( 1)知 A 点坐标为( 1, 6), B 点坐标为( 3, 2),则点 A 关于 x 的轴对称点 C 的坐标( 1,﹣ 6),设直线 BC 的解析式为 y=kx+b,将点 B、 C 坐标代入,得:,解得:,则直线 BC 的解析式为 y=4x﹣ 10,当y=0 时,由 4x﹣10=0 得: x= ,∴点 P 的坐标为(,0).27.心理学家研究发现,一般情况下,一节课 40 分钟中,学生的注意力随教师讲课的变化而变化,开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y 随时间 x(分钟)的变化规律如图所示(其中 AB 、 BC 分别为线段, CD 为双曲线的一部分):( 1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?( 2)一道数学竞赛题,需要讲16 分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?【考点】 GA:反比例函数的应用.【分析】(1)先用待定系数法分别求出 AB 和 CD 的函数表达式,再分别求第五分钟和第三十分钟的注意力指数,最后比较判断;(2)分别求出注意力指数为 36 时的两个时间,再将两时间之差和 16 比较,大于 16 则能讲完,否则不能.【解答】解:( 1)设线段 AB 所在的直线的解析式为y1=k1x+20,把B(10,40)代入得, k1=2,∴ y1=2x+20.设C、D 所在双曲线的解析式为 y2= ,把 C(25,40)代入得, k2=1000,∴ y2=.当 x1=5 时, y1 =2×5+20=30,当 x2时, 2÷30=,=30y =1000∴y1< y2,∴第 30 分钟注意力更集中.(2)令 y1=36,∴ 36=2x+20,∴ x1=8.令y2=36,∴36=1000÷ x,∴x2=1000÷36≈27.8,∵ 27.8﹣8=19.8>16,∴经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.2017 年 8 月 2 日。
2017-2018学年八年级下期中数学试卷含答案一、选择题1.把函数y=﹣2x的图象向下平移1个单位,所得图象的函数解析式为()A.y=﹣2x+1 B.y=﹣2x﹣1 C.y=﹣2(x﹣1)D.y=﹣2(x+1)2.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC3.下列各式从左到右的变形正确的是()A.=x+y B.=C.﹣=D.=4.已知点P(1﹣2a,a﹣2)关于原点的对称点在第一象限内,且a为整数,则关于x的分式方程=2的解是()A.5 B.1 C.3 D.不能确定5.在平面直角坐标系中,有A(0,1),B(﹣1,0),C(1,0)三点,若点D与A,B,C三点构成平行四边形,则点D的坐标不可能是()A.(0,﹣1)B.(﹣2,1)C.(﹣2,﹣1)D.(2,1)6.甲、乙两人赛跑,所跑路程与时间的关系如图(实线为甲的路程与时间的关系图象,虚线为乙的路程与时间的关系图象),小王根据图象得到如下四条信息,其中错误的是()A.这是一次1500m赛跑B.甲、乙同时起跑C.甲、乙两人中先到达终点的是乙D.甲在这次赛跑中的速度为5m/s7.如图,双曲线y=﹣的一个分支为()A.① B.② C.③ D.④8.函数y=﹣ax+a与(a≠0)在同一坐标系中的图象可能是()A.B.C.D.二、填空题9.﹣(﹣1)2016﹣(﹣)0+(﹣)﹣2﹣|﹣3|+=.10.如图,在▱ABCD中,AE⊥BC,AF⊥CD,E,F为垂足,若∠EAF=59°,则∠B=度.11.纳米是一种长度单位,1纳米等于10亿分之一米,1根头发丝直径是62000纳米,则一根头发丝的直径用科学记数法表示为米.12.在函数y=(k为常数)的图象上有三个点(﹣2,y1),(﹣1,y2),(,y3),在函数值y1,y2,y3中最大的为.13.如图,点A是反比例函数的图象上的一点,过点A作▱ABCD,使点B、C在x轴上,点D在y轴上,则▱ABCD的面积为.14.如图,已知直线y=﹣2x+b与直线y=ax﹣1相交于点(2,﹣2),由图象可得不等式﹣2x+b>ax﹣1的解集是.15.如图,▱ABCD的周长为60cm,△AOB的周长比△BOC大8cm,则AB=,BC=.三、解答题16.(1)先化简,再求值:÷(﹣)+,其中x=2﹣1﹣20160(2)阅读理解【提出问题】已知===k,求分式的值.【分析问题】本题已知条件是连等式,因此可用设参数法,即设出参数k,得出x,y,z与k的关系,然后再代入待求的分式化简即可.【解决问题】设===k,则x=4k,y=3k,z=2k,将它们分别代入中并化简,可得分式的值为.【拓展应用】已知=﹣=,求分式的值.17.如图,在正方形ABCD中,E是BC延长线上一点,且AC=EC,求∠DAE的度数.18.已知直线y=2x+6,解答下列问题:(1)在直角坐标系中,画出该直线;(2)求直线与坐标轴所围成的三角形的面积;(3)根据图象直接写出,当x取什么值时,函数值y>0?19.某校准备在甲、乙两家公司为毕业班制作一批VCD光盘作为毕业留念.甲公司提出:每个光盘收材料费5元,另收设计和制作费1500元;乙公司提出:每个光盘收材料费8元,不收设计费.(1)请写出制作VCD光盘的个数x与甲公司的收费y1(元)的函数关系式;(2)请写出制作VCD光盘的个数x与乙公司的收费y2(元)的函数关系式;(3)如果学校派你去甲、乙两家公司订做纪念光盘,你会选择哪家公司.20.如图1,已知双曲线y=(k>0)与直线y=k′x交于A、B两点,点A在第一象限,试解答下列问题:(1)若点A的坐标为(3,1),则点B的坐标为;当x满足:时,≤k′x;(2)过原点O作另一条直线l,交双曲线y=(k>0)于P,Q两点,点P在第一象限,如图2所示.①四边形APBQ一定是;②若点A的坐标为(3,1),点P的横坐标为1,求四边形APBQ的面积.21.如图,在▱ABCD中,DE平分∠ADC交AB于点G,交CB延长线于E,BF平分∠ABC交AD的延长线于F.(1)若AD=5,AB=8,求GB的长.(2)求证:∠E=∠F.22.甲、乙两人在某标准游泳池相邻泳道进行100米自由泳训练,如图是他们各自离出发点的距离y(米)与他们出发的时间x(秒)的函数图象.根据图象,解决如下问题.(注标准泳池单向泳道长50米,100米自由泳要求运动员在比赛中往返一次;返回时触壁转身的时间,本题忽略不计)(1)直接写出点A坐标,并求出线段OC的解析式;(2)他们何时相遇?相遇时距离出发点多远?(3)若甲、乙两人在各自游完50米后,返回时的速度相等;则快者到达终点时领先慢者多少米?23.我县万德隆商场有A、B两种商品的进价和售价如表:已知:用2400元购进A种商品的数量与用3000元购进B种商品的数量相同.(1)求m的值;(2)该商场计划同时购进的A、B两种商品共200件,其中购进A种商品x件,实际进货时,生产厂家对A 种商品的出厂价下调a(50<a<70)元出售,若商场保持同种商品的售价不变,商场售完这200件商品的总利润为y元.①求y关于x的函数关系式;②若限定A种商品最多购进120件最少购进100件,请你根据以上信息,设计出使该商场获得最大利润的进货方案.参考答案与试题解析一、选择题1.把函数y=﹣2x的图象向下平移1个单位,所得图象的函数解析式为()A.y=﹣2x+1 B.y=﹣2x﹣1 C.y=﹣2(x﹣1)D.y=﹣2(x+1)【考点】一次函数图象与几何变换.【分析】根据“上加下减”的平移原理,结合原函数解析式即可得出结论.【解答】解:根据“上加下减”的原理可得:函数y=﹣2x的图象向下平移1个单位后得出的图象的函数解析式为y=﹣2x﹣1.故选B.【点评】本题考查了一次函数图象与几何变换,解题的关键是根据平移原理找出平移后的函数解析式.本题属于基础题,难度不大,解决该题型题目时,依据“上加下减”的平移原理找出函数图象平移后的函数解析式是关键.2.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC【考点】平行四边形的判定.【分析】根据平行四边形判定定理进行判断.【解答】解:A、由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;B、由“AB=DC,AD=BC”可知,四边形ABCD的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;C、由“AO=CO,BO=DO”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;D、由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意;故选D.【点评】本题考查了平行四边形的判定.(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.3.下列各式从左到右的变形正确的是()A.=x+y B.=C .﹣=D.=【考点】分式的基本性质.【分析】根据分式的分子分母都乘以或除以同一个不为零的数或者同一个整式,分式的值不变.【解答】解:A、分子与分母除的数不是同一个数,故A错误;B、分子分母的一部分乘以10,故B错误;C、分子、分母、分式改变其中两个的符号,分式的值不变,故C错误;D、分子分母都乘以2,故D正确;故选:D.【点评】本题考查了分式的基本性质,分式的分子分母都乘以或除以同一个不为零的数或者同一个整式,分式的值不变.4.已知点P(1﹣2a,a﹣2)关于原点的对称点在第一象限内,且a为整数,则关于x的分式方程=2的解是()A.5 B.1 C.3 D.不能确定【考点】解分式方程;关于原点对称的点的坐标.【专题】计算题.【分析】根据P关于原点对称点在第一象限,得到P横纵坐标都小于0,求出a的范围,确定出a的值,代入方程计算即可求出解.【解答】解:∵点P(1﹣2a,a﹣2)关于原点的对称点在第一象限内,且a为整数,∴,解得:<a<2,即a=1,当a=1时,所求方程化为=2,去分母得:x+1=2x﹣2,解得:x=3,经检验x=3是分式方程的解,则方程的解为3.故选:C【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.5.在平面直角坐标系中,有A(0,1),B(﹣1,0),C(1,0)三点,若点D与A,B,C三点构成平行四边形,则点D的坐标不可能是()A.(0,﹣1)B.(﹣2,1)C.(﹣2,﹣1)D.(2,1)【考点】平行四边形的判定;坐标与图形性质.【分析】根据两组对边分别平行的四边形是平行四边形可得到D点坐标的三种情况:①当AB∥CD,AD∥BC 时;②当AB∥CD,AC∥BD时;③当AD∥BC,AC∥BD时;分别求出D的坐标即可.【解答】解:如图所示∵两组对边分别平行的四边形是平行四边形∴可以分以下三种情况分别求出D点的坐标:如图所示:①当AB∥CD,AD∥BC时,D点的坐标为(2,1);②当AB∥CD,AC∥BD时,D点的坐标为(0,﹣1);③当AD∥BC,AC∥BD时,D点的坐标为(﹣2,1).故选:C.【点评】本题主要考查了平行四边形的判定,要求学生掌握平行四边形的判定并会灵活运用,注意分类讨论.6.甲、乙两人赛跑,所跑路程与时间的关系如图(实线为甲的路程与时间的关系图象,虚线为乙的路程与时间的关系图象),小王根据图象得到如下四条信息,其中错误的是()A.这是一次1500m赛跑B.甲、乙同时起跑C.甲、乙两人中先到达终点的是乙D.甲在这次赛跑中的速度为5m/s【考点】函数的图象.【专题】数形结合.【分析】根据函数图象对各选项分析判断后利用排除法求解.【解答】解:A、路程为1500m后不在增加,所以,这是一次1500m赛跑,正确,故本选项错误;B、加起跑后一段时间乙开始起跑,错误,故本选项正确;C、乙计时283秒到达终点,甲计时300秒到达终点,正确,故本选项错误;D、甲在这次赛跑中的速度为=5m/s,正确,故本选项错误.故选B.【点评】本题考查了函数图象,读函数的图象时首先要理解横、纵坐标表示的含义.7.如图,双曲线y=﹣的一个分支为()A.① B.② C.③ D.④【考点】反比例函数的图象.【分析】根据函数图象上图象经过的点的,利用待定系数法即可求得函数的解析式,即k的值,从而判断.【解答】解:A、反比例函数进过点(﹣3,4),代入函数解析式得k=﹣12,故选项正确;B、反比例函数进过点(﹣3,2),代入函数解析式得k=﹣6,故选项错误;C、反比例函数进过点(1,4),代入函数解析式得k=4,故选项错误;D、反比例函数进过点(2,4),代入函数解析式得k=8,故选项错误.故选A.【点评】本题考查了待定系数求函数的解析式,是一个基础题.8.函数y=﹣ax+a与(a≠0)在同一坐标系中的图象可能是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【专题】压轴题.【分析】根据反比例函数与一次函数的图象特点解答即可.【解答】解:a>0时,﹣a<0,y=﹣ax+a在一、二、四象限,(a≠0)在二、四象限,只有A符合;a<0时,﹣a>0,y=﹣ax+a在一、三、四象限,(a≠0)在一、三象限,无选项符合.故选A.【点评】本题主要考查了反比例函数的图象性质和一次函数的图象性质,关键是由a的取值确定函数所在的象限.二、填空题9.﹣(﹣1)2016﹣(﹣)0+(﹣)﹣2﹣|﹣3|+=2+1.【考点】立方根;零指数幂;负整数指数幂.【专题】计算题.【分析】首先将二次根式、幂运算、绝对值、立方根进行化简求值,然后根据实数的运算法则进行运算即可.【解答】解:﹣(﹣1)2016﹣(﹣)0+(﹣)﹣2﹣|﹣3|+,=2﹣1﹣1+4﹣3+2,=2+1.故答案为:2+1.【点评】题目考查了二次根式化简、幂运算、绝对值的运算、立方根的运算等知识点,考察知识较多,对学生要求较高,解决本题的关键是掌握各种运算法则,题目难易程度整体适中,适合课后训练.10.如图,在▱ABCD中,AE⊥BC,AF⊥CD,E,F为垂足,若∠EAF=59°,则∠B=59度.【考点】平行四边形的性质.【分析】直接利用垂直的定义结合平行四边形的性质得出∠BAE的度数,进而得出答案.【解答】解:∵在▱ABCD中,AE⊥BC,AF⊥CD,∴∠AEB=∠AFC=90°,AB∥DC,∴∠BAF=90°,∵∠EAF=59°,∴∠BAE=31°,∴∠B=59°.故答案为:59.【点评】此题主要考查了平行四边形的性质,根据题意得出∠BAE的度数是解题关键.11.纳米是一种长度单位,1纳米等于10亿分之一米,1根头发丝直径是62000纳米,则一根头发丝的直径用科学记数法表示为 6.2×10﹣6米.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:62000纳米=62000×10﹣10m=6.2×10﹣6m,故答案为:6.2×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.在函数y=(k为常数)的图象上有三个点(﹣2,y1),(﹣1,y2),(,y3),在函数值y1,y2,y3中最大的为y2.【考点】反比例函数图象上点的坐标特征.【分析】首先可判定函数y=(k为常数)的系数﹣k2﹣2<0,即可知此函数在二、四象限,然后画出图象,确定各点的位置,即可求得答案.【解答】解:∵函数y=(k为常数)的系数﹣k2﹣2<0,∴此函数在二、四象限,如图∴函数值y1,y2,y3中最大的为y2.故答案为:y2.【点评】此题考查了反比例函数图象上点的坐标特征.注意结合图象求解比较简单.13.如图,点A是反比例函数的图象上的一点,过点A作▱ABCD,使点B、C在x轴上,点D在y轴上,则▱ABCD的面积为6.【考点】反比例函数系数k的几何意义;平行四边形的性质.【专题】计算题.【分析】连结OA、CA,根据反比例函数y=(k≠0)中比例系数k的几何意义得到S△OAD=|k|=×6=3,再利用平行四边形的性质得BC∥AD,所以S△CAD=S△OAD=3,然后根据▱ABCD的面积=2S△CAD进行计算.【解答】解:连结OA、CA,如图,则S△OAD=|k|=×6=3,∵四边形ABCD为平行四边形,∴BC∥AD,∴S△CAD=S△OAD=3,∴▱ABCD的面积=2S△CAD=6.故答案为6.【点评】本题考查了反比例函数y=(k≠0)中比例系数k的几何意义:过反比例函数图象上任意一点分别作x轴、y轴的垂线,则垂线与坐标轴所围成的矩形的面积为|k|.也考查了平行四边形的性质.14.如图,已知直线y=﹣2x+b与直线y=ax﹣1相交于点(2,﹣2),由图象可得不等式﹣2x+b>ax﹣1的解集是x<2.【考点】一次函数与一元一次不等式.【分析】以交点(2,﹣2)为分界,交点的坐标,y=﹣2x+b的图象在直线y=ax﹣1的上边,故不等式的解集为x<2.【解答】解:根据图象可得不等式﹣2x+b>ax﹣1的解集是x<2,故答案为:x<2.【点评】此题主要考查了一次函数与一元一次不等式的关系,关键是正确从图象中得到信息.15.如图,▱ABCD的周长为60cm,△AOB的周长比△BOC大8cm,则AB=19cm,BC=11cm.【考点】平行四边形的性质.【分析】根据平行四边形的性质可知,平行四边形的对角线互相平分,由于△AOB的周长比△BOC的周长多8cm,则AB比BC大8cm,继而可求出AB、BC的长度.【解答】解:∵▱ABCD的周长为60cm,∴BC+AB=30cm,①又∵△AOB的周长比△BOC的周长大8cm,∴AB﹣BC=8cm,②由①②得:AB=19cm,BC=11cm.故答案为:19cm,11cm.【点评】此题主要考查平行四边的性质:平行四边形的两组对边分别相等且平行四边形的对角线互相平分.三、解答题16.(1)先化简,再求值:÷(﹣)+,其中x=2﹣1﹣20160(2)阅读理解【提出问题】已知===k,求分式的值.【分析问题】本题已知条件是连等式,因此可用设参数法,即设出参数k,得出x,y,z与k的关系,然后再代入待求的分式化简即可.【解决问题】设===k ,则x=4k ,y=3k ,z=2k ,将它们分别代入中并化简,可得分式的值为 .【拓展应用】已知=﹣=,求分式的值.【考点】分式的化简求值;分式的值;零指数幂;负整数指数幂.【分析】(1)先根据分式混合运算的法则把原式进行化简,再求出x 的值代入进行计算即可; (2)【解决问题】把x=4k ,y=3k ,z=2k 代入进行计算即可;【拓展应用】令=﹣==k ,则x=3k ,y=﹣2k ,z=4k ,再代入分式进行计算即可.【解答】解:(1)原式=÷+=÷+=÷+=•+=+= =,当x=2﹣1﹣20160=﹣1=﹣时,原式===.(2)【解决问题】把x=4k ,y=3k ,z=2k 代入得,原式===.故答案为:;【拓展应用】令=﹣==k ,则x=3k ,y=﹣2k ,z=4k ,原式====.【点评】本题考查的是分式的化简求值,在解答此类题目时要注意,当条件是连等式,因此可用设参数法,即设出参数k,得出x,y,z与k的关系,然后再代入待求的分式化简即可.17.如图,在正方形ABCD中,E是BC延长线上一点,且AC=EC,求∠DAE的度数.【考点】正方形的性质.【分析】根据正方形的对角线平分一组对角可得∠DAC=∠ACB=45°,再根据等边对等角可得∠E=∠EAC,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠EAC,再根据∠DAE=∠DAC﹣∠EAC代入数据进行计算即可得解.【解答】解:∵四边形ABCD为正方形,∴∠DAC=∠ACB=45°,∵AC=CE,∴∠E=∠EAC,∵2∠EAC=∠E+∠EAC=∠ACB=45°,∴∠EAC=22.5°,∴∠DAE=∠DAC﹣∠EAC=45°﹣22.5°=22.5°.【点评】本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,等边对等角的性质,三角形的外角性质,是基础题,熟记各性质是解题的关键.18.已知直线y=2x+6,解答下列问题:(1)在直角坐标系中,画出该直线;(2)求直线与坐标轴所围成的三角形的面积;(3)根据图象直接写出,当x取什么值时,函数值y>0?【考点】一次函数的图象;一次函数图象上点的坐标特征.【分析】(1)首先求出图象与坐标轴交点,进而画出图象;(2)直接利用(1)中所求,结合直角三角形面积求法得出答案;(3)利用函数图象得出不等式的解.【解答】解:(1)当x=0,则y=6;当y=0,则x=﹣3,如图所示:(2)直线与坐标轴所围成的三角形的面积为:×3×6=9;(3)如图所示:当x>﹣3时,函数值y>0.【点评】此题主要考查了一次函数图象以及三角形面积求法,正确求出一次函数与坐标轴交点是解题关键.19.某校准备在甲、乙两家公司为毕业班制作一批VCD光盘作为毕业留念.甲公司提出:每个光盘收材料费5元,另收设计和制作费1500元;乙公司提出:每个光盘收材料费8元,不收设计费.(1)请写出制作VCD光盘的个数x与甲公司的收费y1(元)的函数关系式;(2)请写出制作VCD光盘的个数x与乙公司的收费y2(元)的函数关系式;(3)如果学校派你去甲、乙两家公司订做纪念光盘,你会选择哪家公司.【考点】一次函数的应用.【专题】应用题.【分析】根据题意,y1与x是一次函数关系,y2与x成正比例,可直接写出它们的关系式y1=5x+1500,y2=8x;若要选择公司订做光盘,则要看学校订做纪念光盘的数量,当甲、乙两家公司的收费相等时,即y1=y2时可计算出订做的光盘数,再与学校订做的光盘数相比较,就可做出选择.【解答】解:(1)y1=5x+1500,(2)y2=8x;(3)当y1=y2时,即5x+1500=8x,解得x=500,当光盘为500个是同样合算,当光盘少于500个时选乙公司合算,当光盘多于500个时选甲公司合算.【点评】此题不难,关键要仔细审题,懂得计算两家公司收费相等时的光盘数,再与学校需订的数量相比较.20.如图1,已知双曲线y=(k>0)与直线y=k′x交于A、B两点,点A在第一象限,试解答下列问题:(1)若点A的坐标为(3,1),则点B的坐标为(﹣3,﹣1);当x满足:﹣3<x<0或x>3时,≤k′x;(2)过原点O作另一条直线l,交双曲线y=(k>0)于P,Q两点,点P在第一象限,如图2所示.①四边形APBQ一定是平行四边形;②若点A的坐标为(3,1),点P的横坐标为1,求四边形APBQ的面积.【考点】反比例函数综合题.【分析】(1)根据双曲线关于原点对称求出点B的坐标,结合图象得到≤k′x时,x的取值范围;(2)①根据对角线互相平分的四边形是平行四边形证明即可;②过点A、B分别作y轴的平行线,过点P、Q分别作x轴的平行线,分别交于C、D、E、F,根据正方形的面积公式和三角形的面积公式计算即可.【解答】解:(1)∵双曲线y=关于原点对称,点A的坐标为(3,1),∴点B的坐标为(﹣3,﹣1),由图象可知,当﹣3<x<0或x>3时,≤k′x,故答案为:(﹣3,﹣1);﹣3<x<0或x>3;(2)①∵双曲线y=关于原点对称,∴OA=OB,OP=OQ,∴四边形APBQ一定是平行四边形,故答案为:平行四边形;②∵点A的坐标为(3,1),∴k=3×1=3,∴反比例函数的解析式为y=,∵点P的横坐标为1,∴点P的纵坐标为3,∴点P的坐标为(1,3),由双曲线关于原点对称可知,点Q的坐标为(﹣1,﹣3),点B的坐标为(﹣3,﹣1),如图2,过点A、B分别作y轴的平行线,过点P、Q分别作x轴的平行线,分别交于C、D、E、F,则四边形CDEF是矩形,CD=6,DE=6,DB=DP=4,CP=CA=2,则四边形APBQ的面积=矩形CDEF的面积﹣△ACP的面积﹣△PDB的面积﹣△BEQ的面积﹣△AFQ的面积=36﹣2﹣8﹣2﹣8=16.【点评】本题考查的是反比例函数的图形和性质、反比例函数图象上点的坐标特征、中心对称图形的概念和性 质以及平行四边形的判定,掌握双曲线是关于原点的中心对称图形、平行四边形的判定定理是解题的关键.21.如图,在▱ ABCD 中,DE 平分∠ADC 交 AB 于点 G,交 CB 延长线于 E,BF 平分∠ABC 交 AD 的延长线 于 F. (1)若 AD=5,AB=8,求 GB 的长. (2)求证:∠E=∠F.【考点】平行四边形的性质. 【分析】(1)直接利用平行四边形的性质结合角平分线的性质得出∠2=∠AGD,进而得出 AD=AG,得出答 案即可; (2)首先证明∠CDE=∠ABF,再证明 ED∥FB,然后再根据平行四边形的性质可得 AF∥CE,根据两组对边 分别平行的四边形是平行四边形可得四边形 BFDE 是平行四边形,进而得出答案. 【解答】(1)解:∵在▱ ABCD 中,DE 平分∠ADC 交 AB 于点 G,BF 平分∠ABC 交 AD 的延长线于 F, ∴∠1=∠2,∠3=∠4,AB∥DC, ∴∠2=∠AGD, ∴∠1=∠AGD, ∴AD=AG=5, ∵AB=8, ∴BG=8﹣5=3;(2)证明:∵四边形 ABCD 是平行四边形, ∴∠ADC=∠ABC,DC∥AB,AD∥BC, ∵DE 平分∠ADC, ∴∠CDE= ∠ADC, ∵BF 平分∠ABC, ∴∠ABF= ∠ABC, ∴∠CDE=∠ABF, ∵DC∥AB, ∴∠AGD=∠CDE, ∴∠AGD=∠FBA, ∴ED∥FB, ∵AF∥CE, ∴四边形 BFDE 是平行四边形, ∴∠E=∠F.【点评】此题主要考查了平行四边形的性质和判定,关键是掌握平行四边形两组对边分别平行,两组对边分别 平行的四边形是平行四边形.22.甲、乙两人在某标准游泳池相邻泳道进行 100 米自由泳训练,如图是他们各自离出发点的距离 y(米)与 他们出发的时间 x(秒)的函数图象.根据图象,解决如下问题.(注标准泳池单向泳道长 50 米,100 米自由 泳要求运动员在比赛中往返一次;返回时触壁转身的时间,本题忽略不计) (1)直接写出点 A 坐标,并求出线段 OC 的解析式; (2)他们何时相遇?相遇时距离出发点多远? (3)若甲、乙两人在各自游完 50 米后,返回时的速度相等;则快者到达终点时领先慢者多少米?【考点】一次函数的应用. 【专题】综合题. 【分析】(1)由图得点 A(30,50),C(40,50),用待定系数法,即可求出解析式;(2) 用待定系数法可求出, 线段 AB 的解析式为 y2=﹣ x+100, (30≤x≤60) , 然后, 联立方程组,解出即可; (3)甲乙两人在各自游完 50 米后,在返程中的距离保持不变,把 x=30 与 40 分别代入 y1 和 y2,解出即可解 答; 【解答】解:(1)由图得点 A(30,50),C(40,50), 设线段 OC 的解析式为:y1=k1x, 把点 C(40,50)代入得,k1= , ∴线段 OC 的解析式为:y1= x(0≤x≤40);(2)设线段 AB 的解析式为 y2=k2x+b, 把点 A(30,50)、点 B(60,0)代入可知: ,解得,,∴线段 AB 的解析式为 y2=﹣ x+100,(30≤x≤60);解方程组,解得,,∴线段 OC 与线段 AB 的交点为(,),即出发秒后相遇,相遇时距离出发点米;(3)∵甲乙两人在各自游完 50 米后,在返程中的距离保持不变, 把 x=30 代入 y1= x,得 y1= 米, 米, = 米.把 x=40 代入 y2=﹣ x+100,得 y2= ∴快者到达终点时,领先慢者 50﹣【点评】本题主要考查了一次函数的应用,考查了学生获取信息的能力,读懂图是解答的关键.23.我县万德隆商场有 A、B 两种商品的进价和售价如表: 商品 A 价格 进价(元/件) 售价(元/件) m 160 m+20 240 B已知:用 2400 元购进 A 种商品的数量与用 3000 元购进 B 种商品的数量相同. (1)求 m 的值;(2)该商场计划同时购进的 A、B 两种商品共 200 件,其中购进 A 种商品 x 件,实际进货时,生产厂家对 A 种商品的出厂价下调 a(50<a<70)元出售,若商场保持同种商品的售价不变,商场售完这 200 件商品的总 利润为 y 元. ①求 y 关于 x 的函数关系式; ②若限定 A 种商品最多购进 120 件最少购进 100 件,请你根据以上信息,设计出使该商场获得最大利润的进 货方案. 【考点】一次函数的应用. 【分析】(1)根据等量关系:用 2400 元购进 A 种商品的数量与用 3000 元购进 B 种商品的数量相同,列出方 程即可解决问题. (2)①根据总利润=A 商品利润+B 商品利用计算即可解决问题. ②分 50<a<60,60<a<70,a=60 三种情形,根据一次函数的性质讨论即可解决问题. 【解答】解:(1)由题意 解得:m=88. ∴m=80. (2)①y=[160﹣(80﹣a)]x+(240﹣100)(200﹣x)=(a﹣60)x+28000.(0<x<200) ②∵y=(a﹣60)x+28000,100≤x≤120, ∴当 50<a<60 时,a﹣60<0,y 随 x 增大而减小, ∴x=100 时,y 有最大值, 此时进货方案是购买 100 件 A 种商品,100 件 B 种商品利润最大. 当 60<a<70 时,y 随 x 增大而增大, ∴x=120 时,y 有最大值, 此时进货方案是购买 120 件 A 种商品,80 件 B 种商品利润最大. 当 a=60 时, 利润是定值为 28000 元, 此时进货方案是购买 m 件 A 种商品, (200﹣m) 件 B 种商品 (100≤m≤120) . 【点评】本题考查一次函数的应用,一元一次不等式等知识,解题的关键是连接题意,学会利用不等式解决实 际问题,学会利用一次函数的性质解决实际问题中最值问题,属于中考常考题型. =。
2017~2018学年第二学期期中考试试卷初 二 数学 2018.04一、选择题:(本大题共8小题,每小题2分,共16分.)1.下列图形中,既是轴对称图形又是中心对称图形的是2.若分式23x x +-的值为零,则A.3x = B.3x =- C.2x = D.2x =- 3.若反比例函数的图象经过点(2,3)-,则该反比例函数图象一定经过点A.(2,3)-B.(2,3)--C.(2,3)D.(1,6)--4. 一个不透明的盒子中装有3个红球,2个黄球,这些球除了颜色外其余都相同,从中随机摸出3个小球,则事件“所摸3个球中必含有红球”是A.确定事件B.必然事件C.不可能事件D.随机事件5.如图,△ABC 中,∠ACB=90°,∠ABC=25°,以点C 为旋转中心顺时针旋转后得到△A ′B ′C ,且点A 在边A ′B ′上,则旋转角的度数为A .65°B . 60°C .50°D . 40°6.如图,在□ABCD 中,BM 是ABC ∠的平分线,交CD 于点M ,且DM=2, □ABCD 的周长是14,则BC 的长等于A .2 B . 2. 5 C .3 D . 3. 5(第5题) (第6题) (第7题) (第8题)7.如图,P 为边长为2的正方形ABCD 的对角线BD 上任一点,过点P 作PE ⊥BC 于点E ,PF ⊥CD 于点F ,连接EF .给出以下4个结论:①AP=EF ;②AP ⊥EF ;③EF 最短长度为;④若∠BAP=30°时,则EF 的长度为2.其中结论正确的有A .①②③B .①②④C .②③④D .①③④8.如图,在以O 为原点的直角坐标系中,矩形OABC 的两边OC 、OA 分别在x 轴、y 轴的正半轴上,反比例函数(0)k y x x=>与AB 相交于点D ,与BC 相交于点E ,若3BD AD =,且ODE ∆的面积是9,则k 的值是A. 92 B. 74 C. 245D. 12 二、 填空题:(本大题共10小题,每小题2分,共20分.)9.使式子11-x 有意义的x 的取值范围是 . 10.分式3212x y 、213x y 的最简公分母是 . 11.在一个不透明的口袋里,装有仅颜色不同的黑球、白球若干只.某小组做摸球实验:将球搅匀后从中随机摸出一个,记下颜色,再放回袋中,不断重复.下表是活动中的一组数据,则摸到白球的概率约是__________.12.关于x 的方程122x a x x +=--有增根,则a 的值为 . 13.若点A (a ,b )在反比例函数2y x =的图像上,则代数式ab -4的值为________. 14.平行四边形ABCD 的周长是30,AC ,BD 相交于点O ,OAB ∆的周长比OBC ∆的周长大3,则AB = .15.已知一个菱形的边长为5,其中一条对角线长为8,则这个菱形的面积为 。
八年级(下)期中数学试卷一、选择题:(本题满分30分,共有10道小题,每小题3分,请把唯一正确答案的字母标号涂在答题卡的相应位置)1.若x>y,则下列各式变形正确的是()A.x﹣6<y﹣6 B.<C.2x+1>2y+1 D.﹣x>﹣y2.下面是由一个等边三角形经过平移或旋转得到的图形,其中既是轴对称图形,又是中心对称图形的是()A. B.C.D.3.将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=27°,则∠BOC 的度数是()A.18°B.27°C.45°D.72°4.与三角形三个顶点距离相等的点,是这个三角形的()A.三条中线的交点 B.三条角平分线的交点C.三条高的交点D.三边的垂直平分线的交点5.如图,在△ABC中,AB=AC,过A点作AD∥BC,若∠BAD=110°,则∠BAC的大小为()A.30°B.40°C.50°D.70°6.如图表示的是不等式组()的解集.A.B.C.D.7.在平面直角坐标系中,已知点A(﹣1,0),B(1,2),将线段AB平移后得线段CD,若点A的对应点C的坐标为(1,﹣2),则点B的对应点D的坐标为()A.(3,0) B.(3,﹣1)C.(3,﹣3)D.(﹣1,3)8.如图,OC是∠AOB的角平分线.D,E分别是OA,OB上的点,则下列条件中不能判定△OCD与△OCE全等的是()A.∠OCD=∠OCE B.CD⊥OA,CE⊥OB C.OD=OE D.CD=CE9.如图,在△ABC中,AB=AC,∠A=30°,AC的垂直平分线分别交AB,AC于D,E.连接CD,若CD=1cm,则BD的长为()A.1cm B.(﹣1)cm C.cm D.cm10.已知一根火腿肠2元,一盒方便面3元,小明外出时想用不超过15元来购买这两种食品,且至少购买一根火腿肠和一盒方便面,那么他可以采用的不同的购买方案有()A.12种B.13种C.14种D.15种二、填空题:(本题满分24分,共有8道小题,每小题3分,请把正确答案填写在答题卡的相应位置)11.不等式(x﹣1)<x+1的负整数解是.12.如图,△ABC中,∠ACB=90°,D在AB上,若AD=AC,且∠A=50°,则∠DCB 的度数为°.13.已知关于x的不等式x﹣a≥﹣2的解集在数轴上表示如图,则a的值为.14.若等腰三角形一腰上的高与另一腰的夹角为48°,则其顶角度数为°.15.如图,△ABC中,∠CAB=70°,将△ABC绕点A旋转得到△ADE,连接CE,若AB∥EC,则∠CAD的度数为°.16.如图,将Rt△ABC绕点C顺时针旋转90°得到△DCE,连接AE,若∠AED=10°,则∠B的度数为°.17.如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6cm,将△ABC沿着AC方向平移2cm得△DEF,DE交BC于点G,则四边形CGEF的面积为cm2.18.如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E,若AC=3cm,AB=5cm,则DE=cm.三、解答题:(本题满分66分,共有8道小题)19.尺规作图:用直尺和圆规作图,不写作法,保留痕迹.已知:△ABC.求作:点P,使PB=PC,且P到边AB,AC的距离相等.20.已知,△ABC在方格纸(每个小方格的边长为1个单位长度)中的位置如图,将△ABC绕点A旋转90°,再向右平移3个单位长度得△DEF,请在方格纸中画出△DEF.21.解答下列各题:(1)解不等式6(x﹣1)≥3+4x(2)解不等式<(3)解不等式+1>x﹣3,请把它的解集表示在数轴上(4)解不等式组,并求出它的整数解.22.某次国学知识竞赛初赛共20道题,(满分100分),评分办法是:答对1道题得5分,答错或不答倒扣2分,选手至少答对多少题才能得到70分以上(含70分)?23.已知:如图,∠A=∠D=90°,AC=BD求证:△AOB≌△DOC.24.如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,∠ABC的平分线BF交AD 于点E,交AC于点F,FH⊥BC于点H,求证:AE=FH.25.已知:如图,等边三角形△ABC的周长为3,D为AB的中点,E在CB的延长线上,且BE=BD,连接DE.求:DE的长.26.“六一儿童节”即将结束,某幼儿园计划采购一批市场价为20元/件的益智玩具,甲、乙两家工厂给出了不同的优惠方案,方案如下:甲工厂:采购金额超过500元后,超过的部分按九折付款;乙工厂:采购金额超过1000元后,超过的部分按八折付款.(1)如果幼儿园采购的数量超过了50件,应该到哪家工厂进行采购更合算?(2)如果幼儿园选择到乙工厂进行采购,那么幼儿园至少应该采购多少件,才能使每件玩具的平均价格不超过18元?2017-2018学年山东省青岛市胶州市八年级(下)期中数学试卷参考答案与试题解析一、选择题:(本题满分30分,共有10道小题,每小题3分,请把唯一正确答案的字母标号涂在答题卡的相应位置)1.若x>y,则下列各式变形正确的是()A.x﹣6<y﹣6 B.<C.2x+1>2y+1 D.﹣x>﹣y【考点】C2:不等式的性质.【分析】根据不等式的性质求解即可.【解答】解:A、两边都减6,不等号的方向不变,故A不符合题意;B、两边都除以2,不等号的方向不变,故B不符合题意;C、两边都乘以2,两边都加1,不等号的方向不变,故C符合题意;D、两边都乘以﹣1,不等号的方向改变,故D不符合题意;故选:C.2.下面是由一个等边三角形经过平移或旋转得到的图形,其中既是轴对称图形,又是中心对称图形的是()A. B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据中心对称图形与轴对称图形的概念进行判断即可.【解答】解:A、是轴对称图形,不是中心对称的图形,不合题意;B、是轴对称图形,不是中心对称的图形,不合题意;C、既是轴对称图形又是中心对称图形,故C符合题意;D都只是轴对称图形,故D不符合题意;故选:C.3.将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=27°,则∠BOC 的度数是()A.18°B.27°C.45°D.72°【考点】R2:旋转的性质.【分析】如图,首先运用旋转变换的性质求出∠AOC的度数,结合∠AOB=27°,即可解决问题.【解答】解:如图,由题意及旋转变换的性质得:∠AOC=45°,∵∠AOB=21°,∴∠BOC=45°﹣27°=18°,故选A,4.与三角形三个顶点距离相等的点,是这个三角形的()A.三条中线的交点 B.三条角平分线的交点C.三条高的交点D.三边的垂直平分线的交点【考点】KG:线段垂直平分线的性质.【分析】可分别根据线段垂直平分线的性质进行思考,首先满足到A点、B点的距离相等,然后思考满足到C点、B点的距离相等,都分别在各自线段的垂直平分线上,于是答案可得.【解答】解:如图:∵OA=OB,∴O在线段AB的垂直平分线上,∵OB=OC,∴O在线段BC的垂直平分线上,∵OA=OC,∴O在线段AC的垂直平分线上,又三个交点相交于一点,∴与三角形三个顶点距离相等的点,是这个三角形的三边的垂直平分线的交点.故选:D.5.如图,在△ABC中,AB=AC,过A点作AD∥BC,若∠BAD=110°,则∠BAC的大小为()A.30°B.40°C.50°D.70°【考点】KH:等腰三角形的性质;JA:平行线的性质.【分析】根据平行线的性质求出∠C,根据等腰三角形的性质得出∠B=∠C=70°,根据三角形内角和定理求出即可.【解答】解:∵AB=AC,∴∠B=∠C,∵AD∥BC,∠1=70°,∴∠C=∠1=70°,∴∠B=70°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣70°﹣70°=40°,故选B.6.如图表示的是不等式组()的解集.A.B.C.D.【考点】C4:在数轴上表示不等式的解集.【分析】先求出每个不等式组的解集,再在数轴上表示出来,最后判断即可.【解答】解:A、的解集是x<﹣2,在数轴上表示为:,故本选项不符合题意;B、的解集是﹣2<x≤1,在数轴上表示为:,故本选项符合题意;C、的解集是空集,在数轴上表示为:,故本选项不符合题意;D、的解集是x≥1,在数轴上表示为:,故本选项不符合题意;故选B.7.在平面直角坐标系中,已知点A(﹣1,0),B(1,2),将线段AB平移后得线段CD,若点A的对应点C的坐标为(1,﹣2),则点B的对应点D的坐标为()A.(3,0) B.(3,﹣1)C.(3,﹣3)D.(﹣1,3)【考点】Q3:坐标与图形变化﹣平移.【分析】根据点A、C的坐标确定出平移规律,再根据平移规律解答即可.【解答】解:∵点A(﹣1,0)的对应点C的坐标为(1,﹣2),∴平移规律为向右平移2个单位,向下平移2个单位,∴B(1,2)的对应点D的坐标为(3,0).故选A.8.如图,OC是∠AOB的角平分线.D,E分别是OA,OB上的点,则下列条件中不能判定△OCD与△OCE全等的是()A.∠OCD=∠OCE B.CD⊥OA,CE⊥OB C.OD=OE D.CD=CE【考点】KF:角平分线的性质;KB:全等三角形的判定.【分析】利用全等三角形的判定定理解答即可.【解答】解:,∴△OCD≌△OCE(ASA),A能判定△OCD与△OCE全等;当CD⊥OA,CE⊥OB时,由AAS得到△OCD≌△OCE,B能判定△OCD与△OCE 全等;当OD=OE时,由SAS得到△OCD≌△OCE,C能判定△OCD与△OCE全等;D不能判定△OCD与△OCE全等;故选:D.9.如图,在△ABC中,AB=AC,∠A=30°,AC的垂直平分线分别交AB,AC于D,E.连接CD,若CD=1cm,则BD的长为()A.1cm B.(﹣1)cm C.cm D.cm【考点】KO:含30度角的直角三角形;KG:线段垂直平分线的性质;KH:等腰三角形的性质.【分析】根据线段垂直平分线的性质得到AD=CD,∠ACD=∠A=30°,DE⊥AC,解直角三角形即可得到结论.【解答】解:∵AC的垂直平分线分别交AB、AC于D、E,∴AD=CD,∠ACD=∠A=30°,DE⊥AC,∵CD=1,∴AC=2CE=,∴AB=,∴BD=AB﹣AD=﹣1.故选:B.10.已知一根火腿肠2元,一盒方便面3元,小明外出时想用不超过15元来购买这两种食品,且至少购买一根火腿肠和一盒方便面,那么他可以采用的不同的购买方案有()A.12种B.13种C.14种D.15种【考点】95:二元一次方程的应用.【分析】根据题意列出不等式组,求出不等式组的整数解即可.【解答】解:设小明一根火腿肠x根,一盒方便面y盒,则解得:1≤y≤,1≤x≤7.5,当y=1时,x只能为6、5、4、3、2、1,共6个,当y=2时,x只能为4、3、2、1,共4个,当y=3时,x只能为3、2、1,共3个,当y=4时,x只能为1,共1个,∴6+4+3+1=14,故选C.二、填空题:(本题满分24分,共有8道小题,每小题3分,请把正确答案填写在答题卡的相应位置)11.不等式(x﹣1)<x+1的负整数解是﹣1,﹣2.【考点】C7:一元一次不等式的整数解.【分析】根据解一元一次不等式基本步骤:去分母、移项、合并同类项、系数化为1可得不等式的解集,继而可得其负整数解.【解答】解:去分母,得:x﹣1<2x+2,移项,得:x﹣2x<2+1,合并同类项,得:﹣x<3,系数化为1,得:x>﹣3,则该不等式的负整数解为﹣1、﹣2,故答案为:﹣1,﹣2.12.如图,△ABC中,∠ACB=90°,D在AB上,若AD=AC,且∠A=50°,则∠DCB 的度数为25°.【考点】KH:等腰三角形的性质.【分析】根据等腰三角形的性质得到∠ACD=∠ADC=65°,根据角的和差即可得到结论.【解答】解:∵AD=AC,且∠A=50°,∴∠ACD=∠ADC=65°,∵∠ACB=90°,∴∠DCB=90°﹣65°=25°,故答案为:25.13.已知关于x的不等式x﹣a≥﹣2的解集在数轴上表示如图,则a的值为1.【考点】C6:解一元一次不等式;C4:在数轴上表示不等式的解集.【分析】直接利用已知不等式的解集得出关于a的等式进而得出答案.【解答】解:∵x﹣a≥﹣2的解集在数轴上为:x≥﹣1,则x≥a﹣2,故a﹣2=﹣1,解得:a=1.故答案为1.14.若等腰三角形一腰上的高与另一腰的夹角为48°,则其顶角度数为42或132°.【考点】KH:等腰三角形的性质.【分析】分两种情况:等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角,分别进行求解即可.【解答】解:①如图1,当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+42°=132°;②如图1,当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣48°=42°.故答案为:42或132.15.如图,△ABC中,∠CAB=70°,将△ABC绕点A旋转得到△ADE,连接CE,若AB∥EC,则∠CAD的度数为30°.【考点】R2:旋转的性质;JA:平行线的性质.【分析】根据旋转的性质得AE=AC,∠CAB=∠EAD=70°,再根据等腰三角形的性质得∠AEC=∠ACE,然后根据平行线的性质由CE∥AB得∠ACE=∠CAB=70°,则∠AEC=∠ACE=70°,再根据三角形内角和计算出∠CAE=40°,所以∠CAD=30°【解答】解:∵△ABC绕点A逆时针旋转到△AED的位置,∴AE=AC,∠CAB=∠EAD=70°,∴∠ACE=∠AEC,∵CE∥AB,∴∠ACE=∠CAB=70°,∴∠AEC=∠ACE=70°,∴∠CAE=180°﹣2×70°=40°,∴∠CAD=∠EAD﹣∠EAC=30°故答案为:30.16.如图,将Rt△ABC绕点C顺时针旋转90°得到△DCE,连接AE,若∠AED=10°,则∠B的度数为55°.【考点】R2:旋转的性质.【分析】根据旋转的性质可得AC=EC,然后判断出△ACE是等腰直角三角形,根据等腰直角三角形的性质可得∠CAE=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠CDE,然后根据旋转的性质可得∠B=∠CDE.【解答】解:∵将Rt△ABC绕点C顺时针旋转90°得到△DCE,∴AC=AE,∴△ACE是等腰直角三角形,∴∠CAE=45°,∴∠CDE=∠AED+∠CAE=10°+45°=55°,由旋转的性质得∠B=∠CDE=55°.故答案为:55.17.如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6cm,将△ABC沿着AC方向平移2cm得△DEF,DE交BC于点G,则四边形CGEF的面积为10cm2.【考点】Q2:平移的性质.【分析】根据直角三角形两锐角互余求出∠B=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出AB,再利用勾股定理列式求出BC,然后求出△ABC 的面积,从而得到△DEF的面积,再求出CD,同理求出DG、CG,然后求出△CDG 的面积,最后根据S四边形CGEF=S△DEF﹣S△CDG列式计算即可得解.【解答】解:∵∠ACB=90°,∠A=60°,∴∠B=90°﹣60°=30°,∴AB=2AC=2×6=12cm,在Rt△ABC中,根据勾股定理得,BC===6cm,∴S△ABC=×6×6=18cm2,∵△ABC沿着AC方向平移2cm得△DEF,∴S△DEF=S△ABC=18cm2,由平移得,AD=2cm,所以,CD=6﹣2=4cm,同理可得,DG=2CD=8cm,CG=4cm,所以,S△CDG=×4×4=8cm2,所以,S四边形CGEF =S△DEF﹣S△CDG=18﹣8=10cm2.故答案为:10.18.如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E,若AC=3cm,AB=5cm,则DE=cm.【考点】KQ:勾股定理;KF:角平分线的性质.【分析】根据勾股定理求出BC,得到△ABC的面积,根据角平分线的性质得到DE=DC,根据三角形的面积公式计算即可.【解答】解:∵∠ACB=90°,AC=3cm,AB=5cm,∴BC==4,∴Rt△ABC的面积为:×3×4=6,∵AD平分∠BAC,DE⊥AB,∠ACB=90°,∴DE=DC,∴×AC×CD+×AB×DE=6,解得,DE=cm,故答案为:.三、解答题:(本题满分66分,共有8道小题)19.尺规作图:用直尺和圆规作图,不写作法,保留痕迹.已知:△ABC.求作:点P,使PB=PC,且P到边AB,AC的距离相等.【考点】N3:作图—复杂作图;KF:角平分线的性质;KG:线段垂直平分线的性质.【分析】分别作线段BC的垂直平分线与∠A的角平分线,两直线的交点即为P点.【解答】解:如图,点P即为所求.20.已知,△ABC在方格纸(每个小方格的边长为1个单位长度)中的位置如图,将△ABC绕点A旋转90°,再向右平移3个单位长度得△DEF,请在方格纸中画出△DEF.【考点】R8:作图﹣旋转变换;Q4:作图﹣平移变换.【分析】先作出△ABC绕点A旋转90°后所得图形,再向右平移3个单位长度得△DEF.【解答】解:如图,△DEF即为所求.21.解答下列各题:(1)解不等式6(x﹣1)≥3+4x(2)解不等式<(3)解不等式+1>x﹣3,请把它的解集表示在数轴上(4)解不等式组,并求出它的整数解.【考点】CC:一元一次不等式组的整数解;C4:在数轴上表示不等式的解集;C6:解一元一次不等式;CB:解一元一次不等式组.【分析】(1)去括号,移项,合并同类项,系数化成1即可;(2)去分母,去括号,移项,合并同类项,系数化成1即可;(3)去分母,去括号,移项,合并同类项,系数化成1即可;(4)先求出不等式组的解集,再求出整数解即可.【解答】解:(1)6(x﹣1)≥3+4x,6x﹣6≥3+4x,6x﹣4x≥3+6,2x≥9,x≥4.5;(2)<,3(x﹣2)<2(7﹣x),3x﹣6<14﹣2x,3x+2x<14+6,5x<20,x<4;(3)+1>x﹣3,x﹣5+2>2x﹣6,x﹣2x>﹣6+5﹣2,﹣x>﹣3,x<3,在数轴上表示为:;(4)∵解不等式①得:x<2,解不等式②得:x≥﹣1,∴不等式组的解集为﹣1≤x<2,∴不等式组的整数解为﹣1,0,1.22.某次国学知识竞赛初赛共20道题,(满分100分),评分办法是:答对1道题得5分,答错或不答倒扣2分,选手至少答对多少题才能得到70分以上(含70分)?【考点】C9:一元一次不等式的应用.【分析】找到关键描述语,进而找到所求的量的等量关系.得到不等式5x﹣2(20﹣x)≥70,求解即可.【解答】解:设答对x道,依题意有5x﹣2(20﹣x)≥70,解得:x≥15.故至少要答对16道题才能得到70分以上(含70分).23.已知:如图,∠A=∠D=90°,AC=BD求证:△AOB≌△DOC.【考点】KB:全等三角形的判定.【分析】根据全等三角形的判定和性质即可得到结论.【解答】证明:∵∠A=∠D=90°,在Rt△BAC与Rt△CDB中,,∴Rt△BAC≌Rt△CDB(HL),∴AB=CD,在△AOB与△DOC中,,∴△AOB≌△DOC.24.如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,∠ABC的平分线BF交AD 于点E,交AC于点F,FH⊥BC于点H,求证:AE=FH.【考点】KF:角平分线的性质.【分析】根据角平分线上的点到两边的距离相等可得:FH=FA;则只要在确定FA 与AE的关系即可确定AE与FH之间的关系;在直角三角形AFB中∠AFB+∠ABF=90°,在直角三角形BDE中,∠DEB+∠EBD=90°,根据角平分线的性质可知:∠ABF=∠DBE,则∠AFB=∠DEB,又知∠AEF=∠DEB,则∠AFB=∠AEF,所以AE=FA,则AE=FH.【解答】证明:∵BF平分∠ABC,FA⊥AB,FH⊥BC,∴FH=FA,∵∠AFB+∠ABF=90°,∠DEB+∠EBD=90°,且∠ABF=∠EBD,∴∠AFB=∠DEB,∵∠AEF=∠DECB,∴∠AFB=∠AEF,∴AE=FA,∴AE=FH.25.已知:如图,等边三角形△ABC的周长为3,D为AB的中点,E在CB的延长线上,且BE=BD,连接DE.求:DE的长.【考点】KK:等边三角形的性质;KQ:勾股定理.【分析】根据等边三角形的性质得到AB=AC=BC=1,∠A=∠ABC=∠ACB=60°,CD ⊥AB,AD=AB=,根据勾股定理得到CD==,于是得到结论.【解答】解:∵△ABC是等边三角形,且周长为3,∴AB=AC=BC=1,∠A=∠ABC=∠ACB=60°,∵D为AB的中点,∴CD⊥AB,AD=AB=,∠DCA=∠DCB=ACB=30°,∴CD==,∵BE=BD,∠ABC=∠E+∠BDE,∴∠E=∠BDE=ACB=30°=∠DCB,∴CD=DE=.26.“六一儿童节”即将结束,某幼儿园计划采购一批市场价为20元/件的益智玩具,甲、乙两家工厂给出了不同的优惠方案,方案如下:甲工厂:采购金额超过500元后,超过的部分按九折付款;乙工厂:采购金额超过1000元后,超过的部分按八折付款.(1)如果幼儿园采购的数量超过了50件,应该到哪家工厂进行采购更合算?(2)如果幼儿园选择到乙工厂进行采购,那么幼儿园至少应该采购多少件,才能使每件玩具的平均价格不超过18元?【考点】C9:一元一次不等式的应用.【分析】(1)设幼儿园计划采购益智玩具x件,选择甲工厂时费用为y1,选择乙工厂时费用为y2,由采购的优惠条件分别得到y1=18x+50,y2=16x+200.分三种情况讨论:甲=乙,甲>乙,甲<乙;(2)设幼儿园到乙工厂采购益智玩具x件,由题意得16x+200≤18x,解该不等式即可.【解答】解:(1)∵20×50=1000(元),∴幼儿园到两家工厂采购均可得到优惠.设幼儿园计划采购益智玩具x件,选择甲工厂时费用为y1,选择乙工厂时费用为y2,由题意得y1=500+0.9(20x﹣500)=18x+50.y2=1000+0.8(20x﹣1000)=16x+200.由y1=y2,得18x+50=16x+200,解得x=75.由y1<y2,得18x+50<16x+200,解得x<75.由y1>y2,得18x+50>16x+200,解得x>75.∵采购的数量超过了50件,∴当采购的数量为50<x<75时,选择甲工厂时费用较低.当采购的数量为75件时,选择两家工厂的费用一样.当采购的数量为x>75时,选择乙工厂时费用较低.(2)设幼儿园到乙工厂采购益智玩具x件,由题意得16x+200≤18x,解得x≥100.所以,该幼儿园到乙工厂至少采购100件时,才能能使每件玩具的平均价格不超过18元.。
2017-2018学年八年级下学期期中考试数学试题(一)姓名:_________班级:_________考号:________得分:__________第I 卷(选择题)一、单选题1.下列计算正确的是( ) A.822-=B. 235+=C. 236⨯=D. 824÷=2.下列二次根式中属于最简二次根式的是 ( ) A. 2xy B. 2ab C. 0.5 D. 22x 3.平行四边形、矩形、菱形、正方形都具有的性质是( )A. 对角线互相平分B. 对角线互相垂直C. 对角线相等D. 轴对称图形4.一个菱形的两条对角线的长分别为5和8,那么这个菱形的面积是( )A. 40B. 20C. 10D. 255.已知△ABC 的各边长度分别为3cm ,4cm ,5cm ,则连结各边中点的三角形的周长为( )A. 2cmB. 7cmC. 5cmD. 6cm6.满足下列条件的三角形中,不是直角三角形的是( )A. 三内角之比为1:2:3B. 三边长的平方之比为1:2:3C. 三边长之比为3:4:5D. 三内角之比为3:4:57.已知直角三角形两边的长为3和4,则此三角形的周长为( ) A. 12 B. 7+7 C. 12或7+7 D. 以上都不对8.如图,□ABCD 中,AE 平分∠DAB ,∠B=100°,则∠AED 的度数为A. 100°B. 80°C. 60°D. 40°9.在下列命题中,正确的是 ( )A. 一组对边平行的四边形是平行四边形B. 有一个角是直角的四边形是矩形C. 有一组邻边相等的平行四边形是菱形D. 对角线互相垂直平分的四边形是正方形10.若顺次连接四边形ABCD 各边的中点所得四边形是菱形,则四边形ABCD 一定是( )A. 菱形B. 对角线互相垂直的四边形C. 矩形D. 对角线相等的四边形11.已知a+1a=√7,则a-1a=()A. √3B. ﹣√3C. ±√3D. ±√1112.如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是()①∠DCF=12∠BCD②EF=CF③S△BEC=2S△CEF④∠DFE=3∠AEFA. ①②③B. ①②C. ②③④D. ①②④第II卷(非选择题)二、填空题13.使41x 有意义的x的取值范围是 .14.已知x=2﹣√3,则代数式(7+4√3)x2的值是_____.15.如图所示,在数轴上点A所表示的数为a,则a的值为_____.16.如图,正方形ABCD的面积为25,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为_____________。
2017-2018学年山东省济南市章丘市八年级(下)期中数学试卷一.单项选择题(每题4分,共60分)1.若x<y,则下列不等式中不成立的是()A.x﹣1<y﹣1B.3x<3y C.<D.﹣2x<﹣2y2.下列图形中,是轴对称图形又是中心对称图形的是()A.B.C.D.3.△ABC中,∠A,∠B,∠C的对边分别为a、b、c,下列说法中错误的()A.如果∠C﹣∠B=∠A,则△ABC是直角三角形,且∠C=90°B.如果c2=a2﹣b2,则△ABC是直角三角形,且∠C=90°C.如果(c+a)(c﹣a)=b2,则△ABC是直角三角形,且∠C=90°D.如果∠A:∠B:∠C=3:2:5,则△ABC是直角三角形,且∠C=90°4.不等式组的解集在数轴上表示为()A.B.C.D.5.下列由左到右的变形中,属于因式分解的是()A.x2﹣2x﹣3=(x﹣3)(x+1)B.x2﹣4+3x=(x+2)(x﹣2)+3xC.(x+8)(x﹣8)=x2﹣64D.x2﹣4x+4=x(x﹣4)+46.小名把分式中的x、y的值都扩大2倍,却搞不清分式的值有什么变化,请帮他选出正确的答案()A.不变B.扩大2倍C.扩大4倍D.缩小一半7.如图,等腰△ABC中,AB=AC,∠B=40°,AC边的垂直平分线交BC于点E,连接AE,则∠BAE的度数是()A.45°B.50°C.55°D.60°8.﹣(a+3)(a﹣3)是多项式()分解因式的结果.A.a2﹣9B.a2+9C.﹣a2﹣9D.﹣a2+99.把直线a沿箭头方向平移1.5cm得直线b.这两条直线之间的距离是()A.1.5cm B.3cm C.0.75cm D.cm10.小强是一位密码翻译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:南、爱、我、济、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是()A.我爱美B.济南游C.我爱济南D.美我济南11.如图,在△ABC中,∠C=90°,∠BAC=70°,将△ABC绕点A顺时针旋转70°,B、C旋转后的对应点分别是B′和C′,连接BB′,则∠BB′C′的度数是()A.35°B.40°C.45°D.50°12.当与的和为时,x的值为()A.﹣5B.5C.±5D.无解13.某工厂计划生产1500个零件,但是在实际生产时,……,求实际每天生产零件的个数,在这个题目中,若设实际每天生产零件x个,可得方程,则题目中用“……”表示的条件应是()A.每天比原计划多生产5个,结果延期10天完成B.每天比原计划多生产5个,结果提前10天完成C.每天比原计划少生产5个,结果延期10天完成D.每天比原计划少生产5个,结果提前10天完成14.已知一次函数y=kx+b的图象如图所示,则关于x的不等式k(x﹣4)﹣2b≥0的解集为()A.x≥﹣2B.x≤﹣2C.x≤3D.x≥315.如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则B6B7的边长为()A.6B.12C.32D.64二.填空题(每题4分,共24分)16.已知等腰三角形的一个内角是80°,则它的底角是°.17.分解因式:3x2﹣75=.18.关于x的不等式﹣2x+a≥5的解集如图所示,则a的值是.19.如图,在平面直角坐标系中,点A的坐标为(0,4),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点A′是直线y=x上一点,则点B与其对应点B′间的距离为.20.如图,△ABC 中,BD 平分∠ABC ,BC 的中垂线交BC 于点E ,交BD 于点F ,连接CF .若∠A =60°,∠ACF =42°,则∠ABC = °.21.若分式方程:2﹣=无解,则k = . 三.解答题(共66分)22.(8分)化简(1)(2) 23.(8分)分解因式(1)3a 3﹣6a 2b +3ab 2(2)a 2(x ﹣y )+9b 2(y ﹣x )24.(6分)解不等式(组)解不等式组,并把不等式组的解集在数轴上表示出来. 25.(10分)某市文化宫学习十九大有关优先发展交于的精神,举办了为某贫困山区小学捐赠书包活动.首次用2000元在商店购进一批学生书包,活动进行后发现书包数量不够,又购进第二批同样的书包,所购数量是第一批数量的3倍,但单价贵了4元,结果第二批用了6300元. (1)求文化宫第一批购进书包的单价是多少?(2)商店两批书包每个的进价分别是68元和70元,这两批书包全部售给文化宫后,商店共盈利多少元?26.(10分)先阅读理解,再解答问题.解不等式:>1解:把不等式>1进行整理,得﹣1>0,即>0.则有(1),或(2).解不等式组(1),得<x<1;解不等式组(2),得其无解.所以原不等式的解集为<x<1.请根据以上解不等式的方法解不等式:<2.27.(12分)如图,在平面直角坐标系xOy中,已知Rt△DOE,∠DOE=90°,OD=3,点D在y 轴上,点E在x轴上,在△ABC中,点A,C在x轴上,AC=5,∠ACB+∠ODE=180°,∠B =∠OED,BC=DE.按下列要求画图(保留作图痕迹):(1)将△ODE绕O点按逆时针方向旋转90°得到△OMN(其中点D的对应点为点M,点E的对应点为点N),在图(1)画出△OMN;(2)将△ABC沿x轴向右平移得到△A′B′C′(其中A,B,C的对应点分别为点A′,B′,C′),使得B′C′与(1)中△OMN的边NM重合,画出平移后的三角形A′B′C′;(3)求OE的长.28.(12分)在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图①,若△ABC是等边三角形,且AB=AC=2,点D在线段BC上.①求证:∠BCE+∠BAC=180°;②当四边形ADCE的周长取最小值时,求BD的长.(2)若∠BAC≠60°,当点D在射线BC上移动,如图②,则∠BCE和∠BAC之间有怎样的数量关系?并说明理由.2017-2018学年山东省济南市章丘市八年级(下)期中数学试卷参考答案与试题解析一.单项选择题(每题4分,共60分)1.若x<y,则下列不等式中不成立的是()A.x﹣1<y﹣1B.3x<3y C.<D.﹣2x<﹣2y【分析】利用不等式的基本性质判断即可.【解答】解:若x<y,则x﹣1<y﹣1,选项A成立;若x<y,则3x<3y,选项B成立;若x<y,则<,选项C成立;若x<y,则﹣2x>﹣2y,选项D不成立,故选:D.【点评】此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.2.下列图形中,是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,不是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,也是中心对称图形.故正确.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.△ABC中,∠A,∠B,∠C的对边分别为a、b、c,下列说法中错误的()A.如果∠C﹣∠B=∠A,则△ABC是直角三角形,且∠C=90°B.如果c2=a2﹣b2,则△ABC是直角三角形,且∠C=90°C.如果(c+a)(c﹣a)=b2,则△ABC是直角三角形,且∠C=90°D.如果∠A:∠B:∠C=3:2:5,则△ABC是直角三角形,且∠C=90°【分析】根据勾股定理的逆定理以及直角三角形的各种判定方法逐项分析即可.【解答】解:A、因为∠C﹣∠B=∠A,∠C+∠B+∠A=180°,所以2∠C=180°,即∠C=90°,故选项正确;B、因为c2=a2﹣b2,所以如果a2=b2+c2,则△ABC是直角三角形,且∠A=90,不是∠C=90°,故该选项错误;C、因为(c+a)(c﹣a)=b2,所以C2=a2+b2,则△ABC是直角三角形,且∠C=90°,故选项正确;D、因为∠A:∠B:∠C=3:2:5,所以∠A=54°,∠B=36°,∠C=90°,则△ABC是直角三角形,且∠C=90°,故选项正确;故选:B.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可,解题的关键是熟记直角三角形的各种判定方法,并能够灵活运用.4.不等式组的解集在数轴上表示为()A.B.C.D.【分析】求出不等式组的解集,表示在数轴上即可.【解答】解:,由①得:x>1,由②得:x≤2,则不等式组的解集为1<x≤2,表示在数轴上,如图所示:故选:C.【点评】此题考查了在数轴上表示不等式的解集,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.5.下列由左到右的变形中,属于因式分解的是()A.x2﹣2x﹣3=(x﹣3)(x+1)B.x2﹣4+3x=(x+2)(x﹣2)+3xC.(x+8)(x﹣8)=x2﹣64D.x2﹣4x+4=x(x﹣4)+4【分析】根据因式分解的定义逐个判断即可.【解答】解:A、属于因式分解,故本选项符合题意;B、不属于因式分解,故本选项不符合题意;C、不属于因式分解,故本选项不符合题意;D、不属于因式分解,故本选项不符合题意;故选:A.【点评】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.6.小名把分式中的x、y的值都扩大2倍,却搞不清分式的值有什么变化,请帮他选出正确的答案()A.不变B.扩大2倍C.扩大4倍D.缩小一半【分析】分别用2x和2y去代换原分式中的x和y,利用分式的基本性质化简即可.【解答】解:分别用2x和2y去代换原分式中的x和y,得==,可见新分式是原分式的倍;故选:D.【点评】解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.7.如图,等腰△ABC中,AB=AC,∠B=40°,AC边的垂直平分线交BC于点E,连接AE,则∠BAE的度数是()A.45°B.50°C.55°D.60°【分析】由于AB=AC,∠B=40°,根据等边对等角可以得到∠C=40°,又AC边的垂直平分线交BC于点E,根据线段的垂直平分线的性质得到AE=CE,再根据等边对等角得到∠C=40°=∠CAE,再根据三角形的内角和求出∠BAC即可求出∠BAE的度数.【解答】解:∵AB=AC,∠B=40°,∴∠B=∠C=40°,∴∠BAE=180°﹣∠B﹣∠C=100°,又∵AC边的垂直平分线交BC于点E,∴AE=CE,∴∠CAE=∠C=40°,∴∠BAE=∠BAE﹣∠CAE=60°.故选:D.【点评】此题考查了线段的垂直平分线的性质和等腰三角形的性质;利用角的等量代换是正确解答本题的关键.8.﹣(a+3)(a﹣3)是多项式()分解因式的结果.A.a2﹣9B.a2+9C.﹣a2﹣9D.﹣a2+9【分析】直接利用多项式的乘法运算法则计算得出答案.【解答】解:∵﹣(a+3)(a﹣3)=﹣(a2﹣9)=﹣a2+9,∴﹣(a+3)(a﹣3)是多项式(﹣a2+9)分解因式的结果.故选:D.【点评】此题主要考查了因式分解,正确应用平方差公式是解题关键.9.把直线a沿箭头方向平移1.5cm得直线b.这两条直线之间的距离是()A.1.5cm B.3cm C.0.75cm D.cm【分析】作出两直线间的距离的线段,然后根据直角三角形30°角所对的直角边等于斜边的一半解答即可.【解答】解:如图,设两直线间的距离为h,∵平移方向与a的夹角为30°,∴h=×1.5=0.75cm.故选:C.【点评】本题主要考查了直角三角形30°角所对的直角边等于斜边的一半的性质,熟记性质是解题的关键.10.小强是一位密码翻译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:南、爱、我、济、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是()A.我爱美B.济南游C.我爱济南D.美我济南【分析】将原式进行因式分解即可求出答案.【解答】解:∵(x2﹣y2)a2﹣(x2﹣y2)b2=(x2﹣y2)(a2﹣b2)=(x﹣y)(x+y)(a﹣b)(a+b),∵x﹣y,x+y,a+b,a﹣b四个代数式分别对应爱、我,济,南,∴结果呈现的密码信息可能是“爱我济南”,故选:C.【点评】本题考查了公式法的因式分解运用,熟练掌握因式分解的方法是解本题的关键11.如图,在△ABC中,∠C=90°,∠BAC=70°,将△ABC绕点A顺时针旋转70°,B、C旋转后的对应点分别是B′和C′,连接BB′,则∠BB′C′的度数是()A.35°B.40°C.45°D.50°【分析】首先在△ABB'中根据等边对等角,以及三角形内角和定理求得∠ABB'的度数,然后在直角△BB'C中利用三角形内角和定理求解.【解答】解:∵AB=AB',∴∠ABB'=∠AB'B===55°,在直角△BB'C中,∠BB'C=90°﹣55°=35°.故选:A.【点评】本题考查了旋转的性质,在旋转过程中根据旋转的性质确定相等的角和相等的线段是关键.12.当与的和为时,x的值为()A.﹣5B.5C.±5D.无解【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:+=,去分母得:x+3+x﹣3=10,解得:x=5,经检验x=5是分式方程的解.故选:B.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.13.某工厂计划生产1500个零件,但是在实际生产时,……,求实际每天生产零件的个数,在这个题目中,若设实际每天生产零件x个,可得方程,则题目中用“……”表示的条件应是()A.每天比原计划多生产5个,结果延期10天完成B.每天比原计划多生产5个,结果提前10天完成C.每天比原计划少生产5个,结果延期10天完成D.每天比原计划少生产5个,结果提前10天完成【分析】设实际每天生产零件x个,则原计划每天生产零件(x﹣5)个,根据提前10天完成任务,列方程即可.【解答】解:,由分式方程可知,实际每天比原计划多生产5个,实际提前10天完成.故选:B.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程即可.14.已知一次函数y=kx+b的图象如图所示,则关于x的不等式k(x﹣4)﹣2b≥0的解集为()A.x≥﹣2B.x≤﹣2C.x≤3D.x≥3【分析】先把(3,0)代入y=kx+b得b=﹣3k,则不等式化为k(x﹣4)+6k≥0,然后在k<0的情况下解不等式即可.【解答】解:把(3,0)代入y=kx+b得3k+b=0,则b=﹣3k,所以k(x﹣4)﹣2b≥0化为k(x﹣4)+6k≥0,因为k<0,所以x﹣4+6≤0,所以x≤﹣2.故选:B.【点评】本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.15.如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则B6B7的边长为()A.6B.12C.32D.64【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得到A7B7=26B1A2=26=64,B6A7==32,再根据勾股定理即可解答.【解答】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2=2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:A7B7=26B1A2=26=64,B6A7==32,△B7B6A7是直角三角形,∠B7B6A7=90°,∴B6B7===32.故选:C.【点评】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.二.填空题(每题4分,共24分)16.已知等腰三角形的一个内角是80°,则它的底角是50或80°.【分析】由于不明确80°的角是等腰三角形的底角还是顶角,故应分80°的角是顶角和底角两种情况讨论.【解答】解:分两种情况:①当80°的角为等腰三角形的顶角时,底角的度数=(180°﹣80°)÷2=50°;②当80°的角为等腰三角形的底角时,其底角为80°,故它的底角度数是50或80.故答案为50或80.【点评】本题考查的是等腰三角形的性质及三角形内角和定理;解答此题时要注意80°的角是顶角和底角两种情况,不要漏解,分类讨论是正确解答本题的关键.17.分解因式:3x2﹣75=3(x+5)(x﹣5).【分析】首先提取公因式3,进而利用平方差公式分解因式即可.【解答】解:3x2﹣75=3(x2﹣25)=3(x+5)(x﹣5).故答案为:3(x+5)(x﹣5).【点评】此题主要考查了公式法以及提取公因式法分解因式,正确应用公式是解题关键.18.关于x的不等式﹣2x+a≥5的解集如图所示,则a的值是3.【分析】先把a当作已知条件求出x的取值范围,再根据不等式的解集为x<﹣1即可得出a的值.【解答】解:解不等式﹣2x+a≥5得x≤,∵由图可知,不等式的解集为x≤﹣1,∴=﹣1,解得a=3.故答案为:3.【点评】本题考查的是在数轴上表示不等式的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.19.如图,在平面直角坐标系中,点A的坐标为(0,4),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点A′是直线y=x上一点,则点B与其对应点B′间的距离为5.【分析】根据平移的性质知BB′=AA′.由一次函数图象上点的坐标特征可以求得点A′的坐标,所以根据两点间的距离公式可以求得线段AA′的长度,即BB′的长度.【解答】解:如图,连接AA′、BB′.∵点A的坐标为(0,4),△OAB沿x轴向右平移后得到△O′A′B′,∴点A′的纵坐标是4.又∵点A的对应点在直线y=x上一点,∴4=x,解得x=5.∴点A′的坐标是(5,4),∴AA′=5.∴根据平移的性质知BB′=AA′=5.故答案为:5.【点评】本题考查了一次函数图象上点的坐标特征、坐标与图形变化﹣﹣平移.根据平移的性质得到BB′=AA′是解题的关键.20.如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A =60°,∠ACF=42°,则∠ABC=52°.【分析】根据角平分线的性质可得∠DBC=∠ABD,再根据线段垂直平分线的性质可得BF=CF,进而可得∠FCE=26°,然后可算出∠ABC的度数.【解答】解:∵BD平分∠ABC,∴∠DBC=∠ABD,∵∠A=60°,∴∠ABC+∠ACB=120°,∵∠ACF=48°,∵BC的中垂线交BC于点E,∴BF=CF,∴∠FCB=∠FBC,∴∠ABC=2∠FCE,∵∠ACF=42°,∴3∠FCE=120°﹣42°=78°,∴∠FCE=26°,∴∠ABC=52°,故答案为52.【点评】此题主要考查了线段垂直平分线的性质,以及三角形内角和定理,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.21.若分式方程:2﹣=无解,则k=0、﹣2.【分析】根据分式方程两边同乘(x﹣2),可得整式方程,根据分式方程无解,可得x=2,把x =2代入整式方程,可得答案.【解答】解:方程两边同乘(x﹣2),得2(x﹣2)﹣(1﹣kx)=﹣1,即(2+k)x=4,∴k=﹣2时,整式方程无解,∵分式方程无解,∴x=2,把x=2代入2(x﹣2)﹣(1﹣kx)=﹣1得1﹣2k=1,∴k=0,2x﹣4﹣1=0,整式方程无解,综上所述,k=0或﹣2,故答案为:0、﹣2.【点评】本题考查了分式方程的解,先去分母转化成整式方程,由分式方程无解,可得x=2,把x=2代入整式方程,解出k值.三.解答题(共66分)22.(8分)化简(1)(2)【分析】(1)根据分式的减法和除法可以解答本题;(2)根据分式的减法可以解答本题.【解答】解:(1)===;(2)===.【点评】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.23.(8分)分解因式(1)3a3﹣6a2b+3ab2(2)a2(x﹣y)+9b2(y﹣x)【分析】(1)先提公因式法、则利用完全平方公式进行因式分解;(2)先提公因式法、则利用平方差公式进行因式分解.【解答】解:(1)原式=3a(a2﹣2ab+b2)=3a(a﹣b)2;(2)原式=(x﹣y)(a2﹣9b2)=(x﹣y)(a﹣3b)(a+3b).【点评】本题考查的是因式分解,掌握提公因式法、完全平方公式和平方差公式是解题的关键.24.(6分)解不等式(组)解不等式组,并把不等式组的解集在数轴上表示出来.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可.【解答】解:解:解不等式(1)得x≥﹣1;解不等式(2)得x<5;所以原不等式的解集是﹣1≤x<5.在数轴上的表示为.【点评】此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.25.(10分)某市文化宫学习十九大有关优先发展交于的精神,举办了为某贫困山区小学捐赠书包活动.首次用2000元在商店购进一批学生书包,活动进行后发现书包数量不够,又购进第二批同样的书包,所购数量是第一批数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)求文化宫第一批购进书包的单价是多少?(2)商店两批书包每个的进价分别是68元和70元,这两批书包全部售给文化宫后,商店共盈利多少元?【分析】(1)求的是单价,总价明显,一定是根据数量来列等量关系.本题的关键描述语是:“数量是第一批购进数量的3倍”;等量关系为:6300元购买的数量=2000元购买的数量×3.(2)根据盈利=总售价﹣总进价,进而求出即可.【解答】解:(1)设第一批购进书包的单价为x元.依题意,得,整理,得20(x+4)=21x,解得x=80.检验:当x=80时,x(x+4)≠0,∴x=80是原分式方程的解.答:第一批购进书包的单价为80元,(2)=300+1050=1350答:商店共盈利1350元.【点评】此题主要考查了分式方程的应用,应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系.26.(10分)先阅读理解,再解答问题.解不等式:>1解:把不等式>1进行整理,得﹣1>0,即>0.则有(1),或(2).解不等式组(1),得<x<1;解不等式组(2),得其无解.所以原不等式的解集为<x<1.请根据以上解不等式的方法解不等式:<2.【分析】利用题中的解法,把原不等式化为<0.再利用有理数的性质得到,或,然后解两个不等式组即可.【解答】解:原不等式进行整理,得<0,即<0.则有(1),或(2),解不等式组(1),得x>,解不等式组(2),得x<,所以原不等式的解集为x<或x>.【点评】本题考查了解不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.27.(12分)如图,在平面直角坐标系xOy中,已知Rt△DOE,∠DOE=90°,OD=3,点D在y 轴上,点E在x轴上,在△ABC中,点A,C在x轴上,AC=5,∠ACB+∠ODE=180°,∠B =∠OED,BC=DE.按下列要求画图(保留作图痕迹):(1)将△ODE绕O点按逆时针方向旋转90°得到△OMN(其中点D的对应点为点M,点E的对应点为点N),在图(1)画出△OMN;(2)将△ABC沿x轴向右平移得到△A′B′C′(其中A,B,C的对应点分别为点A′,B′,C′),使得B′C′与(1)中△OMN的边NM重合,画出平移后的三角形A′B′C′;(3)求OE的长.【分析】(1)利用旋转的性质,在x轴的负半轴上截取OM=OD,在y轴的正半轴上截取ON =OE,从而得到△OMN;(2)把B点平移到N点、C点平移到M点,再确定A点的对应点A′,从而得到三角形A′B′C′;(3)设OE=x,则ON=x,作MF⊥A′B′于点F,如图,利用已知条件、平移和旋转的性质得到B′C′平分∠A′B′O,且C′O⊥OB′,B′F=B′O=OE=x,FC′=OC′=OD=3,A′C′=AC=5,则利用勾股定理可计算出A′F=4,然后在Rt△A′B′O中利用勾股定理得到x2+82=(4+x)2,于是解方程求出x即可得到OE的长.【解答】解:(1)如图,△OMN为所作;(2)如图,△A′B′C′为所作;(3)设OE=x,则ON=x,作MF⊥A′B′于点F,如图,由作图可知B′C′平分∠A′B′O,且C′O⊥OB′,∴B′F=B′O=OE=x,FC′=OC′=OD=3,∵A′C′=AC=5,∴A′F==4,∴A′B′=x+4,A′O=5+3=8.在Rt△A′B′O中,x2+82=(4+x)2,解得x=6,即OE=6.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.28.(12分)在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图①,若△ABC是等边三角形,且AB=AC=2,点D在线段BC上.①求证:∠BCE+∠BAC=180°;②当四边形ADCE的周长取最小值时,求BD的长.(2)若∠BAC≠60°,当点D在射线BC上移动,如图②,则∠BCE和∠BAC之间有怎样的数量关系?并说明理由.【分析】(1)先判断出△ABD≌△ACE得出∠ACE=∠ABD=60°,即可得出结论;(2)先判断出BD=CE,进而得出四边形ADCE的周长=BC+2AD,判断出AD⊥BC时,周长最小,即可得出结论;(3)先判断出△ABD≌△ACE,进而得出∠ADB=∠AEC,即可得出结论.【解答】(1)证明:∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ABD≌△ACE,∴∠ACE=∠ABD=60°.∴∠BCE+∠BAC=180°,(2)解:∵△ABD≌△ACE,∴BD=CE四边形ADCE的周长=AD+DC+CE+AE=AD+DC+BD+AE=BC+2AD,∴当AD最短时,四边形ADCE的周长最小,即AD⊥BC时,周长最小,∵AB=AC,∴,(3)解:∠BCE+∠BAC=180°,理由如下:如图2,记AD,CE的交点为F,∵∠BAC=∠DAE,∴∠BAD=∠CAE.又∵AB=AC,AD=AE,∴△ABD≌△ACE.∴∠ADB=∠AEC,∵∠AFE=∠CFD,∴∠EAF=∠ECD.∵∠BAC=∠FAE,∠BCE+∠ECD=180°,∴∠BCE+∠BAC=180°.【点评】此题是四边形综合题,主要考查了等边三角形的性质,全等三角形的判定和性质,角的和差,判断出△ABD≌△ACE是解本题的关键.。
2017-2018学年山东省济南市章丘市八年级(下)期中数学试卷一.单项选择题(每题4分,共60分)1.(4分)若x y <,则下列不等式中不成立的是( )A .11x y -<-B .33x y <C .22x y <D .22x y -<-2.(4分)下列图形中, 是轴对称图形又是中心对称图形的是( )A .B .C .D .3.(4分)ABC ∆中,A ∠,B ∠,C ∠的对边分别为a 、b 、c ,下列说法中错误的( )A .如果CB A ∠-∠=∠,则ABC ∆是直角三角形,且90C ∠=︒B .如果222c a b =-,则ABC ∆是直角三角形,且90C ∠=︒C .如果2()()c a c a b +-=,则ABC ∆是直角三角形,且90C ∠=︒D .如果::3:2:5A B C ∠∠∠=,则ABC ∆是直角三角形,且90C ∠=︒4.(4分)不等式组31220x x ->⎧⎨-⎩…的解集在数轴上表示为( ) A . B .C .D .5.(4分)下列由左到右的变形中,属于因式分解的是( )A .223(3)(1)x x x x --=-+B .243(2)(2)3x x x x x -+=+-+C .2(8)(8)64x x x +-=-D .244(4)4x x x x -+=-+ 6.(4分)小名把分式x y xy-中的x 、y 的值都扩大2倍,却搞不清分式的值有什么变化,请帮他选出正确的答案( )A .不变B .扩大2倍C .扩大4倍D .缩小一半7.(4分)如图,等腰ABC ∆中,AB AC =,40B ∠=︒,AC 边的垂直平分线交BC 于点E ,连接AE ,则BAE ∠的度数是( )A .45︒B .50︒C .55︒D .60︒8.(4分)(3)(3)a a -+-是多项式( )分解因式的结果.A .29a -B .29a +C .29a --D .29a -+9.(4分)把直线a 沿箭头方向平移1.5cm 得直线b .这两条直线之间的距离是( )A .1.5cmB .3cmC .0.75cmD 10.(4分)小强是一位密码翻译爱好者, 在他的密码手册中, 有这样一条信息:a b -,x y -,x y +,a b +,22x y -,22a b -分别对应下列六个字: 南、 爱、 我、 济、 游、 美, 现将222222()()x y a x y b ---因式分解, 结果呈现的密码信息可能是( )A . 我爱美B . 济南游C . 我爱济南D . 美我济南11.(4分)如图,在ABC ∆中,90C ∠=︒,70BAC ∠=︒,将ABC ∆绕点A 顺时针旋转70︒,B 、C 旋转后的对应点分别是B '和C ',连接BB ',则BB C ∠''的度数是( )A .35︒B .40︒C .45︒D .50︒ 12.(4分)当13x -与13x +的和为2109x -时,x 的值为( ) A .5- B .5 C .5± D .无解13.(4分)某工厂计划生产1500个零件,但是在实际生产时,⋯⋯,求实际每天生产零件的个数,在这个题目中,若设实际每天生产零件x 个,可得方程150********x x-=-,则题目中用“⋯⋯”表示的条件应是( )A .每天比原计划多生产5个,结果延期10天完成B .每天比原计划多生产5个,结果提前10天完成C .每天比原计划少生产5个,结果延期10天完成D .每天比原计划少生产5个,结果提前10天完成 14.(4分)已知一次函数y kx b =+的图象如图所示,则关于x 的不等式(4)20k x b --…的解集为( )A .2x -…B .2x -…C .3x …D .3x …15.(4分)如图,已知:30MON ∠=︒,点1A 、2A 、3A ⋯在射线ON 上,点1B 、2B 、3B ⋯在射线OM 上,△112A B A 、△223A B A 、△334A B A ⋯均为等边三角形,若11OA =,则67B B 的边长为( )A .B .C .D .二.填空题(每题4分,共24分)16.(4分)已知等腰三角形的一个内角是80︒,则它的底角是 ︒.17.(4分)分解因式:2375x -= .18.(4分)关于x 的不等式25x a -+…的解集如图所示,则a 的值是 .19.(4分)如图,在平面直角坐标系中,点A的坐标为(0,4),OAB∆沿x轴向右平移后得到△O A B''',点A的对应点A'是直线45y x=上一点,则点B与其对应点B'间的距离为.20.(4分)如图,ABC∆中,BD平分ABC∠,BC的中垂线交BC于点E,交BD于点F,连接CF.若60A∠=︒,42ACF∠=︒,则ABC∠=︒.21.(4分)若分式方程:11222kxx x--=--无解,则k=.三.解答题(共66分)22.(8分)化简(1)121() a aaa a--÷-(2)211xxx---23.(8分)分解因式(1)322363a ab ab-+(2)22()9()a x yb y x-+-24.(6分)解不等式(组)解不等式组,并把不等式组的解集在数轴上表示出来.1234371 32xx x-⎧⎪+-⎨>-⎪⎩…25.(10分)某市文化宫学习十九大有关优先发展交于的精神,举办了为某贫困山区小学捐赠书包活动.首次用2000元在商店购进一批学生书包,活动进行后发现书包数量不够,又购进第二批同样的书包,所购数量是第一批数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)求文化宫第一批购进书包的单价是多少?(2)商店两批书包每个的进价分别是68元和70元,这两批书包全部售给文化宫后,商店共盈利多少元?26.(10分)先阅读理解,再解答问题. 解不等式:121x x >- 解:把不等式121x x >-进行整理,得1021x x ->-,即1021x x ->-. 则有(1)10210x x ->⎧⎨->⎩,或(2)10210x x -<⎧⎨-<⎩. 解不等式组(1),得112x <<; 解不等式组(2),得其无解. 所以原不等式的解集为112x <<. 请根据以上解不等式的方法解不等式:3232x x -<+. 27.(12分)如图,在平面直角坐标系xOy 中,已知Rt DOE ∆,90DOE ∠=︒,3OD =,点D 在y 轴上,点E 在x 轴上,在ABC ∆中,点A ,C 在x 轴上,5AC =,180ACB ODE ∠+∠=︒,B OED ∠=∠,BC DE =.按下列要求画图(保留作图痕迹):(1)将ODE ∆绕O 点按逆时针方向旋转90︒得到OMN ∆(其中点D 的对应点为点M ,点E的对应点为点)N ,在图(1)画出OMN ∆;(2)将ABC ∆沿x 轴向右平移得到△A B C '''(其中A ,B ,C 的对应点分别为点A ',B ',)C ',使得B C ''与(1)中OMN ∆的边NM 重合,画出平移后的三角形A B C ''';(3)求OE 的长.28.(12分)在ABC ∆中,AB AC =,点D 是直线BC 上一点(不与B 、C 重合),以AD 为一边在AD 的右侧作ADE ∆,使AD AE =,DAE BAC ∠=∠,连接CE .(1)如图①,若ABC ∆是等边三角形,且2AB AC ==,点D 在线段BC 上. ①求证:180BCE BAC ∠+∠=︒;②当四边形ADCE 的周长取最小值时,求BD 的长.(2)若60BAC ∠≠︒,当点D 在射线BC 上移动,如图②,则BCE ∠和BAC ∠之间有怎样的数量关系?并说明理由.。
2017-2018学年度历下区八年级数学下学期期中试卷2017年八年级教学质量检测 数学试题(2017.4) 第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是( ).A .B .C .D .【答案】B2.分式13x -有意义,则x 的取值为( ).A .0x ≠B .3x ≠C .3x ≠-D .3x ≠±【答案】B3.下列各式能用完全平方式进行分解因式的是( ) A .21x -B .221x x +-C .221x x ++D .21x x ++【答案】C4.平面直角坐标系中,点)(2,0P 平移后对应的点为()5,4Q ,则点P 平移距离为( ).QP xyOA .3个单位长度B .4个单位长度C .5个单位长度D .7个单位长度【答案】C 5.函数y kx b =+(k 、b 为常数,0k ≠)的图象如图所示,则关于x 的不等式0kx b +>的解集为( ).A .2x >B .2x <C .1x <D .1x >【答案】B6.已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为( ). A .11 B .16 C .17 D .16或17【答案】D7.把不等式组123x x >-⎧⎨+⎩≤的解集表示在数轴上,下列选项正确的是( ).A .B .C .1 D .1【答案】B8.如图,在四边形ABCD 中,AD BC ∥,BF 平分ABC ∠,交AD 于点F ,CE 平分BCD ∠,交AD 于点E ,8AB =,6CD =,2EF =,则AD 长为( ).E FDA BCA .8B .10C .12D .14【答案】C9.如图,在Rt ABC △中,90C =︒∠,CAB ∠的平分线交BC 于D ,DE 是AD 的垂直平分线,垂足为E ,若3BC =,则DE 的长为( ).DABCEA .1B .2C .3D .4【答案】A10.已知1112a b -=,则aba b -的值是( ).A .12B .12- C .2D .2-【答案】D11.如图,在ABC △中,70CAB =︒∠,在同一平面内,将ABC △绕点A 旋转到AB C ''△的位置,使得CC AB '∥则BAB '=∠( ).B'C'ABCA .30︒B .35︒C .40︒D .50︒【答案】C12.已知等边三角形边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( ). ABC .32D .不能确定【答案】B第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题4分,共16分)13.分解因式:24a -=__________. 【答案】(2)(2)a a +-14.若分式211x x -+的值为零,则x 的值为__________.【答案】14.115.如图,等边ABC △的边长为4,AD BC ⊥,把ABD △沿BC 向右平移得到A B D '''△,1BB '=,则图中阴影部分的面积为__________.16.在三角形纸片ABC 中,90C =︒∠,30B =︒∠,点D (不与B ,C 重合)是BC 上任意一点,将此三角形纸片按下列方式折叠,若EF 的长度为a ,则DEF △的周长为__________.(用含a 的式子表示).30°C BAB (D )30°ABCF E【答案】16.3a三、解答题(本大题共8题,满分74分) 17.(本小题满分8分) 已知代数式:211211x x x ÷+++,请你解决下列问题.(1)化简.(2)在1-1【答案】见解析 (1)211211x x x ÷+++211(1)1x x +=⨯+ 11x =+. (2)当x =时,原式1===,当1x =时,原式=. 18.(本小题满分8分)(1)将ABC △沿x 轴负方向平移2个单位,沿y 轴正方向平移4个单位,得到111A B C △,请画出111A B C △.(2)将ABC △绕点A 顺时针旋转90︒,得到22AB C △,请画出22AB C △.(3)111A B C △绕点P 顺时针旋转90︒,得到22AB C △,则点P 的坐标为__________.【答案】见解析 (3)P 点坐标为(1,2).19.(本小题满分8分)关于x 的不等式组32(3)215x a x x -+⎧⎨-+<⎩≤①②.【注意有①②】(1)当1a =,解这个不等式组.(2)若这个不等式组的解集为28x -<≤,求a 的值. 【答案】见解析 (1)当1a =时,312(3)215x x x -+⎧⎨-+<⎩≤①②,【注意有①②】解①得:7x ≤, 解①得:2x >-,∴不等式组的解集为27x -<≤. (2)32(3)215x a x x -+⎧⎨-+<⎩≤①②【注意有①②】解①得:6x a +≤, 解①得:2x >-,∵不等式组的解集为28x -<≤. ∴68a +=, ∴2a =.20.(本小题满分9分)如图,AB AC =,CD AB ⊥,BE AC ⊥,BE 与CD 相交于点O . (1)求证:ACD △≌ABE △.(2)连接OA ,BC ,试判断直线OA ,BC 的关系,并说明理由.ODABCE【答案】见解析 (1)证明:∵CD AB ⊥,BE AC ⊥, ∴90ADC AEB ==︒∠∠, 又∵A A =∠∠,AB AC =,∴ACD △≌(AAS)ABE △. (2)连接AO 、BC , ∵CD AB ⊥,BE AC ⊥, ∴90ADC AEB ==︒∠∠, ∵OA OA =,AD AE =, ∴Rt ADO △≌(HL)AEO △,∴DAO EAO =∠∠,即OA 是BAC ∠的平分线, 又∵AB AC =, ∴OA BC ⊥.ADE OBC21.(本小题满分9分) 仔细阅读下面例题:例题:已知二次三项式25x x m ++有一个因式是2x +,求另一个因式以及m 的值. 解:设另一个因式x n +,得25(2)()x x m x x n ++=++,则225(2)2x x m x n x n ++=+++, ∴25n +=,2m n =, 解得3n =,6m =,∴另一个因式为3x +,m 的值为6. 依照以上方法解答下面问题:(1)若二次三项式2712x x -+可分解为(3)()x x a -+,则a =__________. (2)若二次三项式226x bx +-可分解为(23)(2)x x +-,则b =__________. (3)已知二次三项式229x x k +-有一个因式是21x -,求另一个因式以及k 的值. 【答案】见解析 (1)4a =-. (2)1b =-.(3)解:设另一个因式为x n +,得229(21)()x x k x x n +-=-+,则22292(21)x x k x n x n +-=+--, ∴219n -=,k n -=-, 解得5n =,5k =-,∴另一个因式为5x +,k 的值为5-. 22.(本小题满分10分)如图,Rt ABC △中,90ABC =︒∠,DE 垂直平分AC ,垂足为O ,AD BC ∥. (1)求证:OD OE =.(2)若3AB =,4BC =,求AD 的长.ODABCE【答案】见解析(1)证明:∵DE 垂直平分AC , ∴90∠∠°AOC COE ==,OA OC =, ∵∥AD BC ,∴∠∠DAC C =,∴△AOC ≌(AAS)△COE , ∴OD OE =. (2)连接AE , ∵DE 垂直平分AC , ∴AE EC =, 设EC 长度为x , ∴AE x =,4BE x =, 在Rt △ABE 中,222AE AB BE =+,∴2223(4)x x =+-,解得258x =, 又∵△AOC ≌△COE , ∴AD EC =, ∴258AD =. ECBADO23.(本小题满分10分)某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱,供应这种纸箱有两种方案可供选择:方案一:从纸箱厂定制购买,每个纸箱价格为4元.方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取,工厂需要一次性投入机器安装等费用16000元,每加工一个纸箱还需成本费2.4元.(1)若需要这种规格的纸箱x 个,请分别写出从纸箱厂购买纸箱的费用1y (元)和蔬菜加工厂自己加工制作纸箱的费用2y (元)关于x (个)的函数关系式. (2)假设你是决策者,你认为应该选择哪种方案?并说明理由. 【答案】见解析(1)从纸箱厂定制购买纸箱费用:14y x =, 蔬菜加工厂自己加工纸箱费用:2 2.416000y x =+. (2)当12y y =时,4 2.416000x x =+,10000x =, 选择两个方案的费用相同.当12y y <时,4 2.416000x x +<,10000x <, 选择方案一,从纸箱厂定制购买纸箱所需的费用低.当12y y >时,4 2.416000x x +>,10000x >,选择方案二,加工厂自己加工制作纸箱所需的费用低. 24.(本小题满分12分) 数学课上,李老师出示了如下框中的题目.EA DBC在等边ABC △中,点E 在AB 上, 点D 在CB 的延长线上,且ED EC =, 如图,请尝试确定线段AE 与BD 的 大小关系,并说明理由.组长小敏带领全组同学讨论,进行了如下探究,请你一起完成. (1)特殊情况,探索结论当点E 为AB 的中点时,如图1,确定线段AE 与DB 的大小关系,请你直接写出结论:AE __________DB (填“>”“<”“=”). (2)特例启发,解答题目解:题目中,AE 与DB 的大小关系是:AE __________DB (填“>”“<”“=”).理由如下: 如图2,过点E 作EF BC ∥,交AC 于点F . (请你完成接下来解答过程) (3)拓展结论,设计新题在等边ABC △中,点E 在直线AB 上,点D 在直线BC 上,且ED EC =.若ABC △的边长为1,2AE =,直接写出CD 的长.图1DABCE图2DA BCEF【答案】见解析(1)=. (2)=.(3)证明:∵∥EF BC , ∴∠∠ECB FEC =, ∵ED EC =, ∴∠∠D ECB =, ∴∠=∠D FEC , ∵∥EF BC ,∴180120∠°∠°EFC BCA =-=, ∵180120∠°-∠°EBD ABC ==, ∴∠∠EFC EBD =,在△EDB 与△CEF 中, ∠∠∠∠EBD EFC BDE FEC ED EC =⎧⎪=⎨⎪=⎩, ∴△EDB ≌(AAS)△CEF , ∴BD EF =, ∵∥EF BC ,∴60∠∠°AEF ABC ==,60∠°A =, ∴△AEF 为等边三角形, ∴EF AE =, 又∵EF BD =, ∴AE BD =. (3)1或3.附加题1.已知x 、y 都是正实数,且满足222120x xy y x y ++++-=,则(1)x y -的最小值为__________. 【答案】254-2.等腰直角三角形BAC 与等腰直角三角形DAE 按图1位置放置,AB 、AD 在同一直线上,AC 、AE 在同一直线上,2AB =,AD = (1)试判断线段BE 、CD 的关系.(2)如图2,将BAC △绕点A 逆时针旋转,当点B 恰好落在线段CD 上时,求此时线段BE 的长. (3)如图3,将BAC △绕点A 继续逆时针旋转,线段BE 与线段CD 将相交,交点为F ,请判断DFE △与BFC △面积之和有最大值吗?若有,请直接写出最大值.图1ECBAD图2BDCEA图3FBA ECD【答案】见解析(1)解:BE CD =且⊥BE CD , ∵△BAC 与△DAE 都是等腰直角三角形, ∴AC AB =,90∠∠°DAC BAE ==,AD AE =, ∴△ACD ≌(SAS)△ABE , ∴BE CD =,∠∠ADC AEB =, 如图1所示,延长EB 交DG 于点H , ∵90∠∠°ADC ACD +=, ∴90∠∠°AEB ACD +=, ∴90∠°EHC =,∴⊥BE CD .M A C DB (2)如图2,过点A 作⊥AM CD , ∵45∠°ACB =,2AB =,∴CM AM ==, 在Rt △AMD 中,MD ,∴CD =,∴BE = (3)△DFE 与△BFC 面积之和的最大值为6.MBA EC D。
2017-2018学年山东省济南市章丘市八年级(下)期中数学试卷一.单项选择题(每题4分,共60分)1.若x<y,则下列不等式中不成立的是()A.x﹣1<y﹣1B.3x<3y C.<D.﹣2x<﹣2y2.下列图形中,是轴对称图形又是中心对称图形的是()A.B.C.D.△3.ABC中,∠A,∠B,∠C的对边分别为a、b、c,下列说法中错误的()A.如果∠C﹣∠B=∠△A,则ABC是直角三角形,且∠C=90°B.如果c2=a2﹣b△2,则ABC是直角三角形,且∠C=90°C.如果(c+a)(c﹣a)=b△2,则ABC是直角三角形,且∠C=90°D.如果∠A:∠B:∠C=3:2:△5,则ABC是直角三角形,且∠C=90°4.不等式组A.C.的解集在数轴上表示为()B.D.5.下列由左到右的变形中,属于因式分解的是()A.x2﹣2x﹣3=(x﹣3)(x+1)B.x2﹣4+3x=(x+2)(x﹣2)+3xC.(x+8)(x﹣8)=x2﹣64D.x2﹣4x+4=x(x﹣4)+46.小名把分式中的x、y的值都扩大2倍,却搞不清分式的值有什么变化,请帮他选出正确的答案()A.不变B.扩大2倍C.扩大4倍D.缩小一半△7.如图,等腰ABC中,AB=AC,∠B=40°,AC边的垂直平分线交BC于点E,连接AE,则∠BAE 的度数是()kA .45°B .50°C .55°D .60°8.﹣(a +3)(a ﹣3)是多项式()分解因式的结果.A .a 2﹣9B .a 2+9C .﹣a 2﹣9D .﹣a 2+99.把直线 a 沿箭头方向平移 1.5cm 得直线 b .这两条直线之间的距离是()A .1.5cmB .3cmC .0.75cmD . cm10.小强是一位密码翻译爱好者,在他的密码手册中,有这样一条信息:a ﹣b ,x ﹣y ,x +y ,a +b ,x 2﹣y 2,a 2﹣b 2 分别对应下列六个字:南、爱、我、济、游、美,现将(x 2﹣y 2)a 2﹣(x 2﹣y 2)b 2 因式分解,结果呈现的密码信息可能是()A .我爱美B .济南游C .我爱济南D .美我济南△11.如图,在 ABC 中,∠C =90°,∠BAC =△70°,将 ABC 绕点 A 顺时针旋转 70°,B 、C 旋转后的对应点分别是 B ′和 C ′,连接 BB ′,则∠BB ′C ′的度数是()A .35°B .40°C .45°D .50°12.当A .﹣5与的和为B .5 时,x 的值为( )C .±5D .无解13.某工厂计划生产 1500 个零件,但是在实际生产时,……,求实际每天生产零件的个数,在这个题目中,若设实际每天生产零件 x 个,可得方程,则题目中用“……”表示的条件应是()A .每天比原计划多生产 5 个,结果延期 10 天完成B .每天比原计划多生产 5 个,结果提前 10 天完成C .每天比原计划少生产 5 个,结果延期 10 天完成D .每天比原计划少生产 5 个,结果提前 10 天完成14.已知一次函数 y =kx +b 的图象如图所示,则关于 x 的不等式 (x ﹣4)﹣2b ≥0 的解集为( )A.x≥﹣2B.x≤﹣2C.x≤3D.x≥315.如图,已知:∠MON=30°,点A、A、A…在射线ON上,点B、B、B…在射线OM上,△A B A、123123112△A B A、△A B A…均为等边三角形,若OA=1,则B B的边长为()223334167A.6B.12C.32D.64二.填空题(每题4分,共24分)16.已知等腰三角形的一个内角是80°,则它的底角是°.17.分解因式:3x2﹣75=.18.关于x的不等式﹣2x+a≥5的解集如图所示,则a的值是.19.如图,在平面直角坐标系中,点A的坐标为(0,△4),OAB沿x轴向右平移后得到△O′A′B′,点A的对应点A′是直线y=x上一点,则点B与其对应点B′间的距离为.20.如图,ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,△∠ACF=42°,则∠ABC=°.(21.若分式方程:2﹣= 无解,则 k = .三.解答题(共 66 分)22.(8 分)化简(1)(2)23.(8 分)分解因式(1)3a 3﹣6a 2b +3ab 2(2)a 2(x ﹣y )+9b 2(y ﹣x )24. 6 分)解不等式(组)解不等式组,并把不等式组的解集在数轴上表示出来.25.(10 分)某市文化宫学习十九大有关优先发展交于的精神,举办了为某贫困山区小学捐赠书包活动.首次用 2000 元在商店购进一批学生书包,活动进行后发现书包数量不够,又购进第二批同样的书包,所购数量是第一批数量的 3 倍,但单价贵了 4 元,结果第二批用了 6300 元.(1)求文化宫第一批购进书包的单价是多少?(2)商店两批书包每个的进价分别是 68 元和 70 元,这两批书包全部售给文化宫后,商店共盈利多少元?26.(10 分)先阅读理解,再解答问题.解不等式:解:把不等式则有(1)>1>1 进行整理,得,或(2) ﹣1>0,即.>0.解不等式组(1),得 <x <1;解不等式组(2),得其无解.所以原不等式的解集为 <x <1.请根据以上解不等式的方法解不等式:<2.27.(12 分)如图,在平面直角坐标系 xOy 中,已知 △R tDOE ,∠DOE =90°,OD =3,点 D 在 y轴上,点 E 在 x 轴上,在△ABC 中,点 A ,C 在 x 轴上,AC =5,∠ACB +∠ODE =180°,∠B =∠OED ,BC =DE .按下列要求画图(保留作图痕迹):(△1)将 ODE 绕 O 点按逆时针方向旋转 △90°得到 OMN (其中点 D 的对应点为点 M ,点 E 的对应点为点N),在图(△1)画出OMN;(△2)将ABC沿x轴向右平移得到△A′B′C′(其中A,B,C的对应点分别为点A′,B′,C′),使得B′C′与(△1)中OMN的边NM重合,画出平移后的三角形A′B′C′;(3)求OE的长.28.(12分)在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD 的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(△1)如图①,若ABC是等边三角形,且AB=AC=2,点D在线段BC上.①求证:∠BCE+∠BAC=180°;②当四边形ADCE的周长取最小值时,求BD的长.(2)若∠BAC≠60°,当点D在射线BC上移动,如图②,则∠BCE和∠BAC之间有怎样的数量关系?并说明理由.2017-2018学年山东省济南市章丘市八年级(下)期中数学试卷参考答案与试题解析一.单项选择题(每题4分,共60分)1.若x<y,则下列不等式中不成立的是()A.x﹣1<y﹣1B.3x<3y C.<D.﹣2x<﹣2y【分析】利用不等式的基本性质判断即可.【解答】解:若x<y,则x﹣1<y﹣1,选项A成立;若x<y,则3x<3y,选项B成立;若x<y,则<,选项C成立;若x<y,则﹣2x>﹣2y,选项D不成立,故选:D.【点评】此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.2.下列图形中,是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,不是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,也是中心对称图形.故正确.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.△3.ABC中,∠A,∠B,∠C的对边分别为a、b、c,下列说法中错误的()A.如果∠C﹣∠B=∠△A,则ABC是直角三角形,且∠C=90°B.如果c2=a2﹣b△2,则ABC是直角三角形,且∠C=90°C.如果(c+a)(c﹣a)=b△2,则ABC是直角三角形,且∠C=90°D.如果∠A:∠B:∠C=3:2:△5,则ABC是直角三角形,且∠C=90°【分析】根据勾股定理的逆定理以及直角三角形的各种判定方法逐项分析即可.【解答】解:A、因为∠C﹣∠B=∠A,∠C+∠B+∠A=180°,所以2∠C=180°,即∠C=90°,故选项正确;B、因为c2=a2﹣b2,所以如果a2=b2+c△2,则ABC是直角三角形,且∠A=90,不是∠C=90°,故该选项错误;C、因为(c+a)(c﹣a)=b2,所以C2=a2+b△2,则ABC是直角三角形,且∠C=90°,故选项正确;D、因为∠A:∠B:∠C=3:2:5,所以∠A=54°,∠B=36°,∠C=△90°,则ABC是直角三角形,且∠C=90°,故选项正确;故选:B.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可,解题的关键是熟记直角三角形的各种判定方法,并能够灵活运用.4.不等式组A.C.的解集在数轴上表示为()B.D.【分析】求出不等式组的解集,表示在数轴上即可.【解答】解:,由①得:x>1,由②得:x≤2,则不等式组的解集为1<x≤2,表示在数轴上,如图所示:故选:C.【点评】此题考查了在数轴上表示不等式的解集,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.5.下列由左到右的变形中,属于因式分解的是()A.x2﹣2x﹣3=(x﹣3)(x+1)B.x2﹣4+3x=(x+2)(x﹣2)+3xC.(x+8)(x﹣8)=x2﹣64D.x2﹣4x+4=x(x﹣4)+4【分析】根据因式分解的定义逐个判断即可.【解答】解:A、属于因式分解,故本选项符合题意;B、不属于因式分解,故本选项不符合题意;C、不属于因式分解,故本选项不符合题意;D、不属于因式分解,故本选项不符合题意;故选:A.【点评】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.6.小名把分式中的x、y的值都扩大2倍,却搞不清分式的值有什么变化,请帮他选出正确的答案()A.不变B.扩大2倍C.扩大4倍D.缩小一半【分析】分别用2x和2y去代换原分式中的x和y,利用分式的基本性质化简即可.【解答】解:分别用2x和2y去代换原分式中的x和y,得==,可见新分式是原分式的倍;故选:D.【点评】解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.7.如图,等腰△ABC中,AB=AC,∠B=40°,AC边的垂直平分线交BC于点E,连接AE,则∠BAE 的度数是()A.45°B.50°C.55°D.60°【分析】由于AB=AC,∠B=40°,根据等边对等角可以得到∠C=40°,又AC边的垂直平分线交BC于点E,根据线段的垂直平分线的性质得到A E=CE,再根据等边对等角得到∠C=40°=∠CAE,再根据三角形的内角和求出∠BAC即可求出∠BAE的度数.【解答】解:∵AB=AC,∠B=40°,∴∠B=∠C=40°,∴∠BAE=180°﹣∠B﹣∠C=100°,又∵AC边的垂直平分线交BC于点E,∴AE=CE,∴∠CAE=∠C=40°,∴∠BAE=∠BAE﹣∠CAE=60°.故选:D.【点评】此题考查了线段的垂直平分线的性质和等腰三角形的性质;利用角的等量代换是正确解答本题的关键.8.﹣(a+3)(a﹣3)是多项式()分解因式的结果.A.a2﹣9B.a2+9C.﹣a2﹣9D.﹣a2+9【分析】直接利用多项式的乘法运算法则计算得出答案.【解答】解:∵﹣(a+3)(a﹣3)=﹣(a2﹣9)=﹣a2+9,∴﹣(a+3)(a﹣3)是多项式(﹣a2+9)分解因式的结果.故选:D.【点评】此题主要考查了因式分解,正确应用平方差公式是解题关键.9.把直线a沿箭头方向平移1.5cm得直线b.这两条直线之间的距离是()A.1.5cm B.3cm C.0.75cm D.cm【分析】作出两直线间的距离的线段,然后根据直角三角形30°角所对的直角边等于斜边的一半解答即可.【解答】解:如图,设两直线间的距离为h,∵平移方向与a的夹角为30°,∴h=×1.5=0.75cm.故选:C.【点评】本题主要考查了直角三角形30°角所对的直角边等于斜边的一半的性质,熟记性质是解题的关键.10.小强是一位密码翻译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:南、爱、我、济、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是()A.我爱美B.济南游C.我爱济南D.美我济南【分析】将原式进行因式分解即可求出答案.【解答】解:∵(x2﹣y2)a2﹣(x2﹣y2)b2=(x2﹣y2)(a2﹣b2)=(x﹣y)(x+y)(a﹣b)(a+b),∵x﹣y,x+y,a+b,a﹣b四个代数式分别对应爱、我,济,南,∴结果呈现的密码信息可能是“爱我济南”,故选:C.【点评】本题考查了公式法的因式分解运用,熟练掌握因式分解的方法是解本题的关键△11.如图,在ABC中,∠C=90°,∠BAC=△70°,将ABC绕点A顺时针旋转70°,B、C旋转后的对应点分别是B′和C′,连接BB′,则∠BB′C′的度数是()A.35°B.40°C.45°D.50°【分析】首先在△ABB'中根据等边对等角,以及三角形内角和定理求得∠ABB'的度数,然后在直角△B B'C中利用三角形内角和定理求解.【解答】解:∵AB=AB',∴∠ABB'=∠AB'B===55°,在直角△B B'C中,∠BB'C=90°﹣55°=35°.故选:A.【点评】本题考查了旋转的性质,在旋转过程中根据旋转的性质确定相等的角和相等的线段是关键.12.当A.﹣5与的和为B.5时,x的值为()C.±5D.无解【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:+=,去分母得:x+3+x﹣3=10,解得:x=5,经检验x=5是分式方程的解.故选:B.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.13.某工厂计划生产1500个零件,但是在实际生产时,……,求实际每天生产零件的个数,在这k个题目中,若设实际每天生产零件x个,可得方程,则题目中用“……”表示的条件应是()A.每天比原计划多生产5个,结果延期10天完成B.每天比原计划多生产5个,结果提前10天完成C.每天比原计划少生产5个,结果延期10天完成D.每天比原计划少生产5个,结果提前10天完成【分析】设实际每天生产零件x个,则原计划每天生产零件(x﹣5)个,根据提前10天完成任务,列方程即可.【解答】解:,由分式方程可知,实际每天比原计划多生产5个,实际提前10天完成.故选:B.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程即可.14.已知一次函数y=kx+b的图象如图所示,则关于x的不等式(x﹣4)﹣2b≥0的解集为()A.x≥﹣2B.x≤﹣2C.x≤3D.x≥3【分析】先把(3,0)代入y=kx+b得b=﹣3k,则不等式化为k(x﹣4)+6k≥0,然后在k<0的情况下解不等式即可.【解答】解:把(3,0)代入y=kx+b得3k+b=0,则b=﹣3k,所以k(x﹣4)﹣2b≥0化为k(x﹣4)+6k≥0,因为k<0,所以x﹣4+6≤0,所以x≤﹣2.故选:B.【点评】本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.15.如图,已知:∠MON=30°,点A、A、A…在射线ON上,点B、B、B…在射线OM上,△A B A、123123112△A B A、△A B A…均为等边三角形,若OA=1,则B B的边长为()A.6B.12C.32D.64【分析】根据等腰三角形的性质以及平行线的性质得出A B∥A B∥A B,以及A B=2B A,得出1122332212A B=4B A=4,A B=8B A=8,A B=16B A…进而得到A B=26B A=26=64,B A=331244125512771267再根据勾股定理即可解答.【解答】解:∵△A B A是等边三角形,112∴A B=A B,∠3=∠4=∠12=60°,1121∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA=A B=1,111∴A B=1,21∵△A B A、△A B A是等边三角形,223334∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A B∥A B∥A B,B A∥B A,1122331223∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A B=2B A=2,B A=2B A,22123323∴A B=4B A=4,3312A B=8B A=8,4412A B=16B A=16,5512=32,以此类推:A B=26B A=26=64,B A=771267=△32,B B A是直角三角形,∠B B A=90°,767767∴B B=67故选:C.==32.A 【点评】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A B=4B A,B331244=8B A,A B=16B A进而发现规律是解题关键.125512二.填空题(每题4分,共24分)16.已知等腰三角形的一个内角是80°,则它的底角是50或80°.【分析】由于不明确80°的角是等腰三角形的底角还是顶角,故应分80°的角是顶角和底角两种情况讨论.【解答】解:分两种情况:①当80°的角为等腰三角形的顶角时,底角的度数=(180°﹣80°)÷2=50°;②当80°的角为等腰三角形的底角时,其底角为80°,故它的底角度数是50或80.故答案为50或80.【点评】本题考查的是等腰三角形的性质及三角形内角和定理;解答此题时要注意80°的角是顶角和底角两种情况,不要漏解,分类讨论是正确解答本题的关键.17.分解因式:3x2﹣75=3(x+5)(x﹣5).【分析】首先提取公因式3,进而利用平方差公式分解因式即可.【解答】解:3x2﹣75=3(x2﹣25)=3(x+5)(x﹣5).故答案为:3(x+5)(x﹣5).【点评】此题主要考查了公式法以及提取公因式法分解因式,正确应用公式是解题关键.18.关于x的不等式﹣2x+a≥5的解集如图所示,则a的值是3.【分析】先把a当作已知条件求出x的取值范围,再根据不等式的解集为x<﹣1即可得出a的值.【解答】解:解不等式﹣2x+a≥5得x≤,∵由图可知,不等式的解集为x≤﹣1,∴=﹣1,解得a=3.故答案为:3.【点评】本题考查的是在数轴上表示不等式的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.19.如图,在平面直角坐标系中,点A的坐标为(0,4),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点A′是直线y=x上一点,则点B与其对应点B′间的距离为5.【分析】根据平移的性质知BB′=AA′.由一次函数图象上点的坐标特征可以求得点A′的坐标,所以根据两点间的距离公式可以求得线段AA′的长度,即BB′的长度.【解答】解:如图,连接AA′、BB′.∵点A的坐标为(0,4),△OAB沿x轴向右平移后得到△O′A′B′,∴点A′的纵坐标是4.又∵点A的对应点在直线y=x上一点,∴4=x,解得x=5.∴点A′的坐标是(5,4),∴AA′=5.∴根据平移的性质知BB′=AA′=5.故答案为:5.【点评】本题考查了一次函数图象上点的坐标特征、坐标与图形变化﹣﹣平移.根据平移的性质得到BB′=AA′是解题的关键.20.如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ACF=42°,则∠ABC=52°.【分析】根据角平分线的性质可得∠DBC=∠ABD,再根据线段垂直平分线的性质可得BF=CF,进而可得∠FCE=26°,然后可算出∠ABC的度数.【解答】解:∵BD平分∠ABC,∴∠DBC=∠ABD,∵∠A=60°,∴∠ABC+∠ACB=120°,∵∠ACF=48°,∵BC的中垂线交BC于点E,∴BF=CF,∴∠FCB=∠FBC,∴∠ABC=2∠FCE,∵∠ACF=42°,∴3∠FCE=120°﹣42°=78°,∴∠FCE=26°,∴∠ABC=52°,故答案为52.【点评】此题主要考查了线段垂直平分线的性质,以及三角形内角和定理,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.21.若分式方程:2﹣=无解,则k=0、﹣2.【分析】根据分式方程两边同乘(x﹣2),可得整式方程,根据分式方程无解,可得x=2,把x =2代入整式方程,可得答案.【解答】解:方程两边同乘(x﹣2),得2(x﹣2)﹣(1﹣kx)=﹣1,即(2+k)x=4,∴k=﹣2时,整式方程无解,∵分式方程无解,∴x=2,把x=2代入2(x﹣2)﹣(1﹣kx)=﹣1得1﹣2k=1,∴k=0,2x﹣4﹣1=0,整式方程无解,综上所述,k=0或﹣2,故答案为:0、﹣2.x【点评】本题考查了分式方程的解,先去分母转化成整式方程,由分式方程无解,可得=2,把x =2代入整式方程,解出k值.三.解答题(共66分)22.(8分)化简(1)(2)【分析】(1)根据分式的减法和除法可以解答本题;(2)根据分式的减法可以解答本题.【解答】解:(1)===;(2)===.【点评】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.23.(8分)分解因式(1)3a3﹣6a2b+3ab2(2)a2(x﹣y)+9b2(y﹣x)【分析】(1)先提公因式法、则利用完全平方公式进行因式分解;(2)先提公因式法、则利用平方差公式进行因式分解.【解答】解:(1)原式=3a(a2﹣2ab+b2)=3a(a﹣b)2;(2)原式=(x﹣y)(a2﹣9b2)=(x﹣y)(a﹣3b)(a+3b).【点评】本题考查的是因式分解,掌握提公因式法、完全平方公式和平方差公式是解题的关键.( “24. 6 分)解不等式(组)解不等式组,并把不等式组的解集在数轴上表示出来.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可.【解答】解:解:解不等式(1)得 x ≥﹣1;解不等式(2)得 x <5;所以原不等式的解集是﹣1≤x <5.在数轴上的表示为.【点评】此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.25.(10 分)某市文化宫学习十九大有关优先发展交于的精神,举办了为某贫困山区小学捐赠书包活动.首次用 2000 元在商店购进一批学生书包,活动进行后发现书包数量不够,又购进第二批同样的书包,所购数量是第一批数量的 3 倍,但单价贵了 4 元,结果第二批用了 6300 元.(1)求文化宫第一批购进书包的单价是多少?(2)商店两批书包每个的进价分别是 68 元和 70 元,这两批书包全部售给文化宫后,商店共盈利多少元?【分析】(1)求的是单价,总价明显,一定是根据数量来列等量关系.本题的关键描述语是: 数量是第一批购进数量的 3 倍”;等量关系为:6300 元购买的数量=2000 元购买的数量×3.(2)根据盈利=总售价﹣总进价,进而求出即可.【解答】解:(1)设第一批购进书包的单价为 x 元.依题意,得,整理,得 20(x +4)=21x ,解得 x =80.检验:当 x =80 时,x (x +4)≠0,∴x =80 是原分式方程的解.答:第一批购进书包的单价为 80 元,(2)=300+1050=1350答:商店共盈利 1350 元.【点评】此题主要考查了分式方程的应用,应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系.26.(10 分)先阅读理解,再解答问题.解不等式:解:把不等式则有(1)>1>1进行整理,得,或(2)﹣1>0,即.>0.解不等式组(1),得<x<1;解不等式组(2),得其无解.所以原不等式的解集为<x<1.请根据以上解不等式的方法解不等式:<2.【分析】利用题中的解法,把原不等式化为或,然后解两个不等式组即可.<0.再利用有理数的性质得到,【解答】解:原不等式进行整理,得则有(1),或(2)解不等式组(1),得x>,解不等式组(2),得x<,所以原不等式的解集为x<或x>.<0,即,<0.【点评】本题考查了解不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.27.(12分)如图,在平面直角坐标系xOy中,已知△R t DOE,∠DOE=90°,OD=3,点D在y 轴上,点E在x轴上,在△ABC中,点A,C在x轴上,AC=5,∠ACB+∠ODE=180°,∠B=∠OED,BC=DE.按下列要求画图(保留作图痕迹):(△1)将ODE绕O点按逆时针方向旋转△90°得到OMN(其中点D的对应点为点M,点E的对应点为点N),在图(△1)画出OMN;(△2)将ABC沿x轴向右平移得到△A′B′C′(其中A,B,C的对应点分别为点A′,B′,C′),使得B′C′与(△1)中OMN的边NM重合,画出平移后的三角形A′B′C′;18【分析】(1)利用旋转的性质,在x轴的负半轴上截取OM=OD,在y轴的正半轴上截取ON=OE,从而得到△OMN;(2)把B点平移到N点、C点平移到M点,再确定A点的对应点A′,从而得到三角形A′B′C′;(3)设OE=x,则ON=x,作MF⊥A′B′于点F,如图,利用已知条件、平移和旋转的性质得到B′C′平分∠A′B′O,且C′O⊥OB′,B′F=B′O=OE=x,FC′=OC′=OD=3,A′C′=AC=5,则利用勾股定理可计算出A′F=4,然后在Rt△A′B′O中利用勾股定理得到x2+82=(4+x)2,于是解方程求出x即可得到OE的长.【解答】解:(1)如图,△OMN为所作;(△2)如图,A′B′C′为所作;(3)设OE=x,则ON=x,作MF⊥A′B′于点F,如图,由作图可知B′C′平分∠A′B′O,且C′O⊥OB′,∴B′F=B′O=OE=x,FC′=OC′=OD=3,∵A′C′=AC=5,∴A′F==4,∴A′B′=x+4,A′O=5+3=8.在△R t A′B′O中,x2+82=(4+x)2,解得x=6,即OE=6.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.28.(12分)在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD 的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(△1)如图①,若ABC是等边三角形,且AB=AC=2,点D在线段BC上.①求证:∠BCE+∠BAC=180°;②当四边形ADCE的周长取最小值时,求BD的长.(2)若∠BAC≠60°,当点D在射线BC上移动,如图②,则∠BCE和∠BAC之间有怎样的数量关系?并说明理由.【分析】(1)先判断出△ABD≌△ACE得出∠ACE=∠ABD=60°,即可得出结论;(2)先判断出BD=CE,进而得出四边形ADCE的周长=BC+2AD,判断出AD⊥BC时,周长最小,即可得出结论;(△3)先判断出ABD≌△ACE,进而得出∠ADB=∠AEC,即可得出结论.【解答】(1)证明:∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ABD≌△ACE,∴∠ACE=∠ABD=60°.∴∠BCE+∠BAC=180°,(△2)解:∵ABD≌△ACE,∴BD=CE四边形ADCE的周长=AD+DC+CE+AE=AD+DC+BD+AE=BC+2AD,∴当AD最短时,四边形ADCE的周长最小,即AD⊥BC时,周长最小,∵AB=AC,∴,(3)解:∠BCE+∠BAC=180°,理由如下:如图2,记AD,CE的交点为F,∵∠BAC=∠DAE,∴∠BAD=∠CAE.又∵AB=AC,AD=AE,∴△ABD≌△ACE.∴∠ADB=∠AEC,∵∠AFE=∠CFD,∴∠EAF=∠ECD.∵∠BAC=∠FAE,∠BCE+∠ECD=180°,∴∠BCE+∠BAC=180°.【点评】此题是四边形综合题,主要考查了等边三角形的性质,全等三角形的判定和性质,角的和差,判断出△ABD≌△ACE是解本题的关键.。