人教B版必修2高中数学第1章立体几何初步单元测试卷及答案解析
- 格式:pdf
- 大小:612.97 KB
- 文档页数:20
一、选择题1.现有一个三棱锥形状的工艺品P ABC -,点P 在底面ABC 的投影为Q ,满足12QAB QAC QBC PABPACPBCS S SS S S ===△△△△△△,22222213QA QB QC AB BC CA ++=++,93ABCS =,若要将此工艺品放入一个球形容器(不计此球形容器的厚度)中,则该球形容器的表面积的最小值为( )A .42πB .44πC .48πD .49π2.已知正方体1111ABCD A B C D -的棱长为2,E 为棱1AA 的中点,截面1CD E 交棱AB 于点F ,则四面体1CDFD 的外接球表面积为( ) A .394πB .414πC .12πD .434π3.在三棱柱111ABC A B C -中,90BAC ∠=︒,1BC AC ,且12AC BC =,则直线11B C 与平面1ABC 所成的角的大小为( )A .30°B .45°C .60°D .90°4.已知正三棱柱111ABC A B C -中,1AB AA =,M 是1CC 的中点,则异面直线AM 与1A B 所成角的大小为( )A .π6B .π4C .π3D .π25.如图,在四棱锥E ABCD -中,底面ABCD 是正方形,且平面ABCD ⊥平面AEB ,则( )A .DEC ∠可能为90︒B .若AEB △是等边三角形,则DEC 也是等边三角形C .若AEB △是等边三角形,则异面直线DE 和AB 2D .若AEB △是直角三角形,则BE ⊥平面ADE6.已知点A ,B ,C 在半径为5的球面上,且214AB AC ==,7BC =,P 为球面上的动点,则三棱锥P ABC -体积的最大值为( ) A .5673B .5273C .4973D .1477.下图中小正方形的边长为1,粗线画出的是某四棱锥的三视图,则该四棱锥的体积为( )A .64B .48C .32D .168.已知正四棱锥的高为2,底面正方形边长为4,其正视图为如图所示的等腰三角形,正四棱锥表面点M 在正视图上的对应点为腰的中点A ,正四棱锥表面点N 在正视图上对应点为B ,则||MN 的取值范围为( ).A .[10,19]B .11,19]C .10,5]D .[11,25]9.已知长方体1111ABCD A B C D -的顶点A ,B ,C ,D ,在球O 的表面上,顶点1A ,1B ,1C ,1D ,在过球心O 的一个平面上,若6AB =,8AD =,14AA =,则球O 的表面积为( ) A .169πB .161πC .164πD .265π10.平行六面体1111ABCD A B C D -的六个面都是菱形,那么点1A 在面11AB D 上的射影一定是11AB D 的________心,点1A 在面1BC D 上的射影一定是1BC D 的________心( )A .外心、重心B .内心、垂心C .外心、垂心D .内心、重心11.我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径意思是:球的体积V 乘16,除以9,再开立方,即为球的直径d ,由此我们可以推测当时球的表面积S 计算公式为( ) A .2278S d =B .2272S d =C .292S d =D .21114S d =12.在正方体1111ABCD A B C D -中,M 和N 分别为11A B ,和1BB 的中点.,那么直线AM 与CN 所成角的余弦值是( )A .25B .10 C .35D .3 二、填空题13.如图所示,Rt A B C '''∆为水平放置的ABC ∆的直观图,其中A C B C ''''⊥,2B O O C ''''==,则ABC ∆的面积是________________.14.三棱锥P ABC -三条侧棱两两垂直,正四面体D ABC -与三棱锥相接且棱长为2,P 与D 在面ABC 异侧,则所成多面体外接球的体积是_________.15.如图,在一个底面面积为4,侧棱长为10的正四棱锥P ABCD -中,大球1O 内切于该四棱锥,小球2O 与大球1O 及四棱锥的四个侧面相切,则小球2O 的体积为___________.16.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40︒,则晷针与点A 处的水平面所成角的大小为_________.17.在正三棱锥A BCD -中,5AB AC AD ===,6BC BD CD ===.点M 是线段BC 上的点,且2BM MC =.点P 是棱AC 上的动点,直线PM 与平面BCD 所成角为θ,则sin θ的最大值为______.18.在棱长为2的正方体1111ABCD A B C D -中,P 是11A B 的中点,过点1A 作与平面1PBC 平行的截面,则此截面的面积是_______________.19.已知A ,B ,C 三点都在球O 的表面上,球心O 到平面ABC 的距离是球半径的13,且22AB =AC BC ⊥,则球O 的表面积是______. 20.棱长为a 的正四面体的外接球的表面积为______.三、解答题21.如图,正四棱锥P ABCD -中,底面ABCD 的边长为4,4PD =,E 为PA 的中点.(1)求证://PC 平面EBD . (2)求三棱锥E ABD -的体积.22.如图,在直三棱柱111ABC A B C -中,底面ABC 为正三角形,1AB 与1A B 交于点O ,E ,F 是棱1CC 上的两点,且满足112EF CC =.(1)证明://OF 平面ABE ;(2)当1CE C F =,且12AA AB =,求直线OF 与平面ABC 所成角的余弦值.23.如图,在长方体1111ABCD A B C D -中,12AB BC AA ==,1O 是底面1111D C B A 的中心.(Ⅰ)求证:1//O B 平面1ACD ;(Ⅱ)求二面角1D AC D --的平面角的余弦值.24.如图,已知长方体1111ABCD A B C D -,2AB =,11AA =,直线BD 与平面1AAB B 所成的角为30°,AE 垂直BD 于E .(1)若F 为棱11A B 上的动点,试确定F 的位置使得//AE 平面1BC F ,并说明理由; (2)若F 为棱11A B 上的中点;求点A 到平面BDF 的距离;(3)若F 为棱11A B 上的动点(端点1A ,1B 除外),求二面角F BD A --的大小的取值范围.25.如图,直四棱柱1111ABCD A B C D -的底面ABCD 为平行四边形,133,5,cos ,,5AD AB BAD BD DD E ==∠==是1CC 的中点.(Ⅰ)求证:平面DBE ⊥平面1ADD ; (Ⅱ)求点1C 到平面BDE 的距离.26.在三棱锥P ABC -中,G 是底面ABC 的重心,D 是线段PC 上的点,且2PD DC =.(1)求证:DG//平面PAB ;(2)若PAB △是以PB 为斜边的等腰直角三角形,求异面直线DG 与PB 所成角的余弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】作QM AB ⊥,连接PM ,易证AB PM ⊥,由112122QAB PABABQMS S AB PM ⨯⨯==⨯⨯△△,得到2PM QM =,再根据12QAB QAC QBC PABPACPBCS S S S S S ===△△△△△△,由对称性得到AB BC AC ==,然后根据22222213QA QB QC AB BC CA ++=++,93ABCS =,求得6,23AB AQ ==,在AOQ△中,由222AO OQ AQ =+求解半径即可.【详解】 如图所示:作QM AB ⊥与M ,连接PM , 因为PQ ⊥平面ABC ,所以PQ AB ⊥,又QM PQ Q ⋂=, 所以AB ⊥平面PQM , 所以AB PM ⊥,所以112122QAB PAB AB QM S S AB PM ⨯⨯==⨯⨯△△, 2PM QM =,因为12QAB QAC QBC PABPACPBCS S S S S S ===△△△△△△, 由对称性得AB BC AC ==,又因为22222213QA QB QC AB BC CA ++=++,ABCS=所以21sin 60932ABCSAB =⨯⨯= 解得6,ABAQ ==所以3QM PM PQ ===,设外接球的半径为r ,在AOQ △中,222AOOQ AQ =+,即()(2223r r =-+, 解得72r =, 所以外接球的表面积为2449S r ππ==, 即该球形容器的表面积的最小值为49π. 故选:D 【点睛】关键点点睛:本题关键是由12QAB QAC QBC PABPACPBCS S S S S S ===△△△△△△得到三棱锥是正棱锥,从而找到外接球球心的位置而得解..2.B解析:B 【分析】可证F 为AB 的中点,设1DD 的中点为G ,DFC △的外接圆的球心为1O ,四面体1CDFD 的外接球的球心为O ,连接11,,,OG OF OO A B ,利用解三角形的方法可求DFC △的外接圆的半径,从而可求四面体1CDFD 的外接球的半径.【详解】设1DD 的中点为G ,DFC △的外接圆的圆心为1O ,四面体1CDFD 的外接球的球心为O ,连接11,,,OG OF OO A B ,因为平面11//A ABB 平面11D DCC ,平面1CD E ⋂平面11A ABB EF =, 平面1CD E ⋂平面111D DCC D C =,故1//EF D C , 而11//A B D C ,故1//EF A B ,故F 为AB 的中点, 所以145DF CF ==+=,故3cos 5255DFC ∠==⨯⨯,因为DFC ∠为三角形的内角,故4sin 5DFC ∠=,故DFC △的外接圆的半径为1254245⨯=,1OO ⊥平面ABCD ,1DD ⊥平面ABCD ,故11//OO DD ,在平面1GDO O 中,111,OG DD O D DD ⊥⊥,故1//OG O D , 故四边形1GDO O 为平行四边形,故1//OO GD ,1OO GD =, 所以四面体1CDFD 2541116+=故四面体1CDFD 的外接球表面积为41414164ππ⨯=, 故选:B. 【点睛】方法点睛:三棱锥的外接球的球的半径,关键是球心位置的确定,通常利用“球心在过底面外接圆的圆心且垂直于底面的直线上”来确定.3.A解析:A【分析】证明CBA ∠就是BC 与平面1ABC 所成的角,求出此角后,利用11//B C BC 可得结论, 【详解】∵90BAC ∠=︒,12AC BC =,∴30CBA ∠=︒, ∵1BC AC ,AB AC ⊥,1BC ABB ,1,BC AB ⊂平面1ABC ,∴AC ⊥平面1ABC ,∴CBA ∠就是BC 与平面1ABC 所成的角,即BC 与平面1ABC 所成的角是30, ∵棱柱中11//B C BC ,∴11B C 与平面1ABC 所成的角的大小为30, 故选:A .【点睛】思路点睛:本题考查求直线与平面所成的角,解题方法是定义法,即过直线一点作平面的垂直,得直线在平面上的射影,由直线与其射影的夹角得直线与平面所成的角,然后在直角三角形中求出此角.解题过程涉及三个步骤:一作出图形,二证明所作角是直线与平面所成的角,三是计算.4.D解析:D 【分析】取AC 中点E ,连接1,A E BE ,先通过BE ⊥平面11ACC A 可得BE AM ⊥,再由1ACM A AE ≅可得1AM A E ⊥,即可得出AM ⊥平面1A BE ,即1AM A B ⊥.【详解】取AC 中点E ,连接1,A E BE ,ABC 为正三角形,BE AC ∴⊥,正三棱柱111ABC A B C -中,1CC ⊥平面ABC ,BE ⊂平面ABC ,1CC BE ∴⊥,1ACCC C =,BE ∴⊥平面11ACC A ,AM ⊂平面11ACC A ,BE AM ∴⊥,在直角三角形ACM 和直角三角形1A AE 中,1,AC A A CM AE ==,1ACM A AE ∴≅, 1CAM AA E ∴∠=∠,12CAM A EA π∴∴∠+∠=,则1AM A E ⊥,1BE A E E ⋂=,AM ∴⊥平面1A BE ,1A B ⊂平面1A BE ,1AM A B ∴⊥,故异面直线AM 与1A B 所成角的大小为2π.【点睛】本题考查异面直线所成角的求解,解题的关键是通过证明AM ⊥平面1A BE 判断出1AM A B ⊥.5.C解析:C 【分析】对A ,直角三角形的斜边大于直角边可判断;对B ,由>=EC EB DC 可判断;对C ,可得CDE ∠即异面直线DE 和AB 所成角,即可求出;对D ,EAB ∠(或EBA ∠)为直角时,BE 与平面ADE 不垂直. 【详解】对A ,由题意,若90DEC ∠=︒,则DC EC >,但EC BC CD >=,故A 不正确; 对B ,若AEB △是等边三角形,显然有>=EC EB DC ,所以DEC 不会是等边三角形,故B 不正确;对C ,若AEB △是等边三角形,设边长为2,则22DE EC ==//AB CD ,则CDE ∠即异面直线DE 和AB 所成角,易求2cos 422CDE ∠==,故C 正确; 对D ,当AEB △是以AEB ∠为直角的直角三角形时,BE ⊥平面ADE ,当AEB △是以EAB ∠(或EBA ∠)为直角的直角三角形时,BE 与平面ADE 不垂直,故D 不正确. 故选:C. 【点睛】本题考查四棱锥的有关位置关系的判断,解题的关键是正确理解长度关系,正确理解位置关系的变化.6.A解析:A 【分析】求出球心到平面ABC 的距离,由这个距离加上球半径得P 到平面ABC 距离的最大值,再由体积公式可得P ABC -体积的最大值. 【详解】如图,M 是ABC 的外心,O 是球心,OM ⊥平面ABC ,当P 是MO 的延长线与球面交点时,P 到平面ABC 距离最大,由214AB AC ==,27BC =,得72cos 4214ACB ∠==,则14sin 4ACB ∠=, 21428sin 14AB AM CB ===∠,4AM =, 2222543OM OA AM =-=-=,358PM =+=,又1114sin 2142777224ABC S AC BC ACB =⋅⋅∠=⨯⨯⨯=△, 所以最大的156777833P ABC V -=⨯⨯=. 故选:A .【点睛】本题考查求三棱锥的体积,解题关键是确定三棱锥体积最大时P 点在球面上的位置,根据球的性质易得结论.当底面ABC 固定,M 是ABC 外心,当PM ⊥平面ABC ,且球心O 在线段PM 上时,P 到平面ABC 距离最大.7.C解析:C【分析】在长方体中还原三视图后,利用体积公式求体积. 【详解】根据三视图还原后可知,该四棱锥为镶嵌在长方体中的四棱锥P -ABCD (补形法) 且该长方体的长、宽、高分别为6、4、4, 故该四棱锥的体积为1(64)4323V =⨯⨯⨯=. 故选C . 【点睛】(1)根据三视图画直观图,可以按下面步骤进行:①、首先看俯视图,根据俯视图画出几何体地面的直观图 ;②、观察正视图和侧视图找到几何体前、后、左、右的高度;③、画出整体,让后再根据三视图进行调整;(2)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解.8.A解析:A 【分析】由题意画出如图正四棱锥,可得M 点在GK 上运动,N 点在CD 上运动,且四边形KCDG 是等腰梯形,则||MN 的取值范围的最小值就是等腰梯形的高,最大值就是梯形的对角线长,作KH ED ⊥,在直角三角形中求KJ KD 、的长可得答案. 【详解】如图正四棱锥P ECDF -,PO ⊥平面ECDF ,O 是底面中心,G K 、分别是PF PE 、的中点,由题意知,M 点在GK 上运动,N 点在CD 上运动,所以////GK FE DC ,且11222GK FE DC ===, 所以四边形KCDG 是梯形,在ECK 与FDG △中,,,EC FD EK FG KEC GFD ==∠=∠,所以ECK ≅FDG △,所以KC GD =,所以四边形KCDG 是等腰梯形,则||MN 的取值范围的最小值就是等腰梯形的高, 最大值就是梯形的对角线长,且22PO EC CD ===,,1222EO ED == 作KH ED ⊥于H ,所以//KH PO ,KH ⊥平面ECDF ,112KH PO ==,且H 是EO 的中点,122EH EO ==,32DH =,45EDC ∠=,作KJ CD ⊥于J ,连接HJ ,12CD KGCJ -==, 所以3DJ =, 由余弦定理得2222cos 9HJ DH DJ DH DJ EDC =+-⋅∠=, 所以2221910KJ KH HJ =+=+=,10KJ =22211819DK EH HD =+=+=,19DK =故选:A. 【点睛】本题考查了正四棱锥的性质及线段的取值范围问题,关键点是画出正四棱锥分析出问题的实质,考查了学生的空间想象力.9.C解析:C 【分析】把两个这样的长方体叠放在一起,构成一个长宽高分别为6,8,8的长方体,则球O 就是该长方体的外接球,根据长方体外接球的直径等于体对角线的长,求出直径,即可得出球的表面积.【详解】 如下图所示:把两个这样的长方体叠放在一起,构成一个长宽高分别为6,8,8的长方体,则球O 就是该长方体的外接球,根据长方体的结构特征可得,其外接球直径等于体对角线的长, 所以球O 的半径R 满足2222688164R =++=, 所以球O 的表面积24164S R ππ==. 故选:C.【点睛】关键点点睛:本题主要考查几何体外接球的表面积,熟记长方体结构特征,其外接球的球心和半径与长方体的关系,以及球的表面积公式,是解决此类问题的关键.10.C解析:C 【分析】将三棱锥111A AB D -、三棱锥11A BC D -分离出来单独分析,根据线段长度以及线线关系证明1A 的射影点分别是11AB D 和1BC D 的哪一种心. 【详解】三棱锥111A AB D -如下图所示:记1A 在面11AB D 上的射影点为O ,连接11,,AO B O D O ,因为11111AA A D A B ==,又1A O ⊥平面11AB D , 所以222222*********1,,AA AO AO A D AO OD A B AO OB =+=+=+所以11AO OB OD ==,所以O 为11AB D 的外心;三棱锥11A BC D -如下图所示:记1A 在面1BC D 上的射影点为1O ,连接1111,,BO C O DO ,因为11//BC AD ,且四边形11ADD A 是菱形,所以11AD A D ⊥,所以11BC A D ⊥, 又因为11A O ⊥平面1BC D ,所以1111111,AO BC AO A D A ⊥=,所以1BC ⊥平面11AO D ,又因为1DO ⊂平面11AO D ,所以11DO BC ⊥, 同理可知:1111,BO DC C O DB ⊥⊥,所以1O 为1BC D 的垂心, 故选:C. 【点睛】关键点点睛:解答本题的关键是通过1A 的射影点去证明线段长度的关系、线段位置的关系,借助线面垂直的定义和判定定理去分析解答问题.11.A解析:A 【分析】根据已知条件结合球的体积公式3432d π⎛⎫ ⎪⎝⎭求解出π的值,然后根据球的表面积公式242d π⎛⎫⎪⎝⎭求解出S 的表示,即可得到结果. 【详解】3169V d =,所以33941632d d V π⎛⎫==⎪⎝⎭,所以278π=,所以2222727442848d d S d π⎛⎫==⨯⨯= ⎪⎝⎭,故选:A. 【点睛】关键点点睛:解答本题的关键是根据球的体积公式得到π的表示,再将π带入到球的表面积公式即可完成求解.12.A解析:A 【分析】作出异面直线AM 和CN 所成的角,然后解三角形求出两条异面直线所成角的余弦值. 【详解】设,E F 分别是1,AB CC 的中点,由于,M N 分别是111,A B BB 的中点,结合正方体的性质可知11//,//B E AM B F CN ,所以1EB F ∠是异面直线AM 和CN 所成的角或其补角, 设异面直线AM 和CN 所成的角为θ,设正方体的边长为2,2211125B E B F ==+=,2221216EF =++=,则1cos cos EB F θ=∠=55625255+-=⨯⨯.故选:A.【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.二、填空题13.【分析】根据直观图和原图的之间的关系由直观图画法规则将还原为如图所示是一个等腰三角形直接求解其面积即可【详解】由直观图画法规则将还原为如图所示是一个等腰三角形则有所以故答案为:【点睛】关键点点睛:根 解析:2【分析】根据直观图和原图的之间的关系,由直观图画法规则将Rt A B C '''还原为ABC ,如图所示,ABC 是一个等腰三角形,直接求解其面积即可. 【详解】由直观图画法规则将Rt A B C '''还原为ABC ,如图所示,ABC 是一个等腰三角形,则有2BO OC B O O C ''''====,242AO A O ''==所以114428222ABCSBC AO =⋅=⨯⨯= 故答案为:2【点睛】关键点点睛:根据斜二测画法的规则,可得出三角形的直观图,并求出对应边长,根据面积公式求解.14.【分析】根据几何体的几何关系可将几何体放在正方体中多面体的外接球和正方体的外接球是同一外接球由此可求外接球的体积【详解】如图所示并且两两互相垂直所以所以正四面体与三棱锥相接且棱长为所以如图所示将此多 3 【分析】根据几何体的几何关系,可将几何体放在正方体中,多面体的外接球和正方体的外接球是同一外接球,由此可求外接球的体积. 【详解】如图所示,AB AC BC ==,并且,,PA PB PC 两两互相垂直,所以222222PA PB PA PC PB PC +=+=+,所以PA PB PC ==,正四面体D ABC -2,所以如图所示,将此多面体放在正方体中,多面体的外接球就是此正方体的外接球,并且棱长为1,正方体外接球的半径22221113R =++=3R =,则外接球的体积34332V R π==. 故答案为:3π2【点睛】关键点点睛:本题的关键点是根据多面体的几何关系可采用补体,转化为求正方体的外接球的体积,这样计算就容易了.15.【分析】设为正方形的中心的中点为连接求出如图分别可求得大球与小球半径分别为和进而可得小球的体积【详解】解:由题中条件知底面四边形是边长为2的正方形设O 为正方形的中心的中点为M 连接则如图在截面中设N 为 2 【分析】设O 为正方形ABCD 的中心,AB 的中点为M ,连接PM ,OM ,PO ,求出OM ,PM ,PO ,如图,分别可求得大球1O 与小球2O 半径分别为22和24,进而可得小球的体积. 【详解】解:由题中条件知底面四边形ABCD 是边长为2的正方形.设O 为正方形ABCD 的中心,AB 的中点为M ,连接PM ,OM ,PO ,则1OM =,221013PM PA AM =-=-=,9122PO =-=,如图,在截面PMO 中,设N为球1O 与平面PAB 的切点,则N 在PM 上,且1O N PM ⊥,设球1O 的半径为R ,则1O N R =,∵1sin 3OM MPO PM ∠==,∴1113NO PO =,则13PO R =,11422PO PO OO R =+==∴22R =,设球1O 与球2O 相切于点Q ,则22PQ PO R R =-=,设球2O 的半径为r ,同理可得4PQ r =,∴224R r ==,故小球2O 的体积3423V r π==.故答案为:224.【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.16.40°【分析】画出过球心和晷针所确定的平面截地球和晷面的截面图根据面面平行的性质定理和线面垂直的定义判定有关截线的关系根据点处的纬度计算出晷针与点处的水平面所成角【详解】画出截面图如下图所示其中是赤解析:40° 【分析】画出过球心和晷针所确定的平面截地球和晷面的截面图,根据面面平行的性质定理和线面垂直的定义判定有关截线的关系,根据点A 处的纬度,计算出晷针与点A 处的水平面所成角. 【详解】画出截面图如下图所示,其中CD 是赤道所在平面的截线;l 是点A 处的水平面的截线,依题意可知OA l ⊥;AB 是晷针所在直线.m 是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直,根据平面平行的性质定理可得可知//m CD 、根据线面垂直的定义可得AB m ⊥.. 由于40,//AOC m CD ∠=︒,所以40OAG AOC ∠=∠=︒, 由于90OAG GAE BAE GAE ∠+∠=∠+∠=︒,所以40BAE OAG ∠=∠=︒,也即晷针与点A 处的水平面所成角为40BAE ∠=︒. 故答案为:40°.【点睛】本小题主要考查中国古代数学文化,解题的关键是将稳文中的数据建立平面图形,属于中档题.17.【分析】证明直线与平面所成角中当此为二面角的平面角时最大即可得【详解】先证一个命题:平面内所有直线与平面所成的角中当此角为二面角的平面角时最大如图平面于点于是上任一点则而则平面又平面∴是二面角的平面解析:4 【分析】证明直线PM 与平面BCD 所成角中当此为二面角的平面角时最大即可得.【详解】先证一个命题:平面ABC 内所有直线与平面BCD 所成的角中,当此角为二面角的平面角时最大.如图AO ⊥平面BCD 于点O ,OE BC ⊥于E ,Q 是BC 上任一点,则AO BC ⊥,而AO OE O =,则BC ⊥平面OAE ,又AE ⊂平面OAE ,∴AEO ∠是二面角A BC D --的平面角,而AQO 是直线AQ 与平面ABCD 所成的角, 显然sin AO AEO AE∠=,sin AO AQO AQ ∠=,又AQ AE ≥,∴sin sin sin AQO AEO ∠≤∠,,AEO AQO ∠∠都是锐角,∴AQO AEO ∠≤∠,,Q E 重合时等号成立.由此可知平面ABC 内所有直线与平面BCD 所成的角中,当此角为二面角的平面角时最大.由已知6EO ==4AE =,AOsin AEO ∠= ∴直线PM 与平面BCD 所成角最大值等于AEO ∠,∴sin θ的最大值为4.【点睛】结论点睛:在二面角A BC D --(为锐二面角)中,AEO ∠是A BC D --二面角的平面角,Q 是棱BC 上任一点,则AQ 与平面BCD 所成角中最大值为二面角的平面角,AQ 与平面BCD 内过Q 点的直线(实际上是所有直线)所成角中最大值为直线AQ 与平面BCD 所成的角.18.【分析】取的中点分别为连接先证明四边形是平行四边形再利用面面平行的判断定理证明平面平面可得平行四边形即为所求的截面再计算其面积即可【详解】取的中点分别为连接因为所以四边形是平行四边形所以因为所以四边 解析:26【分析】取AB ,11D C 的中点分别为,M N ,连接11,,,,A M MC CN A N PM ,先证明四边形1A MCN 是平行四边形,再利用面面平行的判断定理证明平面1//PBC 平面1A MCN ,可得平行四边形1A MCN 即为所求的截面,再计算其面积即可.【详解】取AB ,11D C 的中点分别为,M N ,连接11,,,,A M MC CN A N PM ,因为11A P NC ,所以四边形11A PC N 是平行四边形,所以11A N PC , 因为1PM CC 所以四边形1PMCC 是平行四边形,所以1MC PC ,所以1A N MC ,所以四边形1A MCN 是平行四边形,因为11//PC A N ,1PC ⊄平面1A MCN ,1A N ⊂平面1A MCN ,所以1//PC 平面1A MCN ,同理可证//PB 平面1A MCN ,因为1PC PB P ⋂=,所以平面1//PBC 平面1A MCN ,因此过点1A 作与平面1PBC 平行的截面,即是平行四边形1A MCN ,连接MN ,作1A H MN ⊥于点H ,由11AM A N ==,MN =可得1A H ==所以111122A MN S MN A H =⨯⨯=⨯=,所以平行四边形1A MCN 的面积为12A MN S=故答案为:【点睛】 关键点点睛:本题的关键点是找出过点1A 与平面1PBC 平行的截面,所以想到作平行线,利用面面平行的判断定理证明所求的截面即是平行四边形1A MCN ,先求四边形一半的面积,乘以2即可得所求平行四边形的面积,也可以直接求菱形的面积.19.【分析】先在直角三角形中列关系求得再求球的表面积即可【详解】是直角三角形外接圆圆心为的中点因为三点都在球的表面上球心到平面的距离为是球半径的所以中即故解得所以球的表面积故答案为:【点睛】本题考查了球 解析:9π 【分析】先在直角三角形中列关系,求得R ,再求球的表面积即可.【详解】AB =AC BC ⊥,ABC ∆是直角三角形,外接圆圆心为AB 的中点M ,因为A ,B ,C 三点都在球O 的表面上,球心O 到平面ABC 的距离为OM ,是球半径的13, 所以OMB ∆中()()222OA OM MA =+,即2221132R R AB ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭故2221132R R ⎛⎫⎛=+⨯ ⎪ ⎝⎭⎝,解得29=4R ,所以球O 的表面积29=4494S R πππ=⋅=. 故答案为:9π.【点睛】本题考查了球的表面积,属于中档题.20.【分析】由正四面体性质可知球心在棱锥高线上利用勾股定理可求出半径R 即可求出球的面积【详解】正四面体的棱长为:底面三角形的高:棱锥的高为:设外接球半径为R 解得所以外接球的表面积为:;故答案为:【点睛】 解析:232a π 【分析】由正四面体性质可知,球心在棱锥高线上,利用勾股定理可求出半径R ,即可求出球的面积.【详解】正四面体的棱长为:a ,底面三角形的高:22a a =,3a =, 设外接球半径为R ,222))R R a =-+,解得R =,所以外接球的表面积为:223442a a ππ⎛⎫⨯= ⎪ ⎪⎝⎭; 故答案为:232a π. 【点睛】本题考查球的表面积的求法,解题的关键是根据球心的位置,在正四面体中求出球的半径. 三、解答题21.(1)证明见解析;(2)3. 【分析】(1)连接AC 交BD 于点O ,连接EO ,利用三角形中位线定理可得//EO PC ,再由线面平行的判定定理可得结论;(2)先证明PO ⊥面ABCD ,由E 是PA 的中点,可得E 到面ABCD 的距离12PO =,再利用棱锥的体积公式可得答案.【详解】(1)连接AC 交BD 于点O ,连接EO .四边形ABCD 为正方形,所以O 为AC 中点,又E 为PA 中点,//EO PC ∴,又EO ⊂面EBD ,PC ⊄面EBD ,//PC ∴面EBD .(2)正四棱锥P ABCD -中,PA PC =,O 是AC 的中点PO AC ∴⊥,PD PB =,O 是BD 的中点PO BD ∴⊥,又AC 与BD 在平面ABCD 内相交,所以PO ⊥面ABCD E 是PA 的中点,E ∴到面ABCD 的距离12PO =, 221822,2ABD S AB AD PO PD DO ∆=⋅⋅==-= 182323E ABD ABD PO V S -∆=⋅⋅= 【点睛】方法点睛:证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.22.(1)证明见解析;(2)32 【分析】(1)取AB 中点G ,连结OG 、EG ,可证明四边形OGEF 为平行四边形,则 OF EG ∥,由线面平行的判定定理即可求证;(2)由(1)可知,OF EG ∥,则直线OF 与平面ABC 所成角即为直线EG 与平面ABC 所成角,EC ⊥平面ABC ,则EGC ∠即为直线EG 与平面ABC 所成的角,在EGC 中即可求EGC ∠的余弦值.【详解】(1)取AB 中点G ,连结OG 、EG ,在直三棱柱111ABC A B C -中,1OG BB ∥,则OG EF ∥, 又112EF CC =,则OG EF =, 所以四边形OGEF 为平行四边形,则 OF EG ∥,又EG ⊂平面ABE ,OF ⊄平面ABE , 故//OF 平面ABE .(2)由(1)可知,OF EG ∥,则直线OF 与平面ABC 所成角即为直线EG 与平面ABC 所成角,连接CG ,由直三棱柱111ABC A B C -可得EC ⊥平面ABC ,则EGC ∠即为直线EG 与平面ABC 所成的角,设2AB =,则114AA CC ==,又1CE C F =,则1CE =,3CG =2EG =,所以,直线EG 与平面ABC 所成角的余弦值为32, 故直线OF 与平面ABC 3 【点睛】方法点睛:证明直线与平面平行的常用方法 (1)定义法:证明直线与平面没有公共点,通常要借助于反证法来证明;(2)判定定理:在利用判断定理时,关键找到平面内与已知直线平行的直线,常考虑利用三角形中位线、平行四边形的对边平行或过已知直线作一平面,找其交线进行证明; (3)利用面面平行的性质定理:直线在一平面内,由两平面平行,推得线面平行;直线在两平行平面外,且与其中一平面平行,这这条直线与另一个平行.23.(Ⅰ)证明见解析;(Ⅱ)63. 【分析】(Ⅰ)连接BD 交AC 于点O ,连接1D O ,连接11B D ,可证11//O B D O ,即可得证;(Ⅱ)依题意可得1D OD ∠是二面角1D AC D --的平面角,再根据锐角三角函数计算可得;【详解】(Ⅰ)证明:连接BD 交AC 于点O ,连接1D O ,连接11B D ,由长方体的性质知11BO O D =,且11//BO O D ,故四边形11BO D O 是平行四边形,所以11//O B D O .又因为1D O ⊂平面1ACD ,1O B ⊄平面1ACD ,所以1//O B 平面1ACD .(Ⅱ)解:设122AB BC AA ===,由长方体底面ABCD 是正方形,得DO AC ⊥. 因为11D A D C =,O 是AC 的中点,所以1D O AC ⊥,所以1D OD ∠是二面角1D AC D --的平面角.在直角三角形1D DO 中,190D DO ∠=︒,易得11=D D ,221122222DO BD ==+=,()()222211523D O D C OC =-=-= 得116cos DO D OD D O ∠== 所以二面角1D AC D --6. 【点睛】作二面角的平面角可以通过垂线法进行,在一个半平面内找一点作另一个半平面的垂线,再过垂足作二面角的棱的垂线,两条垂线确定的平面和二面角的棱垂直,由此可得二面角的平面角.24.(1)11113B F B A =,证明见解析;(225;(3),42ππ⎛⎫ ⎪⎝⎭. 【分析】(1)延长AE 交CD 于M ,在11C D 上取点N ,使得1D N DM =,连接1,MN A N ,可。
一、选择题1.如下图所示,在正方体1111ABCD A B C D -中,E 是平面11ADD A 的中心,M 、N 、F 分别是11B C 、1CC 、AB 的中点,则下列说法正确的是( )A .12MN EF =,且MN 与EF 平行 B .12MN EF ≠,且MN 与EF 平行 C .12MN EF =,且MN 与EF 异面 D .12MN EF ≠,且MN 与EF 异面 2.若圆锥的内切球(球面与圆锥的侧面以及底面都相切)的半径为1,当该圆锥体积取最小值时,该圆锥体积与其内切球体积比为( ) A .2:1B .4:1C .8:1D .8:33.在正方体1111ABCD A B C D -中,点,E F 分别是梭BC ,CD 的中点,则1A F 与1C E 所成角的余弦值为( ) A 5B 25C .515D .5154.已知AB 是平面α外的一条直线,则下列命题中真命题的个数是( ) ①在α内存在无数多条直线与直线AB 平行; ②在α内存在无数多条直线与直线AB 垂直; ③在α内存在无数多条直线与直线AB 异面; ④一定存在过AB 且与α垂直的平面β. A .1个B .2个C .3个D .4个5.已知三棱锥A BCD -的各棱长都相等,E 为BC 中点,则异面直线AB 与DE 所成角的余弦值为( ) A 13B .36C 33D .1166.在长方体1111ABCD A B C D -中,12,3AB BC AA ===,E 是BC 的中点,则直线1ED 与直线BD 所成角的余弦值是( )A .728B .728-C .3714D .3714-7.已知正三棱柱111ABC A B C -中,1AB AA =,M 是1CC 的中点,则异面直线AM 与1A B 所成角的大小为( )A .π6B .π4C .π3D .π28.已知球O 的半径为5,球面上有,,A B C 三点,满足214,27AB AC BC ===,则三棱锥O ABC -的体积为( ) A .77B .142C .714D .1479.如下图所示是一个正方体的平面展开图,在这个正方体中①//BM 平面ADE ;②DE BM ⊥;③平面//BDM 平面AFN ;④AM ⊥平面BDE .以上四个命题中,真命题的序号是( )A .①②③④B .①②③C .①②④D .②③④10.我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径意思是:球的体积V 乘16,除以9,再开立方,即为球的直径d ,由此我们可以推测当时球的表面积S 计算公式为( ) A .2278S d =B .2272S d =C .292S d =D .21114S d =11.在正方体1111ABCD A B C D -中,M 和N 分别为11A B ,和1BB 的中点.,那么直线AM 与CN 所成角的余弦值是( )A .25B .1010C .35D .3212.如图,长、宽、高分别为2、1、1的长方体木块上有一只小虫从顶点A 出发沿着长方体的外表面爬到顶点B ,则它爬行的最短路程是( )A .10B .5C .22D .3二、填空题13.在三棱锥P ABC -中,PA ⊥平面ABC ,22AB =,3BC =,4PA =,4ABC π∠=,则该三棱锥的外接球体积为___________.14.如图所示,Rt A B C '''∆为水平放置的ABC ∆的直观图,其中A C B C ''''⊥,2B O O C ''''==,则ABC ∆的面积是________________.15.已知某空心圆锥的母线长为5cm ,高为4cm ,记该圆锥内半径最大的球为球O ,则球O 与圆锥侧面的交线的长为________cm .16.在三棱锥-P ABC 中,侧面PBC 和底面ABC 都是边长为2的正三角形,若3PA =,则侧棱PA 与底面ABC 所成的角的大小是___________.17.如下图所示,三棱锥P ABC -外接球的半径为1,且PA 过球心,PAB △围绕棱PA 旋转60︒后恰好与PAC △重合.若3PB =,则三棱锥P ABC -的体积为_____________.18.已知点O 为圆锥PO 底面的圆心,圆锥PO 的轴截面为边长为2的等边三角形PAB ,圆锥PO 的外接球的表面积为______.19.将半径为3,圆心角为23π的扇形围成一个圆锥,则该圆锥内切球的体积为________. 20.在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,且ABCD 为矩形,π2DPA ∠=,23AD =,2AB =,PA PD =,则四棱锥P ABCD -的外接球的体积为________.三、解答题21.如图,该多面体由底面为正方形ABCD 的直四棱柱被截面AEFG 所截而成,其中正方形ABCD 的边长为4,H 是线段EF 上(不含端点)的动点,36==FC EB .(1)证明://GH 平面ABCD ; (2)求H 到平面AEC 的距离.22.如图,在四棱锥P ABCD -中,底面ABCD 是边长为1的正方形,PA ⊥底面ABCD ,PA AB =,点M 是棱PD 的中点.(1)求证://PB 平面ACM ; (2)求三棱锥P ACM -的体积.23.如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥底面ABCD ,E 为PD 的中点.(1)证明://PB 平面AEC ; (2)设1AP =,3AD =,四棱锥P ABCD -的体积为1,求证:平面PAC ⊥平面PBD .24.在四棱锥P ABCD -中,四边形ABCD 为正方形,平面PAB ⊥平面,ABCD PAB 为等腰直角三角形,,2PA PB AB ⊥=.(1)求证:平面PBC ⊥平面PAC ;(2)设E 为CD 的中点,求点E 到平面PBC 的距离.25.如图,已知长方体1111ABCD A B C D -,2AB =,11AA =,直线BD 与平面1AAB B 所成的角为30°,AE 垂直BD 于E .(1)若F 为棱11A B 上的动点,试确定F 的位置使得//AE 平面1BC F ,并说明理由; (2)若F 为棱11A B 上的中点;求点A 到平面BDF 的距离;(3)若F 为棱11A B 上的动点(端点1A ,1B 除外),求二面角F BD A --的大小的取值范围.26.如图,已知在三棱锥P ABC -中,ABC 是边长为2的正三角形,PAC △是以AC 为斜边的等腰直角三角形,若直线PB 与平面ABC 所成的角为6π.(Ⅰ)若PB PC >,求证:平面PAC ⊥平面ABC ; (Ⅱ)若PB PC <,求直线AB 与平面PAC 所成角的正弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】设正方体1111ABCD A B C D -的棱长为2,利用正方体性质可求得2MN =,3EF =,知12MN EF ≠,再利用三角形中位线性质知1//MN B C ,从而//MN ED ,又EF 与ED 相交,可知MN 与EF 异面,即可选出答案. 【详解】设正方体1111ABCD A B C D -的棱长为2,则22112MN MC C N =+=作E 点在平面ABCD 的投影点G ,即EG ⊥平面ABCD ,连接,EG GF ,在直角EGF △中,1EG =,222GF AG AF =+=,则2222123EF EG GF =+=+=,所以12MN EF ≠,故排除A 、C 连接DE ,由E 是平面11ADD A 的中心,得112DE A D =又M N 、分别是11B C 、1CC 的中点,所以1//MN B C 又11//A D B C ,所以//MN ED , 又EF ED E ⋂=,所以MN 与EF 异面 故选:D.【点睛】关键点睛:本题考查正方体中的线面关系,线线平行的关系,及判断异面直线,解题的关键是熟记正方体的性质,考查学生的逻辑推理能力,属于基础题.2.A解析:A 【分析】根据三角形相似得出圆锥的底面半径和高的关系,根据体积公式和基本不等式得出答案. 【详解】设圆锥的高为h ,底面半径为r ,则当球面与圆锥的侧面以及底面都相切时,轴截面如图,由~AOE ACF 可得:22(1)11h r --=,即22r h h =-, ∴圆锥的体积22148[(2)4]33(2)323h V r h h h h ππππ===-++--.当且仅当22h -=,即4h =时取等号.∴该圆锥体积的最小值为83π. 内切球体积为43π. 该圆锥体积与其内切球体积比2:1. 故选:A .【点睛】方法点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.3.D解析:D 【分析】延长DA 至G ,使AG CE =,可证11//A G C E ,得1GA F ∠是异面直线1A F 与1C E 所成的角(或其补角).在1AGF △中,由余弦定理可得结论. 【详解】延长DA 至G ,使AG CE =,连接1,GE GA ,GF ,11,AC A C , 又//AG CE 所以AGEC 是平行四边形,//,GE AC GE AC =,又正方体中1111//,AC AC AC AC =, 所以1111//,AC DE AC DE =,所以11AC EG 是平行四边形,则11//A G C E ,所以1GA F ∠是异面直线1A F 与1C E 所成的角(或其补角). 设正方体棱长为2,在正方体中易得15AG =,10GF =,22222112(21)3A F AA AF =+=++=,1AGF △中,2221111125cos 2253AG A F GF GA F AG A F+-∠===⋅⨯⨯. 故选:D .【点睛】方法点睛:本题考查空间向量法求异面直线所成的角,求异面直线所成角的方法: (1)定义法:根据定义作出异面直线所成的角并证明,然后解三角形得结论; (2)建立空间直角坐标系,由两异面直线的方向向量的夹角得异面直线所成的角.4.C解析:C 【分析】根据线面平行,线面垂直,异面直线等有关结论和定义即可判断. 【详解】对于A ,若直线AB 与平面α相交,则在α内不存在直线与直线AB 平行,错误; 对于B ,若直线AB 与平面α相交且不垂直,设AB M α=,过平面α外直线AB 上一点P 作PC α⊥,垂足为C ,则在平面α内过点C 一定可以作一条直线CD ,使得CD CM ⊥,所以CD AB ⊥,而在平面α内,与直线CD 平行的直线有无数条,所以在α内存在无数多条直线与直线AB 垂直,若直线AB 与平面α垂直,显然在α内存在无数多条直线与直线AB 垂直,当直线AB 与平面α平行时,显然可知在α内存在无数多条直线与直线AB 垂直,正确;对于C ,若直线AB 与平面α相交,设AB M α=,根据异面直线的判定定理,在平面α内,不过点M 的直线与直线AB 异面,所以在α内存在无数多条直线与直线AB 异面,当直线AB 与平面α平行时,显然可知在α内存在无数多条直线与直线AB 异面,正确; 对于D ,若直线AB 与平面α相交且不垂直,设AB M α=,过平面α外直线AB 上一点P 作PC α⊥,垂足为C ,所以平面ABC 与平面α垂直,若直线AB 与平面α垂直,则过直线AB 的所有平面都与平面α垂直,当直线AB 与平面α平行时,在直线AB 上取一点P 作PC α⊥,垂足为C ,所以平面ABC 与平面α垂直,正确. 故真命题的个数是3个. 故选:C . 【点睛】本题主要考查线面平行,线面垂直,异面直线等有关结论和定义的理解和应用,熟记定义,定理和有关结论是解题的关键,属于中档题.5.B解析:B 【分析】取AC 中点F ,连接,EF DF ,证明FED ∠是异面直线AB 与DE 所成角(或其补角),然后在三角形中求得其余弦值即可得. 【详解】取AC 中点F ,连接,EF DF ,∵E 是BC 中点,∴//EF AB ,12EF AB =, 则FED ∠是异面直线AB 与DE 所成角(或其补角), 设1AB =,则12EF =,3DE DF ==, ∴在等腰三角形DEF 中,11324cos 632EF FED DE ∠===. 所以异面直线AB 与DE 所成角的余弦值为3. 故选:B .【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.6.C解析:C 【分析】连接11D B 、1D E 、DE ,先证明四边形11BB D D 为平行四边形,得到11//B D BD ,故异面直线1ED 与BD 所成的角即为相交直线1ED 与11D B 所成的角,由余弦定理可得答案. 【详解】连接11D B 、1D E 、DE ,因为棱11//BB DD ,11BB DD =,所以四边形11BB D D 为平行四边形,所以11//B D BD ,故异面直线1ED 与BD 所成的角即为相交直线1ED 与11D B 所成的角11B D E ∠,因为12,3AB AD AA ===,1BE CE ==,所以2211111122B D D C B C =+=213110B E =+=222415ED CE DC +=+==,所以222115914D E ED D D ==+=+,由余弦定理得,从而22211111111137cos 24214B D D E B E B D E B D D E +-∠===⨯⨯. 故选:C 【点睛】本题考查异面直线所成角的余弦值的求法,关键点是找到异面直线所成的角,考查空间中线线的位置关系等基础知识,考查运算求解能力,是中档题.7.D解析:D 【分析】取AC 中点E ,连接1,A E BE ,先通过BE ⊥平面11ACC A 可得BE AM ⊥,再由1ACM A AE ≅可得1AM A E ⊥,即可得出AM ⊥平面1A BE ,即1AM A B ⊥.【详解】取AC 中点E ,连接1,A E BE ,ABC 为正三角形,BE AC ∴⊥,正三棱柱111ABC A B C -中,1CC ⊥平面ABC ,BE ⊂平面ABC ,1CC BE ∴⊥,1ACCC C =,BE ∴⊥平面11ACC A ,AM ⊂平面11ACC A ,BE AM ∴⊥,在直角三角形ACM 和直角三角形1A AE 中,1,AC A A CM AE ==,1ACM A AE ∴≅, 1CAM AA E ∴∠=∠,12CAM A EA π∴∴∠+∠=,则1AM A E ⊥,1BE A E E ⋂=,AM ∴⊥平面1A BE ,1A B ⊂平面1A BE ,1AM A B ∴⊥,故异面直线AM 与1A B 所成角的大小为2π.【点睛】本题考查异面直线所成角的求解,解题的关键是通过证明AM ⊥平面1A BE 判断出1AM A B ⊥.8.A解析:A 【分析】利用正弦定理求出ABC 的外接圆半径,则可求出三棱锥的高,进而求出三棱锥体积.设ABC 的外接圆的圆心为D ,半径为r , 在ABC 中,72cos 4214ABC ∠==,14sin 4ABC ∴∠=, 由正弦定理可得28sin ACr ABC==∠,即4r =,则22543OD =-=,1111421427377332O ABC ABCV SOD -∴=⨯⨯=⨯⨯⨯⨯⨯=.故选:A.【点睛】本题考查球内三棱锥的相关计算,解题的关键是利用正弦定理求出ABC 的外接圆半径,利用勾股关系求出高.9.A解析:A 【分析】把正方体的平面展开图还原成正方体ABCA ﹣EFMN ,得出BM ∥平面ADNE ,判断①正确;由连接AN ,则AN ∥BM ,又ED AN ⊥,判断②正确;由BD ∥FN ,得出BD ∥平面AFN ,同理BM ∥平面AFN ,证明平面BDM ∥平面AFN ,判断③正确;由MC BD ⊥,ED ⊥AM ,根据线面垂直的判定,判断④正确.【详解】把正方体的平面展开图还原成正方体ABCA ﹣EFMN ,如图1所示; 对于①,平面BCMF ∥平面ADNE ,BM ⊂平面BCMF , ∴BM ∥平面ADNE ,①正确;对于②,如图2所示,连接AN ,则AN ∥BM ,又ED AN ⊥,所以DE BM ⊥,②正确; 对于③,如图2所示,BD ∥FN ,BD ⊄平面AFN ,FN ⊂平面AFN ,∴BD ∥平面AFN ;同理BM ∥平面AFN ,且BD ∩BM =B ,∴平面BDM ∥平面AFN ,③正确; 对于④,如图3所示,连接AC ,则BD AC ⊥,又MC ⊥平面ABCD ,BD ⊂平面所以MC BD ⊥,又AC MC C ,所以BD ⊥平面ACM ,所以BD ⊥AM ,同理得ED ⊥AM ,ED BD D =,所以AM ⊥平面BDE ,∴④正确.故选:A .【点睛】关键点点睛:解决本题的关键在于展开空间想象,将正方体的平面展开图还原,再由空间的线线,线面,面面关系及平行,垂直的判定定理去判断命题的正确性.10.A解析:A 【分析】根据已知条件结合球的体积公式3432d π⎛⎫ ⎪⎝⎭求解出π的值,然后根据球的表面积公式242d π⎛⎫⎪⎝⎭求解出S 的表示,即可得到结果. 【详解】3169V d =,所以33941632d d V π⎛⎫==⎪⎝⎭,所以278π=,所以2222727442848d d S d π⎛⎫==⨯⨯= ⎪⎝⎭,故选:A. 【点睛】关键点点睛:解答本题的关键是根据球的体积公式得到π的表示,再将π带入到球的表面积公式即可完成求解.11.A解析:A 【分析】作出异面直线AM 和CN 所成的角,然后解三角形求出两条异面直线所成角的余弦值. 【详解】设,E F 分别是1,AB CC 的中点,由于,M N 分别是111,A B BB 的中点,结合正方体的性质可知11//,//B E AM B F CN ,所以1EB F ∠是异面直线AM 和CN 所成的角或其补角, 设异面直线AM 和CN 所成的角为θ,设正方体的边长为2,2211125B E B F ==+=,2221216EF =++=,则1cos cos EB F θ=∠=55625255+-=⨯⨯.故选:A.【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.12.C解析:C 【分析】小虫有两种爬法,一种是从点A 沿着侧面ACGF 和上底面BHFG 爬行,另一种是从点A 沿着侧面ACGF 和侧面BDCG 爬行,将两种情况下的两个面延展为一个面,计算出平面图形的对角线长,比较大小后可得结果. 【详解】由于长方体ACDE FGBH -的长、宽、高分别为2、1、1,则小虫从点A 沿着侧面AEHF 和上底面FHBG 爬行,以及小虫从点A 沿着侧面ACGF 和侧面BDCG 爬行,这两条线路的最短路程相等.①若小虫从点A 沿着侧面ACGF 和上底面BHFG 爬行,将侧面ACGF 和上底面BHFG 延展为一个平面,如下图所示:则2AC BC ==,最短路程为2222AB AC BC =+=;②若小虫从点A 沿着侧面ACGF 和侧面BDCG 爬行,将面ACGF 和侧面BDCG 延展为一个平面,如下图所示:则3AD AC CD =+=,1BD =,最短路程为2210AB AD BD =+.因为2210<,因此,小虫爬行的最短路程为22 故选:C. 【点睛】方法点睛:(1)计算多面体或旋转体的表面上折线段的最值问题时,一般采用转化的方法进行,即将侧面展开化为平面图形,即“化折为直”或“化曲为直”来解决,要熟练掌握多面体与旋转体的侧面展开图的形状;(2)对于几何体内部折线段长的最值,可采用转化法,转化为两点间的距离,结合勾股定理求解.二、填空题13.【分析】利用余弦定理求得利用正弦定理计算出的外接圆直径可计算出三棱锥的外接球半径然后利用球体体积公式可求得结果【详解】如下图所示圆柱的底面圆直径为圆柱的母线长为则的中点到圆柱底面圆上每点的距离都相等 1326π【分析】利用余弦定理求得AC ,利用正弦定理计算出ABC 的外接圆直径2r ,可计算出三棱锥P ABC -的外接球半径R ,然后利用球体体积公式可求得结果. 【详解】如下图所示,圆柱12O O 的底面圆直径为2r ,圆柱的母线长为h ,则12O O 的中点O 到圆柱底面圆上每点的距离都相等, 所以,圆柱12O O 的外接球直径为()2222R r h =+.本题中,作出ABC 的外接圆2O ,由于PA ⊥平面ABC ,可将三棱锥P ABC -放在圆柱12O O 中,在ABC 中,22AB =3BC =,4ABC π∠=,由余弦定理可得222cos 5AC AB BC AB BC ABC +-⋅∠=,由正弦定理可知,ABC 的外接圆直径为5210sin 2ACr ABC===∠ 则三棱锥P ABC -的外接球直径为()222226R PA r =+=26R =, 因此,三棱锥P ABC -的外接球的体积为334426132633V R ππ==⨯=⎝⎭. 故答案为:13263. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.14.【分析】根据直观图和原图的之间的关系由直观图画法规则将还原为如图所示是一个等腰三角形直接求解其面积即可【详解】由直观图画法规则将还原为如图所示是一个等腰三角形则有所以故答案为:【点睛】关键点点睛:根 解析:82【分析】根据直观图和原图的之间的关系,由直观图画法规则将Rt A B C '''还原为ABC ,如图所示,ABC 是一个等腰三角形,直接求解其面积即可. 【详解】由直观图画法规则将Rt A B C '''还原为ABC ,如图所示,ABC 是一个等腰三角形,则有2BO OC B O O C ''''====,242AO A O ''==所以114428222ABCSBC AO =⋅=⨯⨯= 故答案为:2【点睛】关键点点睛:根据斜二测画法的规则,可得出三角形的直观图,并求出对应边长,根据面积公式求解.15.【分析】由题可求出底面半径根据三角形相似关系可求出球半径再利用三角形面积关系可求出球O 与圆锥的侧面的交线的半径即可求出交线长【详解】圆锥的轴截图如图所示由题可知圆锥的高母线设的内切圆与圆锥的母线相切 解析:125π 【分析】由题可求出底面半径,根据三角形相似关系可求出球半径,再利用三角形面积关系可求出球O 与圆锥的侧面的交线的半径,即可求出交线长. 【详解】圆锥的轴截图如图所示,由题可知,圆锥的高4cm AF =,母线5cm AB AC ==, 设ABC 的内切圆O 与圆锥的母线相切与点E ,则OE AB ⊥, 则该圆锥内半径最大的球即以O 为圆心,OE 为半径的球, 在直角三角形ABF 中,2222543cm BF AB AF =--=,由圆的切线性质可得3cm BE BF ==, 所以532cm AE AB BE =-=-=, 在直角三角形AFB 和直角三角形AEO 中, 因为∠∠EAO BAF =,所以△△AFB AEO ~,所以AE OE AF BF =,则可得3cm 2OE =, 过点E 作ED AF ⊥,D 为垂足,则球O 与圆锥的侧面的交线是以DE 为半径的圆,354cm 22AO AF OF =-=-=, 因为1122△AEO S AE OE ED AO =⋅=⋅,所以6cm 5ED =, 所以球O 与圆锥的侧面的交线长为6122cm 55ππ⨯=. 故答案为:125π. 【点睛】本题考查圆锥与球的相切问题,解题的关键是利用轴截面,用平面几何的知识解决.16.【分析】先画出直观图证明平面平面然后侧棱与底面ABC 所成的角即为根据题目中的数据算出即可【详解】如图作的中点连结因为侧面PBC 和底面ABC 都是边长为2的正三角形而为的中点所以又所以平面同时平面所以平解析:o 60. 【分析】先画出直观图,证明平面PAD ⊥平面ABC ,然后侧棱PA 与底面ABC 所成的角即为PAD ∠,根据题目中的数据算出即可. 【详解】如图,作BC 的中点D ,连结AD 、PD 因为侧面PBC 和底面ABC 都是边长为2的正三角形 而D 为BC 的中点,所以BC PD ⊥,BC AD ⊥,又PD AD D ⋂=,所以BC ⊥平面PAD ,同时BC ⊂平面ABC 所以平面PAD ⊥平面ABC ,所以PAD ∠即为侧棱PA 与底面ABC 所成的角 由侧面PBC 和底面ABC 都是边长为2的正三角形得3AD PD ==3PA =所以PAD ∆为等边三角形,则=PAD ∠o 60 即侧棱PA 与底面ABC 所成的角为o 60 故答案为:o 60 【点睛】本题主要考查空间直线与平面所成角的计算,较简单.17.【分析】作于可证得平面得得等边三角形利用是球的直径得然后计算出再应用棱锥体积公式计算体积【详解】∵围绕棱旋转后恰好与重合∴作于连接则∴又过球心∴而∴同理由得平面∴故答案为:【点睛】易错点睛:本题考查 3 【分析】作BH PA ⊥于H ,可证得PA ⊥平面BCH ,得60BHC ∠=︒,得等边三角形BCH ,利用PA 是球的直径,得PB AB ⊥,然后计算出BH ,再应用棱锥体积公式计算体积. 【详解】∵PAB △围绕棱PA 旋转60︒后恰好与PAC △重合, ∴PAB PAC ≅△△,作BH PA ⊥于H ,连接CH ,则,CH PA CH BH ⊥=,60BHC ∠=︒, ∴BC BH CH ==.又PA 过球心,∴PB AB ⊥,而2,3PA PB ==,∴1AB =,同理1AC =,31322PB AB BH PA ⋅===,2233333BCH S BH ===⎝⎭△由BH PA ⊥,CH PA ⊥,CH BH H =,得PA ⊥平面BCH ,∴11333233168P ABC BCH V S PA -=⋅=⨯⨯=△. 故答案为:38.【点睛】易错点睛:本题考查求棱锥的体积,解题关键是作BH PA ⊥于H ,利用旋转重合,得PA ⊥平面BCH ,这样只要计算出BCH 的面积,即可得体积,这样作图可以得出60BHC ∠=︒,为旋转所形成的二面角的平面角,这里容易出错在误认为旋转60︒,即为60CAB ∠=︒.旋转60︒是旋转形成的二面角为60︒.应用作出二面角的平面角. 18.【分析】由题意知圆锥的轴截面为外接球的最大截面即过球心的截面且球心在上由等边三角形性质有即求得外接球的半径为R 进而求外接球的表面积【详解】设外接球球心为连接设外接球的半径为R 依题意可得在中有即解得故 解析:163π【分析】由题意知圆锥PO 的轴截面为外接球的最大截面,即过球心的截面且球心在PO 上,由等边三角形性质有Rt AO O '△,即222O A AO O O ''=+求得外接球的半径为R ,进而求外接球的表面积. 【详解】设外接球球心为O ',连接AO ',设外接球的半径为R ,依题意可得1AO =,3PO =,在Rt AO O '△中,有222O A AO O O ''=+,即)2221R R =+,解得R =, 故外接球的表面积为24164433S R πππ==⋅=. 故答案为:163π. 【点睛】 本题考查了求圆锥体的外接球面积,由截面是等边三角形,结合等边三角形的性质求球半径,进而求外接球面积,属于基础题.19.【分析】根据圆锥底面圆周长为扇形弧长得圆锥底面半径设内切球半径为r ﹐圆锥高为h 结合轴截面图形计算得最后计算体积即可【详解】解:设圆锥底面半径为R 则所以设内切球半径为r ﹐圆锥高为h 则如图是圆锥轴截面三解析:3 【分析】根据圆锥底面圆周长为扇形弧长得圆锥底面半径1R =,设内切球半径为r ﹐圆锥高为h ,结合轴截面图形计算得2r,最后计算体积即可. 【详解】 解:设圆锥底面半径为R ,则2233R ππ=⨯,所以1R =.设内切球半径为r ﹐圆锥高为h ,则h == 如图,是圆锥轴截面三角形图,所以3r R h r =-,解得:2r ,故3443383r V ππ==⨯=.故答案为:3【点睛】本题考查圆锥的侧面展开图,圆锥的内切球的体积,考查空间想象能力,是中档题. 20.【分析】由矩形的边长可得底面外接圆的半径再由为等腰直角三角形可得其外接圆的半径又平面平面可得底面外接圆的圆心即为外接球的球心由题意可得外接球的半径进而求出外接球的体积【详解】解:取矩形的对角线的交点 解析:323π 【分析】由矩形的边长可得底面外接圆的半径,再由PAD △为等腰直角三角形可得其外接圆的半径,又平面PAD ⊥平面ABCD 可得底面外接圆的圆心即为外接球的球心,由题意可得外接球的半径,进而求出外接球的体积.【详解】解:取矩形的对角线的交点O 和AD 的中点E ,连接OE ,OP ,OE ,则O 为矩形ABCD 的外接圆的圆心,而2DPA π∠=,23AD =2AB =,PA PD =,则//OE AB ,112OE AB ==, 132PE AD == 所以E 为PAD △的外接圆的圆心,因为平面PAD ⊥平面ABCD ,所以O 为外接球的球心,OP 为外接球的半径,在POE △中,222222(3)14R OP PE OE ==+=+=,所以2R =, 所以外接球的体积343233V R ππ==, 故答案为:323π.【点睛】本题考查四棱锥的棱长与外接球的半径的关系及球的体积公式,属于中档题.三、解答题21.(1)证明见解析;(26.【分析】(1)取BC 的中点M ,连接HM ,DM .证明四边形DGHM 是平行四边形,可得线面平行;(2)由H 到平面AEC 的距离为F 到平面AEC 的距离的一半,先求出F 到平面AEC 的距离,用体积法可求得F 到平面AEC 的距离.【详解】(1)证明:取BC 的中点M ,连接HM ,DM .因为该多面体由底面为正方形ABCD 的直四棱柱被截面AEFG 所截而成,所以截面AEFG 是平行四边形,则4=-=DG CF EB .因为36==FC EB , 所以1(26)42=⨯+=HM ,且DG//FC//HM , 所以四边形DGHM 是平行四边形,所以GH //DM . 因为DM ⊂平面ABCD ,GH ⊄平面ABCD ,所以//GH 平面ABCD .(2)解:连接HA ,HC ,AF ,记F 到平面ACE 的距离为d ,则H 到平面ACE 的距离为2d . 在CEF △中,6EF =,高为4,所以CEF △的面积为164122⨯⨯=. 因为三棱锥A CEF -的高为4,所以A CEF -的体积为1124163⨯⨯=. 在ACE 中,42AC =25AE CE ==,所以ACE 的面积为22142(25)(22)462⨯⨯-=. 因为A CEF -的体积与F ACE -的体积相等, 所以146163⨯⨯=d ,所以26d =.故H 到平面ACE 的距离为6.【点睛】方法点睛:本题考查证明线面平行,考查求点到平面的距离.求点到平面的距离的常用方法:(1)定义法:作出点到平面的垂线段,求出垂线段的长;(2)用体积法计算;(3)空间向量法:求出平面外的点到平面内任一点连线的向量在平面的法向量方向上投影的绝对值.22.(1)证明见解析;(2)23. 【分析】(1)连接BD 交AC 于点O ,由中位线定理得//OM PB ,从而得证线面平行; (2)由M 是PD 中点,得12M ACD P ACD V V --=,求出三棱锥P ACD -的体积后可得. 【详解】(1)如图,连接BD 交AC 于点O ,连接OM ,则O 是BD 中点,又M 是PD 中点, ∴//OM PB ,又PB ⊄平面ACM ,OM ⊂平面ACM ,所以//PB 平面ACM ;(2)由已知12222ACD S =⨯⨯=,11422333P ACD ACD V S PA -=⋅=⨯⨯=△, 又M 是PD 中点,所以1223M ACD P ACD V V --==, 所以23P ACM P ACD M ACD V V V ---=-=.【点睛】思路点睛:本题考查证明线面平行,求三棱锥的体积.求三棱锥的体积除掌握体积公式外,还需要注意割补法,不易求体积的三棱锥(或一个不规则的几何体)的体积可通过几个规则的几何体(柱、锥、台等)的体积加减求得.三棱锥的体积还可通过转化顶点,转移底面利用等体积法转化为求其他三棱锥的体积,从而得出结论.23.(1)证明见解析;(2)证明见解析.【分析】( 1)设BD 与AC 的交点为O ,连接EO ,通过直线与平面平行的判定定理证明//PB 平面AEC ;( 2)通过体积得到底面为正方形,再由线面垂直得到面面垂直即可.【详解】(1)连接BD 交AC 于点O ,连结EO ,因为ABCD 为矩形,所以O 为BD 的中点,又E 为PD 的中点,所以//EO PB ,EO ⊂平面AEC ,PB ⊄平面AEC ,所以//PB 平面AEC .(2)因为113P ABCD V AB AD AP -=⨯⨯⨯=, 所以3AB =,所以底面ABCD 为正方形,所以BD AC ⊥,因为PA ABCD ⊥,所以BD PA ⊥,且AC PA A ⋂=,所以BD ⊥平面PAC , 又BD ⊂平面PBD ,所以平面PAC ⊥平面PBD .【点睛】本题主要考查了立体几何及其运算,要证明线面平行先证明线线平行,要证明面面垂直,先证明线面垂直,考查了学生的基础知识、空间想象力.。
一、选择题1.正三棱锥(底面为正三角形,顶点在底面的射影为底面中心的棱锥)的三视图如图所示,俯视图是正三角形,O 是其中心,则正视图(等腰三角形)的腰长等于( )A 5B .2C 3D 22.已知正方体1111ABCD A B C D -,E 、F 分别是正方形1111D C B A 和11ADD A 的中心,则EF 和BD 所成的角的大小是( ) A .30B .45C .60D .903.设1l 、2l 、3l 是三条不同的直线,α、β、γ是三个不同的平面,则下列命题是真命题的是( )A .若1//l α,2//l α,则12l l //B .若1l α⊥,2l α⊥,则12l l ⊥C .若12//l l ,1l α⊂,2l β⊂,3l αβ⋂=,则13//l lD .若αβ⊥,1l αγ=,2l βγ⋂=,则12l l //4.已知正三棱柱111ABC A B C -,底面正三角形ABC 的边长为2,侧棱1AA 长为2,则点1B 到平面1A BC 的距离为( ) A .2217B .22121C .77D .7215.如图,在正四棱锥P ABCD -中,设直线PB 与直线DC 、平面ABCD 所成的角分别为α、β,二面角P CD B --的大小为γ,则( )A .,αβγβ>>B .,αβγβ><C .,αβγβ<>D .,αβγβ<<6.在我国古代,将四个角都是直角三角形的四面体称为“鳖臑”.在“鳖臑”ABCD 中,AB ⊥平面BCD ,BD CD ⊥且AB BD CD ==,若该四面体的体积为43,则该四面体外接球的表面积为( )A .8πB .12πC .14πD .16π7.如图,圆锥的母线长为4,点M 为母线AB 的中点,从点M 处拉一条绳子,绕圆锥的侧面转一周达到B 点,这条绳子的长度最短值为25,则此圆锥的表面积为( )A .4πB .5πC .6πD .8π8.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A .24B .30C .47D .679.《九章算术》是古代中国乃至东方的第一步自成体系的数学专著,书中记载了一种名为“刍甍”的五面体(如图),其中四边形ABCD 为矩形,//EF AB ,若3AB EF =,ADE 和BCF △都是正三角形,且2AD EF =,则异面直线AE 与CF 所成角的大小为( )A .6π B .4π C .3π D .2π 10.某三棱锥的三视图如图所示, 则该三棱锥的体积为( )A .16B .13C .23D .211.某三棱锥的三视图如图所示,已知网格纸上小正方形的边长为1,则该三棱锥的体积为( )A .43 B .83C .3D .412.αβ是两个不重合的平面,在下列条件中,可判定平面α与β平行的是( )A .m 、n 是α内的两条直线,且//m β,βn//B .α、β都垂直于平面γC .α内不共线三点到β的距离相D .m 、n 是两条异面直线,m α⊂,n β⊂,且//m β,//n α二、填空题13.在正三棱锥O ABC -中,已知45AOB ∠=︒,记α为二面角--A OB C 的大小,cos =m n αm ,n 为整数,则以||n ,||m ,||m n +分别为长、宽、高的长方体的外接球直径为__________.14.如图在菱形ABCD 中,2AB =,60A ∠=,E 为AB 中点,将AED 沿DE 折起使二面角A ED C '--的大小为90,则空间A '、C 两点的距离为________;15.在三棱锥P ABC -中,P 在底面ABC 的射影为ABC 的重心,点M 为棱PA 的中点,记二面角P BC M --的平面角为α,则tan α的最大值为___________.16.如图,已知四棱锥S ABCD -的底面为等腰梯形,//AB CD ,1AD DC BC ===,2AB SA ==,且SA ⊥平面ABCD ,则四棱锥S ABCD -外接球的体积为______.17.在三棱锥D ABC -中,AD ⊥平面ABC ,3AC =,17BC =1cos 3BAC ∠=,若三棱锥D ABC -27,则此三棱锥的外接球的表面积为______18.已知ABC 是等腰直角三角形,斜边2AB =,P 是平面ABC 外的一点,且满足PA PB PC ==,120APB ∠=︒,则三棱锥P ABC -外接球的表面积为________.19.已知点O 为圆锥PO 底面的圆心,圆锥PO 的轴截面为边长为2的等边三角形PAB ,圆锥PO 的外接球的表面积为______.20.在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,且ABCD 为矩形,π2DPA ∠=,23AD =2AB =,PA PD =,则四棱锥P ABCD -的外接球的体积为________.三、解答题21.如图,四棱锥P ABCD -的底面为正方形,PA ⊥底面ABCD ,E ,F ,H 分别为AB ,PC ,BC 的中点.(1)求证:DE ⊥平面PAH ;(2)若2PA AD ==,求直线PD 与平面PAH 所成线面角的正弦值. 22.在棱长为2的正方体1111ABCD A B C D -中,O 是底面ABCD 的中心.(1)求证:1B O//平面11DA C ; (2)求点O 到平面11DA C 的距离.23.如图,在四棱锥P ABCD -中,底面ABCD 是边长为1的正方形,PA ⊥底面ABCD ,PA AB =,点M 是棱PD 的中点.(1)求证://PB 平面ACM ; (2)求三棱锥P ACM -的体积.24.在四棱锥P ABCD -中,四边形ABCD 为正方形,平面PAB ⊥平面,ABCD PAB 为等腰直角三角形,,2PA PB AB ⊥=.(1)求证:平面PBC ⊥平面PAC ;(2)设E 为CD 的中点,求点E 到平面PBC 的距离.25.如图,四棱锥E ABCD -中,底面ABCD 是边长为2的正方形,平面AEB ⊥平面ABCD ,4EBA π∠=,2EB =,F 为CE 上的点,BF CE ⊥.(1)求证:BF ⊥平面ACE ; (2)求点D 到平面ACE 的距离.26.我市论语广场准备设置一些多面体形或球形的石凳供市民休息,如图(1)的多面体石凳是由图(2)的正方体石块截去八个相同的四面体得到,且该石凳的体积是3160dm 3.(Ⅰ)求正方体石块的棱长;(Ⅱ)若将图(2)的正方体石块打磨成一个球形的石凳,求此球形石凳的最大体积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B【分析】可得原几何体如图所示正三棱锥A BCD -,取BD 中点E ,连接,AE CE ,设底面边长为2x ,表示出2522x AO OE -===,1333xOE CE ==,即可求出x ,进而求出腰长. 【详解】根据三视图可得原几何体如图所示正三棱锥A BCD -,取BD 中点E ,连接,AE CE ,则底面中心O 在CE 上,连接AO ,可得AO ⊥平面ABC ,由三视图可知5AB AC AD ===,45AEC ∠=, 设底面边长为2x ,则DE x =,则25AE x =-,则在等腰直角三角形AOE 中,2522x AO OE -===, O 是底面中心,则133xOE CE ==, 则2532x x-=,解得3x =, 则1AO =,底面边长为23, 则正视图(等腰三角形)的腰长为()22312+=.故选:B.【点睛】本题考查根据三视图计算原几何体的相关量,解题的关键是根据正三棱锥中的关系求出底面边长.2.C【分析】作出图形,连接1AD 、11B D 、1AB ,推导出1//EF AB ,11//BD B D ,可得出异面直线EF 和BD 所成的角为11AB D ∠,分析11AB D 的形状,即可得出结果. 【详解】如下图所示,连接1AD 、11B D 、1AB ,设正方体1111ABCD A B C D -的棱长为1,则11112AD AB B D ===, 所以,11AB D 为等边三角形,则1160AB D ∠=,因为E 、F 分别是正方形1111D C B A 和11ADD A 的中心,则E 、F 分别是11B D 、1AD 的中点,所以,1//EF AB ,在正方体1111ABCD A B C D -中,11//BB DD 且11BB DD =, 所以,四边形11BB D D 为平行四边形,则11//BD B D , 所以,异面直线EF 和BD 所成的角为1160AB D ∠=. 故选:C. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.3.C解析:C 【分析】利用已知条件判断1l 与2l 的位置关系,可判断AD 选项的正误;利用线面垂直的性质定理可判断B 选项的正误;利用线面平行的性质定理可判断C 选项的正误. 【详解】对于A 选项,若1//l α,2//l α,则1l 与2l 平行、相交或异面,A 选项错误; 对于B 选项,若1l α⊥,2l α⊥,由线面垂直的性质定理可得12//l l ,B 选项错误; 对于C 选项,12//l l ,1l α⊂,2l β⊂,α、β不重合,则1l β⊄,1//l β∴,1l α⊂,3l αβ⋂=,13//l l ∴,C 选项正确;对于D 选项,若αβ⊥,1l αγ=,2l βγ⋂=,则1l 与2l 相交或平行,D 选项错误.故选:C. 【点睛】方法点睛:对于空间线面位置关系的组合判断题,解决的方法是“推理论证加反例推断”,即正确的结论需要根据空间线面位置关系的相关定理进行证明,错误的结论需要通过举出反例说明其错误,在解题中可以以常见的空间几何体(如正方体、正四面体等)为模型进行推理或者反驳.4.A解析:A 【分析】根据题意,将点1B 到平面1A BC 的距离转化为点A 到平面1A BC 的距离,然后再利用等体积法11A A BC A ABC V V --=代入求解点A 到平面1A BC 的距离. 【详解】已知正三棱柱111ABC A B C -,底面正三角形ABC 的边长为2,侧棱1AA 长为2,所以可得11==A B AC 1A BC 为等腰三角形,所以1A BC ,由对称性可知,111--=B A BC A A BC V V ,所以点1B 到平面1A BC 的距离等于点A 到平面1A BC 的距离,所以11A A BC A ABC V V --=,又因为1122=⨯=A BC S △122ABCS =⨯=111233⨯⨯=⨯⨯A BC ABC S h S △△,即7h == 故选:A.【点睛】一般关于点到面的距离的计算,一是可以考虑通过空间向量的方法,写出点的坐标,计算平面的法向量,然后代入数量积的夹角公式计算即可,二是可以通过等体积法,通过换底换高代入利用体积相等计算.5.A解析:A【分析】连接AC 、BD 交于O ,连PO ,取CD 的中点E ,连,OE PE ,根据正棱锥的性质可知,PCE α∠=,PCO β∠=,PEO γ∠=,再比较三个角的正弦值可得结果.【详解】连接AC 、BD 交于O ,连PO ,取CD 的中点E ,连,OE PE ,如图:因为//AB CD ,所以PBA α∠=,又因为四棱锥P ABCD -为正四棱锥,所以PCE α∠=,由正四棱锥的性质可知,PO ⊥平面ABCD ,所以PCO β∠=,易得OE CD ⊥,PE CD ⊥,所以PEO γ∠=, 因为sin PE PC α=,sin PO PCβ=,且PE PO >,所以sin sin αβ>,又,αβ都是锐角,所以αβ>,因为sin PO PE γ=,sin PO PCβ=,且PC PE >,所以sin sin γβ>,因为,βγ都是锐角,所以γβ>. 故选:A【点睛】关键点点睛:根据正棱锥的性质,利用异面直线所成角、直线与平面所成角、二面角的平面角的定义得到这三个角是解题关键,属于中档题.6.B解析:B【分析】由题意计算2,AB BD CD ===分析该几何体可以扩充为长方体,所以只用求长方体的外接球即可.【详解】因为AB ⊥平面BCD ,BD CD ⊥且AB BD CD ==, 43A BCD V -=, 而114323A BCD V BD CD AB -=⨯⨯⨯=,所以2AB BD CD ===, 所以该几何体可以扩充为正方体方体,所以只用求正方体的外接球即可.设外接球的半径为R ,则23R =所以外接球的表面积为2412S R ππ==故选:B【点睛】多面体的外接球问题解题关键是找球心和半径,求半径的方法有:(1)公式法;(2) 多面体几何性质法;(3)补形法;(4)寻求轴截面圆半径法;(5)确定球心位置法.7.B解析:B【分析】根据圆锥侧面展开图是一个扇形,且线段25MB =.【详解】设底面圆半径为r ,由母线长4l ,可知侧面展开图扇形的圆心角为22r r l ππα==, 将圆锥侧面展开成一个扇形,从点M 拉一绳子围绕圆锥侧面转到点B ,最短距离为BM ; 如图,在ABM 中,25,2,4MB AM AB ===,所以222AM AB MB +=,所以2MAB π∠=, 故22rππα==,解得1r =,所以圆锥的表面积为25S rl r πππ=+=,故选:B【点睛】关键点点睛:首先圆锥的侧面展开图为扇形,其圆心角为2r lπα=,其次从点M 拉一绳子围绕圆锥侧面转到点B ,绳子的最短距离即为展开图中线段MB 的长,解三角即可求解底面圆半径r ,利用圆锥表面积公式求解.8.D解析:D【分析】先找到几何体的原图,再求出几何体的高,再求几何体的体积得解.【详解】由三视图可知几何体为图中的四棱锥1P CDD E -, 由题得22437AD =-=,所以几何体的高为7.所以几何体的体积为11(24)676732⋅+⋅⋅=. 故选:D【点睛】方法点睛:通过三视图找几何体原图常用的方法有:(1)直接法;(2)拼凑法;(3)模型法.本题利用的就是模型法.要根据已知条件灵活选择方法求解. 9.D解析:D【分析】过点F 作//FG AE 交AB 于点G ,连接CG ,则异面直线AE 与CF 所成角为CFG ∠或其补角,然后在CFG △中求解.【详解】如下图所示,在平面ABFE 中,过点F 作//FG AE 交AB 于点G ,连接CG , 则异面直线AE 与CF 所成角为CFG ∠或其补角,设1EF =,则3AB =,2BC CF AE ===,因为//EF AB ,//FG AE ,所以,四边形AEFG 为平行四边形,所以,2FG AE ==,1AG =,2BG =,由于2ABC π∠=,由勾股定理可得2222CG BC BG =+=所以,222CG CF FG =+,则2CFG π∠=.故选:D.【点睛】 思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤ ⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.10.C解析:C【分析】根据题中所给的几何体的三视图还原几何体,得到相应的三棱锥,之后利用椎体体积公式求得结果.【详解】根据题中所给的几何体的三视图还原几何体如图所示:该三棱锥满足底面BCD△是等腰三角形,且底边和底边上的高线都是2;且侧棱AD⊥底面BCD,1AD=,所以112 =221=323V⨯⨯⨯⨯,故选:C.【点睛】方法点睛:该题考查的是有关根据所给几何体三视图求几何体体积的问题,解题方法如下:(1)应注意把握三个视图的尺寸关系:主视图与俯视图长应对正(简称长对正),主视图与左视图高度保持平齐(简称高平齐),左视图与俯视图宽度应相等(简称宽相等),若不按顺序放置和不全时,则应注意三个视图名称;(2)根据三视图还原几何体;(3)利用椎体体积公式求解即可.11.A解析:A【分析】首先由三视图还原几何体,然后由几何体的空间结构特征求解三棱锥的体积即可.【详解】由三视图可知,在棱长为2的正方体中,其对应的几何体为棱锥P ABC-,该棱锥的体积:11142223323V Sh ⎛⎫==⨯⨯⨯⨯= ⎪⎝⎭. 故选:A.【点睛】 方法点睛:(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解. 12.D解析:D【分析】取a αβ⋂=,且//m a ,//n a ,利用线面平行的判定定理可判断A 选项;根据αγ⊥,βγ⊥判断平面α与β的位置关系,可判断B 选项;设AB 、AC 的中点D 、E 在平面β内,记平面ABC 为平面α,判断出A 、B 、C 三点到平面β的距离相等,可判断C 选项;过直线n 作平面γ,使得a αγ⋂=,利用线面平行、面面平行的判定定理可判断D 选项.【详解】对于A 选项,若a αβ⋂=,且//m a ,//n a ,m β⊄,n β⊄,则//m β,βn//,但α与β相交;对于B 选项,若αγ⊥,βγ⊥,则α与β平行或相交;对于C 选项,设AB 、AC 的中点D 、E 在平面β内,记平面ABC 为平面α,如下图所示:D 、E 分别为AB 、AC 的中点,则//DE BC ,DE β⊂,BC β⊄,//BC β∴,所以,点B 、C 到平面β的距离相等,由于D 为AB 的中点,则点A 、B 到平面β的距离相等,所以,点A 、B 、C 三点到平面β的距离相等,但平面α与平面β相交;对于D 选项,如下图所示:由于//n α,过直线n 作平面γ,使得a αγ⋂=,则//a n ,//n a ,a β⊄,n β⊂,//a β∴,//m β,m a A =,m α⊂,a α⊂,//αβ∴.故选:D.【点睛】方法点睛:证明或判断两个平面平行的方法有:①用定义,此类题目常用反证法来完成证明;②用判定定理或推论(即“线线平行”⇒“面面平行”),通过线面平行来完成证明; ③根据“垂直于同一条直线的两个平面平行”这一性质进行证明;④借助“传递性”来完成.二、填空题13.【分析】过作垂足为连接则为二面角的平面角即在中利用余弦定理结合为整数求出的值进而可得外接球直径【详解】如图过作垂足为连接则为二面角的平面角即不妨设因为所以所以所以在中因为为整数所以则设以为长宽高的长 解析:6【分析】过A 作AH OB ⊥,垂足为H ,连接CH ,则AHC ∠为二面角--A OB C 的平面角,即∠=AHC α,在AHC 中,利用余弦定理结合m ,n 为整数,求出m ,n 的值,进而可得外接球直径.【详解】如图,过A 作AH OB ⊥,垂足为H ,连接CH ,则AHC ∠为二面角--A OB C 的平面角,即∠=AHC α.不妨设2OC a =,因为45AOB ∠=︒,所以===CH a AH OH , 所以21)=HB a ,所以22222(422)=+=-=BC HB HC a AC .在AHC 中,222cos 2+-==⋅⋅HA HC AC HA HC α2222(422)212+--==a a a m n a因为m ,n 为整数,所以1m =-,2n =,则||1m =,||2n =,||1m n +=. 设以||m ,||n ,||m n +为长、宽、高的长方体的外接球半径为R ,则2222(2)||||||6=+++=R m n m n 6.6【点睛】关键点点睛:本题考查二面角的应用,考查几何体的外接球,考查解三角形,解决本题的关键点是利用定义法找出二面角的平面角,在AHC 中,利用余弦定理结合已知条件求出m ,n 的值,考查学生空间想象能力,考查计算能力,属于中档题.14.【分析】由二面角的大小为可得平面平面得到平面由勾股定理可得答案【详解】连接所以是等边三角形所以因为为中点所以所以即所以因为平面平面平面平面所以平面平面所以所以故答案为:【点睛】对于翻折问题解题时要认 解析:22【分析】由二面角A ED C '--的大小为90,可得平面A ED '⊥平面EDCB ,得到A E '⊥平面EDCB ,由勾股定理可得答案.【详解】连接DB CE 、,2AB AD ==,60A ∠=,所以ABD △、CBD 是等边三角形, 所以2AD BD CD ===,因为E 为AB 中点,1AE A E '==,所以DE AB ⊥,DE A E ⊥',3DE =, 30EDB ∠=,所以90EDC ∠=,即DE CD ⊥,所以222347EC ED CD =+=+=,因为平面A ED '⊥平面EDCB ,DE A E ⊥',平面A ED '平面EDCB DE =, 所以A E '⊥平面EDCB ,EC ⊂平面EDCB ,所以A E EC '⊥, 所以221722A C A E EC ''=+=+=.故答案为:22.【点睛】对于翻折问题,解题时要认真分析图形,确定有关元素间的关系及翻折前后哪些量变了,哪些量没有变,根据线线、线面、面面关系正确作出判断,考查了学生的空间想象力.. 15.【分析】取中点为过分别作底面的垂线根据题中条件得到;过分别作的垂线连接由二面角的定义结合线面垂直的判定定理及性质得到为二面角的平面角;为二面角的平面角得出令进而可求出最值【详解】取中点为过分别作底面解析:34【分析】取BC 中点为E ,过P 、M 分别作底面的垂线PO 、MN ,根据题中条件,得到AN NO OE ==,2PO MN =;过O 、N 分别作BC 的垂线OG 、NH ,连接MH ,PG ,由二面角的定义,结合线面垂直的判定定理及性质,得到MHN ∠为二面角M BC A --的平面角;PGO ∠为二面角A BC P --的平面角,得出tan 4tan PGO MHN ∠=∠,()23tan tan tan 14tan MHN PGO MHN MHNα∠=∠-∠=+∠,令tan 0x MHN =∠>,进而可求出最值.【详解】取BC 中点为E ,过P 、M 分别作底面的垂线PO 、MN , 则O 为ABC 的重心,MN ⊥平面ABC ;PO ⊥平面ABC ; 由于点M 为棱PA 的中点,所以有AN NO OE ==,2PO MN =; 过O 、N 分别作BC 的垂线OG 、NH ,连接MH ,PG , 因为BC ⊂平面ABC ,所以MN BC ⊥,同理PO BC ⊥; 又MN NH N ⋂=,MN ⊂平面MNH ,NH ⊂平面MNH , 所以BC ⊥平面MNH ;因为MH ⊂平面MNH ,所以BC MH ⊥, 所以MHN ∠为二面角M BC A --的平面角;同理BC PG ⊥,所以PGO ∠为二面角A BC P --的平面角, 所以tan PO PGO OG ∠=,tan MN MHN HN∠=, 因为NO OE =,//OG NH ,所以12OG NH =; 因此2tan 4tan 12PO MN PGO MHN OG HN ∠===∠, 所以()2tan tan 3tan tan tan 1tan tan 14tan PGO MHN MHN PGO MHN PGO MHN MHN α∠-∠∠=∠-∠==+∠⋅∠+∠, 令tan 0x MHN =∠>,则2333tan 1444x x x x α=≤=+, 当且仅当214x =,即12x =时,等号成立. 故答案为:34. 【点睛】关键点点睛:求解本题的关键在于确定二面角MBC A --、A BC P --以及P BC M --三者之间的关系,由题中条件得出二面角A BC P --是二面角M BC A --的4倍,进而可求得结果.16.【分析】取AB 中点连接根据平行四边形性质可得为等腰梯形ABCD 的外心取SB 中点O 连接则可得O 是四棱锥的外接球球心在中求得r=OA 即可求得体积【详解】取AB 中点连接则所以四边形为平行四边形所以同理所以 解析:823π【分析】取AB 中点1O ,连接11,O C O D ,根据平行四边形性质,可得1O 为等腰梯形ABCD 的外心,取SB 中点O ,连接1,,,OA OC OD OO ,则可得O 是四棱锥S ABCD -的外接球球心,在Rt SAB 中,求得r=OA ,即可求得体积. 【详解】取AB 中点1O ,连接11,O C O D ,则1//CD O A , 所以四边形1ADCO 为平行四边形, 所以1=1CO ,同理1=1O D ,所以1111=O A O B O C O D ==,即1O 为等腰梯形ABCD 的外心, 取SB 中点O ,连接1,,,OA OC OD OO ,则1//OO SA ,因为SA ⊥平面ABCD ,所以1OO ⊥平面ABCD ,又2AB SA ==, 所以=OA OB OC OD ==,又SA AB ⊥,所以OA OS =,即O 是四棱锥S ABCD -的外接球球心, 在Rt SAB 中,2AB SA ==, 所以122OA SB == 所以34822)33V ππ=⨯=, 故答案为:823π. 【点睛】解决外接球的问题时,难点在于找到球心,可求得两个相交平面的外接圆圆心,自圆心做面的垂线,垂线交点即为球心,考查空间想象,数学运算的能力,属中档题.17.【分析】设出外接球的半径球心的外心半径r 连接过作的平行线交于连接如图所示在中运用正弦定理求得的外接圆的半径r 再利用的关系求得外接球的半径运用球的表面积公式可得答案【详解】设三棱锥外接球的半径为球心为 解析:20π【分析】设出外接球的半径R 、球心O ,ABC 的外心1O 、半径 r , 连接1AO ,过O 作的平行线OE 交AD 于 E ,连接OA ,OD ,如图所示,在ABC 中,运用正弦定理求得 ABC的外接圆的半径r ,再利用1,,R r OO 的关系求得外接球的半径,运用球的表面积公式可得答案. 【详解】设三棱锥外接球的半径为R 、球心为O ,ABC 的外心为1O 、外接圆的半径为r ,连接1AO ,过O 作平行线OE 交AD 于E ,连接OA ,OD ,如图所示,则OA OD R ==,1O A r =,OE AD ⊥,所以E 为AD 的中点.在ABC中,由正弦定理得2sin BC r BAC ==∠r =. 在ABC 中,由余弦定理2222cos BC AB AC AB AC BAC =+-⋅⋅∠,可得2117963AB AB =+-⋅⋅,得4AB =.所以11sin 34223ABC S AB AC BAC =⋅⋅∠=⨯⨯⨯=△因为11333D ABC ABC V S AD AD -=⋅⋅=⨯=△,所以4AD =.连接1OO ,又1//OO AD ,所以四边形1EAO O 为平行四边形,1128EA OO AD ===,所以R ===所以该三棱锥的外接球的表面积224π4π20πS R ===.故答案为:20π.【点睛】本题考查三棱锥的外接球,及球的表面积计算公式,解决问题的关键在于利用线面关系求得外接球的球心和球半径,属于中档题.18.【分析】在平面的投影为的外心即中点设球半径为则解得答案【详解】故在平面的投影为的外心即中点故球心在直线上设球半径为则解得故故答案为:【点睛】本题考查了三棱锥的外接球问题意在考查学生的计算能力和空间想 解析:163π【分析】P 在平面ABC 的投影为ABC 的外心,即AB 中点1O ,设球半径为R ,则()22211R CO R PO =+-,解得答案.【详解】PA PB PC ==,故P 在平面ABC 的投影为ABC 的外心,即AB 中点1O ,故球心O 在直线1PO 上,1112CO AB ==,1133PO ==, 设球半径为R ,则()22211R CO R PO =+-,解得23R =21643S R ππ==. 故答案为:163π.【点睛】本题考查了三棱锥的外接球问题,意在考查学生的计算能力和空间想象能力.19.【分析】由题意知圆锥的轴截面为外接球的最大截面即过球心的截面且球心在上由等边三角形性质有即求得外接球的半径为R 进而求外接球的表面积【详解】设外接球球心为连接设外接球的半径为R 依题意可得在中有即解得故 解析:163π【分析】由题意知圆锥PO 的轴截面为外接球的最大截面,即过球心的截面且球心在PO 上,由等边三角形性质有Rt AO O '△,即222O A AO O O ''=+求得外接球的半径为R ,进而求外接球的表面积. 【详解】设外接球球心为O ',连接AO ',设外接球的半径为R ,依题意可得1AO =,3PO =,在Rt AO O '△中,有222O A AO O O ''=+,即)22213R R =+,解得3R =, 故外接球的表面积为24164433S R πππ==⋅=.故答案为:163π. 【点睛】本题考查了求圆锥体的外接球面积,由截面是等边三角形,结合等边三角形的性质求球半径,进而求外接球面积,属于基础题.20.【分析】由矩形的边长可得底面外接圆的半径再由为等腰直角三角形可得其外接圆的半径又平面平面可得底面外接圆的圆心即为外接球的球心由题意可得外接球的半径进而求出外接球的体积【详解】解:取矩形的对角线的交点 解析:323π【分析】由矩形的边长可得底面外接圆的半径,再由PAD △为等腰直角三角形可得其外接圆的半径,又平面PAD ⊥平面ABCD 可得底面外接圆的圆心即为外接球的球心,由题意可得外接球的半径,进而求出外接球的体积. 【详解】解:取矩形的对角线的交点O 和AD 的中点E ,连接OE ,OP ,OE , 则O 为矩形ABCD 的外接圆的圆心,而2DPA π∠=,23AD =,2AB =,PA PD =,则//OE AB ,112OE AB ==, 132PE AD ==, 所以E 为PAD △的外接圆的圆心,因为平面PAD ⊥平面ABCD , 所以O 为外接球的球心,OP 为外接球的半径,在POE △中,222222(3)14R OP PE OE ==+=+=,所以2R =, 所以外接球的体积343233V R ππ==, 故答案为:323π.【点睛】本题考查四棱锥的棱长与外接球的半径的关系及球的体积公式,属于中档题.三、解答题21.(1)证明见解析;(2)105. 【分析】(1)由PA ⊥底面ABCD ,得PA DE ⊥,由Rt ABH Rt DAE ≌△△,得DE AH ⊥,可得答案.(2)由可知DE ⊥平面PAH ,连接PG ,则DPG ∠即为直线PD 与平面PAH 所成线面角,在Rt PDG △中,由sin DPG ∠可得答案. 【详解】(1)因为PA ⊥底面ABCD ,DE ⊂底面ABCD ,所以PA DE ⊥,因为E ,H 分别为正方形ABCD 的边AB ,BC 的中点,,,AB DA BH AE HBAEAD ,所以Rt ABH Rt DAE ≌△△,所以BAH ADE ∠=∠,由90AED ADE ∠+∠= 所以90BAH AED ∠+∠=,所以DE AH ⊥, 因为PA ⊂平面PAH ,AH ⊂平面PAH ,PA AH A ⋂=,所以DE ⊥平面PAH .(2)由(1)可知DE ⊥平面PAH ,设AH DE G ⋂=,如图,连接PG ,则DPG ∠即为直线PD 与平面PAH 所成线面角, 因为2PA AD ==,所以22PD =,5DE =, 在Rt DAE 中,由于AG DE ⊥,所以2AD DG DE =⋅, 所以45DG =⋅,所以5DG =, 所以在Rt PDG △中,105sin 522DG DPG PD ∠===,即直线PD 与平面PAH 所成线面角的正弦值为105.【点睛】本题主要考查线面垂直的证明、线面角的求法,对于线面角的求法的步骤,作:作(或找)出斜线在平面上的射影,证:证明某平面角就是斜线与平面所成的角;算:通常在垂线段、斜线段和射影所组成的直角三角形中计算. 22.(1)证明见解析;(2)23. 【分析】(1)连接11B D ,设11111B D AC O ⋂=,连接1DO ,证明11B O DO 是平行四边形,再利用线面平行的判定定理即可证明.(2)由题意可得平面11DA C ⊥平面11B D DB ,过点O 作1OH DO ⊥于H ,在矩形11B D DB 中,连接1OO ,可得1O OD OHD ∽△△,由三角形相似,对应边成比例即可求解. 【详解】(1)证明:连接11B D ,设11111B D AC O ⋂=,连接1DO .11//O B DO 且11O B DO =, 11B O DO ∴是平行四边形.11//B O DO ∴.又1DO ⊂平面11DA C ,1B O ⊂/平面11DA C ,1//B O ∴平面11DA C .(2)1111A C B D ⊥,111AC BB ⊥,且1111BB B D B ⋂=,11A C ∴⊥平面11B D DB .∴平面11DA C ⊥平面11B D DB ,且交线为1DO .在平面11B D DB 内,过点O 作1OH DO ⊥于H ,则OH ⊥平面11DA C , 即OH 的长就是点O 到平面11DA C 的距离.在矩形11B D DB 中,连接1OO ,1O OD OHD ∽△△,则11O D ODO O OH=, 22236OH ⨯∴==即点O 到平面11DA C 的距离为233. 【点睛】关键点点睛:本题考查了线面平行的判定定理,点到面的距离,解题的关键是过点O 作1OH DO ⊥于H ,得出OH 的长就是点O 到平面11DA C 的距离,考查了计算能力.23.(1)证明见解析;(2)23. 【分析】(1)连接BD 交AC 于点O ,由中位线定理得//OM PB ,从而得证线面平行; (2)由M 是PD 中点,得12M ACD P ACD V V --=,求出三棱锥P ACD -的体积后可得. 【详解】(1)如图,连接BD 交AC 于点O ,连接OM ,则O 是BD 中点,又M 是PD 中点, ∴//OM PB ,又PB ⊄平面ACM ,OM ⊂平面ACM , 所以//PB 平面ACM ; (2)由已知12222ACDS=⨯⨯=,11422333P ACD ACD V S PA -=⋅=⨯⨯=△,又M 是PD 中点,所以1223M ACD P ACD V V --==, 所以23P ACM P ACD M ACD V V V ---=-=.【点睛】思路点睛:本题考查证明线面平行,求三棱锥的体积.求三棱锥的体积除掌握体积公式外,还需要注意割补法,不易求体积的三棱锥(或一个不规则的几何体)的体积可通过几个规则的几何体(柱、锥、台等)的体积加减求得.三棱锥的体积还可通过转化顶点,转移底面利用等体积法转化为求其他三棱锥的体积,从而得出结论. 24.(1)证明见解析;(2)22. 【分析】(1)利用面面垂直的性质先证明出BC ⊥面PAB ,得到PA BC ⊥,再由PA PB ⊥,结合线面垂直的判定定理可知PA ⊥面PBC ,又PA ⊂面PAC ,然后证得平面PBC ⊥平面PAC ;(2)先计算三棱锥P BCE -的体积,然后再计算PBC 的面积,利用等体积法P BCE E PBC V V --=求解.【详解】解:(1)证明:∵面PAB ⊥面ABCD ,且平面PAB ⋂平面ABCD AB =,BC AB ⊥,BC ⊂面ABCD BC ∴⊥面PAB , 又PA ⊂面PAB PA BC ∴⊥又因为由已知PA PB ⊥且PB BC B ⋂=,所以PA ⊥面PBC ,又PA ⊂面PAC ∴面PAC ⊥面PBC .(2)PAB △中,PA PB =,取AB 的中点O ,连PO ,则PO AB ⊥ ∵面PAB ⊥面ABCD 且它们交于,AB PO ⊂面PABPO ∴⊥面ABCD由1133BCEEPBC P BCE PBC BCE PBCSPOV V S h S PO h S--=⇒=⇒=,由已知可求得1PO =,1BCES=,2PBCS=,所以22h =. 所以点E 到平面PBC 的距离为22.【点睛】(1)证明面面垂直的核心为证明线面垂直,要证明线面垂直只需郑敏面外的一条弦和面内的两条相交线垂直即可;(2)点到面的距离求解一般采用等体积法求解,也可采用空间向量法求解. 25.(1)证明见解析;(223【分析】(1)先由面面垂直的性质,得到CB ⊥平面ABE ,推出CB AE ⊥,根据题中条件,得到AE BE ⊥,利用线面垂直的判定定理,得到AE ⊥平面BCE ;得出AE BF ⊥,再次利用线面垂直的判定定理,即可证明结论成立;。
一、选择题1.正三棱锥(底面为正三角形,顶点在底面的射影为底面中心的棱锥)的三视图如图所示,俯视图是正三角形,O是其中心,则正视图(等腰三角形)的腰长等于()A.5B.2 C.3D.22.某几何体的三视图如图所示(单位:cm),则该几何体的外接球的表面积(单位:2cm)是()A.36πB.54πC.72πD.90π-中,PA⊥平面ABCD,四边形ABCD为正方形,3.如图,在四棱锥P ABCD=,E为AP的中点,则异面直线PC与DE所成的角的正弦值为().PA ABA .25B .5C .15D .10 4.已知AB 是平面α外的一条直线,则下列命题中真命题的个数是( )①在α内存在无数多条直线与直线AB 平行;②在α内存在无数多条直线与直线AB 垂直;③在α内存在无数多条直线与直线AB 异面;④一定存在过AB 且与α垂直的平面β.A .1个B .2个C .3个D .4个5.已知正三棱柱111ABC A B C -,的体积为163,底面积为43,则三棱柱111ABC A B C -的外接球表面积为( )A .1123πB .563πC .2243πD .28π6.如图,正三棱柱111ABC A B C -的高为4,底面边长为43,D 是11B C 的中点,P 是线段1A D 上的动点,过BC 作截面AP α⊥于E ,则三棱锥P BCE -体积的最小值为( )A .3B .3C .43D .127.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A .24B .30C .47D .67 8.一个底面为正三角形的棱柱的三视图如图所示,若在该棱柱内部放置一个球,则该球的最大体积为( )A .6πB .12πC .43πD .83π 9.如图,在矩形ABCD 中,1AB =,3BC =,沿BD 将矩形ABCD 折叠,连接AC ,所得三棱锥A BCD -正视图和俯视图如图,则三棱锥A BCD -中AC 长为( )A .32B .3C .102D .210.在正方体1111ABCD A B C D 中,M 是棱1CC 的中点.则下列说法正确的是( ) A .异面直线AM 与BC 所成角的余弦值为53 B .BDM 为等腰直角三角形C .直线BM 与平面11BDD B 所成角的正弦值等于10 D .直线1AC 与平面BDM 相交11.一个几何体的三视图如图所示,则该几何体的体积为( )A .4B .8C .12D .1412.蹴鞠,又名蹴球,筑球等,蹴有用脚踢、踏的含义,鞠最早系外包皮革、内实含米糠的球.因而蹴鞠就是指古人以脚踢、踏皮球的活动,类似现在的足球运动.2006年5月20日,蹴鞠已作为非物质文化遗产经国务院批准列入第一批国家非物质文化遗产名录.3D 打印属于快速成形技术的一种,它是一种以数字模型为基础,运用粉末状金属或塑料等可粘合材料,通过逐层堆叠积累的方式来构造物体的技术.过去常在模具制造、工业设计等领域被用于制造模型,现正用于一些产品的直接制造,特别是一些高价值应用(比如人体的髋关节、牙齿或飞机零部件等).已知某蹴鞠的表面上有四个点A .B .C .D ,满足任意两点间的直线距离为6cm ,现在利用3D 打印技术制作模型,该模型是由蹴鞠的内部挖去由ABCD 组成的几何体后剩下的部分,打印所用原材料的密度为31g/cm ,不考虑打印损耗,制作该模型所需原材料的质量约为( )(参考数据)π 3.14≈,2 1.41≈,3 1.73≈,6 2.45≈.A .101gB .182gC .519gD .731g 二、填空题13.在三棱锥P ABC -中,PA ⊥平面ABC ,22AB =,3BC =,4PA =,4ABC π∠=,则该三棱锥的外接球体积为___________.14.如图,在三棱台111ABC A B C -中,11190,4,22ACB AC BC A B CC ∠=︒====,平面11AA B B ⊥平面ABC ,则该三棱台外接球的表面积为___________.15.如图,在三棱锥P ABC -中,PA ⊥平面ABC ,AB BC ⊥,2PA AB ==,22AC =,M 是BC 的中点,则过点M 的平面截三棱锥P ABC -的外接球所得截面的面积最小值为___16.已知等腰直角三角形ABC 中,2C π∠=,22CA =D 为AB 的中点,将它沿CD 翻折,使点A 与点B 间的距离为22C ABD -的外接球的表面积为____.17.如图,在直角梯形ABCD 中,//,,2,3,60AB CD AB AD CD AB ABC ⊥==∠=°,将此梯形以AD 所在直线为轴旋转一周,所得几何体的表面积是_________________.18.已知ABC 是等腰直角三角形,斜边2AB =,P 是平面ABC 外的一点,且满足PA PB PC ==,120APB ∠=︒,则三棱锥P ABC -外接球的表面积为________. 19.如下图所示,三棱锥P ABC -外接球的半径为1,且PA 过球心,PAB △围绕棱PA 旋转60︒后恰好与PAC △重合.若3PB =,则三棱锥P ABC -的体积为_____________.20.在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,且ABCD 为矩形,π2DPA ∠=,23AD =,2AB =,PA PD =,则四棱锥P ABCD -的外接球的体积为________. 三、解答题21.如图所示,四棱锥P ABCD -的底面ABCD 是平行四边形,90DBA ∠=︒,2BA BD ==,10,,PA PD E F ==分别是棱,AD PC 的中点.(1)证明://EF 平面PAB ;(2)若二面角P AD B --为60︒,求点B 到平面PAD 的距离.22.如图,三枝锥D ABC -中,90ABC ∠=︒,1AB =,2BC CD DB ===.(1)若平面BCD ⊥平面ABC .求证:AB CD ⊥;(2)若1AD =,求CD 与平面ABC 所成的角.23.在如图所示的几何体中,四边形BCED 为直角梯形,//DE CB ,BC EC ⊥,90AED ∠=︒.(1)证明:平面ABC ⊥平面ACE .(2)若P ,Q 分别是AE ,CD 的中点,证明://PQ 平面ABC .24.如图,AB 是O 的直径,PA 垂直于O 所在的平面,C 是圆周上不同于A ,B 的一动点.(1)证明:BC ⊥面PAC ;(2)若PA =AC =1,AB =2,求直线PB 与平面PAC 所成角的正切值.25.如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的正方形,∠ADP =90°,PD =AD ,∠PDC =60°,E 为PD 中点.(1)求证:PB //平面ACE :(2)求四棱锥E ABCD -的体积.26.在四棱锥P ABCD -中,底面ABCD 为矩形,AP ⊥平面PCD ,E ,F 分别为PC ,AB 的中点求证:(1)平面PAD ⊥平面ABCD ;(2)//EF 平面PAD【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】可得原几何体如图所示正三棱锥A BCD -,取BD 中点E ,连接,AE CE ,设底面边长为2x ,表示出2522x AO OE -===1333x OE CE ==,即可求出x ,进而求出腰长.【详解】根据三视图可得原几何体如图所示正三棱锥A BCD -,取BD 中点E ,连接,AE CE ,则底面中心O 在CE 上,连接AO ,可得AO ⊥平面ABC , 由三视图可知5AB AC AD ===45AEC ∠=,设底面边长为2x ,则DE x =,则25AE x =-则在等腰直角三角形AOE 中,2522x AO OE -===, O 是底面中心,则1333x OE CE ==, 2532x x -=,解得3x = 则1AO =,底面边长为23则正视图(等腰三角形)的腰长为()22312+=.故选:B.【点睛】本题考查根据三视图计算原几何体的相关量,解题的关键是根据正三棱锥中的关系求出底面边长.2.A解析:A【分析】由三视图知该几何体是底面为等腰直角三角形,且侧面垂直于底面的三棱锥,由题意画出图形,结合图形求出外接球的半径,再计算外接球的表面积.【详解】解:由几何体的三视图知,该几何体是三棱锥P ABC -,底面为等腰ABC ∆, 且侧面PAB ⊥底面ABC ,如图所示;设D 为AB 的中点,又3DA DB DC DP ====,且PD ⊥平面ABC ,∴三棱锥P ABC -的外接球的球心O 在PD 上,设OP R =,则OA R =,3OD R =-, 222(3)3R R ∴=-+,解得3R =,∴该几何体外接球的表面积是32436R cm ππ=.故选:A .【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.3.D解析:D【分析】先取正方形的中心O ,连接OE ,由PC//OE 知OED ∠为异面直线PC 与DE 所成的角,再在OED 中求OED ∠的正弦即可.【详解】连AC ,BD 相交于点O ,连OE 、BE ,因为E 为AP 的中点,O 为AC 的中点,有PC//OE ,可得OED ∠为异面直线PC 与DE 所成的角,不妨设正方形中,2AB =,则2PA =,由PA ⊥平面ABCD ,可得,PA AB PA AD ⊥⊥, 则145BE DE ==+=1122222OD BD ==⨯= 因为BE DE =,O 为BD 的中点,所以90EOD ∠=︒,210sin 55OD OED DE ∠===. 故选:D.【点睛】方法点睛: 求空间角的常用方法:(1)定义法,由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量夹角(直线方向向量与直线方向向量、直线方向向量与平面法向量,平面法向量与平面法向量)余弦值,即可求出结果. 4.C解析:C 【分析】根据线面平行,线面垂直,异面直线等有关结论和定义即可判断. 【详解】对于A ,若直线AB 与平面α相交,则在α内不存在直线与直线AB 平行,错误; 对于B ,若直线AB 与平面α相交且不垂直,设AB M α=,过平面α外直线AB 上一点P 作PC α⊥,垂足为C ,则在平面α内过点C 一定可以作一条直线CD ,使得CD CM ⊥,所以CD AB ⊥,而在平面α内,与直线CD 平行的直线有无数条,所以在α内存在无数多条直线与直线AB 垂直,若直线AB 与平面α垂直,显然在α内存在无数多条直线与直线AB 垂直,当直线AB 与平面α平行时,显然可知在α内存在无数多条直线与直线AB 垂直,正确;对于C ,若直线AB 与平面α相交,设AB M α=,根据异面直线的判定定理,在平面α内,不过点M 的直线与直线AB 异面,所以在α内存在无数多条直线与直线AB 异面,当直线AB 与平面α平行时,显然可知在α内存在无数多条直线与直线AB 异面,正确; 对于D ,若直线AB 与平面α相交且不垂直,设AB M α=,过平面α外直线AB 上一点P 作PC α⊥,垂足为C ,所以平面ABC 与平面α垂直,若直线AB 与平面α垂直,则过直线AB 的所有平面都与平面α垂直,当直线AB 与平面α平行时,在直线AB 上取一点P 作PC α⊥,垂足为C ,所以平面ABC 与平面α垂直,正确. 故真命题的个数是3个. 故选:C . 【点睛】本题主要考查线面平行,线面垂直,异面直线等有关结论和定义的理解和应用,熟记定义,定理和有关结论是解题的关键,属于中档题.5.A解析:A 【分析】由面积和体积可得三棱柱的底面边长和高,根据特征可知外接球的球心为上下底面中心连线的中点,再由勾股定理可得半径及球的表面积. 【详解】依题意,14AA ==,而21sin 24ABCS AB AC A AB =⨯⨯== 解得4AB =,记ABC 的中心为О,111A B C △的中心为О1,则114O A O A ==, 取1OO 的中点D ,因为AO CO =,90AOD COD ∠=∠=,由勾股定理得AD CD =,同理可得111AD BD A D B D C D ====,所以正三棱柱的外接球的球心为即D ,AD 为外接球的半径, 由正弦定理得42sin 603AB AO ==,故2221628433A O D D O A =+=+=, 故三棱柱111ABC A B C -的外接球表面积2281124433S R πππ==⨯=, 故选:A .【点睛】本题考查了正三棱柱外接球的表面积的求法,关键点是确定球心的位置和球的半径的长度,考查了学生的空间想象力和计算能力.6.C解析:C 【分析】因为P BCE P ABC E ABC V V V ---=-则当E ABC V -取最大值时,三棱锥P BCE -体积有最小值,建立坐标系求得当点E 的高为3时,问题得解. 【详解】以点O 为原点,,,OA OD OB 分别为,,x y z 轴建立空间直角坐标系,如图所示:设点(),0,E x z ,依题意得()6,0,0A ,则()6,0,AE x z =- ,(),0,OE x z = 因为过BC 作截面AP α⊥于E ,所以AE OE ⊥则0AE OE ⋅=,故()2600x x z -++= 所以()6z x x =-,当3x =时max 3z =又()143P BCE P ABC E ABC ABCV V V S z ---=-=-因为max 3z =所以三棱锥P BCE -体积的最小值()1114343643332P BCE ABC V S-=-=⋅⋅⋅= 故选:C 【点睛】关键点点晴:本题的解题关键是将问题转化为求E ABC V -的最大值,通过建系求得三棱锥E ABC -的高的最大值即可.7.D解析:D 【分析】先找到几何体的原图,再求出几何体的高,再求几何体的体积得解. 【详解】由三视图可知几何体为图中的四棱锥1P CDD E -, 由题得22437AD =-7 所以几何体的体积为11(24)676732⋅+⋅=. 故选:D 【点睛】方法点睛:通过三视图找几何体原图常用的方法有:(1)直接法;(2)拼凑法;(3)模型法.本题利用的就是模型法.要根据已知条件灵活选择方法求解.8.C解析:C 【分析】先由三视图计算底面正三角形内切圆的半径,内切圆的直径和三棱柱的高比较大小,确定球的半径的最大值,计算球的最大体积. 【详解】由三视图知该直三棱柱的高为4,底面正三角形的高为33,易得底面正三角形内切圆的半径为高的三分之一,即3r =,由于234<,所以该棱柱内部可放置球的半径的最大值为3,它的体积()343433V ππ==.故选:C 【点睛】关键点点睛:本题的第一个关键是由三视图确定底面三角形的高是33,第二个关键是确定球的最大半径.9.C解析:C 【分析】先由正视图、俯视图及题意还原三棱锥,过A 作AM ⊥BD 于点M ,连结MC ,把AC 放在直角三角形AMC 中解AC . 【详解】根据三棱锥A BCD -正视图和俯视图,还原后得到三棱锥的直观图如图示,由图可知:平面ABD ⊥平面CBD ,过A 作AM ⊥BD 于点M ,连结MC ,则AM ⊥平面CBD , ∴△MCA 为直角三角形. 过C 作CN ⊥BD 于点N ,在直角三角形ABD 中,AB =1,AD 3,∴222BD AB AD =+=所以∠ABD=60°,∠ADB=30°,则在直角三角形ABM 中,AB =1,∠ABM=60°,∴13,22BM AM ==. 同理,在直角三角形CBD 中,13,22DN CN ==. ∴MN =BD -BM -DN =112122--=, ∴222237()122CM CN MN =+=+=在直角三角形AMC 中,22227310()22AC CM AM ⎛⎫=+=+=⎪ ⎪⎝⎭故选:C 【点睛】(1)根据三视图画直观图,可以按下面步骤进行:①、首先看俯视图,根据俯视图画出几何体地面的直观图 ;②、观察正视图和侧视图找到几何体前、后、左、右的高度;③、画出整体,让后再根据三视图进行调整.(2)立体几何中求线段长度:①、把线段放在特殊三角形中,解三角形;②、用等体积法求线段.10.C解析:C 【分析】A 通过平移,找出异面直线所成角,利用直角三角形求余弦即可. B.求出三角形的三边,通过勾股定理说明是不是直角三角形.C.求出点M 到面11BB D D 的距离,再求直线BM 与平面11BDD B 所成角的正弦.D.可通过线线平行证明线面平行. 【详解】 设正方体棱长为2A. 取1BB 的中点为N ,则//BC MN ,则AM 与BC 所成角为AMN ∠ 由BC ⊥面11ABB A ,故MN ⊥面11ABB A ,故MN AN ⊥,在Rt ANM △中,5tan AMN ∠=,故2cos 3AMN ∠=B. BDM 中,5BM =,22BD =,5DM =C. AC BD ⊥,1AC BB ⊥,故AC ⊥面11BB D D ,1//CC 面11BB D D ,故M 到面11BB D D 的距离等于C 到面11BB D D 的距离,即为122d AC ==直线BM 与平面11BDD B 所成角为θ210sin 5d BM θ===直线BM 与平面11BDD B 所成角的正弦值等于105D.如图ACBD O =OM 为1ACC △的中位线,有1//OM AC故直线1AC 与平面BDM 平行故选:C 【点睛】本题考查了空间几何体的线面位置关系判定与证明:(1)对于异面直线的判定要熟记异面直线的概念:把既不平行也不相交的两条直线称为异面直线;(2)对于线面位置关系的判定中,熟记线面平行与垂直、面面平行与垂直的定理是关键.11.C解析:C 【分析】根据三视图还原得其几何体为四棱锥,根据题意代入锥体体积公式计算即可. 【详解】解:根据三视图还原得其几何体为四棱锥,图像如下:根据图形可得ABCD 是直角梯形,PA ⊥平面ABCD ,2,4,2,6AB CD PA AD ==== 所以11246212332P ABCD ABCD V S PA -+=⋅=⨯⨯⨯= 故选:C 【点睛】识别三视图的步骤(1)弄清几何体的结构特征及具体形状、明确几何体的摆放位置;(2)根据三视图的有关定义和规则先确定正视图,再确定俯视图,最后确定侧视图; (3)被遮住的轮廓线应为虚线,若相邻两个物体的表面相交,表面的交线是它们的分界线;对于简单的组合体,要注意它们的组合方式,特别是它们的交线位置.12.B解析:B 【分析】由题意可知所需要材料的体积即为正四面体外接球体积与正四面体体积之差,求出正四面体体积、外接球体积,然后作差可得所需要材料的体积,再乘以原料密度可得结果. 【详解】由题意可知,几何体ABCD 是棱长为6cm 的正四面体, 所需要材料的体积即为正四面体外接球体积与正四面体体积之差,设正四面体的棱长为a 3=,设正四面体外接球半径为R ,则2222()()332R R a =-+⨯,解得R =所以3D 打印的体积为:3233411332V a a ππ⎫=-⋅=⎪⎪⎝⎭, 又336216a ==,所以207.71125.38182.331182V =-≈-=≈, 故选:B 【点睛】关键点点睛:本题考查正四面体与正四面体的外接球,考查几何体的体积公式,解决本题的关键点是求出正四面体外接球体积与正四面体体积,考查学生空间想象能力和计算能力,属于中档题.二、填空题13.【分析】利用余弦定理求得利用正弦定理计算出的外接圆直径可计算出三棱锥的外接球半径然后利用球体体积公式可求得结果【详解】如下图所示圆柱的底面圆直径为圆柱的母线长为则的中点到圆柱底面圆上每点的距离都相等解析:3【分析】利用余弦定理求得AC ,利用正弦定理计算出ABC 的外接圆直径2r ,可计算出三棱锥P ABC -的外接球半径R ,然后利用球体体积公式可求得结果.如下图所示,圆柱12O O 的底面圆直径为2r ,圆柱的母线长为h , 则12O O 的中点O 到圆柱底面圆上每点的距离都相等, 所以,圆柱12O O 的外接球直径为()2222R r h =+.本题中,作出ABC 的外接圆2O ,由于PA ⊥平面ABC ,可将三棱锥P ABC -放在圆柱12O O 中,在ABC 中,22AB =3BC =,4ABC π∠=,由余弦定理可得222cos 5AC AB BC AB BC ABC +-⋅∠=,由正弦定理可知,ABC 的外接圆直径为5210sin 2ACr ABC===∠ 则三棱锥P ABC -的外接球直径为()222226R PA r =+=262R =, 因此,三棱锥P ABC -的外接球的体积为33442613263323V R ππ⎛==⨯= ⎝⎭. 故答案为:13263.方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.14.【分析】取与中点根据平面平面可知平面球心必在直线上设球心为D 则可求得球心恰好为点O 从而求得外接球的半径代入球的表面积公式计算【详解】在三棱台中可得都是等腰三角形四边形为等腰梯形即如图取与中点连接则可 解析:32π【分析】取AB 与11A B 中点,O O ',根据平面11AA B B ⊥平面ABC ,可知'⊥O O 平面ABC ,球心必在直线O O '上,设球心为D ,则()22221O D O O OC O D O C ''''-+=+,可求得球心恰好为点O ,从而求得外接球的半径R ,代入球的表面积公式计算. 【详解】在三棱台111ABC A B C -中,11190,4,ACB AC BC A B CC ∠=︒====111,A A C C B B 都是等腰三角形,11112A C B C ==,四边形11A ABB 为等腰梯形即11AA BB =,如图,取AB 与11A B 中点,O O ',连接1,,CO OO C O '',则可得1CO C O '==O O AB '⊥,又平面11AA B B ⊥平面ABC ,两面交线为AB ,所以'⊥O O 平面ABC .因为OA OB OC ==,111O A O B O C '''==,面//ABC 面111A B C ,所以球心必在直线O O '上.所以在直角梯形1C O OC '中可求得O O '=由题意可知,该三棱台外接球的外接球的球心必在直线O O '上,设球的半径为R ,球心为D ,则()22221O D O O OC O D O C ''''-+=+,得O D '=O ,所以球的半径为2432ππ=. 故答案为:32π【点睛】方法点睛:定义法:到各个顶点距离均相等的点为外接球的球心,借助面面垂直的性质,找到线面垂直,则球心一定在垂线上,再根据到其他顶点距离也是半径,列关系求解即可.15.【分析】将三棱锥补成长方体计算出三棱锥的外接球半径计算出球心到过点的截面的距离的最大值可求得截面圆半径的最小值利用圆的面积可求得结果【详解】平面将三棱锥补成长方体则三棱锥的外接球直径为所以设球心为点 解析:π【分析】将三棱锥P ABC -补成长方体ABCD PEFN -,计算出三棱锥P ABC -的外接球半径R ,计算出球心到过点M 的截面的距离d 的最大值,可求得截面圆半径的最小值,利用圆的面积可求得结果. 【详解】PA ⊥平面ABC ,AB BC ⊥,将三棱锥P ABC -补成长方体ABCD PEFN -,则三棱锥P ABC -的外接球直径为22222223R PC PA AB AD PA AC ==++=+=,所以,3R =设球心为点O ,则O 为PC 的中点,连接OM ,O 、M 分别为PC 、BC 的中点,则//OM PB ,且2211222OM PB PA AB ==+= 设过点M 的平面为α,设球心O 到平面α的距离为d . ①当OM α⊥时,2d OM ==②当OM 不与平面α垂直时,2d OM <=. 综上,2d OM ≤=.设过点M 的平面截三棱锥P ABC -的外接球所得截面圆的半径为r ,则221r R d =-≥,因此,所求截面圆的面积的最小值为2r ππ=.故答案为:π.【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可. 16.12【分析】根据题意可判断出两两垂直即可求出外接球半径得出表面积【详解】等腰直角三角形中为的中点满足两两垂直设外接球的半径为则即三棱锥的外接球的表面积为故答案为:【点睛】本题考查三棱锥外接球问题解题 解析:12π【分析】根据题意可判断出,,DC DA DB 两两垂直,即可求出外接球半径,得出表面积.【详解】等腰直角三角形ABC 中,2C π∠=,22CA CB ==,D 为AB 的中点,2CD AD BD ∴===,,CD AD CD BD ∴⊥⊥, 22AB =,满足222AD BD AB +=,AD BD ∴⊥,,,DC DA DB ∴两两垂直,设外接球的半径为R ,则222222223R =++=,即3R =,∴三棱锥C ABD -的外接球的表面积为2412R ππ=.故答案为:12π.【点睛】本题考查三棱锥外接球问题,解题的关键是得出,,DC DA DB 两两垂直.17.【分析】此梯形以AD 所在直线为轴旋转一周得到的是圆台然后根据圆台的侧面积和表面积公式进行计算【详解】将此梯形以AD 所在直线为轴旋转一周得到的是圆台其中圆台的上底半径为r =CD =2下底半径为R =AB = 解析:23π【分析】此梯形以AD 所在直线为轴旋转一周,得到的是圆台,然后根据圆台的侧面积和表面积公式进行计算.【详解】将此梯形以AD 所在直线为轴旋转一周,得到的是圆台,其中圆台的上底半径为r =CD =2,下底半径为R =AB =3,母线BC =2,∴圆台的上底面积为πr 2=4π,下底面积为πR 2=9π,圆台的侧面积为(πr +πR )•BC =π(2+3)×2=10π,∴圆台的表面积为4π+9π+10π=23π,故答案为23π.【点睛】本题考查圆台表面积的计算,利用旋转体的定义确定该几何体是圆台是解决本题的关键. 18.【分析】在平面的投影为的外心即中点设球半径为则解得答案【详解】故在平面的投影为的外心即中点故球心在直线上设球半径为则解得故故答案为:【点睛】本题考查了三棱锥的外接球问题意在考查学生的计算能力和空间想 解析:163π 【分析】P 在平面ABC 的投影为ABC 的外心,即AB 中点1O ,设球半径为R ,则()22211R CO R PO =+-,解得答案.【详解】 PA PB PC ==,故P 在平面ABC 的投影为ABC 的外心,即AB 中点1O ,故球心O 在直线1PO 上,1112CO AB ==,1133PO BO ==,设球半径为R ,则()22211R CO R PO =+-,解得3R =,故21643S R ππ==. 故答案为:163π.【点睛】本题考查了三棱锥的外接球问题,意在考查学生的计算能力和空间想象能力.19.【分析】作于可证得平面得得等边三角形利用是球的直径得然后计算出再应用棱锥体积公式计算体积【详解】∵围绕棱旋转后恰好与重合∴作于连接则∴又过球心∴而∴同理由得平面∴故答案为:【点睛】易错点睛:本题考查 3 【分析】作BH PA ⊥于H ,可证得PA ⊥平面BCH ,得60BHC ∠=︒,得等边三角形BCH ,利用PA 是球的直径,得PB AB ⊥,然后计算出BH ,再应用棱锥体积公式计算体积.【详解】∵PAB △围绕棱PA 旋转60︒后恰好与PAC △重合,∴PAB PAC ≅△△,作BH PA ⊥于H ,连接CH ,则,CH PA CH BH ⊥=,60BHC ∠=︒,∴BC BH CH ==.又PA 过球心,∴PB AB ⊥,而2,3PA PB ==,∴1AB =,同理1AC =,313PB AB BH PA ⋅⨯===,223333344216BCH S BH ⎛⎫=== ⎪ ⎪⎝⎭△, 由BH PA ⊥,CH PA ⊥,CHBH H =,得PA ⊥平面BCH , ∴11333233168P ABC BCH V S PA -=⋅=⨯⨯=△ 故答案为:38.【点睛】易错点睛:本题考查求棱锥的体积,解题关键是作BH PA ⊥于H ,利用旋转重合,得PA ⊥平面BCH ,这样只要计算出BCH 的面积,即可得体积,这样作图可以得出60BHC ∠=︒,为旋转所形成的二面角的平面角,这里容易出错在误认为旋转60︒,即为60CAB ∠=︒.旋转60︒是旋转形成的二面角为60︒.应用作出二面角的平面角. 20.【分析】由矩形的边长可得底面外接圆的半径再由为等腰直角三角形可得其外接圆的半径又平面平面可得底面外接圆的圆心即为外接球的球心由题意可得外接球的半径进而求出外接球的体积【详解】解:取矩形的对角线的交点 解析:323π 【分析】由矩形的边长可得底面外接圆的半径,再由PAD △为等腰直角三角形可得其外接圆的半径,又平面PAD ⊥平面ABCD 可得底面外接圆的圆心即为外接球的球心,由题意可得外接球的半径,进而求出外接球的体积.【详解】解:取矩形的对角线的交点O 和AD 的中点E ,连接OE ,OP ,OE ,则O 为矩形ABCD 的外接圆的圆心,而2DPA π∠=,23AD =2AB =,PA PD =,则//OE AB ,112OE AB ==, 132PE AD == 所以E 为PAD △的外接圆的圆心,因为平面PAD ⊥平面ABCD ,所以O 为外接球的球心,OP 为外接球的半径,在POE △中,222222(3)14R OP PE OE ==+=+=,所以2R =, 所以外接球的体积343233V R ππ==, 故答案为:323π.【点睛】本题考查四棱锥的棱长与外接球的半径的关系及球的体积公式,属于中档题.三、解答题21.(1)证明见解析;(26 【分析】(1)取PB 中点M ,连接,MF AM ,证出四边形AMFE 为平行四边形,利用线面平行的判定定理即可证明.(2)连接,PE BE ,可得PEB ∠为二面角P AD B --的平面角,求出22PE =,再利用余弦定理可得PB ,再利用面面垂直的判定定理证明平面PBE ⊥平面PDA ,点B 作BO PE ⊥交PE 于点O ,在PEB △中即可求解.【详解】解:(1)证明:取PB 中点M ,连接,MF AM ,由F 为PC 中点,则//MF BC 且12MF BC =. 由已知有//,BC AD BC AD =,又由于E 为AD 中点,从而//,MF AE MF AE =,故四边形AMFE 为平行四边形,所以//EF AM .又AM ⊂平面PAB ,而EF ⊂/平面PAB ,则//EF 平面PAB .(2)证明:连接,PE BE .由,PA PD BA BD ==,而E 为AD 中点,所以,PE AD BE AD ⊥⊥,所以PEB ∠为二面角P AD B --的平面角,60PEB ∴∠=︒. 又2,90,2BA BD DBA AD ==∠=︒∴=∴在PAD △中,由10,22PA PD AD ===,可解得22PE =在Rt ABD △中,由22,AD E =为AD 的中点,可得122BE AD == ∴在PEB △中,2222cos PB PE EB PE EB PEB =+-⋅∠,2182222262PB ∴=+-⨯⨯⨯=, 2226,,PB PB EB PE PB EB ∴=∴+=∴⊥.又,,,PE AD BE AD PE BE E AD ⊥⊥⋂=∴⊥平面PBE ,AD ⊂平面PAD ,∴平面PBE ⊥平面PDA .过点B 作BO PE ⊥交PE 于点,O OB ∴⊥平面PDA .∴在PEB △中,OB PE PB EB ⋅=⋅, 从而626222PB EB OB PE ⋅⨯===. ∴点B 到平面PAD 的距离为62.【点睛】关键点点睛:本题考查了面面垂直的判定定理,求点到面的距离,解题的关键是求出6PB =,证出平面PBE ⊥平面PDA ,作出点到面的距离,考查了计算能力. 22.(1)证明见解析(2)30【分析】(1)先由面面垂直证明AB ⊥平面BCD ,再由线面垂直的性质证明AB CD ⊥; (2)过点D 作AC 的垂线,垂足于点E ,连接BE ,先证明AC ⊥平面BDE ,进而得出D ABC V -,再由等体积法求出点D 到平面ABC 的距离,最后由直角三角形的边角关系得出线面角.【详解】(1)90ABC ∠=︒,AB BC ∴⊥又平面BCD ⊥平面ABC ,平面BCD 平面ABC BC =,AB 平面ABC AB ∴⊥平面BCDCD ⊂平面BCDAB CD ∴⊥(2)过点D 作AC 的垂线,垂足于点E ,连接BE。
一、选择题1.如下图所示,在正方体1111ABCD A B C D -中,E 是平面11ADD A 的中心,M 、N 、F 分别是11B C 、1CC 、AB 的中点,则下列说法正确的是( )A .12MN EF =,且MN 与EF 平行 B .12MN EF ≠,且MN 与EF 平行 C .12MN EF =,且MN 与EF 异面 D .12MN EF ≠,且MN 与EF 异面 2.在正方体1111ABCD A B C D -中,点,E F 分别是梭BC ,CD 的中点,则1A F 与1C E 所成角的余弦值为( ) A 5B 25C 5D 253.设1l 、2l 、3l 是三条不同的直线,α、β、γ是三个不同的平面,则下列命题是真命题的是( )A .若1//l α,2//l α,则12l l //B .若1l α⊥,2l α⊥,则12l l ⊥C .若12//l l ,1l α⊂,2l β⊂,3l αβ⋂=,则13//l lD .若αβ⊥,1l αγ=,2l βγ⋂=,则12l l //4.已知m ,n 是两条直线,α,β是两个平面,则下列命题中错误的是( ) A .若m n ⊥,m α⊥,n β⊥,则αβ⊥ B .若m α⊂,//αβ,则//m βC .若m n ⊥,m α⊥,βn//,则αβ⊥D .若l αβ=,//m α,//m β,则//m l5.已知正方体1111ABCD A B C D -,点,E F 分别是棱11B C ,11A D 的中点,则异面直线BE ,DF 所成角的余弦值为( ) A 5B .35C .45D 256.在棱长为2的正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是棱C 1D 1,B 1C 1的中点,P 是上底面A 1B 1C 1D 1内一点,若AP ∥平面BDEF ,则线段AP 长度的取值范围是( ) A .[322,5] B .[5,22]C .[324,6] D .[6,22]7.《九章算术》是古代中国乃至东方的第一步自成体系的数学专著,书中记载了一种名为“刍甍”的五面体(如图),其中四边形ABCD 为矩形,//EF AB ,若3AB EF =,ADE 和BCF △都是正三角形,且2AD EF =,则异面直线AE 与CF 所成角的大小为( )A .6π B .4π C .3π D .2π 8.已知四面体ABCD 中,二面角A BC D --的大小为60,且2AB =,4CD =,120CBD ∠=,则四面体ABCD 体积的最大值是( )A .43B .23C .83D .439.一个正方体的平面展开图及该正方体的直观图如图所示,在正方体中,设BC 的中点为M ,GH 的中点为N ,下列结论正确的是( )A .//MN 平面ABEB .//MN 平面ADEC .//MN 平面BDHD .//MN 平面CDE10.某三棱锥的三视图如图所示,已知网格纸上小正方形的边长为1,则该三棱锥的体积为( )A .43 B .83C .3D .411.如果一个水平放置的平面图形的斜二测直观图是如图所示的直角梯形,其中2O A ''=,45B A O '''∠=,//B C O A ''''.则原平面图形的面积为( )A .32B .62C 322D .3412.已知二面角l αβ--为60,AB α⊂,AB l ⊥,A 为垂足,CD β⊂,C l ∈,45ACD ∠=,则异面直线AB 与CD 所成角的余弦值为( )A .14B 2C 3D .12二、填空题13.如图所示,Rt A B C '''∆为水平放置的ABC ∆的直观图,其中A C B C ''''⊥,2B O O C ''''==,则ABC ∆的面积是________________.14.如图,在三棱锥P ABC -中,PA ⊥平面ABC ,AB BC ⊥,2PA AB ==,22AC =,M 是BC 的中点,则过点M 的平面截三棱锥P ABC -的外接球所得截面的面积最小值为___15.已知长方体1234ABCD A B C D -,底面是边长为4的正方形,高为2,点O 是底面ABCD 的中心,点P 在以O 为球心,半径为1的球面上,设二面角111P A B C --的平面角为θ,则tan θ的取值范围是________.16.如图,已知ABC 的顶点C ∈平面α,点,A B 在平面α的同一侧,且||23,||2AC BC ==.若,AC BC 与平面α所成的角分别为5,124ππ,则ABC 面积的取值范围是_____17.在棱长为2的正方体1111ABCD A B C D -中,P 是11A B 的中点,过点1A 作与平面1PBC 平行的截面,则此截面的面积是_______________.18.如图,已知正四面体D ABC -,P 为线段AB 上的动点(端点除外),则二面角D PC B --的平面角的余弦值的取值范围是___________.19.在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,且ABCD 为矩形,π2DPA ∠=,23AD =,2AB =,PA PD =,则四棱锥P ABCD -的外接球的体积为________.20.在一个密闭的容积为1的透明正方体容器内装有部分液体,如果任意转动该正方体,液面的形状都不可能是三角形,那么液体体积的取值范围是 .三、解答题21.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,四边形ABCD 为平行四边形,1,2AB BC ==,45ABC ∠=︒,AE PC ⊥垂足为E .(Ⅰ)求证:平面AEB ⊥平面PCD ;(Ⅱ)若二面角B AE D --的大小为150︒,求侧棱PA 的长. 22.如图,四边形ABCD 为正方形,QA ⊥平面ABCD ,PD//QA ,112QA AB PD ===.(1)证明:直线PQ ⊥平面DCQ ; (2)求二面角D QB A --的余弦值. 23.如图,AB 是O 的直径,PA 垂直于O 所在的平面,C 是圆周上不同于A ,B 的一动点.(1)证明:BC ⊥面PAC ;(2)若PA =AC =1,AB =2,求直线PB 与平面PAC 所成角的正切值.24.如图,长方体1111ABCD A B C D -的底面ABCD 是正方形,E 是棱1AA 的中点,122AA AB ==.(1)证明:平面EBC ⊥平面1EB C .(2)求点B 到平面1EB C 的距离.25.如图,在三棱锥P ABC -中,1,2,135AB AC BAC ︒==∠=,1cos ,3BAP AP BC ∠=-⊥.(1)若23BM MC =,求证:PM BC ⊥; (2)当3AP =,且N 为BC 中点时,求AN 与平面PBC 所成角的正弦值. 26.在四棱台1111ABCD A B C D -中,1AA ⊥平面ABCD ,//AB CD ,90ACD ∠=︒,26BC AC ==,1CD =,1AM CC ⊥,垂足为M .(1)证明:平面ABM ⊥平面11CDD C ; (2)若二面角B AM D --正弦值为217,求直线AC 与平面11CDD C 所成角的余弦.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】设正方体1111ABCD A B C D -的棱长为2,利用正方体性质可求得2MN =,3EF =,知12MN EF ≠,再利用三角形中位线性质知1//MN B C ,从而//MN ED ,又EF 与ED 相交,可知MN 与EF 异面,即可选出答案. 【详解】设正方体1111ABCD A B C D -的棱长为2,则22112MN MC C N =+=作E 点在平面ABCD 的投影点G ,即EG ⊥平面ABCD ,连接,EG GF ,在直角EGF △中,1EG =,222GF AG AF =+=,则2222123EF EG GF =+=+=,所以12MN EF ≠,故排除A 、C 连接DE ,由E 是平面11ADD A 的中心,得112DE A D =又M N 、分别是11B C 、1CC 的中点,所以1//MN B C 又11//A D B C ,所以//MN ED , 又EF ED E ⋂=,所以MN 与EF 异面 故选:D.【点睛】关键点睛:本题考查正方体中的线面关系,线线平行的关系,及判断异面直线,解题的关键是熟记正方体的性质,考查学生的逻辑推理能力,属于基础题.2.D解析:D 【分析】延长DA 至G ,使AG CE =,可证11//A G C E ,得1GA F ∠是异面直线1A F 与1C E 所成的角(或其补角).在1AGF △中,由余弦定理可得结论. 【详解】延长DA 至G ,使AG CE =,连接1,GE GA ,GF ,11,AC A C , 又//AG CE 所以AGEC 是平行四边形,//,GE AC GE AC =, 又正方体中1111//,AC AC AC AC =,所以1111//,AC DE AC DE =,所以11AC EG 是平行四边形,则11//A G C E ,所以1GA F ∠是异面直线1A F 与1C E 所成的角(或其补角). 设正方体棱长为2,在正方体中易得15AG =,10GF =,22222112(21)3A F AA AF =+=++=,1AGF △中,2221111125cos 2253AG A F GF GA F AG A F+-∠===⋅⨯⨯. 故选:D .【点睛】方法点睛:本题考查空间向量法求异面直线所成的角,求异面直线所成角的方法: (1)定义法:根据定义作出异面直线所成的角并证明,然后解三角形得结论; (2)建立空间直角坐标系,由两异面直线的方向向量的夹角得异面直线所成的角.3.C解析:C 【分析】利用已知条件判断1l 与2l 的位置关系,可判断AD 选项的正误;利用线面垂直的性质定理可判断B 选项的正误;利用线面平行的性质定理可判断C 选项的正误. 【详解】对于A 选项,若1//l α,2//l α,则1l 与2l 平行、相交或异面,A 选项错误; 对于B 选项,若1l α⊥,2l α⊥,由线面垂直的性质定理可得12//l l ,B 选项错误; 对于C 选项,12//l l ,1l α⊂,2l β⊂,α、β不重合,则1l β⊄,1//l β∴,1l α⊂,3l αβ⋂=,13//l l ∴,C 选项正确;对于D 选项,若αβ⊥,1l αγ=,2l βγ⋂=,则1l 与2l 相交或平行,D 选项错误.故选:C.【点睛】方法点睛:对于空间线面位置关系的组合判断题,解决的方法是“推理论证加反例推断”,即正确的结论需要根据空间线面位置关系的相关定理进行证明,错误的结论需要通过举出反例说明其错误,在解题中可以以常见的空间几何体(如正方体、正四面体等)为模型进行推理或者反驳.4.C解析:C 【分析】利用直二面角可判断A 的正误,利用面面平行或线面平行性质定理即判断定理可判断BD 的正误,从而可得正确的选项,利用反例可判断C 是错误的. 【详解】 对于A ,如图,设l αβ=,空间中取一点O (O 不在平面,αβ内,也不在直线,m n上),过O 作直线,a b ,使得,////a m b n ,且,a A b B αβ⋂=⋂=,故a b ⊥. 因为m α⊥,故a α⊥,而l α⊂,故a l ⊥,同理b l ⊥, 因为a b O ⋂=,故l ⊥平面OAB . 设平面OAB 交l 与C ,连接,AC BC ,因为,AC BC ⊂平面OAB ,故,,l AC l BC ⊥⊥所以ACB ∠为l αβ--的平面角. 因为a α⊥,AC α⊂,故OA AC ⊥,同理OB BC ⊥,而OA OB ⊥, 故在四边形OACB 中,90ACB ∠=︒即αβ⊥,故A 正确.对于B ,由面面平行的性质可得若m α⊂,//αβ,则//m β,故B 正确. 对于D ,如图,过m 作平面γ,使得a γα=,过m 作平面η,使得b ηβ⋂=,因为//m α,m γ⊂,故//a m ,同理//b m ,故//a b , 而a β⊄,b β⊂,故//a β,而a α⊂,l αβ=,故//a l ,所以//m l ,故D 正确.对于C ,在如图所示的正方体中,//AD 平面11A D CB ,1AA ⊥平面ABCD ,1AD AA ⊥,但是平面11A D CB 与平面ABCD 不垂直,故C 错误.故选:C. 【点睛】思路点睛:对于立体几何中与位置有关的命题的真假判断,一般根据性质定理和判定定理来处理,反例一般可得正方体中寻找.5.B解析:B 【分析】证明//BE AF ,得AFD ∠是异面直线BE ,DF 所成角或其补角,在三角形中求解即可. 【详解】连接,AF EF ,∵,E F 分别是棱11B C ,11A D 的中点,∴//EF AB ,EF AB =, ∴ABEF 是平行四边形,∴//BE AF ,∴AFD ∠是异面直线BE ,DF 所成角或其补角,设正方体的棱长为2,则111A F D F ==,22215AF DF ==+=,2223cos 25255AF DF AD AFD AF DF +-∠===⋅⨯⨯,异面直线BE ,DF 所成角的余弦值为35. 故选:B .【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.6.A解析:A 【分析】分别取棱A 1B 1、A 1D 1的中点M 、N ,连接MN ,可证平面AMN ∥平面BDEF ,得P 点在线段MN 上.由此可判断当P 在MN 的中点时,AP 最小;当P 与M 或N 重合时,AP 最大.然后求解直角三角形得答案. 【详解】如图所示,分别取棱A 1B 1、A 1D 1的中点M 、N ,连接MN ,连接B 1D 1, ∵M 、N 、E 、F 为所在棱的中点,∴MN ∥B 1D 1,EF ∥B 1D 1, ∴MN ∥EF ,又MN ⊄平面BDEF ,EF ⊂平面BDEF ,∴MN ∥平面BDEF ; 连接NF ,由NF ∥A 1B 1,NF =A 1B 1,A 1B 1∥AB ,A 1B 1=AB , 可得NF ∥AB ,NF =AB ,则四边形ANFB 为平行四边形,则AN ∥FB ,而AN ⊄平面BDEF ,FB ⊂平面BDEF ,则AN ∥平面BDEF . 又AN ∩NM =N ,∴平面AMN ∥平面BDEF .又P 是上底面A 1B 1C 1D 1内一点,且AP ∥平面BDEF ,∴P 点在线段MN 上. 在Rt △AA 1M 中,AM 222211215AA A M =+=+=,同理,在Rt △AA 1N 中,求得AN 5=,则△AMN 为等腰三角形.当P 在MN 的中点时,AP 最小为222322()2+=, 当P 与M 或N 重合时,AP 最大为5.∴线段AP 长度的取值范围是32,52⎡⎤⎢⎥⎣. 故选:A .【点睛】本题主要考查了空间中点、线、面间的距离问题,其中解答中通过构造平行平面寻找得到点P 的位置是解答的关键,意在考查空间想象能力与运算能力,属于中档试题.7.D解析:D 【分析】过点F 作//FG AE 交AB 于点G ,连接CG ,则异面直线AE 与CF 所成角为CFG ∠或其补角,然后在CFG △中求解. 【详解】如下图所示,在平面ABFE 中,过点F 作//FG AE 交AB 于点G ,连接CG , 则异面直线AE 与CF 所成角为CFG ∠或其补角,设1EF =,则3AB =,2BC CF AE ===,因为//EF AB ,//FG AE ,所以,四边形AEFG 为平行四边形,所以,2FG AE ==,1AG =,2BG =,由于2ABC π∠=,由勾股定理可得CG ==所以,222CG CF FG =+,则2CFG π∠=.故选:D. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.8.D解析:D 【分析】在BCD △中,利用余弦定理和基本不等式可得163BC BD ⋅≤,由三角形的面积公式可得BCDS≤,由二面角A BC D --的大小为60,可得A 到平面BCD 的最大距离为2sin 603h ==ABCD 体积的最大值.【详解】在BCD △中,由余弦定理可得2222cos120CD BC BD BC BD =+-⋅22BC BD BC BD =++⋅因为222BC BD BC BD +≥,所以23CD BC BD ≥⋅, 所以163BC BD ⋅≤,当且仅当BC BD =时等号成立,1116sin1202232BCDSBC BD =⋅≤⨯⨯= 因为二面角A BC D --的大小为60,所以点A 到平面BCD 的最大距离为2sin 603h ==所以114333A BCD BCDV S h -=⋅≤=, 所以四面体ABCD 体积的最大值是43,【点睛】关键点点睛:本题解题的关键点是利用余弦定理和基本不等式、三角形面积公式求出BCD S △最大值,再由二面角求出高的最大值.9.C解析:C 【分析】根据题意,得到正方体的直观图及其各点的标记字母,取FH 的中点O ,连接ON ,BO ,可以证明MN ‖BO ,利用BO 与平面ABE 的关系可以判定MN 与平面ABE 的关系,进而对选择支A 作出判定;根据MN 与平面BCF 的关系,利用面面平行的性质可以判定MN 与平面ADE 的关系,进而对选择支B 作出判定;利用线面平行的判定定理可以证明MN 与平面BDE 的平行关系,进而判定C ;利用M ,N 在平面CDEF 的两侧,可以判定MN 与平面CDE 的关系,进而对D 作出判定. 【详解】根据题意,得到正方体的直观图及其各点的标记字母如图所示,取FH 的中点O ,连接ON ,BO ,易知ON 与BM 平行且相等,∴四边形ONMB 为平行四边形,∴MN ‖BO , ∵BO 与平面ABE (即平面ABFE )相交,故MN 与平面ABE 相交,故A 错误; ∵平面ADE ‖平面BCF ,MN ∩平面BCF =M ,∴MN 与平面ADE 相交,故B 错误; ∵BO ⊂平面BDHF ,即BO ‖平面BDH ,MN ‖BO ,MN ⊄平面BDHF ,∴MN ‖平面BDH ,故C 正确; 显然M ,N 在平面CDEF 的两侧,所以MN 与平面CDEF 相交,故D 错误. 故选:C.【点睛】本题考查从面面平行的判定与性质,涉及正方体的性质,面面平行,线面平行的性质,属于小综合题,关键是正确将正方体的表面展开图还原,得到正方体的直观图及其各顶点的标记字母,并利用平行四边形的判定与性质找到MN 的平行线BO .10.A解析:A首先由三视图还原几何体,然后由几何体的空间结构特征求解三棱锥的体积即可. 【详解】由三视图可知,在棱长为2的正方体中,其对应的几何体为棱锥P ABC -,该棱锥的体积:11142223323V Sh ⎛⎫==⨯⨯⨯⨯= ⎪⎝⎭. 故选:A. 【点睛】方法点睛:(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.11.A解析:A 【分析】作出原平面图形,然后求出面积即可. 【详解】45B A O '''∠=B O A '''=∠,则O A B '''△是等腰直角三角形,∴2A B OB '''==又O C C B ''''⊥,45C O B '''∠=︒,∴1B C ''=, 在直角坐标系中作出原图形为:梯形OABC ,//OA BC ,2,1OA BC ==,高22OB =, ∴其面积为1(21)22322S =+⨯=. 故选:A 【点睛】方法点睛:本题考查斜二测法画平面图形直观图,求原图形的面积,可能通过还原出原平面图形求得面积,也可以通过直观图到原图形面积的关系求解:直观图面积为S ',原图形面积为S ,则2S S '=. 12.B解析:B 【分析】作出图形,设2CD =,AD l ⊥,2AB =,然后以CA 、CD 为邻边作平行四边形ACDE ,可知BAD ∠为二面角l αβ--的平面角,异面直线AB 与CD 所成角为BAE∠或其补角,计算出ABE △三边边长,利用余弦定理计算出cos BAE ∠,即可得解. 【详解】 如下图所示:设2CD =,AD l ⊥,2AB =CA 、CD 为邻边作平行四边形ACDE ,在平面β内,AD l ⊥,2CD =,45ACD ∠=,则sin 2AD CD ACD =∠=cos 452AC CD ==,AB l ⊥,AD l ⊥,AB α⊂,AD β⊂,所以,BAD ∠为二面角l αβ--的平面角,即60BAD ∠=,AB AD ==,ABD ∴为等边三角形,则BD =,四边形ACDE 为平行四边形,//DE AC ∴,即//DE l ,AD l ⊥,AB l ⊥,DE AB ⊥∴,DE AD ⊥, AB AD A =,DE ∴⊥平面ABD ,BD ⊂平面ABD ,DE BD ∴⊥,则2BE ==,在平行四边形ACDE 中,//AE CD 且2AE CD ==, 所以,异面直线AB 与CD 所成角为BAE ∠或其补角,在ABE △中,AB =2AE BE ==,由余弦定理可得222cos 2AB AE BE BAE AB AE +-∠==⋅.因此,异面直线AB 与CD 故选:B. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.二、填空题13.【分析】根据直观图和原图的之间的关系由直观图画法规则将还原为如图所示是一个等腰三角形直接求解其面积即可【详解】由直观图画法规则将还原为如图所示是一个等腰三角形则有所以故答案为:【点睛】关键点点睛:根解析:【分析】根据直观图和原图的之间的关系,由直观图画法规则将Rt A B C '''还原为ABC ,如图所示,ABC 是一个等腰三角形,直接求解其面积即可. 【详解】由直观图画法规则将Rt A B C '''还原为ABC ,如图所示,ABC 是一个等腰三角形,则有2BO OC B O O C ''''====,2AO A O ''==所以114428222ABCSBC AO =⋅=⨯⨯= 故答案为:82 【点睛】关键点点睛:根据斜二测画法的规则,可得出三角形的直观图,并求出对应边长,根据面积公式求解.14.【分析】将三棱锥补成长方体计算出三棱锥的外接球半径计算出球心到过点的截面的距离的最大值可求得截面圆半径的最小值利用圆的面积可求得结果【详解】平面将三棱锥补成长方体则三棱锥的外接球直径为所以设球心为点 解析:π【分析】将三棱锥P ABC -补成长方体ABCD PEFN -,计算出三棱锥P ABC -的外接球半径R ,计算出球心到过点M 的截面的距离d 的最大值,可求得截面圆半径的最小值,利用圆的面积可求得结果. 【详解】PA ⊥平面ABC ,AB BC ⊥,将三棱锥P ABC -补成长方体ABCD PEFN -,则三棱锥P ABC -的外接球直径为22222223R PC PA AB AD PA AC ==++=+=,所以,3R =设球心为点O ,则O 为PC 的中点,连接OM ,O 、M 分别为PC 、BC 的中点,则//OM PB ,且2211222OM PB PA AB ==+= 设过点M 的平面为α,设球心O 到平面α的距离为d .①当OM α⊥时,2d OM ==; ②当OM 不与平面α垂直时,2d OM <=. 综上,2d OM ≤=.设过点M 的平面截三棱锥P ABC -的外接球所得截面圆的半径为r ,则221r R d =-≥,因此,所求截面圆的面积的最小值为2r ππ=. 故答案为:π. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.15.【分析】根据题意画出相应的图形结合题意找出什么情况下取最大值什么情况下取最小值利用和差角正切公式求得最值得到结果【详解】根据题意如图所示:取的中点过点作球的切线切点分别为可以判断为的最小值为的最大值解析:4747,33⎡⎤-+⎢⎥⎣⎦【分析】根据题意,画出相应的图形,结合题意,找出什么情况下取最大值,什么情况下取最小值,利用和差角正切公式求得最值,得到结果. 【详解】根据题意,如图所示:取11A B 的中点H ,过H 点作球O 的切线,切点分别为,M N ,可以判断1O HN ∠为θ的最小值,1O HM ∠为θ的最大值, 且1112tan 12OO O HO HO ∠===,1OH OM ON ===,所以HM HN ==tan tan NHO OHM ∠=∠=,11tan tan()1O HN O HO NHO ∠=∠-∠====+1184tan tan()631O HM O HO OHM +∠=∠+∠====, 所以tan θ的取值范围是44,33⎡+⎢⎣⎦,故答案为:⎣⎦. 【点睛】方法点睛:该题考查的是有关二面角的求解问题,解题方法如下: (1)先根据题意画图;(2)结合题意,找出在什么情况下取最大值和最小值; (3)结合图形求得相应角的正切值; (4)利用和差角正切公式求得结果.16.【分析】由题意可得AB 的轨迹得到当ACBC 与轴l 共面时∠ACB 取到最大值和最小值求得sin ∠ACB 的范围代入三角形面积公式得答案【详解】∵ACBC 与平面α所成的角分别为且|AC|=2|BC|=2则A解析:【分析】由题意可得A ,B 的轨迹,得到当AC 、BC 与轴l 共面时,∠ACB 取到最大值和最小值,求得sin ∠ACB 的范围,代入三角形面积公式得答案. 【详解】∵AC ,BC 与平面α所成的角分别为512π,4π,且|AC |=|BC |=2, 则A ,B 分别在如图所示的两个不同的圆周上运动,当直线AC ,BC 与轴l 在同一平面内时,∠ACB 取到最大值和最小值, 于是,有63ACB ππ≤∠≤,∴sin6π≤sin ∠ACB ≤sin 3π,即12≤sin ∠ACB ≤3而ABC 的面积S =12|AC |⋅|BC |⋅sin ∠ACB =3∠ACB . ∴33S ≤≤.故答案为:[3,3] 【点睛】关键点睛:根据题意得到A ,B 的轨迹,利用几何直观和空间想象进行分析是解题的关键.17.【分析】取的中点分别为连接先证明四边形是平行四边形再利用面面平行的判断定理证明平面平面可得平行四边形即为所求的截面再计算其面积即可【详解】取的中点分别为连接因为所以四边形是平行四边形所以因为所以四边 解析:6【分析】取AB ,11D C 的中点分别为,M N ,连接11,,,,A M MC CN A N PM ,先证明四边形1A MCN 是平行四边形,再利用面面平行的判断定理证明平面1//PBC 平面1A MCN ,可得平行四边形1A MCN 即为所求的截面,再计算其面积即可. 【详解】取AB ,11D C 的中点分别为,M N ,连接11,,,,A M MC CN A N PM ,因为11A P NC ,所以四边形11A PC N 是平行四边形,所以11A N PC , 因为1PM CC 所以四边形1PMCC 是平行四边形,所以1MC PC , 所以1A N MC ,所以四边形1A MCN 是平行四边形, 因为11//PC A N ,1PC ⊄平面1A MCN ,1A N ⊂平面1A MCN , 所以1//PC 平面1A MCN , 同理可证//PB 平面1A MCN , 因为1PC PB P ⋂=,所以平面1//PBC 平面1A MCN ,因此过点1A 作与平面1PBC 平行的截面,即是平行四边形1A MCN , 连接MN ,作1A H MN ⊥于点H , 由115AM A N ==,22MN = 可得()()221523A H =-=所以1111223622A MNSMN A H =⨯⨯=⨯=, 所以平行四边形1A MCN 的面积为1226A MNS =故答案为:26【点睛】关键点点睛:本题的关键点是找出过点1A 与平面1PBC 平行的截面,所以想到作平行线,利用面面平行的判断定理证明所求的截面即是平行四边形1A MCN ,先求四边形一半的面积,乘以2即可得所求平行四边形的面积,也可以直接求菱形的面积.18.【分析】当点从点运动到点时二面角的平面角逐渐增大二面角的平面角最小趋于二面角的平面角最大趋于二面角的平面角的补角求出二面角的平面角和二面角的平面角即可【详解】当点从点运动到点时二面角的平面角逐渐增大解析:11,33⎛⎫-⎪⎝⎭【分析】当点P从点A运动到点B时,二面角D PC B--的平面角逐渐增大,二面角D PC B--的平面角最小趋于二面角D AC B--的平面角,最大趋于二面角D BC A--的平面角的补角,求出二面角D AC B--的平面角和二面角D BC A--的平面角即可.【详解】当点P从点A运动到点B时,二面角D PC B--的平面角逐渐增大,二面角D PC B--的平面角最小趋于D AC B--的平面角,最大趋于二面角D BC A--的平面角的补角,设正四面体的棱长为2a,如图所示,取AC的中点E,连接DE、BE,易知DEB∠为二面角D AC B--的平面角,3DE BE a==,所以((()()()2223321cos3233a a aDEBa a+-∠==⨯⨯,同理可得:二面角D BC A--的平面角的补角的余弦值为13-,故二面角D PC B--的平面角的余弦值的取值范围是11,33⎛⎫-⎪⎝⎭,故答案为:11,33⎛⎫-⎪⎝⎭【点睛】本题主要考查了二面角的平面角的求解,考查空间想象能力,属于中档题.19.【分析】由矩形的边长可得底面外接圆的半径再由为等腰直角三角形可得其外接圆的半径又平面平面可得底面外接圆的圆心即为外接球的球心由题意可得外接球的半径进而求出外接球的体积【详解】解:取矩形的对角线的交点解析:323π【分析】由矩形的边长可得底面外接圆的半径,再由PAD △为等腰直角三角形可得其外接圆的半径,又平面PAD ⊥平面ABCD 可得底面外接圆的圆心即为外接球的球心,由题意可得外接球的半径,进而求出外接球的体积. 【详解】解:取矩形的对角线的交点O 和AD 的中点E ,连接OE ,OP ,OE , 则O 为矩形ABCD 的外接圆的圆心,而2DPA π∠=,23AD =,2AB =,PA PD =,则//OE AB ,112OE AB ==, 132PE AD ==, 所以E 为PAD △的外接圆的圆心,因为平面PAD ⊥平面ABCD , 所以O 为外接球的球心,OP 为外接球的半径,在POE △中,222222(3)14R OP PE OE ==+=+=,所以2R =, 所以外接球的体积343233V R ππ==, 故答案为:323π.【点睛】本题考查四棱锥的棱长与外接球的半径的关系及球的体积公式,属于中档题.20.【详解】试题分析:如图正方体ABCD-EFGH 此时若要使液面不为三角形则液面必须高于平面EHD 且低于平面AFC 而当平面EHD 平行水平面放置时若满足上述条件则任意转动该正方体液面的形状都不可能是三角形解析:15,66⎛⎫⎪⎝⎭【详解】试题分析:如图,正方体ABCD-EFGH ,此时若要使液面不为三角形,则液面必须高于平面EHD ,且低于平面AFC .而当平面EHD 平行水平面放置时,若满足上述条件,则任意转动该正方体,液面的形状都不可能是三角形.所以液体体积必须>三棱柱G-EHD 的体积16,并且<正方体ABCD-EFGH 体积-三棱柱B-AFC 体积15166-=考点:1.棱柱的结构特征;2.几何体的体积的求法三、解答题21.(Ⅰ)证明见解析;(Ⅱ2 【分析】(Ⅰ)推导出AB AC ⊥,CD AC ⊥,PA CD ⊥,从而CD ⊥平面PAC ,进而CD AE ⊥,AE PC ⊥,由此能证明平面AEB ⊥平面PCD .(Ⅱ)以A 为原点,以AB ,AC ,AP 所在射线分别为x ,y ,z 的正半轴,建立空间直角坐标系,利用向量法能求出侧棱PA 的长. 【详解】证明:(Ⅰ)1,2,45AB BC ABC ==∠=︒,AB AC ∴⊥又//AB CD ,CD AC ∴⊥,PA ⊥平面ABCD ,PA CD ∴⊥,又AC AP A =,,AC AP ⊂平面PAC ,CD 平面PAC ,AE ⊂平面PAC ,CD AE ∴⊥,又AE PC ⊥,PC CD C =,,PC CD ⊂平面PCD ,AE ∴⊥平面PCD ,又AE ⊂平面AEB , ∴平面AEB ⊥平面PCD .(Ⅱ)以A 为原点,以AB ,AC ,AP 所在射线分别为x ,y ,z 的正半轴,建立空间直角坐标系.设AP t =,则(0A ,0,0),(1B ,0,0),(0C ,1,0),(1,10)D -,(0P ,0,)t ,AB PC ⊥,AE PC ⊥,PC ∴⊥平面ABE ,∴平面ABE 的一个法向量为(0,1,)n PC t ==-在Rt PAC △中,PA t =,211AC PC t =∴=+,又AE PC ⊥,21AE t =+,得222(0,,)11t tE t t ++设平面ADE 的一个法向量为(,,)m x y z =由m AD m AE ⎧⊥⎨⊥⎩,得222··0110t ty z t t x y ⎧+=⎪++⎨⎪-+=⎩,解得(1,1,)m t =- 二面角B AE D --的大小为150︒,∴222||3|cos ,||cos150|||||12m n m n m n t t 〈〉===︒=++, 解得2t =,故侧棱PA 的长为2.【点睛】本题考查了立体几何中的面面垂直的判定和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解. 22.(1)证明见解析(2)33【分析】(1)由CD PQ ⊥,PQ DQ ⊥可证得结论成立;(2)取BQ 的中点E ,连DE 、AE ,则AED ∠是二面角D QB A --的平面角,在Rt ADE △中,通过计算可得结果. 【详解】(1)因为QA ⊥平面ABCD ,∴QA CD ⊥,又四边形ABCD 为正方形,∴CD AD ⊥, 又因为QAAD A =,∴CD ⊥平面AQPD ,则CD PQ ⊥,因为1AQ AD ==,AQ AD ⊥,∴2DQ=,因为4PDQ π∠=,2PD =,∴2DQP π∠=,即PQ DQ ⊥,因为CDDQ D =,所以PQ ⊥平面DCQ .(2)取BQ 的中点E ,连DE 、AE ,如图:因为2BD DQ ==BE EQ =,∴DE BQ ⊥,AE BQ ⊥,所以AED ∠是二面角D QB A --的平面角,因为QA ⊥平面ABCD ,所以QA AD ⊥,又AD AB ⊥,AB AQ A =,∴AD ⊥平面BAQ ,∴AD AE ⊥,因为1AB AQ ==,所以2BQ =2AE =, 在Rt ADE △中,221612DE AD AE =+=+=所以232cos 36AE ADE DE ∠===. 所以二面角D QB A --3 【点睛】关键点点睛:根据二面角的平面角的定义作出平面角是本题解题关键.。
(第一章立体几何初步)时间:120分钟满分:150分一、选择题(本大题共12小题,每小题5分,共60分)1.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是()A.若α⊥β,m⊂α,n⊂β,则m⊥nB.若α∥β,m⊂α,n⊂β,则m∥nC.若m⊥n,m⊂α,n⊂β,则α⊥βD.若m⊥α,m∥n,n∥β,则α⊥β2.若直线l不平行于平面α,且l⊄α,则()A.α与直线l至少有两个公共点B.α内的直线与l都相交C.α内的所有直线与l异面D.α内不存在与l平行的直线3.利用斜二测画法画平面内一个三角形的直观图得到的图形还是一个三角形,那么直观图三角形的面积与原来三角形面积的比是()A.24B.34C.22D.324.球的体积与其表面积的数值相等,则球的半径等于()A.12B.1C.2 D.35.下列命题中正确的是()A.若直线l与平面α平行,则l与平面α内的任意一条直线都没有公共点B.若直线l与平面α平行,则l与平面α内的任意一条直线都平行C.若直线l上有无数个点不在平面α内,则l∥αD.如果两条平行线中的一条与一个平面平行,那么另一条也与这个平面平行6.一个几何体的三视图如图所示,则该几何体的体积为()A.3 B.4C.5 D.67.某几何体的三视图如图所示,则其表面积为()A.18 B.22C.21 D.328.给出的下列四个命题:①若α⊥β,β⊥γ,则α⊥γ;②若l上两点到α的距离相等,则l∥α;③若直线a∥b,直线b⊂α,则a∥α;④如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β,其中真命题的个数为()A.1个B.2个C.3个D.4个9.在一个锥体中,作平行于底面的截面,若这个截面面积与底面面积之比为1∶3,则锥体被截面所分成的两部分的体积之比为()A.1∶ 3 B.1∶9C.1∶3 3 D.1∶(33-1)10.三棱锥A-BCD的外接球为球O,球O的直径是AD,且△ABC,△BCD 都是边长为1的等边三角形,则三棱锥A-BCD的体积是()A.212B.18C.16D.2811.等边三角形ABC的边长为1,BC边上的高为AD,若沿AD折起使平面ABD⊥平面ACD,则A到BC的距离是()A.1 B.2 2C.144D.3212.一个多面体的直观图、主视图、左视图、俯视图如下,M,N分别为A1B,B1C1的中点,下列结论中正确的个数有()①直线MN与A1C相交;②MN⊥BC;③MN∥平面ACC1A1;④三棱锥N-A1BC的体积为VN-A1BC=16a 3.A.4个B.3个C.2个D.1个二、填空题(本大题共4小题,每小题5分,共20分)13.如右图所示,平面α∥平面β,P A=6,AB=2,BD=12,则AC=________.14.已知一个正三棱柱的侧面积为18,且侧棱长为底面边长的2倍,则该正三棱柱的体积为________.15.一个与球心距离为2的平面截球所得圆面面积为π,则球的表面积为________.16.(2018·江苏卷)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.三、解答题(本大题共6小题,共70分)17.(10分)如图,在四棱锥P-ABCD中,M为AD的中点.(1)若AD∥BC,AD=2BC,求证:BM∥平面PCD;(2)若P A=PD,平面P AD⊥平面PBM,求证:AD⊥PB.18.(12分)如图所示,已知ABCD是矩形,E是以DC为直径的半圆周上一点,且平面CDE⊥平面ABCD.求证:CE⊥平面ADE.19.(12分)已知如图:平行四边形ABCD中,BC=6,正方形ADEF所在平面与平面ABCD垂直,G,H分别是DF,BE的中点.(1)求证:GH∥平面CDE;(2)若CD=2,DB=42,求四棱锥F-ABCD的体积.20.(12分)如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O为底面中心,A1O⊥平面ABCD,AB=AA1= 2.(1)证明:平面A1BD∥平面CD1B1;(2)求三棱柱ABD-A1B1D1的体积.。
第一章立体几何初步1.1空间几何体1.1.7柱、锥、台和球的体积课时跟踪检测[A组基础过关]1.某三棱锥的三视图如图所示,该三棱锥的体积为()A.2 B.3C.4 D.6解析:由三视图可知三棱锥的直观图如图所示.其中AB为高,底面是直角三角形,V=13AB×12BD×CD=13×2×12×3×2=2,故选A.答案:A2.某几何体的三视图如图所示,则该几何体的体积为()A.13+π B.23+πC.13+2π D.23+2π解析:由该几何体的三视图可知该几何体是由一个三棱锥和半个圆柱组合而成,由此可知该几何体的体积为13×12×2×1×1+12π×12×2=13+π,故选A.答案:A3.某几何体的三视图如图所示,其中俯视图是等腰三角形,那么该几何体的体积是()A.96 B.128C.140 D.152解析:由三视图可知,该几何体是一个三棱柱,V=S·h=12×6×4×8=96.答案:A4.正三棱柱的侧面展开图是边长为2和4的矩形,则该正三棱柱的体积是()A.839B.439C.239D.439或839解析:当2为正三棱柱的底面周长时,正三棱柱底面三角形的边长a=2 3,底面面积S=34a2=39,正三棱柱的高h=4,所以正三棱柱的体积V=Sh=439;同理,当4为正三棱柱的底面周长时,正三棱柱底面三角形的边长a′=43,底面面积S′=34a′2=439,正三棱柱的高h′=2,所以正三棱柱的体积V′=S′h′=839.所以正三棱柱的体积为439或839.答案:D5.若正方体的棱长为2,则以该正方体各个面的中心为顶点的凸多面体的体积为()A.26B.23C.33D.23解析:以正方体各个面的中心为顶点的凸多面体是由两个全等的正四棱锥构成,正四棱锥的底面边长为1,高为22,∴V=2×13×1×1×22=23.故选B.答案:B6.已知圆锥的母线长为5,侧面积为20π,则此圆锥的体积为________.解析:由S侧=πrl=20π,l=5得r=4,∴圆锥的高h=l2-r2=3.∴圆锥的体积为V=13πr2·h=16π.答案:16π7.(2018·江苏卷)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.解析:由图可知,该多面体为两个全等正四棱锥的组合体,且正四棱锥的高为1,底面正方形的边长等于2,所以该多面体的体积为2×13×1×(2)2=43.答案:438.已知某几何体的俯视图是边长分别为8和6的矩形,主视图是一个底边长为8,高为4的等腰三角形,左视图是一个底边长为6,高为4的等腰三角形.(1)求该几何体的体积; (2)求该几何体的侧面积.解:由已知可得该几何体是一个底面为矩形,高为4,顶点在底面的射影是矩形中心的四棱锥V -ABCD .如图所示,(1)V =13×(8×6)×4=64.(2)该四棱锥有两个侧面VAD ,VBC 是全等的等腰三角形,且BC 边上的高为h 1=42+⎝ ⎛⎭⎪⎫822=42,另两个侧面VAB ,VCD 也是全等的等腰三角形,AB边上的高为h 2=42+⎝ ⎛⎭⎪⎫622=5,因此S 侧=2×⎝ ⎛⎭⎪⎫12×6×42+12×8×5=40+24 2.[B 组 技能提升]1.一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( )A.18B.17C.16D.15解析:由三视图可知,正方体被平面截去三棱锥A1-AB1D1,设正方体的边长为a,V正=a3,VA1-AB1D1=13×12a2·a=16a3,∴V A1-AB1D1V剩=16a3a3-16a3=15,故选D.答案:D2.一个正方体的顶点都在球面上,它的棱长为3,则这个球的体积为() A.9π B.932πC.27π D.2732π解析:∵棱长为3的正方体的体对角线长为33,∴球半径为332,∴V=43π⎝⎛⎭⎪⎫3233=2732π.故选D.答案:D3.一个底面半径为R的圆柱形水桶中装有适量的水,若放入一个半径为r的实心铁球(水面漫过球),水面高度恰好升高r,则Rr=________.解析:由题知43πr3=πR2·r,∴R r=233.答案:23 34.已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的主视图如图所示,则该三棱锥的体积是________.解析:由主视图知,三棱锥的高为1,底面是腰长为2,底边为23的等腰三角形,∴V=13×12×23×1×1=33.答案:3 35.如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的主视图和左视图在下面画出(单位:cm).(1)在主视图下面,按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体积.解:(1)如图.(2)所求多面体的体积V=V长方体-V正三棱锥=4×4×6-13×⎝⎛⎭⎪⎫12×2×2×2=2843.6.圆台的母线长为6 cm,它的轴截面等腰梯形的一条对角线与一腰垂直且与下底所成的角为30°,求该圆台的体积.解:如图,等腰梯形AA1B1B为圆台的轴截面,AA1=6 cm,∠AA1B=90°,∠ABA1=30°,于是AB=2AA1=12 cm,由A1B1∥AB,得∠B1A1B=∠A1BA=30°,又∠A=90°-30°=60°,得∠A1BB1=60°-30°=30°,故△A1B1B为等腰三角形,∴A1B1=B1B=6 cm.又OO1·AB=AA1·A1B得,OO1=AA1·A1BAB=6×6312=33(cm),由圆台的体积公式:V圆台=13π·OO1·(A1O21+A1O1·AO+AO2)=13·π·33·(32+3×6+62)=633π(cm3).。
A. (1)是棱台C. (3)是棱D. (1)(4)综合检测(一)第一章立体几何初步(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2013-嘉峪关高一检测)观察图1中四个儿何体,其中判断正确的是()B.(2)是圆台D. (4)不是棱柱【解析】结合柱、锥、台、球的定义可知(3)是棱锥,(4)是棱柱,故选C.【答案】C2.下列图2儿何体中,主视图、左视图、俯视图都相同的儿何体的序号是()(2) (3)图2A.(1)(2)C.⑶(4)【解析】正方体的三视图都相同都是正方形,球的三视图都相同都为圆面.【答案】D图33.(2013-吉林高一检测)如图3,以豚=1, A^a, BWa, ABCl=D, CW[,。
知,则平面力8C与平面月的交线是()A.直线刀。
B.直线刀3C.直线CDD.直线8C【解析】DWl, IU&, :・DW&,又CW/3,:・CDU〈・,同理,CQU平面ABC,・.・平面ABCH平面0=CD.故选C.【答案】C4.如果两个球的体积之比为8: 27,那么两个球的表面积之比为()A.8 : 27B. 2 : 3C. 4 : 9D. 2 : 9【解析】设两个球的半径分别为n,尸2,则由题意可知以:四=8 : 27,:尸2 = 2 : 3.「.S表1 : S表2=4 : 9.【答案】C5.若直线/不平行于平面且财,贝1()A.a内的所有直线与/异面B.口内不存在与/平行的直线C.a内存在唯一的直线与/平行D.a内的直线与/都相交【解析】由题意知,直线/与平面Q相交,则直线/与平面口内的直线只有相交和异面两种位置关系,因而只有选项B是正确的.【答案】B6.(2013-湖南高考)已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为皿的矩形,则该正方体的正视图的面积等于()A.乎B. 1C*厂 D.y/2【解析】由于该正方体的俯视图是面积为1的正方形,侧视图是一个面积为很的矩形,因此该几何体的正视图是一个长为皿,宽为1的矩形,其面积为皿.【答案】D图57.已知水平放置的△佬。
第一章 单元质量测评对应学生用书P41 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法中正确的是( ) A .棱柱的侧面可以是三角形B .由6个大小一样的正方形所组成的图形是正方体的展开图C .正方体各条棱长都相等D .棱柱的各条棱都相等 答案 C解析 根据棱柱的定义可知,棱柱的侧面都是平行四边形,侧棱长相等,但是侧棱和底面内的棱长不一定相等,而正方体的所有棱长都相等.2.中心角为135°,面积为B 的扇形围成一个圆锥,若圆锥的全面积为A ,则A∶B 等于( )A .11∶8 B.3∶8 C.8∶3 D.13∶8 答案 A解析 设扇形的半径为R ,围成的圆锥的底面圆的半径为r ,则扇形弧长l =135πR 180=34πR,又2πr=34πR,∴r=38R ,S 扇形=135π360R 2=38πR 2,S 圆锥全=S 底+S 侧=πr 2+S 扇形=π⎝ ⎛⎭⎪⎫38R 2+38πR 2=3364πR 2,∴S 扇形S 圆锥全=38πR 23364πR 2=811,∴A B =118, 故选A .3.一个锥体的主视图和左视图如图所示,下面选项中,不可能是该锥体的俯视图的是( )答案 C解析由几何体的俯视图与左视图的宽度一样,可知C不可能是该锥体的俯视图,故选C.4.给出下列四个命题:①三点确定一个平面;②一条直线和一个点确定一个平面;③若四点不共面,则每三点一定不共线;④三条平行线确定三个平面.正确的结论个数有( )A.1 B.2 C.3 D.4答案 A解析①中不共线的三点确定一个平面;②中一条直线和直线外一点确定一个平面;③中若四点不共面,则每三点一定不共线,故③正确;④中不共面的三条平行线确定三个平面.5.设l为直线,α,β是两个不同的平面,下列命题中正确的是( )A.若l∥α,l∥β,则α∥βB.若l⊥α,l⊥β,则α∥βC.若α∥β,l∥α,则l∥βD.若α⊥β,l∥α,则l⊥β答案 B解析若l∥α,l∥β,则α∥β或α∩β=m,l∥m,故A错误.若α∥β,l∥α,则l∥β或l在β内,故C错误.若α⊥β,l∥α,则l∥β或l在β内或l⊥β或l与β相交,故D错误.6.体积为27,全面积为54的长方体( )A.必是正方体 B.不存在C.有无穷多个 D.最多只能有三个答案 A解析 设长、宽、高分别为a ,b ,c ,则abc =27. 2(ab +bc +ac)=54,∴ab+bc +ac =abc . 易知a =b =c ,故应为棱长为3的正方体.7.如图,平行四边形ABCD 中,AB⊥BD,沿BD 将△ABD 折起,使面ABD⊥面BCD ,连接AC ,则在四面体ABCD 的四个面所在平面中,互相垂直的平面的对数为( )A .1B .2C .3D .4 答案 C解析 ①平面ABD⊥平面BCD ,②平面ABC⊥平面BCD ,③平面ACD⊥平面ABD . 8.棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应的截面面积分别为S 1,S 2,S 3,则( )A .S 1<S 2<S 3B .S 3<S 2<S 1C .S 2<S 1<S 3D .S 1<S 3<S 2 答案 A解析 由截面性质可知,设底面积为S . S S 1=⎝ ⎛⎭⎪⎫212⇒S 1=14S ; S S 2=21⇒S 2=12S ; S S 3=3212⇒S 3=134S .可知S 1<S 2<S 3,故选A . 9.夹在两个平行平面间的圆柱、圆锥、球,若它们在平行平面上的正投影是等圆,那么它们的体积之比为( )A .3∶1∶4 B.9∶3∶4 C .3∶1∶2 D.1∶2∶3 答案 C解析 它们的高都等于两平行平面间的距离设为h ,圆柱体积V 1,圆锥体积V 2,球体积V 3,正投影的面积为S ,则V 1=Sh ,V 2=13Sh ,V 3=43π⎝⎛⎭⎪⎫S π3=43S Sπ.又因为h =2S π,所以S π=h 2.所以V 3=43S·h 2=23Sh ,所以V 1∶V 2∶V 3=1∶13∶23=3∶1∶2.10.已知集合A ,B ,C ,A ={直线};B ={平面},C =A∪B,若a∈A,b∈B,c∈C,给出下列命题:①⎩⎪⎨⎪⎧a∥b,c∥b⇒a∥c;②⎩⎪⎨⎪⎧a⊥b,c⊥b⇒a∥c;③⎩⎪⎨⎪⎧a⊥b,c∥b⇒a⊥c.其中正确的命题的个数是( )A .0B .1C .2D .3 答案 B解析 ①当c 为直线时,⎩⎪⎨⎪⎧a∥b,c∥b ⇒a∥c 或a ,c 异面或相交,故①错误.②当c 为平面时,⎩⎪⎨⎪⎧a⊥b,c⊥b⇒a∥c 或a ⊂c ,故②错误.经验证得③正确.11.如图所示,在棱长为1的正方体ABCD -A 1B 1C 1D 1的面对角线A 1B 上存在一点P ,使得AP +D 1P 最短,则AP +D 1P 的最小值为( )A .2+ 2B .2+62C .2+ 2D .2 答案 A解析 D 1-A 1B -A 展成平面,如图所示,则AD 1即为AP +D 1P 的最小值.过D 1作D 1M⊥AA 1的延长线于M ,由∠AA 1D 1=∠AA 1B +∠BA 1D 1=45°+90°=135°,可知∠MA 1D 1=45°.所以A 1M =D 1M =22.在Rt△MD 1A 中,AD 1=MA 2+MD 21= 2+2.12.三棱锥P -ABC 的高PO =8,AC =BC =3,∠ACB=30°,M ,N 分别在BC 和PO 上,且CM =x ,PN =2x(x∈[0,3]),下列四个图象大致描绘了三棱锥N -AMC 的体积V 与x 的变化关系,其中正确的是( )答案 A解析 V =13S △AMC ·NO=13⎝ ⎛⎭⎪⎫12×3x×sin30°· (8-2x)=-12(x -2)2+2,x∈[0,3],故选A .第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.直线a ,b 分别是长方体相邻两个面上的对角线所在直线,则a 与b 的位置关系为________.答案 相交或异面解析 画一个长方体,则有两直线交于一顶点或两直线异面.14.设A ,B ,C ,D 为球O 上四点,若AB ,AC ,AD 两两互相垂直,且AB =AC =6,AD =2,则A ,D 两点间的球面距离为________.答案2π3解析 由题意知,球O 的直径为以AB ,AC ,AD 为棱的长方体的体对角线,即2R =AB 2+AC 2+AD 2=4,即R =2,则OA =OD =AD =2,∴△OAD 为正三角形,则∠AOD=π3,∴A,D 球面距离为2π3.15.如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为________.答案 2 3解析由三视图可知该多面体的直观图如图所示,即图中的四棱锥P -ABCD ,所以最长的一条棱的长为PA =PC 2+AC 2=PC 2+AB 2+BC 2=23.16.一个正六棱锥的底面边长为2、高为1,则过两条不相邻侧棱所作的截面中,面积最大值为________.答案6解析 如图先计算截面PAD 的面积,由题知h =PO =1,AD =4,∴S △PAD =12×1×4=2,下面计算截面PAC 的面积,连接OB 交AC 于M 点,连接PM ,则PM⊥AC,AC =23,BM =1,∴OM=1,∴PM=PO 2+OM 2=12+12=2,∴S △PAC =12×AC×PM=12×23×2=6,6>2,∴S △PAC >S △PAD ,∴填6.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)定线段AB所在直线与定平面α相交,P为直线AB外任一点,且P∉α,直线AP,PB与α交于A′,B′.求证:不论P在什么位置,A′B′过一定点.证明设定线段AB所在直线与定平面α相交于定点O.∵AP,AB相交于点A,∴由AP,AB可确定平面β.∵AP∩α=A′,PB∩α=B′,AB∩α=O,∴A′,B′,O为平面α与平面β的公共点.∴A′,B′,O三点共线,即A′B′过定点O.18.(本小题满分12分)如图,已知平面α∥β,O为α,β外一点,三条射线OA,OB,OC分别交β于A,B,C,交α于A1,B1,C1.(1)求证:△ABC∽△A1B1C1;(2)若OA=a,AA1=b,B1C1=c,求BC的长.解(1)证明:因为α∥β,平面AOB∩α=A1B1,平面AOB∩β=AB,所以A1B1∥AB,所以OA1OA=OB1OB=A1B1AB,同理B1C1∥BC,所以OB1OB=OC1OC=B1C1BC.同理,A1C1∥AC,OA1OA=OC1OC=A1C1AC,所以A1B1AB=B1C1BC=C1A1CA.所以△ABC∽△A1B1C1.(2)由(1)知,OA1OA=B1C1BC,又因为OA1=OA-AA1=a-b,∴a-ba=cBC,∴BC=aca-b.19.(本小题满分12分)如图所示的四棱锥P-ABCD中,底面ABCD为菱形,PA⊥平面ABCD,E为PC的中点,求证:(1)PA∥平面BDE;(2)平面PAC⊥平面PBD.证明(1)连接AC交BD于点O,连接OE.∵四边形ABCD是菱形,∴AO=CO.∵E为PC的中点,∴EO∥PA.∵PA⊄平面BDE,EO⊂平面BDE,∴PA∥平面BDE.(2)∵PA⊥平面ABCD,BD⊂平面ABCD,∴PA⊥BD,∵四边形ABCD是菱形,∴BD⊥AC.∵AC∩PA=A,∴BD⊥平面PAC,∵BD⊂平面PBD,∴平面PAC⊥平面PBD.20.(本小题满分12分)如图,平行六面体ABCD-A1B1C1D1的底面是菱形,∠C1CB=∠C1CD =∠BCD=60°.(1)求证:C1C⊥BD;(2)当CDCC1的值为多少时,可使A1C⊥平面C1BD?解(1)证明:连接A1C1,AC,设AC和BD交于点O,连接C1O.∵四边形ABCD是菱形,∴AC⊥BD,BC=CD.又∵∠BCC1=∠DCC1,C1C是公共边,∴△C1BC≌△C1DC,∴C1B=C1D.∵DO=OB,∴C1O⊥BD.又∵AC∩C1O=O,∴BD⊥平面ACC1A1.又∵C1C⊂平面ACC1A1,∴C1C⊥BD.(2)由(1)知BD⊥平面ACC1A1.∵A1C⊂平面ACC1A1,∴BD⊥A1C.当CDCC1=1时,平行六面体的六个面是全等的菱形.同理可证BC1⊥A1C.又∵BD∩BC1=B,∴A1C⊥平面C1BD.21.(本小题满分12分)如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC =2,BC=1,E,F分别是A1C1,BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥E-ABC的体积.解(1)证明:在三棱柱ABC-A1B1C1中,BB1⊥底面ABC,所以BB1⊥AB.又因为AB⊥BC,BB1,BC为平面B1BCC1内两条相交直线,所以AB⊥平面B1BCC1,又AB⊂平面ABE,所以平面ABE⊥平面B1BCC1.(2)证明:取AB中点G,连接EG,FG,如图.因为E,F,G分别是A1C1,BC,AB的中点,所以FG∥AC,且FG =12AC ,EC 1=12A 1C 1.因为AC∥A 1C 1,且AC =A 1C 1, 所以FG∥EC 1,且FG =EC 1. 所以四边形FGEC 1为平行四边形. 所以C 1F∥EG.又因为EG ⊂平面ABE ,C 1F ⊄平面ABE , 所以C 1F∥平面ABE .(3)因为AA 1=AC =2,BC =1,AB⊥BC, 所以AB =AC 2-BC 2=3.所以三棱锥E -ABC 的体积V =13S △ABC ·AA 1=13×12×3×1×2=33.22.(本小题满分12分)已知某几何体的直观图(图1)与它的三视图(图2),其中俯视图为正三角形,主视图及左视图是矩形.(1)求该几何体的体积;(2)D 是棱A 1C 1上的一点,若使直线BC 1∥平面AB 1D ,试确定点D 的位置,并证明你的结论; (3)在(2)成立的条件下,求证:平面AB 1D⊥平面AA 1D .解 由三视图可知该几何为正三棱柱,底面是高为3的正三角形,三棱柱的高h =3,(1)底面是高为3的正三角形,易知底面边长为2,word- 11 - / 11 所以底面面积S =12×2×3=3, 所求体积V =Sh =33.(2)连接A 1B ,且A 1B∩AB 1=O ,因为正三棱柱侧面是矩形,所以点O 是A 1B 的中点, 解法一:若BC 1∥平面AB 1D ,连接DO ,BC 1⊂平面A 1BC 1,平面AB 1D∩平面A 1BC 1=DO ,所以BC 1∥DO,所以DO 是△A 1BC 1的中位线,所以D 为A 1C 1的中点.即D 为A 1C 1的中点时,BC 1∥平面AB 1D .解法二:若D 为棱A 1C 1的中点.连接DO ,所以DO 是△A 1BC 1的中位线.所以BC 1∥DO,又DO ⊂平面AB 1D ,BC 1⊄平面AB 1D ,所以BC 1∥平面AB 1D .即D 为A 1C 1的中点时,BC 1∥平面AB 1D .解法三:在△A 1BC 1中,过O 作OD∥BC 1,交A 1C 1于D ,所以OD 为△A 1BC 1的中位线,所以D 为A 1C 1的中点,又DO ⊂平面AB 1D ,BC 1⊄平面AB 1D ,所以C 1B∥平面AB 1D .即D 为A 1C 1的中点时,BC 1∥平面AB 1D .(3)证法一:在正三棱柱ABC -A 1B 1C 1中,三角形A 1B 1C 1为正三角形,所以B 1D⊥A 1C 1, 又由三棱柱性质知平面A 1B 1C 1⊥平面ACC 1A 1,且平面A 1B 1C 1∩平面ACC 1A 1=A 1C 1, B 1D ⊂平面A 1B 1C 1,所以B 1D⊥平面AA 1D ,又B 1D ⊂平面AB 1D ,所以平面AB 1D⊥平面AA 1D .证法二:在正三棱柱ABC -A 1B 1C 1中,三角形A 1B 1C 1为正三角形,所以B 1D⊥A 1C 1,又因为AA 1⊥平面A 1B 1C 1,所以AA 1⊥B 1D .AA 1∩A 1C 1=A 1,AA 1⊂平面AA 1D ,A 1C 1⊂平面AA 1D ,所以B 1D⊥平面AA 1D ,又B 1D ⊂平面AB 1D ,所以平面AB 1D⊥平面AA 1D .。
一、选择题1.如图,在长方体1111ABCD A B C D -中,1AB AD ==,12AA =,M 为棱1DD 上的一点.当1A M MC +取得最小值时,1B M 的长为( )A .3B .6C .23D .26 2.已知正方体1111ABCD A B C D -的棱长为2,E 为棱1AA 的中点,截面1CD E 交棱AB 于点F ,则四面体1CDFD 的外接球表面积为( )A .394πB .414πC .12πD .434π 3.某几何体的三视图如图所示,其中网格纸的小正方形的边长是1,则该几何体外接球的体积为( )A .323πB .48πC 323D .643π 4.如图,在矩形ABCD 中,1AB =,3BC =,沿BD 将矩形ABCD 折叠,连接AC ,所得三棱锥A BCD -正视图和俯视图如图,则三棱锥A BCD -中AC 长为( )A .32B .3C .102D .25.已知球O 的半径为5,球面上有,,A B C 三点,满足214,27AB AC BC ===,则三棱锥O ABC -的体积为( )A .77B .142C .714D .147 6.在下面四个正方体ABCD A B C D ''''-中,点M 、N 、P 均为所在棱的中点,过M 、N 、P 作正方体截面,则下列图形中,平面MNP 不与直线A C '垂直的是( ) A . B . C . D . 7.在正方体1111ABCD A B C D -中,M 是棱1CC 的中点.则下列说法正确的是( ) A .异面直线AM 与BC 所成角的余弦值为53B .BDM 为等腰直角三角形C .直线BM 与平面11BDD B 所成角的正弦值等于105D .直线1AC 与平面BDM 相交 8.如图是某个四面体的三视图,则下列结论正确的是( )A .该四面体外接球的体积为48πB .该四面体内切球的体积为23π C .该四面体外接球的表面积为323πD .该四面体内切球的表面积为2π9.在正方体1111ABCD A B C D -中,三棱锥11A B CD -的表面积为43的体积为( )A .3πB 6πC .3πD .86π 10.已知四面体ABCD ,AB ⊥平面BCD ,1AB BC CD BD ====,若该四面体的四个顶点都在球O 的表面上,则球O 的表面积为( )A .73πB .7πC .712πD .79π 11.设m 、n 是两条不同的直线,α是平面,m 、n 不在α内,下列结论中错误的是( )A .m α⊥,//n α,则m n ⊥B .m α⊥,n α⊥,则//m nC .m α⊥,m n ⊥,则//n αD .m n ⊥,//n α,则m α⊥ 12.如图(1),Rt ABC ,1,3,2AC AB BC ===,D 为BC 的中点,沿AD 将ACD △折起到AC D ',使得C '在平面ABD 上的射影H 落在AB 上,如图(2),则以下结论正确的是( )A .AC BD '⊥B .AD BC '⊥ C .BD C D ⊥' D .AB C D ⊥'二、填空题13.圆锥底面半径为1,母线长为4,轴截面为PAB ,如图,从A 点拉一绳子绕圆锥侧面一周回到A 点,则最短绳长为_________.14.如图,点E 是正方体1111ABCD A B C D -的棱1DD 的中点,点M 在线段1BD 上运动,则下列结论正确的有__________.①直线AD 与直线1C M 始终是异面直线②存在点M ,使得1B M AE ⊥③四面体EMAC 的体积为定值④当12D M MB =时,平面EAC ⊥平面MAC15.已知直三棱柱111ABC A B C -,90CAB ∠=︒,1222AA AB AC ===,则直线1A B 与侧面11B C CB 所成角的正弦值是______.16.在三棱锥P ABC -中,PA ⊥平面ABC ,22AB =,3BC =,4PA =,4ABC π∠=,则该三棱锥的外接球体积为___________.17.如图所示,Rt A B C '''∆为水平放置的ABC ∆的直观图,其中A C B C ''''⊥,2B O O C ''''==,则ABC ∆的面积是________________.18.已知正四棱锥的体积为18,侧棱与底面所成的角为45,则该正四棱锥外接球的表面积为___________.19.如图,圆柱的体积为16π,正方形ABCD 为该圆柱的轴截面,F 为AB 的中点,E为母线BC 的中点,则异面直线AC ,EF 所成的角的余弦值为______.20.在三棱锥-P ABC 中,侧面PBC 和底面ABC 都是边长为2的正三角形,若3PA =,则侧棱PA 与底面ABC 所成的角的大小是___________. 三、解答题21.如图,在正四棱柱1111ABCD A B C D -中,11,2AB AA ==,点E 为1CC 中点,点F 为1BD 中点.(1)求异面直线1BD 与1CC 的距离;(2)求直线1BD 与平面BDE 所成角的正弦值;(3)求点F 到平面BDE 的距离.22.正四棱台两底面边长分别为3和9,若侧棱所在直线与上、下底面正方形中心的连线所成的角为45,求棱台的侧面积.23.如图,圆柱的轴截面ABCD 是长方形,点E 是底面圆周上异于A ,B 的一点,AF DE ⊥,F 是垂足.(1)证明:AF DB ⊥;(2)若2AB =,3AD =,当三棱锥D ABE -体积最大时,求点C 到平面BDE 的距离. 24.如图,在直三棱柱111ABC A B C -中,底面是等腰直角三角形,90ACB ∠=︒且AC a =,侧棱12AA =,D ,E 分别是1CC ,11A B 的中点.(1)求直三棱柱111ABC A B C -的体积(用字母a 表示);(2)若点E 在平面ABD 上的射影是三角形ABD 的重心G ,①求直线EB 与平面ABD 所成角的余弦值;②求点1A 到平面ABD 的距离25.如图,已知三棱锥P ABC -﹐PC AB ⊥,ABC 是边长为23的正三角形,43PB =﹐60PBC ∠=,点F 为线段AP 的中点.(1)证明:PC ⊥平面ABC ;(2)求直线BF 与平面PAC 所成角的大小.26.我市论语广场准备设置一些多面体形或球形的石凳供市民休息,如图(1)的多面体石凳是由图(2)的正方体石块截去八个相同的四面体得到,且该石凳的体积是3160dm 3.(Ⅰ)求正方体石块的棱长;(Ⅱ)若将图(2)的正方体石块打磨成一个球形的石凳,求此球形石凳的最大体积.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】本题首先可通过将侧面11CDD C 绕1DD 逆时针转90展开得出当1A 、M 、2C 共线时1A M MC +取得最小值,此时M 为1DD 的中点,然后根据11B A ⊥平面11A D DA 得出111B A A M ⊥,最后根据221111M A B B A M =+即可得出结果.【详解】如图,将侧面11CDD C 绕1DD 逆时针转90展开,与侧面11ADD A 共面,连接12A C ,易知当1A 、M 、2C 共线时,1A M MC +取得最小值,因为1AB AD ==,12AA =,所以M 为1DD 的中点,12A M = 因为11B A ⊥平面11A D DA ,1A M ⊂平面11A D DA ,所以111B A A M ⊥,则222211111(2)3M B A A M B =+=+=故选:A.【点睛】关键点点睛:本题考查根据线面垂直判断线线垂直,能否根据题意得出当M 为1DD 的中点时1A M MC +取得最小值是解决本题的关键,考查计算能力,考查数形结合思想,是中档题. 2.B解析:B【分析】可证F 为AB 的中点,设1DD 的中点为G ,DFC △的外接圆的球心为1O ,四面体1CDFD 的外接球的球心为O ,连接11,,,OG OF OO A B ,利用解三角形的方法可求DFC △的外接圆的半径,从而可求四面体1CDFD 的外接球的半径.【详解】设1DD 的中点为G ,DFC △的外接圆的圆心为1O ,四面体1CDFD 的外接球的球心为O ,连接11,,,OG OF OO A B ,因为平面11//A ABB 平面11D DCC ,平面1CD E ⋂平面11A ABB EF =,平面1CD E ⋂平面111D DCC D C =,故1//EF D C ,而11//A B D C ,故1//EF A B ,故F 为AB 的中点, 所以145DF CF ==+=,故3cos 5255DFC ∠==⨯⨯, 因为DFC ∠为三角形的内角,故4sin 5DFC ∠=,故DFC △的外接圆的半径为1254245⨯=,1OO ⊥平面ABCD ,1DD ⊥平面ABCD ,故11//OO DD ,在平面1GDO O 中,111,OG DD O D DD ⊥⊥,故1//OG O D ,故四边形1GDO O 为平行四边形,故1//OO GD ,1OO GD =,所以四面体1CDFD 2541116+= 故四面体1CDFD 的外接球表面积为41414164ππ⨯=, 故选:B.【点睛】方法点睛:三棱锥的外接球的球的半径,关键是球心位置的确定,通常利用“球心在过底面外接圆的圆心且垂直于底面的直线上”来确定. 3.A解析:A【分析】由三视图可知,该几何体是四棱锥,其中四棱锥底面是边长为4的正方形,将四棱锥补成棱长为4的正方体,则该几何体的外接球就是正方体的外接球,进而可得答案. 【详解】由三视图可知,该几何体是如图所示的四棱锥P ABCD -, 其中四棱锥底面是边长为4的正方形,四棱锥的一条侧棱与底面垂直,四棱锥的高为4, 将四棱锥补成棱长为4的正方体, 则该几何体的外接球就是正方体的外接球, 外接球的直径2R 等于正方体的对角线长, 即24323R R =⇒=,所以该几何体外接球的体积为()34233π⨯=323π,故选:A.【点睛】方法点睛:三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.4.C解析:C 【分析】先由正视图、俯视图及题意还原三棱锥,过A 作AM ⊥BD 于点M ,连结MC ,把AC 放在直角三角形AMC 中解AC . 【详解】根据三棱锥A BCD -正视图和俯视图,还原后得到三棱锥的直观图如图示,由图可知:平面ABD ⊥平面CBD ,过A 作AM ⊥BD 于点M ,连结MC ,则AM ⊥平面CBD , ∴△MCA 为直角三角形. 过C 作CN ⊥BD 于点N ,在直角三角形ABD 中,AB =1,AD 3,∴222BD AB AD =+=所以∠ABD=60°,∠ADB=30°,则在直角三角形ABM 中,AB =1,∠ABM=60°,∴13,22BM AM ==. 同理,在直角三角形CBD 中,13,22DN CN ==. ∴MN =BD -BM -DN =112122--=, ∴222237()122CM CN MN =+=+= 在直角三角形AMC 中,22227310()222AC CM AM ⎛⎫=+=+= ⎪ ⎪⎝⎭故选:C 【点睛】(1)根据三视图画直观图,可以按下面步骤进行:①、首先看俯视图,根据俯视图画出几何体地面的直观图 ;②、观察正视图和侧视图找到几何体前、后、左、右的高度;③、画出整体,让后再根据三视图进行调整.(2)立体几何中求线段长度:①、把线段放在特殊三角形中,解三角形;②、用等体积法求线段.5.A解析:A 【分析】利用正弦定理求出ABC 的外接圆半径,则可求出三棱锥的高,进而求出三棱锥体积. 【详解】设ABC 的外接圆的圆心为D ,半径为r ,在ABC 中,72cos 4214ABC ∠==,14sin ABC ∴∠=, 由正弦定理可得28sin ACr ABC==∠,即4r =,则22543OD =-=,11114214273773324O ABC ABCV SOD -∴=⨯⨯=⨯⨯⨯⨯⨯=. 故选:A.【点睛】本题考查球内三棱锥的相关计算,解题的关键是利用正弦定理求出ABC 的外接圆半径,利用勾股关系求出高.6.A解析:A 【分析】利用线面垂直的判定定理可判断BCD 选项,利用假设法推出矛盾,可判断A 选项. 【详解】对于A 选项,连接B C ',假设A C '⊥平面MNP ,在正方体ABCD A B C D ''''-中,A B ''⊥平面BB C C '',B C '⊂平面BB C C '',A B B C '''∴⊥,所以,A B C ''为直角三角形,且A CB ''∠为锐角,因为M 、N 分别为BB '、BC 的中点,则//MN B C ',所以,MN 与A C '不垂直, 这与A C '⊥平面MNP 矛盾,故假设不成立,即A C '与平面MNP 不垂直;对于B 选项,连接B D ''、A C '',如下图所示:因为四边形A B C D ''''为正方形,则A C B D ''''⊥,CC '⊥平面A B C D '''',B D ''⊂平面A B C D '''',CC B D '''∴⊥, A C CC C ''''=,B D ''∴⊥平面A CC '',A C '⊂平面A CC '',A CB D '''∴⊥,M 、P 分别为A B ''、A D ''的中点,则//MN B D '',可得MP A C '⊥, 同理可证A C MN '⊥,MP MN M ⋂=,A C '∴⊥平面MNP ;对于C 选项,连接C D '、A N '、CN 、A P '、PC ,取A B ''的中点E ,连接C E '、PE ,因为四边形CC D D ''为正方形,则CD C D ''⊥,A D ''⊥平面CC D D '',C D '⊂平面CC D D '',C D A D '''∴⊥, CD A D D ''''=,C D '∴⊥平面A CD '',A C '⊂平面A CD '',A C C D ''∴⊥,M 、N 分别为DD '、C D ''的中点,//MN C D '∴,A C MN '∴⊥,在正方形A B C D ''''中,E 、N 分别为A B ''、C D ''的中点,//A E C N ''∴且A E C N ''=, 所以,四边形A EC N ''为平行四边形,所以,//A N C E ''且A N C E ''=, 同理可证四边形CC EP '为平行四边形,//C E CP '∴且C E CP '=, 所以,//A N CP '且A N CP '=,所以,四边形A PCN '为平行四边形, 易得A N CN '=,所以,四边形A PCN '为菱形,所以,A C PN '⊥,MN PN N =,A C '∴⊥平面MNP ;对于D 选项,连接AC 、BD ,因为四边形ABCD 为正方形,则AC BD ⊥,AA '⊥平面ABCD ,BD ⊂平面ABCD ,AA BD '∴⊥, AC AA A '⋂=,BD ∴⊥平面AA C ',A C '⊂平面AA C ',AC BD '∴⊥,M 、N 分别为CD 、BC 的中点,则//MN BD ,A C MN '∴⊥,同理可证A C MP '⊥,MN MP M ⋂=,A C '∴⊥平面MNP .故选:A. 【点睛】方法点睛:证明线面垂直的方法: 一是线面垂直的判定定理; 二是利用面面垂直的性质定理;三是平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面),解题时,注意线线、线面与面面关系的相互转化;另外,在证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)、直角梯形等等.7.C解析:C 【分析】A 通过平移,找出异面直线所成角,利用直角三角形求余弦即可. B.求出三角形的三边,通过勾股定理说明是不是直角三角形.C.求出点M 到面11BB D D 的距离,再求直线BM 与平面11BDD B 所成角的正弦.D.可通过线线平行证明线面平行. 【详解】 设正方体棱长为2A. 取1BB 的中点为N ,则//BC MN ,则AM 与BC 所成角为AMN ∠ 由BC ⊥面11ABB A ,故MN ⊥面11ABB A ,故MN AN ⊥,在Rt ANM △中,5tan 2AMN ∠=,故2cos 3AMN ∠=B. BDM 中,5BM =,22BD =,5DM =,不满足勾股定理,不是直角三角形C. AC BD ⊥,1AC BB ⊥,故AC ⊥面11BB D D ,1//CC 面11BB D D ,故M 到面11BB D D 的距离等于C 到面11BB D D 的距离,即为122d AC ==直线BM 与平面11BDD B 所成角为θ210sin 55d BM θ===直线BM 与平面11BDD B 所成角的正弦值等于105D.如图ACBD O =OM 为1ACC △的中位线,有1//OM AC故直线1AC 与平面BDM 平行故选:C 【点睛】本题考查了空间几何体的线面位置关系判定与证明:(1)对于异面直线的判定要熟记异面直线的概念:把既不平行也不相交的两条直线称为异面直线;(2)对于线面位置关系的判定中,熟记线面平行与垂直、面面平行与垂直的定理是关键.8.D解析:D 【分析】先找到几何体原图,再求出几何体的外接球的半径和内切球的半径,再判断每一个选项得解. 【详解】由三视图得几何体为下图中的三棱锥A BCD -,AB ⊥平面BCD ,42AB =,2CE DE ==,2BE =,由题得2CBD π∠=.设外接球的球心为,O 外接球的半径为R ,则OE ⊥平面BCD , 连接,OB OA ,取AB 中点F ,连接OF .由题得1222OE BF AB ===,所以222(22)2,23R R =+∴=, 所以外接球的体积为34(23)3233ππ⨯=,所以选项A 错误; 所以外接球的表面积为24(23)48ππ⨯=,所以选项C 错误; 由题得22(42)(22)210AC AD ==+=, 所以△ACD △的高为24026-=, 设内切球的半径为r ,则1111111(422242222446)24423222232r ⨯⨯+⨯⨯+⨯⨯+⨯⨯=⨯⨯⨯⨯ 所以22r, 所以内切球的体积为3422)323ππ⨯=(,所以选项B 错误; 所以内切球的表面积为224()22ππ⨯=,所以选项D 正确. 故选:D【点睛】方法点睛:求几何体外接球的半径一般有两种方法:模型法和解三角形法.模型法就是把几何体放在长方体中,使几何体的顶点和长方体的若干个顶点重合,则几何体的外接球和长方体的外接球是重合的,长方体的外接球的半径22212r a b c =++几何体的外接球半径.如果已知中有多个垂直关系,可以考虑用此种方法.解三角形法就是找到球心O 和截面圆的圆心O ',找到OO '、球的半径OA 、截面圆的半径O A '确定的Rt OO A '△,再解Rt OO A '△求出球的半径OA .9.B解析:B 【分析】根据三棱锥的表面积进一步求出正方体的棱长,最后求出正方体的外接球的半径,进一步求出结果. 【详解】解:设正方体的棱长为a ,则1111112B D AC AB AD B C D C a ======, 由于三棱锥11A B CD -的表面积为43, 所以()12133442242AB CS S a==⨯⨯=所以2a =()()()2222226++=, 所以正方体的外接球的体积为34663ππ⎛⎫= ⎪ ⎪⎝⎭故选:B . 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.10.A解析:A 【分析】本题首先可根据题意将四面体ABCD 看作底面是等边三角形的直三棱柱的一部分,然后求出直三棱柱的外接球的半径,最后根据球的表面积计算公式即可得出结果. 【详解】因为AB ⊥平面BCD ,1AB BC CD BD ====,所以可将四面体ABCD 看作底面是等边三角形的直三棱柱的一部分,如图所示:则四面体ABCD 的外接球即直三棱柱的外接球,因为底面三角形BCD 的外心到三角形BCD 的顶点的长度为222131323, 所以直三棱柱的外接球的半径221372312r, 则球O 的表面积277π4π4π123S r , 故选:A. 【点睛】关键点点睛:本题考查四面体的外接球的表面积的计算,能否将四面体ABCD 看作底面是等边三角形的直三棱柱的一部分是解决本题的关键,考查直三棱柱的外接球的半径的计算,是中档题.11.D解析:D 【分析】利用线面平行的性质定理和线面垂直的定义可判断A 选项的正误;由线面垂直的性质定理可判断B 选项的正误;根据已知条件判断直线n 与平面α的位置关系,可判断C 选项的正误;根据已知条件判断直线m 与平面α的位置关系,可判断D 选项的正误. 【详解】 对于A ,//n α,由线面平行的性质定理可知,过直线n 的平面β与平面α的交线l 平行于n ,m α⊥,l α⊂,m l ∴⊥,m n ∴⊥,故A 正确;对于B ,若m α⊥,n α⊥,由直线与平面垂直的性质,可得//m n ,故B 正确; 对于C ,若m α⊥,m n ⊥,则//n α或n ⊂α,又n α⊄,//n α∴,故C 正确;对于D ,若m n ⊥,//n α,则//m α或m 与α相交或m α⊂, 而m α⊄,则//m α或m 与α相交,故D 错误. 故选:D . 【点睛】方法点睛:对于空间线面位置关系的组合判断题,解决的方法是“推理论证加反例推断”,即正确的结论需要根据空间线面位置关系的相关定理进行证明,错误的结论需要通过举出反例说明其错误,在解题中可以以常见的空间几何体(如正方体、正四面体等)为模型进行推理或者反驳.12.C解析:C 【分析】设AH a =,则BH a =,由线面垂直的性质和勾股定理可求得DH a AH ==,由等腰三角形的性质可证得BD ⊥DH ,再根据线面垂直的判定和性质可得选项. 【详解】设AH a =,则BH a =,因为'C H ⊥面ABD ,AB 面ABD ,DH ⊂面ABD ,所以'C H ⊥AB ,'C H ⊥DH ,'C H ⊥DB ,又Rt ABC ,1,2AC AB BC ===,D 为BC 的中点,所以'1,6C D BD B DAB π==∠=∠=,所以在'Rt AC H 中,'C H ==Rt C HD ’中,()2'222'211DH C D C H a a =-=--=,所以DH a AH ==,所以6ADH DAB π∠=∠=,又23ADB π∠=,所以2HDB π∠=,所以BD ⊥DH ,又'C HDH H =,所以BD ⊥面'C DH ,又'C D ⊂面'C DH ,所以BD ⊥'C D , 故选:C. 【点睛】关键点点睛:在解决折叠问题时,关键在于得出折叠的前后中,线线、线面、面面之间的位置关系的不变和变化,以及其中的边的长度、角度中的不变量和变化的量.二、填空题13.【分析】把圆锥侧面展开为一个平面图形利用平面上两点间线段最短可得【详解】由题意所以圆锥侧面展开图中心角为如图则故答案为:【点睛】关键点点睛:本题考查圆锥侧面上的最短距离问题空间几何体表面上两点间的最解析:【分析】把圆锥侧面展开为一个平面图形,利用平面上两点间线段最短可得. 【详解】由题意1,4r l ==,所以圆锥侧面展开图中心角为2142ππθ⨯==,如图,2APA π'∠=, 则2442AA '=⨯=.故答案为:42.【点睛】关键点点睛:本题考查圆锥侧面上的最短距离问题,空间几何体表面上两点间的最短距离问题的解决方法常常是把几何体的表面展开摊平为一个平面图形,利用平面上两点间线段最短求解.14.②③④【分析】取点为线段的中点可判断①建立空间直角坐标系假设存在点使得利用解出的值即可判断②;连接交于点证明线段到平面的距离为定值可判断③;求出点的坐标然后计算平面和平面的法向量即可判断④【详解】对解析:②③④. 【分析】取点M 为线段1BD 的中点可判断①,建立空间直角坐标系假设存在点M ,使得1B M AE ⊥,利用()1110AE B M AE B B BD λ⋅=⋅+=解出λ的值即可判断②;连接AC 、BD 交于点1O ,证明11//EO BD ,线段1BD 到平面AEC 的距离为定值,可判断③;求出点M 的坐标,然后计算平面AEC 和平面MAC 的法向量,即可判断④. 【详解】对于①:连接1AC 交1BD 于点O ,当点M 在O 点时直线AD 与直线1C M 相交,故①不正确,以D 为坐标原点,建立如图所示的空间直角坐标系,设正方体的边长为2,则()0,0,0D ,()10,0,2D ,()2,0,0A ,()0,2,0C ,()0,0,1E ,()2,2,0B ,()12,2,2B ,对于②:()2,0,1AE =-,假设存在点M ,使得1B M AE ⊥,()()()1110,0,22,2,22,2,22B M B B BD λλλλλ=+=-+--=---,[]0,1λ∈,所以14220AE B M λλ⋅=+-=,解得13λ=,所以当12D M MB =时1B M AE ⊥, 故②正确;对于③:连接AC 、BD 交于点1O ,因为点E 是棱1DD 的中点,此时11//EO BD ,故线段1BD 到平面AEC 的距离为定值,所以四面体EMAC 的体积为定值,故③正确;对于④:当12D M MB =时,442,,333M ⎛⎫⎪⎝⎭,()2,0,1AE =-,()2,2,0AC =-,设平面AEC 的法向量为()111,,m x y z =,由111120220m AE x z m AC x y ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ 令12z =,可得11x =,11y =,可得()1,1,2m =,设平面MAC 的法向量为()222,,n x y z =,242,,333MA ⎛⎫=-- ⎪⎝⎭,由22222220242333n AC x y n MA x y z ⎧⋅=-+=⎪⎨⋅=--=⎪⎩解得:20y =,令 21x =可得22z =,所以1,1,1n,因为1111120m n ⋅=⨯+⨯-⨯=,m n ⊥所以平面EAC ⊥平面MAC ,故④正确; 故答案为:②③④. 【点睛】方法点睛:证明面面垂直的方法(1)利用面面垂直的判定定理,先找到其中一个平面的一条垂线,再证明这条垂线在另外一个平面内或与另外一个平面内的一条直线平行即可; (2)利用性质://,αββγαγ⊥⇒⊥(客观题常用); (3)面面垂直的定义(不常用);(4)向量方法:证明两个平面的法向量垂直,即法向量数量积等于0.15.【分析】取中点连接证明平面可得为直线与侧面所成的角进而可得答案【详解】取中点连接直三棱柱中平面平面又又面平面在平面上的射影为故为直线与侧面所成的角中中中故答案为:【点睛】方法点睛:求直线与平面所成的 解析:10 【分析】取11B C 中点D ,连接1,A D BD ,证明1A D ⊥平面11B C CB ,可得1A BD ∠为直线1A B 与侧面11B C CB 所成的角,进而可得答案. 【详解】取11B C 中点D ,连接1,A D BD ,直三棱柱中,1BB ⊥平面111A B C ,1A D ⊂平面111A B C ,11BB A D ∴⊥,又11111A B A C ==,111A D B C ∴⊥, 又1111B C BB B =,111,B C BB ⊂面11BB C C ,1A D ∴⊥平面11B C CB ,1A B ∴在平面11B C CB 上的射影为DB ,故1A BD ∠为直线1A B 与侧面11B C CB 所成的角,11Rt A B B 中,22211121125BB A B A B =+=+=111Rt B A C 中,1112212122B C A D=⨯==,1Rt A BD ∴中,1112102sin 5A D A BD AB ∠===, 故答案为:1010. 【点睛】方法点睛:求直线与平面所成的角有两种方法:一是传统法,证明线面垂直找到直线与平面所成的角,利用平面几何知识解答;二是利用空间向量,求出直线的方向向量以及平面的方向向量,利用空间向量夹角余弦公式求解即可.16.【分析】利用余弦定理求得利用正弦定理计算出的外接圆直径可计算出三棱锥的外接球半径然后利用球体体积公式可求得结果【详解】如下图所示圆柱的底面圆直径为圆柱的母线长为则的中点到圆柱底面圆上每点的距离都相等 解析:1326π【分析】利用余弦定理求得AC ,利用正弦定理计算出ABC 的外接圆直径2r ,可计算出三棱锥P ABC -的外接球半径R ,然后利用球体体积公式可求得结果.【详解】如下图所示,圆柱12O O 的底面圆直径为2r ,圆柱的母线长为h , 则12O O 的中点O 到圆柱底面圆上每点的距离都相等, 所以,圆柱12O O 的外接球直径为()2222R r h =+.本题中,作出ABC 的外接圆2O ,由于PA ⊥平面ABC ,可将三棱锥P ABC -放在圆柱12O O 中,在ABC 中,22AB =3BC =,4ABC π∠=,由余弦定理可得222cos 5AC AB BC AB BC ABC +-⋅∠=,由正弦定理可知,ABC 的外接圆直径为5210sin 2ACr ABC===∠ 则三棱锥P ABC -的外接球直径为()222226R PA r =+=26R =, 因此,三棱锥P ABC -的外接球的体积为334426132633V R ππ==⨯=⎝⎭. 故答案为:13263. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.17.【分析】根据直观图和原图的之间的关系由直观图画法规则将还原为如图所示是一个等腰三角形直接求解其面积即可【详解】由直观图画法规则将还原为如图所示是一个等腰三角形则有所以故答案为:【点睛】关键点点睛:根 解析:2【分析】根据直观图和原图的之间的关系,由直观图画法规则将Rt A B C '''还原为ABC ,如图所示,ABC 是一个等腰三角形,直接求解其面积即可. 【详解】由直观图画法规则将Rt A B C '''还原为ABC ,如图所示,ABC 是一个等腰三角形,则有2BO OC B O O C ''''====,242AO A O ''==所以114428222ABCSBC AO =⋅=⨯⨯= 故答案为:82 【点睛】关键点点睛:根据斜二测画法的规则,可得出三角形的直观图,并求出对应边长,根据面积公式求解.18.【分析】作出图形计算出正四棱锥的高与底面边长设底面的中心为计算得出为正四棱锥的外接球球心可求得该正四棱锥的外接球半径即可得解【详解】如下图所示设正四棱锥的底面的中心为连接设正四棱锥的底面边长为则由于 解析:36π【分析】作出图形,计算出正四棱锥P ABCD -的高与底面边长,设底面ABCD 的中心为E ,计算得出E 为正四棱锥P ABCD -的外接球球心,可求得该正四棱锥的外接球半径,即可得解. 【详解】如下图所示,设正四棱锥P ABCD -的底面ABCD 的中心为E ,连接PE 、AC 、BD ,设正四棱锥P ABCD -的底面边长为a ,则2AC BD a ==,由于E 为正四棱锥P ABCD -的底面ABCD 的中心,则PE ⊥平面ABCD , 由于正四棱锥P ABCD -的侧棱与底面所成的角为45,则45PAC PCA ∠=∠=, 所以,PAC △是以APC ∠为直角的等腰直角三角形, 同理可知,PBD △是以BPD ∠为直角的等腰直角三角形,E 为AC 的中点,122PE AC a ==,2ABCD S a =正方形,2311183326P ABCD ABCD V S PE a a a -=⋅=⨯⨯==正方形,解得a =,232PE a ==,由直角三角形的性质可得1122PE AC BD ==,即PE AE BE CE DE ====,所以,E 为正四棱锥P ABCD -外接球的球心, 球E 的半径为3r PE ==,该球的表面积为2436r ππ=. 故答案为:36π. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.19.【分析】由圆柱体积求得底面半径母线长设底面圆心为可得为异面直线与所成的角(或其补角)在对应三角形中求解可得【详解】设圆柱底面半径为则母线长为由得设底面圆心为连接则所以为异面直线所成的角在中所以故答案【分析】由圆柱体积求得底面半径,母线长,设底面圆心为O ,可得OEF ∠为异面直线AC 与EF 所成的角(或其补角).在对应三角形中求解可得. 【详解】设圆柱底面半径为r ,则母线长为2r ,由2216r r ππ⋅=得2r.设底面圆心为O ,连接OE ,OF .则//OE AC ,所以OEF ∠为异面直线AC ,EF 所成的角.在Rt OEF △中,2OF =,OE =EF =所以cos 3OE OEF EF ∠==..【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.20.【分析】先画出直观图证明平面平面然后侧棱与底面ABC 所成的角即为根据题目中的数据算出即可【详解】如图作的中点连结因为侧面PBC 和底面ABC 都是边长为2的正三角形而为的中点所以又所以平面同时平面所以平解析:o 60. 【分析】先画出直观图,证明平面PAD ⊥平面ABC ,然后侧棱PA 与底面ABC 所成的角即为PAD ∠,根据题目中的数据算出即可.【详解】如图,作BC 的中点D ,连结AD 、PD 因为侧面PBC 和底面ABC 都是边长为2的正三角形 而D 为BC 的中点,所以BC PD ⊥,BC AD ⊥,又PD AD D ⋂=,所以BC ⊥平面PAD ,同时BC ⊂平面ABC。
一、选择题1.已知AB 是平面α外的一条直线,则下列命题中真命题的个数是( )①在α内存在无数多条直线与直线AB 平行;②在α内存在无数多条直线与直线AB 垂直;③在α内存在无数多条直线与直线AB 异面;④一定存在过AB 且与α垂直的平面β.A .1个B .2个C .3个D .4个 2.已知α、β是平面,m 、n 是直线,下列命题中不正确的是( ) A .若//m α,n αβ=,则//m n B .若//m n ,m α⊥,则n α⊥C .若m α⊥,m β⊥,则//αβD .若m α⊥,m β⊂,则αβ⊥ 3.如图正三棱柱111ABC A B C -的所有棱长均相等,O 是1AA 中点,P 是ABC 所在平面内的一个动点且满足//OP 平面11A BC ,则直线OP 与平面ABC 所成角正弦值的最大值为( )A .22B 255C .32D 2774.如图为某几何体的三视图,正视图、左视图和俯视图均为等腰直角三角形,则该几何体的表面积是( )A.23+B.223+C.63+D.65.如图,网格纸上小正方形的边长为1,粗实线画的是某几何体的三视图,则该几何体的体积为()A.16B.13C.1 D.26.三个平面将空间分成n个部分,则n不可能是()A.5 B.6 C.7 D.87.如图,正方形ABCD的边长为4,点E,F分别是AB,B C的中点,将ADE,EBF△,FCD分别沿DE,EF,FD折起,使得A,B,C三点重合于点A',若点G及四面体A DEF'的四个顶点都在同一个球面上,则以FDE为底面的三棱锥G-DEF的高h的最大值为()A263B463C.4263D.22638.某几何体的三视图如图所示,该几何体的体积为V,该几何体所有棱的棱长之和为L,则()A .8,14253V L ==+ B .8,1425V L ==+ C .8,16253V L ==+ D .8,1625V L ==+9.某三棱锥的三视图如图所示, 则该三棱锥的体积为( )A .16B .13C .23D .210.我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径意思是:球的体积V 乘16,除以9,再开立方,即为球的直径d ,由此我们可以推测当时球的表面积S 计算公式为( )A .2278S d =B .2272S d =C .292S d =D .21114S d = 11.空间四边形PABC 的各边及对角线长度都相等,D 、E 、F 外别是AB 、BC 、CA 的中点,下列四个结论中不成立的是( )A .//BC 平面PDFB . DF ⊥平面PAEC .平面PDE ⊥平面ABCD .平面PAE ⊥平面ABC12.已知三棱锥D ABC -,记二面角C AB D --的平面角是θ,直线DA 与平面ABC所成的角是1θ,直线DA 与BC 所成的角是2θ,则( )A .1θθ≥B .1θθ≤C .2θθ≥D .2θθ≤二、填空题13.张衡(78年~139年)是中国东汉时期伟大的天文学家、文学家、数学家、地理学家,他的数学著作有《算罔论》,他曾经得出结论:圆周率的平方除以十六等于八分之五,已知正方体的外接球与内切球上各有一个动点A ,B ,若线段AB 的最小值为31-,利用张衡的结论可得该正方体的内切球的表面积为___________.14.已知四棱锥P ABCD -的底面ABCD 为矩形,且所有顶点都在球O 的表面上,侧面PAB ⊥底面ABCD ,23PA PB ==,120APB ∠=︒,4=AD ,则球O 的表面积为_______.15.如图,在一个底面面积为4,侧棱长为10的正四棱锥P ABCD -中,大球1O 内切于该四棱锥,小球2O 与大球1O 及四棱锥的四个侧面相切,则小球2O 的体积为___________.16.在三棱柱111ABC A B C -中侧棱垂直底面且底面是ABC 为等边三角形且12A A AB =,E 在棱1AA 上,112AE A A =,则异面直线1AC 与BE 所成角的余弦值___________. 17.已知三棱锥A BCD -中,2AB CD ==3AC BC AD BD ====,则三棱锥A BCD -的体积是____________.18.如图,已知ABC 的顶点C ∈平面α,点,A B 在平面α的同一侧,且||23,||2AC BC ==.若,AC BC 与平面α所成的角分别为5,124ππ,则ABC 面积的取值范围是_____19.有一个半径为4的球是用橡皮泥制作的,现要将该球所用的橡皮泥重新制作成一个圆柱和一个圆锥,使得圆柱和圆锥有相等的底面半径和相等的高,若它们的高为8,则它们的底面圆的半径是___________.20.水平放置的ABC ∆的斜二测直观图如图所示,已知''4,''3B C A C ==,则ABC ∆中AB 边上的中线的长度为_______ .三、解答题21.如图,三棱柱111ABC A B C -中,122AB BC AC BB ===,1B 在底面ABC 上的射影恰好是点A ,E 是11A C 的中点.(1)证明:1//A B 平面1B CE ;(2)求1A B 与平面11BCC B 所成角的正弦值.22.如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥底面ABCD ,E 为PD 的中点.(1)证明://PB 平面AEC ;(2)设1AP =,3AD =,四棱锥P ABCD -的体积为1,求证:平面PAC ⊥平面PBD .23.如图,在四棱锥C ﹣ABDE 中,F 为CD 的中点,DB ⊥平面ABC ,BD ∥AE ,BD =2AE .(1)求证:EF ∥平面ABC ;(2)若AB =BC =CA=BD =6,求点A 到平面ECD 的距离24.在三棱柱111ABC A B C -中,侧面11BCC B 为矩形,AC ⊥平面11BCC B ,D ,E 分别是棱1AA ,1BB 的中点.(1)求证://AE 平面11B C D ;(2)求证:1CC ⊥平面ABC ;(3)若12AC BC AA ===,求直线AB 与平面11B C D 所成角的正弦值.25.如图,在三棱柱ABC -A 1B 1C 1中,F 为AC 中点.(1)若此三棱柱为正三棱柱,且1112A A AC =,求异面直线1AB 与BF 所成角的大小; (2)求证:1AB //平面1BFC .26.如图,在直角梯形ABED 中,//BE AD ,DE AD ⊥,BC AD ⊥,4AB =,23BE =.将矩形BEDC 沿BC 翻折,使得平面ABC ⊥平面BCDE .(1)若BC BE =,证明:平面ABD ⊥平面ACE ;(2)当三棱锥A BCE -的体积最大时,求平面ADE 与平面ABC 所成的锐二面角的余弦值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据线面平行,线面垂直,异面直线等有关结论和定义即可判断.【详解】对于A ,若直线AB 与平面α相交,则在α内不存在直线与直线AB 平行,错误;对于B ,若直线AB 与平面α相交且不垂直,设AB M α=,过平面α外直线AB 上一点P 作PC α⊥,垂足为C ,则在平面α内过点C 一定可以作一条直线CD ,使得CD CM ⊥,所以CD AB ⊥,而在平面α内,与直线CD 平行的直线有无数条,所以在α内存在无数多条直线与直线AB 垂直,若直线AB 与平面α垂直,显然在α内存在无数多条直线与直线AB 垂直,当直线AB 与平面α平行时,显然可知在α内存在无数多条直线与直线AB 垂直,正确;对于C ,若直线AB 与平面α相交,设AB M α=,根据异面直线的判定定理,在平面α内,不过点M 的直线与直线AB 异面,所以在α内存在无数多条直线与直线AB 异面,当直线AB 与平面α平行时,显然可知在α内存在无数多条直线与直线AB 异面,正确; 对于D ,若直线AB 与平面α相交且不垂直,设AB M α=,过平面α外直线AB 上一点P 作PC α⊥,垂足为C ,所以平面ABC 与平面α垂直,若直线AB 与平面α垂直,则过直线AB 的所有平面都与平面α垂直,当直线AB 与平面α平行时,在直线AB 上取一点P 作PC α⊥,垂足为C ,所以平面ABC 与平面α垂直,正确.故真命题的个数是3个.故选:C .【点睛】本题主要考查线面平行,线面垂直,异面直线等有关结论和定义的理解和应用,熟记定义,定理和有关结论是解题的关键,属于中档题.2.A解析:A【分析】根据已知条件判断直线m 、n 的位置关系,可判断A 选项的正误;利用线面垂直的性质可判断BC 选项的正误;利用面面垂直的判定定理可判断D 选项的正误.【详解】对于A 选项,若//m α,则直线m 与平面α内的直线平行或异面,由于n αβ=,则直线m 、n 平行或异面,A 选项错误;对于B 选项,若//m n ,m α⊥,则n α⊥,B 选项正确;对于C 选项,若m α⊥,m β⊥,则//αβ,C 选项正确;对于D 选项,若m α⊥,m β⊂,由面面垂直的判定定理可知αβ⊥,D 选项正确. 故选:A.【点睛】方法点睛:对于空间线面位置关系的组合判断题,解决的方法是“推理论证加反例推断”,即正确的结论需要根据空间线面位置关系的相关定理进行证明,错误的结论需要通过举出反例说明其错误,在解题中可以以常见的空间几何体(如正方体、正四面体等)为模型进行推理或者反驳.3.D解析:D【分析】先找到与平面11A BC 平行的平面OEFG ,确定点P 在直线FG 上,作出线面角,求出正弦,转化为求AP 的最小值.【详解】分别取1,,CC BC BA 的中点,连接,,,OE EF FG GO ,并延长FG ,如图,由中位线性质可知11//OE A C , 1//EF BC ,且OEEF E =,故平面11//A BC 平面OGFE , 又P 是ABC 所在平面内的一个动点且满足//OP 平面11A BC则点P 在直线FG 上,OA ⊥平面ABC ,OPA ∴∠是直线OP 与平面ABC 所成角,sin OA OPA OP∴∠=, OA 为定值,∴当OP 最小时,正弦值最大, 而22OP OA AP +所以当AP 最小时,sin OPA ∠最大,故当AP FG ⊥时,sin OPA ∠最大,设棱长为2, 则1212AG =⨯=,而30GAP ∠=︒, 3AP ∴=, 又1212OA =⨯=, 222sin 773()12OA OPA OP∴∠===+故选:D【点睛】 关键点点睛:由P 是ABC 所在平面内的一个动点且满足//OP 平面11A BC ,转化为找过O 的平面与平面11A BC 平行,P 在所找平面与平面ABC 的交线上,从而容易确定出线面角,是本题解题的关键所在.4.A解析:A【分析】由三视图可知原几何体是三棱锥,平面ACD ⊥平面ABC ,ACD ACB ≅底面是等腰直角三角形,底为2AC =,高为1BE =,ABD BCD ≅是边长为2的等边三角形,计算四个三角形面积之和即可求解.【详解】由三视图可知原几何体是三棱锥:底面ACB △是等腰直角三角形,底2AC =,高1BE =,平面ACD ⊥平面ABC ,ACD ACB ≅,由三视图知ACB △中,2AC =,ACB △是等腰直角三角形,所以2AB BC == ACD △是等腰直角三角形,2AD CD ==,2AC =,222BD BE DE =+=所以等腰直角三角形ACB △的面积为12112⨯⨯=, 等腰直角三角形ACD △的面积为12112⨯⨯=, 等边ABD △2332=, 等边BCD △2332=, 所以该几何体的表面积是33112322+++=+, 故选:A. 5.B解析:B【分析】根据三视图得到直观图,根据棱锥的体积公式可得结果.【详解】由三视图可知,该几何体是长、宽、高分别为1,2,1的长方体中的三棱锥D ABC-,如图所以:所以该几何体的体积为111121323 V=⨯⨯⨯⨯=.故选:B【点睛】关键点点睛:根据三视图还原出直观图是本题解题关键.6.A解析:A【分析】三个平面不重合,先按其中平行的平面的个数分类:三个平面两两平行,两个平面平行,没有平行的平面(两两相交),对两两相交的情况,再根据三条交线互相平行,重合,交于一点,分别讨论.【详解】按照三个平面中平行的个数来分类:(1)三个平面两两平行,如图1,可将空间分成4部分;(2)两个平面平行,第三个平面与这两个平行平面相交,如图2,可将空间分成6部分;(3)三个平面中没有平行的平面:(i)三个平面两两相交且交线互相平行,如图3,可将空间分成7部分;(ii)三个平面两两相交且三条交线交于一点,如图4,可将空间分成8部分.(iii)三个平面两两相交且交线重合,如图5,可将空间分成6部分;综上,可以为4,6,7,8部分,不能为5部分,故选:A.7.A解析:A【分析】先求出'A FDE外接球的半径和外接圆的半径,再利用勾股定理求出外接球的球心到外接圆的圆心的距离,可得高h的最大值.【详解】因为A ,B ,C 三点重合于点A ',原来A B C ∠∠∠、、都是直角,所以折起后三条棱'''A F A D A E 、、互相垂直,所以三棱锥'A FDE -可以看作一个长方体的一个角,它们有相同的外接球,外接球的直径就是长方体的体对角线,即为2R ==R =DE DF ===EF == 在DFE △中,222cos 2DE EF DF DEF DE EF +-∠===⨯, 所以DEF ∠为锐角,所以sin 10DEF ∠==, DEF的外接圆的半径为2sin DF r DEF ===∠,则球心到DEF23=,以FDE 为底面的三棱锥G -DEF 的高h 的最大值为1R OO +23. 故选:A. 【点睛】本题考查了翻折问题和外接球的问题,关键点翻折前后量的变化及理解外接球和三棱锥的关系,考查了学生的空间想象力和计算能力.8.A解析:A 【分析】由三视图还原几何体,由棱锥的体积公式可得选项. 【详解】在如图所示的正方体1111ABCD A B C D -中,P ,E 分别为11,B C BC 的中点,该几何体为四棱锥P ABCD -,且PE ⊥平面ABCD . 由三视图可知2AB =,则3PCPB PD PA ====,则21868142233L V =+=+=⨯⨯=. 故选:A.【点睛】方法点睛:三视图问题的常见类型及解题策略:(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.9.C解析:C【分析】根据题中所给的几何体的三视图还原几何体,得到相应的三棱锥,之后利用椎体体积公式求得结果.【详解】根据题中所给的几何体的三视图还原几何体如图所示:该三棱锥满足底面BCD△是等腰三角形,且底边和底边上的高线都是2;且侧棱AD⊥底面BCD,1AD=,所以112 =221=323V⨯⨯⨯⨯,故选:C.【点睛】方法点睛:该题考查的是有关根据所给几何体三视图求几何体体积的问题,解题方法如下:(1)应注意把握三个视图的尺寸关系:主视图与俯视图长应对正(简称长对正),主视图与左视图高度保持平齐(简称高平齐),左视图与俯视图宽度应相等(简称宽相等),若不按顺序放置和不全时,则应注意三个视图名称; (2)根据三视图还原几何体; (3)利用椎体体积公式求解即可.10.A解析:A 【分析】根据已知条件结合球的体积公式3432d π⎛⎫ ⎪⎝⎭求解出π的值,然后根据球的表面积公式242d π⎛⎫⎪⎝⎭求解出S 的表示,即可得到结果. 【详解】d =,所以33941632d d V π⎛⎫== ⎪⎝⎭,所以278π=, 所以2222727442848d d S d π⎛⎫==⨯⨯= ⎪⎝⎭,故选:A. 【点睛】关键点点睛:解答本题的关键是根据球的体积公式得到π的表示,再将π带入到球的表面积公式即可完成求解.11.C解析:C 【分析】由线面平行的判定定理可判断A ;由线面垂直的判定定理可判断B ;反证法可说明C ;由面面垂直的判定定理可判断D. 【详解】 对于A ,D ,F 外别是AB ,CA 的中点,//BC DF ∴,DF ⊂平面PDF ,∴//BC 平面PDF ,故A 正确,不符合题意;对于B ,各棱长相等,E 为BC 中点,,BC AE BC PE ∴⊥⊥,PEAE E =,BC ∴⊥平面PAE ,//BC DF ,∴DF ⊥平面PAE ,故B 正确,不符合题意;对于C ,假设平面PDE ⊥平面ABC ,设DE BF O ⋂=,连接PO ,则O 是DE 中点,PO DE ∴⊥,平面PDE平面ABC DE =,PO ∴⊥平面ABC ,BF ⊂平面ABC ,PO BF ∴⊥,则PB PF =,与PB PF ≠矛盾,故C 错误,符合题意;对于D ,由B 选项 DF ⊥平面PAE , DF ⊂平面ABC ,∴平面PAE ⊥平面ABC ,故D 正确,不符合题意. 故选:C. 【点睛】本题考查线面关系和面面关系的判定,解题的关键是正确理解判断定理,正确理解垂直平行关系.12.A解析:A 【分析】设三棱锥D -ABC 是棱长为2的正四面体,取AB 中点E ,DC 中点M ,AC 中点M ,连结DE 、CE 、MN 、EN ,过D 作DO CE ⊥,交CE 于O ,连结AO ,则DEC θ∠=,1DAO θ∠=,2MNE θ∠=,排除B ,C .当二面角C AB D --是直二面角时,2θθ≥,排除D .由此能求出结果. 【详解】设三棱锥D -ABC 是棱长为2的正四面体,取AB 中点E ,DC 中点M ,AC 中点M ,连结DE 、CE 、MN 、EN , 过D 作DO ⊥CE ,交CE 于O ,连结AO ,则DEC θ∠=,1DAO θ∠=,2MNE θ∠=,413DE CE ==-=2DC =,∴1cos 3233θ==⨯⨯,2233AO CO CE ===∴12333cos 33AO AD θ===, 取BC 中点F ,连结DF 、AF ,则DF BC ⊥,AF BC ⊥,又DF AF F ⋂=,∴BC ⊥平面AFD ,∴BC AD ⊥,∴290θ=︒, ∴21θθθ≥≥,排除B ,C ,当二面角C AB D --是直二面角时,2θθ≥,排除D , 故选:A . 【点睛】关键点点睛:将三棱锥看成特殊的正四面体,采用排除法,充分理解线线角、线面角以及面面的概念是解题的关键.二、填空题13.【分析】设正方体的棱长为正方体的内切球半径为正方体的外接球半径再由已知条件和球的表面积公式可得答案【详解】设正方体的棱长为正方体的内切球半径为正方体的外接球半径满足:则由题意知:则该正方体的内切球的 解析:10【分析】设正方体的棱长为a ,正方体的内切球半径为2a r =,正方体的外接球半径3R =,再由已知条件和球的表面积公式可得答案. 【详解】设正方体的棱长为a ,正方体的内切球半径为2a r =,正方体的外接球半径R 满足:22222a R a ⎛⎫⎛⎫=+ ⎪ ⎪ ⎪⎝⎭⎝⎭,则R =.由题意知:12aR r -=-=,则2a =,R = 该正方体的内切球的表面积为4π,又因为圆周率的平方除以十六等于八分之五,即25168π=,所以π=所以内切球的表面积为故答案为:【点睛】关键点点睛:本题考查正方体的外接球和内切球问题,考查空间几何新定义,解决本题的关键点是利用正方体的外接球半径,内切球半径和正方体面对角线的一半组成勾股定理,得出正方体内切球半径,进而得出表面积,考查学生空间想象能力和计算能力,属于中档题.14.【分析】首先利用垂直关系和底面和侧面外接圆的圆心作出四棱锥外接球的球心再计算外接球的半径以及球的表面积【详解】连结交于点取中点连结并延长于点点是外接圆的圆心侧面底面侧面底面平面过点作平面侧面所以点是 解析:64π【分析】首先利用垂直关系和底面ABCD 和侧面ABCD 外接圆的圆心,作出四棱锥P ABCD -外接球的球心,再计算外接球的半径,以及球O 的表面积. 【详解】连结,AC BD ,交于点M ,取AB 中点N 连结AN ,MN ,并延长于点E ,点E 是PAB △外接圆的圆心,侧面PAB ⊥底面ABCD ,侧面PAB 底面ABCD AB =,MN AB ⊥ MN ∴⊥平面PAB ,过点M 作MO ⊥平面ABCD ,//EO MN ,EO ∴⊥侧面PAB ,所以点O 是四棱锥P ABCD -外接球的球心, 可知四边形MNEO 是矩形,右图,PA PB ==,120APB ∠=,2cos306AB PB ∴==, 点E 是PAB △外接圆的圆心,sin 303PN PB ∴==,PBE △是等边三角形,PE =NE ∴==,MO ∴=2211641322MC AC ==+=, 223134R OC MO MC ∴==+=+=,∴球O 的表面积2464S R ππ==故答案为:64π 【点睛】本题考查了球与几何体的综合问题,考查空间想象能力以及化归和计算能力,(1)当三棱锥的三条侧棱两两垂直时,并且侧棱长为,,a b c ,那么外接球的直径2222R a b c =++2)当有一条侧棱垂直于底面时,先找底面外接圆的圆心,过圆心做底面的垂线,球心在垂线上,根据垂直关系建立R 的方程.(3)而本题类型,需要过两个平面外接圆的圆心作面的垂线,垂线的交点就是球心.15.【分析】设为正方形的中心的中点为连接求出如图分别可求得大球与小球半径分别为和进而可得小球的体积【详解】解:由题中条件知底面四边形是边长为2的正方形设O 为正方形的中心的中点为M 连接则如图在截面中设N 为 解析:224【分析】设O 为正方形ABCD 的中心,AB 的中点为M ,连接PM ,OM ,PO ,求出OM ,PM ,PO ,如图,分别可求得大球1O 与小球2O 半径分别为222,进而可得小球的体积. 【详解】解:由题中条件知底面四边形ABCD 是边长为2的正方形.设O 为正方形ABCD 的中心,AB 的中点为M ,连接PM ,OM ,PO ,则1OM =,221013PM PA AM =-=-=,9122PO =-=,如图,在截面PMO 中,设N为球1O 与平面PAB 的切点,则N 在PM 上,且1O N PM ⊥,设球1O 的半径为R ,则1O N R =,∵1sin 3OM MPO PM ∠==,∴1113NO PO =,则13PO R =,11422PO PO OO R =+==,∴22R =,设球1O 与球2O 相切于点Q ,则22PQ PO R R =-=,设球2O 的半径为r ,同理可得4PQ r =,∴224R r ==,故小球2O 的体积342324V r ππ==.故答案为:2π.【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.16.【分析】取的中点连接可得所以或其补角即为异面直线与所成角在中求即可求解【详解】取的中点连接因为所以且所以或其补角即为异面直线与所成角设则所以因为是等边三角形所以因为平面平面所以所以在中因为异面直线所 310【分析】取11A C 的中点1O ,连接1EO ,1AC ,可得11//EO AC ,所以1BEO ∠或其补角即为异面直线1AC 与BE 所成角,在1BEO 中,求1cos BEO ∠即可求解. 【详解】取11A C 的中点1O ,连接1EO ,11B O ,EB ,EC ,1BO ,1AC , 因为112AE A A =,所以11//EO AC 且111=2EO AC , 所以1BEO ∠或其补角即为异面直线1AC 与BE 所成角, 设1AB =,则12AA =, 所以2211115=1222EO AC =+=,112BE =+= 因为111A B C △是等边三角形,112AE A A =,所以21113122B O ⎛⎫=-= ⎪⎝⎭, 因为1BB ⊥平面111A B C ,11B O ⊂平面111A B C ,所以 1BB ⊥11B O ,所以222111131942BO BB B O ⎛⎫=+=+= ⎪ ⎪⎝⎭, 在1BEO 中,2221111519231044cos 2205222BE EO BO BEO BE EO +-+-∠===-⨯⨯⨯, 因为异面直线所成的角为锐角或直角,所以异面直线1AC 与BE 310, 故答案为:31020【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.17.【分析】取中点连接由条件可证明平面由此将三棱锥的体积表示为计算可得结果【详解】取中点连接如下图所示:因为所以平面平面所以平面又因为所以所以又因为故答案为:【点睛】关键点点睛:解答本题的关键是通过找的 解析:23【分析】取AB 中点O ,连接,CO DO ,由条件可证明AB ⊥平面CDO ,由此将三棱锥A BCD -的体积表示为13CDOAB S ⨯⨯,计算可得结果.【详解】取AB 中点O ,连接,CO DO ,如下图所示:因为AC BC AD BD ===,所以,AB CO AB DO ⊥⊥,CO DO O =,CO ⊂平面CDO ,DO ⊂平面CDO ,所以AB ⊥平面CDO ,又因为3AC BC AD BD ====,2AB CD ==()2221032CO DO ⎛⎫==-= ⎪ ⎪⎝⎭, 所以22110221222CDOS⎛⎫⎛⎫=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 又因为11221333A BCD CDOV AB S -=⨯⨯==, 故答案为:23. 【点睛】关键点点睛:解答本题的关键是通过找AB 的中点,证明出线面垂直,从而将三棱锥的体积表示为13CDO AB S⨯⨯,区别于常规的13⨯底面积⨯高的计算方法,本例实际可看成是两个三棱锥的体积之和.18.【分析】由题意可得AB 的轨迹得到当ACBC 与轴l 共面时∠ACB 取到最大值和最小值求得sin ∠ACB 的范围代入三角形面积公式得答案【详解】∵ACBC 与平面α所成的角分别为且|AC|=2|BC|=2则A 解析:[3,3]【分析】由题意可得A ,B 的轨迹,得到当AC 、BC 与轴l 共面时,∠ACB 取到最大值和最小值,求得sin ∠ACB 的范围,代入三角形面积公式得答案. 【详解】∵AC ,BC 与平面α所成的角分别为512π,4π,且|AC |=23,|BC |=2, 则A ,B 分别在如图所示的两个不同的圆周上运动,当直线AC ,BC 与轴l 在同一平面内时,∠ACB 取到最大值和最小值, 于是,有63ACB ππ≤∠≤,∴sin6π≤sin ∠ACB ≤sin 3π,即12≤sin ∠ACB ≤32, 而ABC 的面积S =12|AC |⋅|BC |⋅sin ∠ACB =3∠ACB . ∴33S ≤≤.故答案为:[3,3] 【点睛】关键点睛:根据题意得到A ,B 的轨迹,利用几何直观和空间想象进行分析是解题的关键.19.【详解】设它们的底面圆的半径为()依题意得化简得所以故答案为: 解析:2【详解】设它们的底面圆的半径为r (0r >). 依题意得3443V π=⨯球V V =+圆柱圆锥221(+)83r r ππ=⨯, 化简得28r =,所以22r =. 故答案为:22.20.【分析】首先根据直观图可知其平面图形为直角三角形且两条直线边长为长接下来利用勾股定理即可求出AB 的长然后利用直角三角形的性质进行解答即可【详解】把直观图还原成平面图形如图所示:得为直角三角形且两条直 解析:732【分析】首先根据直观图可知其平面图形为直角三角形,且两条直线边长为长3,8AC BC ==,接下来利用勾股定理即可求出AB 的长,然后利用直角三角形的性质进行解答即可. 【详解】把直观图还原成平面图形如图所示:得ABC ∆为直角三角形,且两条直角边的长3,8AC BC ==, 由勾股定理可得73AB =故三角形AB 边上的中线长为732, 73. 【点睛】本题是一道关于平面几何图形的直观图的题目,解答本题的关键是熟练掌握斜二测画法的相关知识.三、解答题21.(1)证明见解析;(2105. 【分析】(1)连接1BC 与1B C 相交于M ,连接EM ,证明1//EM A B ,再由线面平行的判定定理证明即可;(2)证明平面1AB F ⊥平面11BCC B ,得出NO ⊥平面11BCC B ,结合线面角的定义得出OBN ∠即为1A B 与平面11BCC B 所成角,再由相似三角形、勾股定理、直角三角形边角关系得出1A B 与平面11BCC B 所成角的正弦值. 【详解】(1)连接1BC 与1B C 相交于M ,连接EM由于E ,M 分别是11A C ,1BC 的中点,则1//EM A B因为EM ⊂平面1B CE ,1A B ⊄平面1B CE ,所以1//A B 平面1B CE .(2)取BC 中点F ,连接AF ,1B F ,则AF BC ⊥ 因为1B A ⊥平面ABC ,所以1B A BC ⊥又1,AF B A ⊂平面1AB F ,1AF B A A ⋂=,所以BC ⊥平面1AB F又BC ⊂平面11BCC B ,所以平面1AB F ⊥平面11BCC B ,过N 作1NO B F ⊥于O 因为NO ⊂平面1AB F ,平面1AB F ⋂平面111BCC B B F =所以NO ⊥平面11BCC B ,连接OB ,则OBN ∠即为1A B 与平面11BCC B 所成角 设12BB =,易知2211022BN AN AB =+=+=,6AF =,1142B F = 由11ONB AFB △△,114214B N ON AF B F =⋅= 所以105sin ON OBN BN ∠==.【点睛】关键点睛:解决第一问的关键在于由中位线定理证明线线平行,再由线面平行的判定定理证明线面平行;解决第二问的关键在于由线面垂直找出线面角,再由直角三角形边角关系求出正弦值.22.(1)证明见解析;(2)证明见解析. 【分析】( 1)设BD 与AC 的交点为O ,连接EO ,通过直线与平面平行的判定定理证明//PB 平面AEC ;( 2)通过体积得到底面为正方形,再由线面垂直得到面面垂直即可. 【详解】(1)连接BD 交AC 于点O ,连结EO , 因为ABCD 为矩形,所以O 为BD 的中点, 又E 为PD 的中点,所以//EO PB ,EO ⊂平面AEC ,PB ⊄平面AEC ,所以//PB 平面AEC .(2)因为113P ABCD V AB AD AP -=⨯⨯⨯=, 所以3AB =,所以底面ABCD 为正方形,所以BD AC ⊥,因为PA ABCD ⊥,所以BD PA ⊥,且AC PA A ⋂=,所以BD ⊥平面PAC , 又BD ⊂平面PBD ,所以平面PAC ⊥平面PBD .【点睛】本题主要考查了立体几何及其运算,要证明线面平行先证明线线平行,要证明面面垂直,先证明线面垂直,考查了学生的基础知识、空间想象力.23.(1)证明见解析(2)322【分析】(1)取CB 的中点M ,连,MF AM ,可证四边形AMFE 为平行四边形,从而可得//EF AM ,再根据直线与平面平行的判定定理可证结论;(2)根据A ECD D ACE B ACE E ACB V V V V ----===可求得结果. 【详解】(1)取CB 的中点M ,连,MF AM ,因为F 为CD 的中点,所以//MF BD ,且12MF BD =, 因为//AE BD 且12AE BD =,所以//MF AE 且MF AE =, 所以四边形AMFE 为平行四边形,所以//EF AM ,因为EF ⊄平面ABC ,AM ⊂平面ABC , 所以//EF 平面ABC .(2)因为DB ⊥平面ABC ,BD ∥AE ,所以AE ⊥平面ABC , 所以BD BC ⊥,BD AB ⊥,AE AC ⊥,AE AB ⊥, 因为AB =BC =CA=BD =6,BD =2AE .所以3AE =,所以363662CD =+=93635CE =+=93635DE =+=, 又F 为CD 的中点,所以EF CD ⊥,所以()()22353233EF =-=所以1133629622ECD S CD EF =⋅⋅=⨯=△ 因为2113369333E ACB ABC V AE S -=⋅=⨯=△ 因为//AE BD ,所以A ECD D ACE B ACE E ACB V V V V ----====3 设点A 到平面ECD 的距离为h ,则11963633A ECD ECD V hS h h -==⨯=△, 所以3693h =322h =. 所以点A 到平面ECD 的距离为322.【点睛】关键点点睛:利用等体积法求点面距是解题关键. 24.(1)证明见解析;(2)证明见解析;(3)1010. 【分析】(1)先证明1//AE DB ,再结合线面平行的判定定理证明//AE 平面11B C D ;(2)由AC ⊥平面11BCC B 得出1AC CC ⊥,再由1CC BC ⊥结合线面垂直的判定定理证明1CC ⊥平面ABC ;(3)建立空间直角坐标系,利用向量法求直线AB 与平面11B C D 所成角的正弦值. 【详解】解:(1)在三棱柱111ABC A B C -中,11//AA BB ,且11AA BB =. 因为点D ,E 分别是棱1AA ,1BB 的中点, 所以1//AD B E ,且1AD B E =. 所以四边形1AEB D 是平行四边形. 所以1//AE DB .又因为AE ⊄平面11B C D ,1DB ⊂平面11B C D , 所以//AE 平面11B C D .(2)因为AC ⊥平面11BCC B ,1CC ⊂平面11BCC B ,所以1AC CC ⊥. 因为侧面11BCC B 为矩形,所以1CC BC ⊥. 又因为ACBC C =,AC ⊂平面ABC ,BC ⊂平面ABC ,所以1CC ⊥平面ABC .(3)分别以CA ,CB ,1CC 所在的直线为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系C xyz -,。
一、选择题1.已知正三棱柱111ABC A B C -,底面正三角形ABC 的边长为2,侧棱1AA 长为2,则点1B 到平面1A BC 的距离为( ) A .2217B .22121C .477D .47212.已知正方体1111ABCD A B C D -的棱长为2,E 为棱1AA 的中点,截面1CD E 交棱AB 于点F ,则四面体1CDFD 的外接球表面积为( ) A .394πB .414πC .12πD .434π3.在长方体1111ABCD A B C D -中,12,3AB BC AA ===,E 是BC 的中点,则直线1ED 与直线BD 所成角的余弦值是( ) A .7 B .7-C .37D .37-4.已知正三棱柱111ABC A B C -,的体积为163,底面积为43,则三棱柱111ABC A B C -的外接球表面积为( )A .1123π B .563π C .2243π D .28π 5.某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:3cm )为( )A .43B .2C .4D .66.一个底面为正三角形的棱柱的三视图如图所示,若在该棱柱内部放置一个球,则该球的最大体积为( )A .6πB .12πC .43πD .83π7.一个几何体的三视图如图所示,则该几何体的外接球的表面积是( )A .2πB .3πC .4πD .16π8.《九章算术》是古代中国乃至东方的第一步自成体系的数学专著,书中记载了一种名为“刍甍”的五面体(如图),其中四边形ABCD 为矩形,//EF AB ,若3AB EF =,ADE 和BCF △都是正三角形,且2AD EF =,则异面直线AE 与CF 所成角的大小为( )A .6π B .4π C .3π D .2π 9.某几何体的三视图如图所示,该几何体的体积为V ,该几何体所有棱的棱长之和为L ,则( )A .8,14253V L ==+B .8,1425V L ==+ C .8,16253V L ==+D .8,1625VL ==+10.已知长方体1111ABCD A B C D -的顶点A ,B ,C ,D ,在球O 的表面上,顶点1A ,1B ,1C ,1D ,在过球心O 的一个平面上,若6AB =,8AD =,14AA =,则球O 的表面积为( ) A .169πB .161πC .164πD .265π11.已知直线a 、b 都不在平面α内,则下列命题错误的是( ) A .若//a b ,//a α,则//b α B .若//a b ,a α⊥,则b α⊥ C .若a b ⊥,//a α,则b α⊥D .若a b ⊥,a α⊥,则//b α12.如果一个水平放置的平面图形的斜二测直观图是如图所示的直角梯形,其中2O A ''=,45B A O '''∠=,//B C O A ''''.则原平面图形的面积为( )A .32B .62C .322D .34二、填空题13.已知直三棱柱111ABC A B C -,14AB BC AA ===,42AC =,若点P 是上底面111 A B C 所在平面内一动点,若三棱锥P ABC -的外接球表面积恰为41π,则此时点P 构成的图形面积为________.14.如图,已知直四棱柱1111ABCD A B C D -的所有棱长均相等,3BAD π∠=,E 是棱AB的中点,设平面α经过直线1A E ,且α平面111,B BCC l α=⋂平面112C CDD l =,若α⊥平面11A ACC ,则异面直线1l 与2l 所成的角的余弦值为_______.15.已知一个几何体的三视图如图所示,俯视图为等腰三角形,则该几何体的外接球表面积为_________.16.在正三棱锥A BCD -中,5AB AC AD ===,6BC BD CD ===.点M 是线段BC 上的点,且2BM MC =.点P 是棱AC 上的动点,直线PM 与平面BCD 所成角为θ,则sin θ的最大值为______.17.如图,正方形BCDE 的边长为a ,已知3AB BC =,将ABE △沿边BE 折起,折起后A 点在平面BCDE 上的射影为D 点,则翻折后的几何体中有如下描述:①AB 与DE 2;②//AB CE ;③B ACE V -体积是316a ;④平面ABC ⊥平面ADC .其中正确的有______.(填写你认为正确的序号)18.三棱锥P ABC -的各顶点都在同一球面上,PC ⊥底面ABC ,若1PC AC ==,2AB =,且60BAC ∠=︒,给出如下命题:①ACB △是直角三角形;②此球的表面积等于11π; ③AC ⊥平面PBC ;④三棱锥A PBC -的体积为32. 其中正确命题的序号为______.(写出所有正确结论的序号)19.已知点O 为圆锥PO 底面的圆心,圆锥PO 的轴截面为边长为2的等边三角形PAB ,圆锥PO 的外接球的表面积为______.20.如图在长方形ABCD 中,AB 6=,BC 2=.E 为线段DC 上一动点,现将△AED 沿AE 折起.使点D 在面ABC 上的射影K 在直线AE 上,当E 从D 运动到C .则K 所形成轨迹的长度为_____.三、解答题21.如图(1)在ABC 中,AC BC =,D 、E 、F 分别是AB 、AC 、BC 边的中点,现将ACD △沿CD 翻折,使得平面ACD ⊥平面BCD .如图(2)(1)求证://AB 平面DEF ; (2)求证:BD AC ⊥.22.在棱长为2的正方体1111ABCD A B C D -中,O 是底面ABCD 的中心.(1)求证:1B O//平面11DA C ; (2)求点O 到平面11DA C 的距离. 23.如图,AB 是O 的直径,PA 垂直于O 所在的平面,C 是圆周上不同于A ,B 的一动点.(1)证明:BC ⊥面PAC ;(2)若PA =AC =1,AB =2,求直线PB 与平面PAC 所成角的正切值.24.如图,在直三棱柱111ABC A B C -中,底面是等腰直角三角形,90ACB ∠=︒且AC a =,侧棱12AA =,D ,E 分别是1CC ,11A B 的中点.(1)求直三棱柱111ABC A B C -的体积(用字母a 表示); (2)若点E 在平面ABD 上的射影是三角形ABD 的重心G , ①求直线EB 与平面ABD 所成角的余弦值; ②求点1A 到平面ABD 的距离25.如图,在五面体ABCDEF 中,四边形ABCD 是平行四边形.(1)求证://AB EF ;(2)若CF AE ⊥,AB AE ⊥,求证:平面ABFE ⊥平面CDEF .26.如图,在矩形ABCD 中,2AB AD =,M 为DC 的中点,将ADM △沿AM 折起使平面ADM ⊥平面ABCM .(1)求证:BM AD ⊥;(2)求直线DC 与平面DAB 所成角的正弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据题意,将点1B 到平面1A BC 的距离转化为点A 到平面1A BC 的距离,然后再利用等体积法11A A BC A ABC V V --=代入求解点A 到平面1A BC 的距离. 【详解】已知正三棱柱111ABC A B C -,底面正三角形ABC 的边长为2,侧棱1AA 长为2,所以可得1122==A B AC 1A BC 为等腰三角形,所以1A BC 7,由对称性可知,111--=B A BC A A BC V V ,所以点1B 到平面1A BC 的距离等于点A 到平面1A BC 的距离,所以11A A BC A ABC V V --=,又因为112772=⨯=A BC S △12332ABCS =⨯=111233⨯⨯=⨯⨯A BC ABC S h S △△,即2322177h == 故选:A.【点睛】一般关于点到面的距离的计算,一是可以考虑通过空间向量的方法,写出点的坐标,计算平面的法向量,然后代入数量积的夹角公式计算即可,二是可以通过等体积法,通过换底换高代入利用体积相等计算.2.B解析:B 【分析】可证F 为AB 的中点,设1DD 的中点为G ,DFC △的外接圆的球心为1O ,四面体1CDFD 的外接球的球心为O ,连接11,,,OG OF OO A B ,利用解三角形的方法可求DFC △的外接圆的半径,从而可求四面体1CDFD 的外接球的半径.【详解】设1DD 的中点为G ,DFC △的外接圆的圆心为1O ,四面体1CDFD 的外接球的球心为O ,连接11,,,OG OF OO A B ,因为平面11//A ABB 平面11D DCC ,平面1CD E ⋂平面11A ABB EF =,平面1CD E ⋂平面111D DCC D C =,故1//EF D C , 而11//A B D C ,故1//EF A B ,故F 为AB 的中点, 所以145DF CF ==+=,故3cos 5255DFC ∠==⨯⨯,因为DFC ∠为三角形的内角,故4sin 5DFC ∠=,故DFC △的外接圆的半径为1254245⨯=,1OO ⊥平面ABCD ,1DD ⊥平面ABCD ,故11//OO DD ,在平面1GDO O 中,111,OG DD O D DD ⊥⊥,故1//OG O D , 故四边形1GDO O 为平行四边形,故1//OO GD ,1OO GD =, 所以四面体1CDFD 的外接球的半径为2541116+=, 故四面体1CDFD 的外接球表面积为41414164ππ⨯=, 故选:B. 【点睛】方法点睛:三棱锥的外接球的球的半径,关键是球心位置的确定,通常利用“球心在过底面外接圆的圆心且垂直于底面的直线上”来确定.3.C解析:C 【分析】连接11D B 、1D E 、DE ,先证明四边形11BB D D 为平行四边形,得到11//B D BD ,故异面直线1ED 与BD 所成的角即为相交直线1ED 与11D B 所成的角,由余弦定理可得答案. 【详解】连接11D B 、1D E 、DE ,因为棱11//BB DD ,11BB DD =,所以四边形11BB D D 为平行四边形,所以11//B D BD ,故异面直线1ED 与BD 所成的角即为相交直线1ED 与11D B 所成的角11B D E ∠,因为12,3AB AD AA ===,1BE CE ==,所以11B D ==1B E ==222415ED CE DC +=+==,所以222115914D E ED D D ==+=+,由余弦定理得,从而222111111111cos 2B D D E B E B D E B D D E +-∠===⨯. 故选:C 【点睛】本题考查异面直线所成角的余弦值的求法,关键点是找到异面直线所成的角,考查空间中线线的位置关系等基础知识,考查运算求解能力,是中档题.4.A解析:A 【分析】由面积和体积可得三棱柱的底面边长和高,根据特征可知外接球的球心为上下底面中心连线的中点,再由勾股定理可得半径及球的表面积. 【详解】依题意,14AA ==,而21sin 2ABCS AB AC A AB =⨯⨯== 解得4AB =,记ABC 的中心为О,111A B C △的中心为О1,则114O A O A ==, 取1OO 的中点D ,因为AO CO =,90AOD COD ∠=∠=,由勾股定理得AD CD =,同理可得111AD BD A D B D C D ====,所以正三棱柱的外接球的球心为即D ,AD 为外接球的半径, 由正弦定理得42sin 60AB AO ==, 故2221628433A O D D O A =+=+=, 故三棱柱111ABC A B C -的外接球表面积2281124433S R πππ==⨯=, 故选:A .【点睛】本题考查了正三棱柱外接球的表面积的求法,关键点是确定球心的位置和球的半径的长度,考查了学生的空间想象力和计算能力.5.B解析:B【分析】根据三视图判断出几何体的结构,利用椎体体积公式计算出该几何体的体积.【详解】根据三视图可知,该几何体为如图所示四棱锥,该棱锥满足底面是直角梯形,且侧棱ED⊥平面ABCD,所以其体积为11(12)22232V=⨯⨯+⨯⨯=,故选:B.【点睛】方法点睛:该题考查的是有关根据几何体三视图求几何体体积的问题,解题方法如下:(1)首先根据题中所给的几何体的三视图还原几何体;(2)结合三视图,分析几何体的结构特征,利用体积公式求得结果.6.C解析:C【分析】先由三视图计算底面正三角形内切圆的半径,内切圆的直径和三棱柱的高比较大小,确定球的半径的最大值,计算球的最大体积. 【详解】由三视图知该直三棱柱的高为4,底面正三角形的高为33,易得底面正三角形内切圆的半径为高的三分之一,即3r =,由于234<,所以该棱柱内部可放置球的半径的最大值为3,它的体积()343433V ππ==.故选:C 【点睛】关键点点睛:本题的第一个关键是由三视图确定底面三角形的高是33,第二个关键是确定球的最大半径.7.C解析:C 【分析】由三视图还原出原几何体,确定其结构,再求出外接球的半径得球的表面积. 【详解】由三视图,知原几何体是一个四棱锥P ABCD -,如图,底面ABCD 是边长为1的正方形,PB ⊥底面ABCD ,由PB ⊥底面ABCD ,AD ⊂面ABCD ,得PB AD ⊥,又AD AB ⊥,AB PB B ⋂=,,AB PB ⊂平面PAB ,所以AD ⊥平面PAB ,而PA ⊂平面PAB ,所以AD PA ⊥,同理DC PC ⊥,同样由PB ⊥底面ABCD 得PB BD ⊥,所以PD 中点O 到四棱锥各顶点距离相等,即为其外接球球心,PD 为球直径,222222PD PB BD PA AD AB =+=++=,∴外接球半径为12ADr ==, 表面积为2414S ππ=⨯=. 故选:C .【点睛】关键点点睛:本题考查由三视图还原几何体,考查棱锥的外接球表面积.解题关键是确定外接球的球心.棱锥的外接球球心在过各面外心(外接圆圆心)且与该面垂直的直线上.8.D解析:D 【分析】过点F 作//FG AE 交AB 于点G ,连接CG ,则异面直线AE 与CF 所成角为CFG ∠或其补角,然后在CFG △中求解. 【详解】如下图所示,在平面ABFE 中,过点F 作//FG AE 交AB 于点G ,连接CG , 则异面直线AE 与CF 所成角为CFG ∠或其补角,设1EF =,则3AB =,2BC CF AE ===,因为//EF AB ,//FG AE ,所以,四边形AEFG 为平行四边形, 所以,2FG AE ==,1AG =,2BG =, 由于2ABC π∠=,由勾股定理可得2222CG BC BG =+=所以,222CG CF FG =+,则2CFG π∠=.故选:D. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.9.A解析:A 【分析】由三视图还原几何体,由棱锥的体积公式可得选项. 【详解】在如图所示的正方体1111ABCD A B C D -中,P ,E 分别为11,B C BC 的中点,该几何体为四棱锥P ABCD -,且PE ⊥平面ABCD . 由三视图可知2AB =,则5,3PCPB PD PA ====,则21825681425,2233L V =++=+=⨯⨯=. 故选:A.【点睛】方法点睛:三视图问题的常见类型及解题策略:(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.10.C解析:C 【分析】把两个这样的长方体叠放在一起,构成一个长宽高分别为6,8,8的长方体,则球O 就是该长方体的外接球,根据长方体外接球的直径等于体对角线的长,求出直径,即可得出球的表面积. 【详解】 如下图所示:把两个这样的长方体叠放在一起,构成一个长宽高分别为6,8,8的长方体,则球O 就是该长方体的外接球,根据长方体的结构特征可得,其外接球直径等于体对角线的长, 所以球O 的半径R 满足2222688164R =++= 所以球O 的表面积24164S R ππ==. 故选:C.【点睛】关键点点睛:本题主要考查几何体外接球的表面积,熟记长方体结构特征,其外接球的球心和半径与长方体的关系,以及球的表面积公式,是解决此类问题的关键.11.C解析:C 【分析】利用线面平行的性质和判定定理可判断A 选项的正误;由线面垂直的定义可判断B 选项的正误;根据已知条件判断b 与α的位置关系,可判断C 选项的正误;根据已知条件判断b 与α的位置关系,可判断D 选项的正误. 【详解】由于直线a 、b 都不在平面α内.在A 中,若//a α,过直线a 的平面β与α的交线m 与a 平行,因为//a b ,可得//b m ,b α⊄,m α⊂,所以,//b α,A 选项正确;在B 中,若a α⊥,则a 垂直于平面α内所有直线,//a b ,则b 垂直于平面α内所有直线,故b α⊥,B 选项正确; 在C 中,若a b ⊥,//a α,则b 与α相交或平行,C 选项错误;在D 中,若a b ⊥,a α⊥,则//b α或b α⊂,b α⊄,//b α∴,D 选项正确.故选:C. 【点睛】方法点睛:对于空间线面位置关系的组合判断题,解决的方法是“推理论证加反例推断”,即正确的结论需要根据空间线面位置关系的相关定理进行证明,错误的结论需要通过举出反例说明其错误,在解题中可以以常见的空间几何体(如正方体、正四面体等)为模型进行推理或者反驳.12.A解析:A 【分析】作出原平面图形,然后求出面积即可. 【详解】45B A O '''∠=B O A '''=∠,则O A B '''△是等腰直角三角形,∴2A B OB '''==,又O C C B ''''⊥,45C O B '''∠=︒,∴1B C ''=, 在直角坐标系中作出原图形为:梯形OABC ,//OA BC ,2,1OA BC ==,高22OB = ∴其面积为1(21)22322S =+⨯= 故选:A 【点睛】方法点睛:本题考查斜二测法画平面图形直观图,求原图形的面积,可能通过还原出原平面图形求得面积,也可以通过直观图到原图形面积的关系求解:直观图面积为S ',原图形面积为S ,则24S S '=二、填空题13.【分析】确定是等腰直角三角形的中点分别是和的外心由直棱柱性质得的外接球的球心在上外接球面与平面的交线是圆是以为圆心为半径的圆求出可得面积【详解】则设分别是的中点则分别是和的外心由直三棱柱的性质得平面 解析:4π【分析】确定ABC 是等腰直角三角形,11,AC A C 的中点1,D D 分别是ABC 和111A B C △的外心,由直棱柱性质得P ABC -的外接球的球心O 在1DD 上,外接球面与平面111A B C 的交线是圆,是以1D 为圆心,1D P 为半径的圆,求出1PD 可得面积. 【详解】4,2AB BC AC ===90ABC ∠=︒,设1,D D 分别是11,AC A C 的中点,则1,D D 分别是ABC 和111A B C △的外心,由直三棱柱的性质得1DD ⊥平面ABC ,所以P ABC -的外接球的球心O 在1DD 上,如图,24()41OA ππ=,则412OP OA ==,2222413(22)22OD OA AD ⎛⎫=-=-= ⎪ ⎪⎝⎭, 所以11135422OD DD OD AA OD =-=-=-=, 222211415222PD OP OD ⎛⎫⎛⎫=-=-= ⎪⎪ ⎪⎝⎭⎝⎭, P ABC -的外接球面与平面111A B C 的交线是圆,是以1D 为圆心,1D P 为半径的圆,其面积为224S ππ=⨯=. 故答案为:4π.【点睛】关键点点睛:本题考查立体几何中动点轨迹问题的求解,重点考查了几何体的外接球的有关问题的求解,关键是根据外接球的性质确定球心位置,结合勾股定理得出动点所满足的具体条件,结论:三棱锥的外接球的球心在过各面外心且与此面垂直的直线上.14.【分析】取的中点连接证明平面平面平面即平面然后分别取的中点证明平面平面可得可得异面直线与所成的角即与所成的角由余弦定理可得答案【详解】由直四棱柱的所有棱长均相等所以是菱形连接且所以因为平面平面所以且解析:910【分析】 取AD 的中点F ,连接1A F ,证明平面1A EF ⊥平面11A ACC ,平面1A EF 即平面α,然后分别取1111B C D C 、的中点M N 、,证明平面1//A EF 平面MNC ,可得//CM 1l ,//CN 2l ,可得异面直线1l 与2l 所成的角即CM 与CN 所成的角,由余弦定理可得答案.【详解】由直四棱柱1111ABCD A B C D -的所有棱长均相等,3BAD π∠=,所以ABCD 是菱形,连接AC BD 、,1111AC B D 、,且ACBD O =,11111A C B D O ⋂=,所以BD AC ⊥,1111B D A C ⊥,因为1AA ⊥平面ABCD ,BD ⊂平面ABCD , 所以1AA BD ⊥,且1AA AC A =,所以BD ⊥平面11A ACC ,取AD 的中点F ,连接1A F ,连接EF 交AC 与G ,所以//EF BD ,且G 是AO 的中点,所以EF ⊥平面11A ACC ,所以平面1A EF ⊥平面11A ACC , 又1A E ⊂平面1A EF ,所以平面1A EF 即平面α,分别取1111B C D C 、的中点M N 、,连接MN 交11A C 与H 点,H 即为11O C 的中点, 所以1A H GC =,且1//A H GC ,所以四边形1A HCG 是平行四边形,所以1//A G HC ,1AG ⊄平面CMN ,CH ⊂平面CMN ,所以//A G 平面CMN , 又因为11//////EF BD B D MN ,EF ⊄平面CMN ,MN ⊂平面CMN , 所以//MN 平面CMN ,又1AG EF G =,所以平面1//A EF 平面MNC ,且平面11B C CB ⋂平面MNC MC =, 平面11D C CD平面MNC NC =,所以//CM 1l ,//CN 2l ,所以异面直线1l 与2l 所成的角即CM 与CN 所成的角,设2AB =, 则直四棱柱1111ABCD A B C D -的所有棱长均为2,由3BAD π∠=,所以112BD AB B D ===,11112MN D B ==,且CM CN ====,由余弦定理得222551922510CM CN MN MCN CM CN +-+-∠===⨯⨯.故答案为:910.【点睛】本题考查了异面直线所成的角,关键点是作出平面α及找出异面直线所成的角,考查了学生分析问题、解决问题的能力及空间想象力.15.【分析】首先把三视图转换为直观图进一步求出几何体的外接球的半径最后求出球的表面积【详解】根据几何体的三视图可知该几何体是底面为等腰三角形高为2的三棱锥体如图所示:设底面外接圆的半径为t 圆心为H 则解得 解析:414π【分析】首先把三视图转换为直观图,进一步求出几何体的外接球的半径,最后求出球的表面积. 【详解】根据几何体的三视图可知该几何体是底面为等腰三角形,高为2的三棱锥体.如图所示:设底面外接圆的半径为t ,圆心为H ,则2221(2)t t =+-,解得54t =, 设外接球的半径r ,球心为O ,则OH ⊥底面,且1OH =, 则22541()144r =+=所以41414().164S ππ=⨯⨯=故答案为:414π 【点睛】 关键点点睛:球心与底面外接圆圆心连线垂直底面,且OH 等于棱锥高的一半,利用勾股定理求出球的半径,由面积公式计算即可.16.【分析】证明直线与平面所成角中当此为二面角的平面角时最大即可得【详解】先证一个命题:平面内所有直线与平面所成的角中当此角为二面角的平面角时最大如图平面于点于是上任一点则而则平面又平面∴是二面角的平面【分析】证明直线PM 与平面BCD 所成角中当此为二面角的平面角时最大即可得.【详解】先证一个命题:平面ABC 内所有直线与平面BCD 所成的角中,当此角为二面角的平面角时最大.如图AO ⊥平面BCD 于点O ,OE BC ⊥于E ,Q 是BC 上任一点,则AO BC ⊥,而AO OE O =,则BC ⊥平面OAE ,又AE ⊂平面OAE ,∴AEO ∠是二面角A BC D --的平面角,而AQO 是直线AQ 与平面ABCD 所成的角, 显然sin AO AEO AE∠=,sin AO AQO AQ ∠=,又AQ AE ≥,∴sin sin sin AQO AEO ∠≤∠,,AEO AQO ∠∠都是锐角,∴AQO AEO ∠≤∠,,Q E 重合时等号成立.由此可知平面ABC 内所有直线与平面BCD 所成的角中,当此角为二面角的平面角时最大.由已知6EO ==4AE =,AOsin AEO ∠= ∴直线PM 与平面BCD 所成角最大值等于AEO ∠,∴sin θ的最大值为4.故答案为:4.【点睛】结论点睛:在二面角A BC D --(为锐二面角)中,AEO ∠是A BC D --二面角的平面角,Q 是棱BC 上任一点,则AQ 与平面BCD 所成角中最大值为二面角的平面角,AQ 与平面BCD 内过Q 点的直线(实际上是所有直线)所成角中最大值为直线AQ 与平面BCD 所成的角.17.①③④【分析】作出折叠后的几何体的直观图由题中条件得到是异面直线与所成的角求出其正切可判断①正确;根据线面垂直的的判定定理先证明平面可判断②错;根据等体积法由体积公式求出可判断③正确;根据面面垂直的解析:①③④【分析】作出折叠后的几何体的直观图,由题中条件,得到ABC ∠是异面直线AB 与DE 所成的角,求出其正切,可判断①正确;根据线面垂直的的判定定理,先证明CE ⊥平面ABD ,可判断②错;根据等体积法,由体积公式求出B ACE V -,可判断③正确;根据面面垂直的判定定理,可判断④正确.【详解】作出折叠后的几何体直观图如图所示:由题意,3AB a =,BE a =,∴2AE a =; ∴22AD AE DE a =-=,222AC CD AD a ∴=+=,∵//BC DE ,∴ABC ∠是异面直线AB 与DE 所成的角,在Rt ABC 中, tan 2AC ABC BC∠==①正确;连结BD ,CE ,则CE BD ⊥,又AD ⊥平面BCDE ,CE ⊂平面BCDE ,∴CE AD ⊥,又BD AD D ,BD ⊂平面ABD ,AD ⊂平面ABD ,∴CE ⊥平面ABD ,又AB 平面ABD ,∴CE AB ⊥.故②错误.三棱锥B ACE -的体积2311113326B ACE A BCE BCE V V S AD a a a --===⨯⨯=⋅⨯. 故③正确.∵AD ⊥平面BCDE ,BC ⊂平面BCDE ,∴BC AD ⊥,又BC CD ⊥,CD AD D =,CD ⊂平面ADC ,AD ⊂平面ADC , ∴BC ⊥平面ADC ,∵BC ⊂平面ABC ,∴ABC ⊥平面ADC .故④正确.故答案为:①③④.【点睛】思路点睛:判断空间中线线、线面、面面位置关系时,一般根据相关概念,结合线面平行、垂直的判定定理及性质,以及面面平行、垂直的判定定理及性质,根据题中条件,进行判断或证明. 18.①③【分析】①先求出再得到最后判断①正确;②先判断三棱锥的外接球就是以为顶点以棱的长方体的外接球再求半径最后求出球的表面积判断②错误;③先证明最后证明平面判断③正确;④直接求出三棱锥的体积判断④错误解析:①③.【分析】①先求出BC =222AB BC AC =+,最后判断①正确;②先判断三棱锥P ABC -的外接球就是以C 为顶点,以CA ,CB ,CP 棱的长方体的外接球,再求半径r ,最后求出球的表面积,判断②错误;③先证明AC PC ⊥,AC BC ⊥,⋂=PC CB C ,最后证明AC ⊥平面PBC ,判断③正确;④直接求出三棱锥A PBC -的体积,判断④错误.【详解】解:①在ACB △,因为1AC =,2AB =,且60BAC ∠=︒,所以2222cos 3BC AB AC AB AC BAC =+-⋅⋅∠=,则BC =所以222AB BC AC =+,所以ACB △是直角三角形,故①正确;②由(1)可知AC BC ⊥,又因为PC ⊥底面ABC ,所以三棱锥P ABC -的外接球就是以C 为顶点,以CA ,CB ,CP 棱的长方体的外接球,则2r ==,则此球的表面积等于245S r ππ==,故②错误;③因为PC ⊥底面ABC ,所以AC PC ⊥,由(1)可知AC BC ⊥,⋂=PC CB C , 所以AC ⊥平面PBC ,故③正确;④三棱锥A PBC -的体积113(13)132V =⨯⨯⨯⨯=,故④错误. 故答案为:①③.【点睛】本题考查判断三角形是直角三角形、求三棱锥的外接球的表面积、求三棱锥的体积、线面垂直的证明,是中档题. 19.【分析】由题意知圆锥的轴截面为外接球的最大截面即过球心的截面且球心在上由等边三角形性质有即求得外接球的半径为R 进而求外接球的表面积【详解】设外接球球心为连接设外接球的半径为R 依题意可得在中有即解得故 解析:163π 【分析】由题意知圆锥PO 的轴截面为外接球的最大截面,即过球心的截面且球心在PO 上,由等边三角形性质有Rt AO O '△,即222O A AO O O ''=+求得外接球的半径为R ,进而求外接球的表面积. 【详解】设外接球球心为O ',连接AO ',设外接球的半径为R ,依题意可得1AO =,3PO =,在Rt AO O '△中,有222O A AO O O ''=+,即)22213R R =+,解得3R =, 故外接球的表面积为24164433S R πππ==⋅=. 故答案为:163π. 【点睛】 本题考查了求圆锥体的外接球面积,由截面是等边三角形,结合等边三角形的性质求球半径,进而求外接球面积,属于基础题.20.【分析】由题意分析可得可知K 所形成轨迹为一个圆弧求出圆心角再求弧长即可【详解】由题意D′K ⊥AE 所以K 的轨迹是以AD′为直径的一段圆弧D′K 设AD′的中点为O ∵长方形ABCD′中ABBC ∴∠D′AC 解析:23π 【分析】 由题意分析可得DK AE ⊥可知K 所形成轨迹为一个圆弧,求出圆心角再求弧长即可.【详解】由题意,D ′K ⊥AE ,所以K 的轨迹是以AD ′为直径的一段圆弧D ′K ,设AD ′的中点为O , ∵长方形ABCD ′中,AB 6=,BC 2=, ∴∠D ′AC =60°,∴∠D ′OK =120°23π=, ∴K 所形成轨迹的长度为2223ππ⨯=,2 【点睛】 本题主要考查了空间中的轨迹问题,主要是找到定量关系分析轨迹,属于中等题型.三、解答题21.(1)证明见解析;(2)证明见解析.【分析】(1)根据三角形中位线的性质,得到//EF AB ,利用线面平行的判定定理证得结果; (2)根据面面垂直的性质定理,得到BD ⊥平面ACD ,进而证得BD AC ⊥.【详解】证明:(1)如图(2):在ABC 中,E 、F 分别是AC 、BC 中点,得//EF AB , 又AB ⊄平面DEF ,EF ⊂平面DEF ,//AB ∴平面DEF .(2)∵平面ACD ⊥平面BCD 且交线为CD ,BD CD ⊥,且BD ⊂平面BCD , ∴BD ⊥平面ACD ,又AC ⊂平面ACD∴BD AC ⊥.【点睛】方法点睛:该题考查的是有关空间关系的证明问题,解题方法如下:(1)熟练掌握线面平行的判定定理,在解题过程中,一定不要忘记线在面内、线在面外的条件;(2)根据面面垂直的条件,结合线线垂直,利用面面垂直的性质定理,得到线面垂直,进而证得线线垂直.22.(1)证明见解析;(2)233. 【分析】(1)连接11B D ,设11111B D AC O ⋂=,连接1DO ,证明11B O DO 是平行四边形,再利用线面平行的判定定理即可证明.(2)由题意可得平面11DA C ⊥平面11B D DB ,过点O 作1OH DO ⊥于H ,在矩形11B D DB 中,连接1OO ,可得1O OD OHD ∽△△,由三角形相似,对应边成比例即可求解.【详解】(1)证明:连接11B D ,设11111B D AC O ⋂=,连接1DO .11//O B DO 且11O B DO =,11B O DO ∴是平行四边形.11//B O DO ∴.又1DO ⊂平面11DA C ,1B O ⊂/平面11DA C ,1//B O ∴平面11DA C . (2)1111A C B D ⊥,111AC BB ⊥,且1111BB B D B ⋂=, 11A C ∴⊥平面11B D DB .∴平面11DA C ⊥平面11B D DB ,且交线为1DO .在平面11B D DB 内,过点O 作1OH DO ⊥于H ,则OH ⊥平面11DA C ,即OH 的长就是点O 到平面11DA C 的距离.在矩形11B D DB 中,连接1OO ,1O OD OHD ∽△△,则11O D OD O O OH=,22236OH ⨯∴==. 即点O 到平面11DA C 的距离为23. 【点睛】关键点点睛:本题考查了线面平行的判定定理,点到面的距离,解题的关键是过点O 作1OH DO ⊥于H ,得出OH 的长就是点O 到平面11DA C 的距离,考查了计算能力. 23.(1)证明见解析;(2)6. 【分析】(1)证明AC ⊥BC 和PA ⊥BC ,BC ⊥面PAC 即得证;(2)先证明∠BPC 为PB 与平面PAC 所成的角,再通过解三角形求出,BC PC 即得解.【详解】证明:(1) AB 为圆O 直径 ∴∠ACB =90°即AC ⊥BCPA ⊥面ABC ,∴PA ⊥BCAC PA =A∴BC ⊥面PAC.(2)BC ⊥面PAC , ∴∠BPC 为PB 与平面PAC 所成的角,在直角三角形ABC 中,22213BC =-在直角三角形PAC 中,22112PC =+=, 在直角三角形PBC 中,tan ∠BPC 3622=. 故直线PB 与平面PAC 所成角的正切值为62 【点睛】方法点睛:求线面角常用几何法求解,其步骤为:找→作→证(定义)→指→求(解三角形).24.(1)2a ;(2)①9;②3. 【分析】 (1)直接由体积公式计算;(2)取AB 的中点F ,连接1,,,EF FC EC BG ,得1EFCC 是矩形,由G 是DAB 的重心,EG ⊥平面DAB ,求出a ,①EBG ∠是直线EB 与平面DAB 所成的角,在直角三角形中计算可得;②由点1A 到平面ABD 的距离等于点E 到平面ABD 的距离可得.【详解】(1)由题意111221122ABC A B C ABC V S AA a a -=⋅=⨯=△; (2)如图,取AB 的中点F ,连接1,,,EF FC EC BG , 由AC BC =,90ACB ∠=︒,F 是AB 中点得CF AB ⊥,12CF AB =,由直三棱柱111ABC A B C -可得1EFCC 是矩形,设CF x =,则ED FD ==,2EF =.11C D =,G 是DAB 的重心,则23DG DF ==GF = 又EG ⊥平面DAB ,DF ⊂平面DAB ,∴EG DF ⊥,∴2222EF FG ED DG -=-,即222144(1)(1)(1)99x x x -+=+-+,解得x = ∴AC AB a ===①由EG ⊥平面DAB ,知EBG ∠是直线EB 与平面DAB 所成的角,EG ==3EB ==,∴BG ==∴cos 9BG EBG BE ∠===. ②∵1//A E AB ,AB 平面DAB ,1A E ⊄面DAB ,∴1//A E 面DAB ,∴点1A 到平面ABD 的距离等于点E 到平面ABD 的距离为EG =.。
一、选择题1.已知正三棱柱111ABC A B C -,底面正三角形ABC 的边长为2,侧棱1AA 长为2,则点1B 到平面1A BC 的距离为( ) A .2217B .22121C .477D .47212.在长方体1111ABCD A B C D -中,12,3AB BC AA ===,E 是BC 的中点,则直线1ED 与直线BD 所成角的余弦值是( ) A .728B .728-C .3714D .3714-3.已知正三棱柱111ABC A B C -中,1AB AA =,M 是1CC 的中点,则异面直线AM 与1A B 所成角的大小为( )A .π6B .π4 C .π3 D .π24.如图,圆形纸片的圆心为O ,半径为6cm ,该纸片上的正方形ABCD 的中心为O .E ,F ,G ,H 为圆O 上的点,ABE △,BCF △,CDG ,ADH 分别是以AB ,BC ,CD ,DA 为底边的等腰三角形.沿虚线剪开后,分别以AB ,BC ,CD ,DA 为折痕折起ABE △,BCF △,CDG ,ADH ,使得E ,F ,G ,H 重合得到一个四棱锥.当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的表面积为( )A .163πB .253πC .643πD .1003π5.如图,在三棱锥P ABC -中,AB AC ⊥,AB AP =,D 是棱BC 上一点(不含端点)且PD BD =,记DAB ∠为α,直线AB 与平面PAC 所成角为β,直线PA 与平面ABC 所成角为γ,则( )A .,γβγα≤≤B .,βαβγ≤≤C .,βαγα≤≤D .,αβγβ≤≤6.一个底面为正三角形的棱柱的三视图如图所示,若在该棱柱内部放置一个球,则该球的最大体积为( )A .6πB .12πC .43πD .83π7.如图所示,A ,B 为正方体的两个顶点,M ,N 为其所在棱的中点,则异面直线AB 与MN 所成角的大小为( )A .30°B .45°C .60°D .90° 8.三个平面将空间分成n 个部分,则n 不可能是( )A .5B .6C .7D .89.正三棱柱111ABC A B C -各棱长均为1,M 为1CC 的中点,则点1B 到面1A BM 的距离为( )A .2B .22C .12D .3210.如图,正方形ABCD 的边长为4,点E ,F 分别是AB ,B C 的中点,将ADE ,EBF △,FCD 分别沿DE ,EF ,FD 折起,使得A ,B ,C 三点重合于点A ',若点G 及四面体A DEF '的四个顶点都在同一个球面上,则以FDE 为底面的三棱锥G -DEF 的高h 的最大值为( )A .263+B .463+C .4263-D .2263-11.我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径意思是:球的体积V 乘16,除以9,再开立方,即为球的直径d ,由此我们可以推测当时球的表面积S 计算公式为( ) A .2278S d =B .2272S d =C .292S d =D .21114S d =12.如图,长、宽、高分别为2、1、1的长方体木块上有一只小虫从顶点A 出发沿着长方体的外表面爬到顶点B ,则它爬行的最短路程是( )A 10B 5C .22D .3二、填空题13.张衡(78年~139年)是中国东汉时期伟大的天文学家、文学家、数学家、地理学家,他的数学著作有《算罔论》,他曾经得出结论:圆周率的平方除以十六等于八分之五,已知正方体的外接球与内切球上各有一个动点A ,B ,若线段AB 31,利用张衡的结论可得该正方体的内切球的表面积为___________.14.如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PAD △为等边三角形,四边形ABCD 为矩形,24AB AD ==,则四棱锥P ABCD -的外接球的表面积为________.15.如图,在四棱锥P ABCD -中,底面ABCD 为菱形,PD ⊥底面ABCD ,O 为对角线AC 与BD 的交点,若2PD =,3APD BAD π∠=∠=,则三棱锥P AOD -的外接球表面积为_________.16.在直三棱柱111ABC A B C -中,90ABC ∠=︒,13AA =,设其外接球的球心为O ,已知三棱锥O ABC -的体积为3,则球O 表面积的最小值为______.17.一件刚出土的珍贵文物要在博物馆大厅中央展出,需要设计一个各面是玻璃平面的无底正四棱柱将其罩住,罩内充满保护文物的无色气体.已知文物近似于塔形(如图所示),高1.8米,体积0.5立方米,其底部是直径为0.9米的圆形,要求文物底部与玻璃罩底边至少间隔0.3米,文物顶部与玻璃罩上底面至少间隔0.2米,气体每立方米1000元,则气体费用最少为_________元.18.如图,已知一个八面体的各条棱长均为2,四边形ABCD 为正方形,给出下列说法:①该八面体的体积为83;②该八面体的外接球的表面积为8π; ③E 到平面ADF 的距离为3;④EC 与BF 所成角为60°. 其中正确的说法为__________.(填序号) 19.已知扇形的面积为56π,圆心角为63π,则由该扇形围成的圆锥的外接球的表面积为_________.20.三棱锥P ABC -的各顶点都在同一球面上,PC ⊥底面ABC ,若1PC AC ==,2AB =,且60BAC ∠=︒,给出如下命题:①ACB △是直角三角形;②此球的表面积等于11π; ③AC ⊥平面PBC ;④三棱锥A PBC -的体积为3. 其中正确命题的序号为______.(写出所有正确结论的序号)三、解答题21.已知四棱锥P ABCD -的底面是菱形,60,BCD PD AD ∠=︒⊥,点E 是BC 边的中点.(Ⅰ)求证:AD ⊥平面PDE ;(Ⅱ)若二面角P AD C --的大小等于60︒,且834,3AB PD ==①点P 到平面ABCD 的距离;②求直线PB 与平面ABCD 所成角的大小. 22.如图,在直三棱柱111ABC A B C -中,1,2AC BC AC BC CC ⊥===.(1)求三棱柱111ABC A B C -的体积; (2)求异面直线1CB 与1AC 所成角的大小; (3)求二面角1B AC C --的平面角的余弦值.23.如图,圆柱的轴截面ABCD 是长方形,点E 是底面圆周上异于A ,B 的一点,AF DE ⊥,F 是垂足.(1)证明:AF DB ⊥;(2)若2AB =,3AD =,当三棱锥D ABE -体积最大时,求点C 到平面BDE 的距离. 24.将棱长为2的正方体1111ABCD A B C D -沿平面11A BCD 截去一半(如图1所示)得到如图2所示的几何体,点E ,F 分别是BC ,DC 的中点.(Ⅰ)证明:EF ⊥平面1A AC ; (Ⅱ)求三棱锥1A D EF -的体积.25.如图,在四棱锥P ABCD -中,底面ABCD 为菱形,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,3BAD π∠=,E 是线段AD 的中点,连结BE .(1)求证:BE PA ⊥;(2)求二面角A PD C --的余弦值;(3)在线段PB 上是否存在点F ,使得//EF 平面PCD ?若存在,求出PFPB的值;若不存在,说明理由.26.在三棱锥P ABC -中,G 是底面ABC 的重心,D 是线段PC 上的点,且2PD DC =.(1)求证:DG//平面PAB ;(2)若PAB △是以PB 为斜边的等腰直角三角形,求异面直线DG 与PB 所成角的余弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据题意,将点1B 到平面1A BC 的距离转化为点A 到平面1A BC 的距离,然后再利用等体积法11A A BC A ABC V V --=代入求解点A 到平面1A BC 的距离.【详解】已知正三棱柱111ABC A B C -,底面正三角形ABC 的边长为2,侧棱1AA 长为2,所以可得1122==A B AC ,1A BC 为等腰三角形,所以1A BC 的高为7,由对称性可知,111--=B A BC A A BC V V ,所以点1B 到平面1A BC 的距离等于点A 到平面1A BC 的距离,所以11A A BC A ABC V V --=,又因为112772=⨯⨯=A BC S △,12332ABCS =⨯⨯=,所以111233⨯⨯=⨯⨯A BC ABC S h S △△,即2322177h ==. 故选:A.【点睛】一般关于点到面的距离的计算,一是可以考虑通过空间向量的方法,写出点的坐标,计算平面的法向量,然后代入数量积的夹角公式计算即可,二是可以通过等体积法,通过换底换高代入利用体积相等计算.2.C解析:C 【分析】连接11D B 、1D E 、DE ,先证明四边形11BB D D 为平行四边形,得到11//B D BD ,故异面直线1ED 与BD 所成的角即为相交直线1ED 与11D B 所成的角,由余弦定理可得答案. 【详解】连接11D B 、1D E 、DE ,因为棱11//BB DD ,11BB DD =,所以四边形11BB D D 为平行四边形,所以11//B D BD ,故异面直线1ED 与BD 所成的角即为相交直线1ED 与11D B 所成的角11B D E ∠,因为12,3AB AD AA ===,1BE CE ==,所以2211111122B D D C B C =+=213110B E =+=222415ED CE DC +=+==,所以222115914D E ED D D ==+=+,由余弦定理得,从而22211111111137cos 24214B D D E B E B D E B D D E +-∠===⨯⨯. 故选:C 【点睛】本题考查异面直线所成角的余弦值的求法,关键点是找到异面直线所成的角,考查空间中线线的位置关系等基础知识,考查运算求解能力,是中档题.3.D解析:D 【分析】取AC 中点E ,连接1,A E BE ,先通过BE ⊥平面11ACC A 可得BE AM ⊥,再由1ACM A AE ≅可得1AM A E ⊥,即可得出AM ⊥平面1A BE ,即1AM A B ⊥.【详解】取AC 中点E ,连接1,A E BE ,ABC 为正三角形,BE AC ∴⊥,正三棱柱111ABC A B C -中,1CC ⊥平面ABC ,BE ⊂平面ABC ,1CC BE ∴⊥,1ACCC C =,BE ∴⊥平面11ACC A ,AM ⊂平面11ACC A ,BE AM ∴⊥,在直角三角形ACM 和直角三角形1A AE 中,1,AC A A CM AE ==,1ACM A AE ∴≅, 1CAM AA E ∴∠=∠,12CAM A EA π∴∴∠+∠=,则1AM A E ⊥,1BE A E E ⋂=,AM ∴⊥平面1A BE ,1A B ⊂平面1A BE ,1AM A B ∴⊥,故异面直线AM 与1A B 所成角的大小为2π.【点睛】本题考查异面直线所成角的求解,解题的关键是通过证明AM ⊥平面1A BE 判断出1AM A B ⊥.4.D解析:D 【分析】连接OE 交AB 于点I ,设E ,F ,G ,H 重合于点P ,正方形的边长为x (0x >)cm ,则2x OI =,62xIE =-,求出x 的值,再利用勾股定理求R ,代入球的表面积公式,即可得答案. 【详解】连接OE 交AB 于点I ,设E ,F ,G ,H 重合于点P ,正方形的边长为x (0x >)cm ,则2x OI =,62x IE =-, 因为该四棱锥的侧面积是底面积的2倍, 所以246222x x x ⎛⎫⨯⨯-= ⎪⎝⎭,解得4x =. 设该四棱锥的外接球的球心为Q ,半径为R ,如图,则QP QC R ==,22OC =16423OP =-= 所以()(22232R R =+,解得3R =所以外接球的表面积为2100433S ππ==(2cm ).故选:D . 【点睛】关键点点睛:本题考查平面图形的折叠,四棱锥外接球的半径,解题关键在于平面图形折叠成立体图形后,要明确变化的量和没有变的量,以及线线的位置,线面的位置关系,对于几何体的外接球的问题,关键在于确定外接球的球心的位置.5.A解析:A 【分析】由AB AP =,PD BD =,可得ABD △≌APD △,从而得DAB DAP α∠=∠=,而直线PA 与平面ABC 所成角为γ,由最小角定理可得γα≤,再由P ABC B PAC V V --=,PACABCSS≤,进而可比较,βγ的大小【详解】解:因为AB AP =,PD BD =,所以ABD △≌APD △, 所以DAB DAP α∠=∠=,因为直线PA 与平面ABC 所成角为γ, 所以由最小角定理可得γα≤, 因为AB AC ⊥,所以12ABCS AB AC =⋅, 因为1sin 2PACSAC AP PAC =⋅∠,AB AP =,所以PACABCSS≤,令点P 到平面ABC 的距离为1d ,点B 到平面PAC 的距离为2d , 因为P ABC B PAC V V --=,1211,33P ABC ABC B PACPACV S d V S d --=⋅=⋅所以12d d ≤,因为直线AB 与平面PAC 所成角为β,直线PA 与平面ABC 所成角为γ,所以21sin ,sin d d AB PAβγ== 因为AB AP =, 所以sin sin βγ≥因为,(0,]2πβγ∈所以βγ≥, 故选:A 【点睛】关键点点睛:此题考查直线与平面所成的角,考查推理能力,解题的关键是利用了等体积法转换,属于中档题6.C解析:C 【分析】先由三视图计算底面正三角形内切圆的半径,内切圆的直径和三棱柱的高比较大小,确定球的半径的最大值,计算球的最大体积. 【详解】由三视图知该直三棱柱的高为4,底面正三角形的高为半径为高的三分之一,即r =4<,所以该棱柱内部可放置球的半径的最大343V π==.故选:C 【点睛】关键点点睛:本题的第一个关键是由三视图确定底面三角形的高是定球的最大半径.7.C解析:C 【分析】由MN 与正方体的面对角线平行,可得异面直线所成的角,此角是正三角形的内角,由此可得. 【详解】作如图所示的辅助线,由于M ,N 为其所在棱的中点,所以//MN PQ ,又因为//AC PQ ,所以//AC MN ,所以CAB ∠即为异面直线AB 与MN 所成的角(或补角),易得AB AC BC ==,所以60CAB ∠=︒. 故选:C .8.A解析:A 【分析】三个平面不重合,先按其中平行的平面的个数分类:三个平面两两平行,两个平面平行,没有平行的平面(两两相交),对两两相交的情况,再根据三条交线互相平行,重合,交于一点,分别讨论. 【详解】按照三个平面中平行的个数来分类:(1)三个平面两两平行,如图1,可将空间分成4部分;(2)两个平面平行,第三个平面与这两个平行平面相交,如图2,可将空间分成6部分;(3)三个平面中没有平行的平面:(i )三个平面两两相交且交线互相平行,如图3,可将空间分成7部分; (ii )三个平面两两相交且三条交线交于一点,如图4,可将空间分成8部分.(iii )三个平面两两相交且交线重合,如图5,可将空间分成6部分;综上,可以为4,6,7,8部分,不能为5部分, 故选:A.9.B解析:B 【分析】 连接11A N B AB =,根据已知条件先证明11B A A B ⊥、1⊥MN AB ,再通过线面垂直的判定定理证明1AB ⊥平面1A BM ,由此确定出1B N 的长度即为点1B 到面1A BM 的距离,最后完成求解. 【详解】连接1B A 交1A B 于N ,连接11,,,,MB MN MB MA MA ,如图所示:因为11A ABB 为正方形,所以11B A A B ⊥, 又因为22111115142MB MC C B =+=+=2215142MA MC CA =+=+=, 所以1MB MA =且N 为1AB 中点,则MN 为等腰三角形1AMB 的中垂线, ∴1⊥MN AB 且1MNA B N =,∴1AB ⊥平面1A BM ,∴1B N 就是点1B 到截面1A BM 的距离, 又因为111121122B N AB ==+=,所以点1B 到截面1A BM 2, 故选:B. 【点睛】方法点睛:求解平面外一点A 到平面α的距离的方法:(1)几何方法:通过线面垂直的证明,找到A 在平面α内的投影点A ',则AA '即为A 到平面α的距离;(2)向量方法:①建立合适空间直角坐标系,在平面α内取一点B ;②求解出AB 和平面α的法向量n ;③根据AB n d n⋅=即可求解出点A 到平面α的距离.10.A解析:A 【分析】先求出'A FDE -外接球的半径和外接圆的半径,再利用勾股定理求出外接球的球心到外接圆的圆心的距离,可得高h 的最大值. 【详解】因为A ,B ,C 三点重合于点A ',原来A B C ∠∠∠、、都是直角,所以折起后三条棱'''A F A D A E 、、互相垂直,所以三棱锥'A FDE -可以看作一个长方体的一个角,它们有相同的外接球,外接球的直径就是长方体的体对角线,即为'2'2'22441626R AF AD AE =++=++6R =2241625DE DF AD AE ==++=2222EF BE BF =+= 在DFE △中,22210cos 21022522DE EF DF DEF DE EF +-∠===⨯⨯⨯, 所以DEF ∠为锐角,所以2310sin 1cos DEF DEF ∠=-∠=, DEF 的外接圆的半径为5522sin 3310DF r DEF ===∠,则球心到DEF 2223R r -=,以FDE 为底面的三棱锥G -DEF 的高h 的最大值为1R OO +263. 故选:A. 【点睛】本题考查了翻折问题和外接球的问题,关键点翻折前后量的变化及理解外接球和三棱锥的关系,考查了学生的空间想象力和计算能力.11.A解析:A 【分析】根据已知条件结合球的体积公式3432d π⎛⎫ ⎪⎝⎭求解出π的值,然后根据球的表面积公式242d π⎛⎫⎪⎝⎭求解出S 的表示,即可得到结果. 【详解】因为3169V d =,所以33941632d d V π⎛⎫==⎪⎝⎭,所以278π=,所以2222727442848d d S d π⎛⎫==⨯⨯= ⎪⎝⎭,故选:A. 【点睛】关键点点睛:解答本题的关键是根据球的体积公式得到π的表示,再将π带入到球的表面积公式即可完成求解.12.C解析:C 【分析】小虫有两种爬法,一种是从点A 沿着侧面ACGF 和上底面BHFG 爬行,另一种是从点A 沿着侧面ACGF 和侧面BDCG 爬行,将两种情况下的两个面延展为一个面,计算出平面图形的对角线长,比较大小后可得结果. 【详解】由于长方体ACDE FGBH -的长、宽、高分别为2、1、1,则小虫从点A 沿着侧面AEHF 和上底面FHBG 爬行,以及小虫从点A 沿着侧面ACGF 和侧面BDCG 爬行,这两条线路的最短路程相等.①若小虫从点A 沿着侧面ACGF 和上底面BHFG 爬行,将侧面ACGF 和上底面BHFG 延展为一个平面,如下图所示:则2AC BC ==,最短路程为2222AB AC BC =+=;②若小虫从点A 沿着侧面ACGF 和侧面BDCG 爬行,将面ACGF 和侧面BDCG 延展为一个平面,如下图所示:则3AD AC CD =+=,1BD =,最短路程为2210AB AD BD =+.因为<,因此,小虫爬行的最短路程为 故选:C. 【点睛】方法点睛:(1)计算多面体或旋转体的表面上折线段的最值问题时,一般采用转化的方法进行,即将侧面展开化为平面图形,即“化折为直”或“化曲为直”来解决,要熟练掌握多面体与旋转体的侧面展开图的形状;(2)对于几何体内部折线段长的最值,可采用转化法,转化为两点间的距离,结合勾股定理求解.二、填空题13.【分析】设正方体的棱长为正方体的内切球半径为正方体的外接球半径再由已知条件和球的表面积公式可得答案【详解】设正方体的棱长为正方体的内切球半径为正方体的外接球半径满足:则由题意知:则该正方体的内切球的解析:【分析】设正方体的棱长为a ,正方体的内切球半径为2a r =,正方体的外接球半径R =,再由已知条件和球的表面积公式可得答案. 【详解】设正方体的棱长为a ,正方体的内切球半径为2a r =,正方体的外接球半径R 满足:2222a R ⎫⎛⎫=+⎪ ⎪⎪⎝⎭⎝⎭,则2R a =.由题意知:122aR r a -=-=,则2a =,R = 该正方体的内切球的表面积为4π,又因为圆周率的平方除以十六等于八分之五,即25168π=,所以π=所以内切球的表面积为故答案为:【点睛】关键点点睛:本题考查正方体的外接球和内切球问题,考查空间几何新定义,解决本题的关键点是利用正方体的外接球半径,内切球半径和正方体面对角线的一半组成勾股定理,得出正方体内切球半径,进而得出表面积,考查学生空间想象能力和计算能力,属于中档题.14.【分析】先根据面面垂直取平面的外接圆圆心G 平面的外接圆圆心H 分别过两点作对应平面的垂线找到交点为外接球球心再通过边长关系计算半径代入球的表面积公式即得结果【详解】如图取的中点的中点连在上取点使得取的 解析:643π【分析】先根据面面垂直,取平面PAD 的外接圆圆心G ,平面ABCD 的外接圆圆心H ,分别过两点作对应平面的垂线,找到交点为外接球球心O ,再通过边长关系计算半径,代入球的表面积公式即得结果. 【详解】如图,取AD 的中点E ,BC 的中点F ,连EF ,PE ,在PE 上取点G ,使得2PG GE =,取EF 的中点H ,分别过点G 、H 作平面PAD 、平面ABCD 的垂线,两垂线相交于点O ,显然点O 为四棱锥P ABCD -外接球的球心,由2AD =,4AB =,可得3PE =3GE OH ==,2222125AH AE EH +=+=则半径22343(5)3r OA ⎛⎫==+= ⎪ ⎪⎝⎭, 故四棱锥P ABCD -外接球的表面积为2436443ππ⨯=⎝⎭. 故答案为:643π. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.15.【分析】根据棱锥的性质证明的中点就是三棱锥的外接球球心得出半径后可求表面积【详解】取中点中点连接则因为底面所以平面是菱形则所以是的外心又底面平面所以所以到四点距离相等即为三棱锥的外接球球心又所以所以解析:16π. 【分析】根据棱锥的性质,证明PA 的中点就是三棱锥P AOD -的外接球球心,得出半径后可求表面积. 【详解】取PA 中点M ,DA 中点E ,连接,ME EO ,则//ME PD ,因为PD ⊥底面ABCD ,所以ME ⊥平面ABCD ,ABCD 是菱形,则AO OD ⊥,所以E 是AOD △的外心,又PD ⊥底面ABCD ,AD ⊂平面ABCD ,所以PD AD ⊥,所以M 到,,,P A D O 四点距离相等,即为三棱锥P AOD -的外接球球心. 又2PD =,3APDπ∠=,所以24cos3PA π==,所以2MA MP ==,所以三棱锥P AOD -的外接球表面积为24216S ππ=⨯=. 故答案为:16π.【点睛】结论点睛:本题考查求三棱锥外接球表面积,解题关键是求出外接球球心.三棱锥的外接球球心一定在过各面外心且与此面垂直的直线上.16.【分析】设球的半径为连接交于点取中点连接即为三棱柱外接球球心根据三棱锥体积可得间关系表示出根据基本不等式可求得的最小值从而得到球的表面积的最小值【详解】如图因为三棱柱是且设球的半径为连接交于点取中点 解析:27π【分析】设AB a ,BC b =,球的半径为r ,连接1AC ,1A C 交于点O ,取AC 中点D ,连接BD ,即O 为三棱柱外接球球心,根据三棱锥体积可得a b ,间关系,表示出r ,根据基本不等式可求得r 的最小值,从而得到球的表面积的最小值.如图,因为三棱柱111ABC A B C -是 ,且90ABC ∠=︒,设AB a ,BC b =,球的半径为r ,连接1AC ,1A C 交于点O ,取AC 中点D ,连接BD ,则O 到三棱柱六个定点的距离相等,即O 为三棱柱外接球球心,1132OD AA ==, 又因为三棱锥O ABC -3 即113332ab ⨯=,即12ab =, 所以2222223133322242a b r AD OD ab ⎛⎫⎛⎫+=+=+≥+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 当且仅当a b =时等号成立, 所以球O 的表面积最小值为2427S r ππ==,故答案为:27π.【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.17.4000【分析】根据题意先求出正四棱柱的底面边长和高由体积公式求出正四棱柱的体积减去文物的体积可得罩内空气的体积进而求出所需的费用【详解】由题意可知文物底部是直径为09m 的圆形文物底部与玻璃罩底边至【分析】根据题意,先求出正四棱柱的底面边长和高,由体积公式求出正四棱柱的体积减去文物的体积可得罩内空气的体积,进而求出所需的费用.【详解】由题意可知,文物底部是直径为0.9 m 的圆形,文物底部与玻璃罩底边至少间隔0.3 m , 所以由正方形与圆的位置关系可知:底面正方形的边长为0.9+2×0.3=1.5m ,由文物高1.8m ,文物顶部与玻璃置上底面至少间隔0.2m ,所以正四棱柱的高为1.8+0.2=2m .,则正四棱柱的体积为V =1.52×2=4.5m 3因为文物体积为0.5m 3,所以置内空气的体积为4.5-0.5 = 4 m 3,气体每立方米1000元,所以共需费用为4×1000=4000(元)【点睛】数学建模是高中数学六大核心素养之一,在高中数学中,应用题是常见考查形式: 求解应用性问题时,首先要弄清题意,分清条件和结论,抓住关键词和量,理顺数量关系,然后将文字语言转化成数学语言,建立相应的数学模型.18.②④【分析】①求出该八面体的体积即可判断;②可得球心为正方形ABCD 对角线交点即可得出半径求出表面积;③取AD 的中点G 连接EGFGEF 过E 作求出即可;④可得为所成角【详解】①八面体的体积为;②八面体 解析:②④【分析】①求出该八面体的体积即可判断;②可得球心为正方形ABCD 对角线交点,即可得出半径求出表面积;③取AD 的中点G ,连接EG ,FG ,EF ,过E 作EH FG ⊥,求出EH 即可;④可得DEC ∠为所成角.【详解】①八面体的体积为212(233⨯⨯=②八面体的外接球球心为正方形ABCD ,表面积为8π;③取AD 的中点G ,连接EG ,FG ,EF ,易得3EG FG ==AD ⊥平面EGF ,过E 作EH FG ⊥,交FG 的延长线于H ,又EH AD ⊥,AD FG G ⋂=,故EH ⊥平面ADF , 解得26EH =,所以E 到平面ADF 26; ④因为//ED BF ,所以EC 与BF 所成角为60︒.故答案为:②④.【点睛】解本题的关键是正确理解正八面体的性质,根据线面垂直关系得到点到平面的垂线段. 19.【分析】由扇形的面积及圆心角可得扇形的半径再由扇形的弧长等于圆锥的底面周长可得底面半径再由外接球的半径与圆锥的高和底面半径的关系求出外接球的半径进而求出球的表面积【详解】设扇形的长为l 半径为R 则解得 解析:36π【分析】由扇形的面积及圆心角可得扇形的半径,再由扇形的弧长等于圆锥的底面周长可得底面半径,再由外接球的半径与圆锥的高和底面半径的关系求出外接球的半径,进而求出球的表面积.【详解】设扇形的长为l ,半径为R ,则22111656222S lR R παπ====,解得30R =l 为锥底面周长2r π,∴底面的半径5r =∴225R r -=.设外接球的半径为1R ,∴()222115(5)R R =-+,解得13R =,∴该外接球的表面积为21436R ππ=,故答案为:36π.【点睛】本题考查扇形的弧长与圆锥的底面周长的关系及外接球的半径和圆锥的高及底面半径的关系,和球的表面积公式的应用,属于中档题.20.①③【分析】①先求出再得到最后判断①正确;②先判断三棱锥的外接球就是以为顶点以棱的长方体的外接球再求半径最后求出球的表面积判断②错误;③先证明最后证明平面判断③正确;④直接求出三棱锥的体积判断④错误解析:①③.【分析】①先求出BC =222AB BC AC =+,最后判断①正确;②先判断三棱锥P ABC -的外接球就是以C 为顶点,以CA ,CB ,CP 棱的长方体的外接球,再求半径r ,最后求出球的表面积,判断②错误;③先证明AC PC ⊥,AC BC ⊥,⋂=PC CB C ,最后证明AC ⊥平面PBC ,判断③正确;④直接求出三棱锥A PBC -的体积,判断④错误.【详解】解:①在ACB △,因为1AC =,2AB =,且60BAC ∠=︒,所以2222cos 3BC AB AC AB AC BAC =+-⋅⋅∠=,则BC =所以222AB BC AC =+,所以ACB △是直角三角形,故①正确;②由(1)可知AC BC ⊥,又因为PC ⊥底面ABC ,所以三棱锥P ABC -的外接球就是以C 为顶点,以CA ,CB ,CP 棱的长方体的外接球,则2r ==,则此球的表面积等于245S r ππ==,故②错误; ③因为PC ⊥底面ABC ,所以AC PC ⊥,由(1)可知AC BC ⊥,⋂=PC CB C , 所以AC ⊥平面PBC ,故③正确;④三棱锥A PBC -的体积11(11326V =⨯⨯⨯=,故④错误. 故答案为:①③.【点睛】本题考查判断三角形是直角三角形、求三棱锥的外接球的表面积、求三棱锥的体积、线面垂直的证明,是中档题. 三、解答题21.(Ⅰ)证明见解析;(Ⅱ)①4,②3π. 【分析】(Ⅰ)连接BD ,点E 是BC 边的中点,得出DE BC ⊥,DE AD ⊥再由DP AD ⊥,得出结果;(Ⅱ)DE AD ⊥,PD AD ⊥,PDE ∠为二面角P AD C --的平面角,60PDE ∠=︒,过P 在平面PDE 内做PK DE ⊥于K ,易证PK ⊥面ABCD ,PK 为点到面的距离,PBK ∠即为线面角.【详解】(Ⅰ)连接BD ,底面ABCD 是菱形,∠BDC =60°,∴△BCD 是正三角形.∵点E 是BC 边的中点,∴DE ⊥BC ,∵AD ∥BC ,∴DE ⊥AD .∵DP ⊥AD ,DP ∩AD =D ,∴AD ⊥平面PDE ;(Ⅱ)①∵DE ⊥AD ,PD ⊥AD ,∴PDE ∠为二面角P -AD -C 的平面角,∴60PDE ∠=︒,过P 在平面PDE 内做PK DE ⊥于K ,由(Ⅰ)易AD PK ⊥.∴PK ⊥面ABCD . ∵83PD =∴43DK =,4PK =, 即点P 到平面ABCD 的距离是4. ②AB =4,∴23DE =∴23DK DE =,∴K 为BCD △重心. 连接BK ,∵BCD △为正三角形,所以BK 为BP 在面ABCD 内的射影.∴PB ⊥AB ,PBK ∠为直线PB 与平面ABCD 所成角,RT PKB △中,tan 3PK PK PKB KB DK ∠===3PKB π∠=, 直线PB 与平面ABCD 所成角的大小为3π. 【点睛】求直线与平面所成的角的一般步骤: ①找直线与平面所成的角,即通过找直线在平面上的射影来完成;②计算,要把直线与平面所成的角转化到一个三角形中求解.22.(1)4;(2)60︒;(3)33.【分析】(1)根据棱锥的体积公式求解即可;(2)作辅助线,利用平行得出异面直线1CB 与1AC 所成角就是COE ∠,再结合等边三角形的性质得出夹角;(3)过C 作1CF AC ⊥于点F ,连接,CF BF ,由11,CF AC BF AC ⊥⊥结合定义得出二面角1B AC C --的平面角,再由直角三角形的边角关系得出平面角的余弦值.【详解】(1)三棱柱111ABC A B C -的体积1122242ABC V S CC ⎛⎫=⋅=⨯⨯⨯= ⎪⎝⎭(2)记1BC 与1B C 的交点为O ,作AB 的中点E ,连接,OE CE ,异面直线1CB 与1AC 所成角就是COE ∠2CO OE CE ===60COE ︒∴∠=(3)过C 作1CF AC ⊥于点F ,连接,CF BF11,CF AC BF AC BFC ⊥⊥⇒∠为所求角3tan 2,cos 2BC BFC BFC FC ∠===∠=【点睛】关键点睛:在求异面直线的夹角时,关键是利用中位线定理得出平行,从而得出异面直线的夹角.23.(1)证明见解析;(2 【分析】 (1)根据题中条件,由线面垂直的判定定理,证明AF ⊥平面DEB ;即可推出AF DB ⊥;(2)先由题意,得到AEB △是等腰直角三角形时,三棱锥D ABE -体积最大,设点C 到平面EBD 的距离为h ,由C DBE E CBD V V --=,根据等体积法,即可求出结果.【详解】(1) EB ⊂平面AEB ,DA EB ∴⊥, AB 是圆柱底面的直径,点E 在圆周上,AE EB ∴⊥,又AE DA A ⋂=,AE ⊂平面DAE ,DA ⊂平面DAE ,BE ∴⊥平面DAE ,AF ⊂平面DAE ,EB AF ∴⊥,又AF DE ⊥,且EB DE E =,EB ⊂平面DEB ,DE ⊂平面DEB ,AF ∴⊥平面DEB ,DB ⊂平面DEB ,AF DB ∴⊥;(2)13D AEB AEB V S DA -=⨯⨯,3DA =,当D AEB V -最大时,即12AEBEA EB S =⋅最大, 因为211222AEB EA EB B S EA E ⎛⎫+=⋅≤ ⎪⎝⎭,当且仅当EA EB =相等时,等号成立; 即AEB △是等腰直角三角形时,AEB △的面积最大;3DA =,2AB =,BE ∴=DE ==, 点E 到平面ABCD 的距离112AB =, 设点C 到平面EBD 的距离为h ,则C DBE E CBD V V --=,即11113213232h ⨯=⨯⨯⨯⨯,解得:h =【点睛】方法点睛:求解空间中点P 到面α的距离的常用方法:(1)等体积法:先设所求点到面的距离,根据几何体中的垂直关系,由同一几何体的不同的侧面(或底面)当作底,利用体积公式列出方程,即可求解; (2)空间向量法:先建立适当的空间直角坐标系,求出平面α的一个法向量m ,以及平。
如对您有帮助,可购买打赏,谢谢
女性减慢衰老的六大抗老保鲜法
导语:美女是睡出来的。
虽说睡眠不足对身体有害,但它不仅影响工作学习,而且影响身心健康,引发各种疾病,但同样睡眠过多也有害。
女性减慢衰老的六大抗老保鲜法
首先,一定要早睡早起,熬夜是没有未来的。
判断一个人健康水平的标准,就是人的血气水平。
睡眠是最好最重要的补充血气的方式,甚至比食补还要重要。
很多mm熬夜,其实也是习惯性延续前半夜(7~10点)的打发无聊,玩游戏看小说跟人聊天调情之类的,都不是什么非要干的事情,白白耗费精神,要改掉!
美女是睡出来的。
虽说睡眠不足对身体有害,但它不仅影响工作学习,而且影响身心健康,引发各种疾病,但同样睡眠过多也有害。
俗话说:“抠成的疮,睡成的病。
”睡眠过多,身体各样机能呆滞、久之必致病。
可见睡不可缺但也不可贪。
另外,睡懒觉对身体健康是不利的。
早晨恋床不起的人,“觉”是睡不好的,往往躺在床上东想西猜,忧心忡忡。
从生理上来看,肌体经
生活中的小知识分享,对您有帮助可购买打赏。
一、选择题1.已知正方体1111ABCD A B C D -,E 、F 分别是正方形1111D C B A 和11ADD A 的中心,则EF 和BD 所成的角的大小是( ) A .30B .45C .60D .902.在我国古代,将四个角都是直角三角形的四面体称为“鳖臑”.在“鳖臑”ABCD 中,AB ⊥平面BCD ,BD CD ⊥且AB BD CD ==,若该四面体的体积为43,则该四面体外接球的表面积为( )A .8πB .12πC .14πD .16π3.已知正方体1111ABCD A B C D -的棱长为2,E 为棱1AA 的中点,截面1CD E 交棱AB 于点F ,则四面体1CDFD 的外接球表面积为( ) A .394πB .414πC .12πD .434π4.如图,圆锥的母线长为4,点M 为母线AB 的中点,从点M 处拉一条绳子,绕圆锥的侧面转一周达到B 点,这条绳子的长度最短值为25,则此圆锥的表面积为( )A .4πB .5πC .6πD .8π5.如图,在四棱锥E ABCD -中,底面ABCD 是正方形,且平面ABCD ⊥平面AEB ,则( )A .DEC ∠可能为90︒B .若AEB △是等边三角形,则DEC 也是等边三角形C .若AEB △是等边三角形,则异面直线DE 和AB 所成角的余弦值为24D .若AEB △是直角三角形,则BE ⊥平面ADE6.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A .24B .30C .47D .77.已知平面图形PABCD ,ABCD 为矩形,4AB =,是以P 为顶点的等腰直角三角形,如图所示,将PAD △沿着AD 翻折至P AD '△,当四棱锥P ABCD '-体积的最大值为163,此时四棱锥P ABCD '-外接球的表面积为( )A .12πB .16πC .24πD .32π8.如图所示,A ,B 为正方体的两个顶点,M ,N 为其所在棱的中点,则异面直线AB 与MN 所成角的大小为( )A .30°B .45°C .60°D .90°9.已知球O 的半径为5,球面上有,,A B C 三点,满足214,27AB AC BC ===,则三棱锥O ABC -的体积为( ) A .77B .142C .714D .14710.如图,正方体1111ABCD A B C D -中,P 为线段1A B 上的动点,则下列结论错误的是( )A .1DC PC ⊥B .异面直线AD 与PC 不可能垂直 C .1D PC ∠不可能是直角或者钝角 D .1APD ∠的取值范围是,62ππ⎛⎫⎪⎝⎭11.αβ是两个不重合的平面,在下列条件中,可判定平面α与β平行的是( )A .m 、n 是α内的两条直线,且//m β,βn//B .α、β都垂直于平面γC .α内不共线三点到β的距离相D .m 、n 是两条异面直线,m α⊂,n β⊂,且//m β,//n α12.如果一个水平放置的平面图形的斜二测直观图是如图所示的直角梯形,其中2O A ''=,45B A O '''∠=,//B C O A ''''.则原平面图形的面积为( )A .32B .62C .322D .34二、填空题13.已知一个几何体的三视图如图所示,俯视图为等腰三角形,则该几何体的外接球表面积为_________.14.如图,在四棱锥P ABCD -中,底面ABCD 为菱形,PD ⊥底面ABCD ,O 为对角线AC 与BD 的交点,若2PD =,3APD BAD π∠=∠=,则三棱锥P AOD -的外接球表面积为_________.15.已知长方体1234ABCD A B C D -,底面是边长为4的正方形,高为2,点O 是底面ABCD 的中心,点P 在以O 为球心,半径为1的球面上,设二面角111P A B C --的平面角为θ,则tan θ的取值范围是________.16.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40︒,则晷针与点A 处的水平面所成角的大小为_________.17.正四面体ABCD 棱长为2,AO ⊥平面BCD ,垂足为O ,设M 为线段AO 上一点,且90BMC ︒∠=则二面角M BC O --的余弦值为________.18.如图,已知四棱锥S ABCD -的底面为等腰梯形,//AB CD ,1AD DC BC ===,2AB SA ==,且SA ⊥平面ABCD ,则四棱锥S ABCD -外接球的体积为______.19.已知棱长为4的正方体ABCD -A 1B 1C 1D 1中,点M 是棱AD 的中点,点N 是棱AA 1的中点,P 是侧面四边形ADD 1A 1内一动点(含边界),若C 1P ∥平面CMN ,则线段C 1P 长度的取值范围是________. 20.将半径为3,圆心角为23π的扇形围成一个圆锥,则该圆锥内切球的体积为________. 三、解答题21.如图(1)在ABC 中,AC BC =,D 、E 、F 分别是AB 、AC 、BC 边的中点,现将ACD △沿CD 翻折,使得平面ACD ⊥平面BCD .如图(2)(1)求证://AB 平面DEF ; (2)求证:BD AC ⊥.22.如图,四棱锥P ABCD -的底面为正方形,PA ⊥底面ABCD ,E ,F ,H 分别为AB ,PC ,BC 的中点.(1)求证:DE ⊥平面PAH ;(2)若2PA AD ==,求直线PD 与平面PAH 所成线面角的正弦值.23.如图,四棱锥P ABCD -的底面ABCD 是边长为2的菱形,60BCD ∠=,已知2PB PD ==,6PA =,E 为PA 的中点.(1)求证:PC BD ⊥;(2)求二面角B PC E --的余弦值; (3)求三棱锥P BCE -的体积.24.如图,在长方体1111ABCD A B C D -中,12AB BC AA ==,1O 是底面1111D C B A 的中心.(Ⅰ)求证:1//O B 平面1ACD ;(Ⅱ)求二面角1D AC D --的平面角的余弦值.25.如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C D ,的点.(1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得//MC 平面PBD ?若不存在,说明理由,若存在请证明你的结论并说明P 的位置.26.如图,已知在三棱锥P ABC -中,ABC 是边长为2的正三角形,PAC △是以AC 为斜边的等腰直角三角形,若直线PB 与平面ABC 所成的角为6π.(Ⅰ)若PB PC >,求证:平面PAC ⊥平面ABC ; (Ⅱ)若PB PC <,求直线AB 与平面PAC 所成角的正弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】作出图形,连接1AD 、11B D 、1AB ,推导出1//EF AB ,11//BD B D ,可得出异面直线EF 和BD 所成的角为11AB D ∠,分析11AB D 的形状,即可得出结果. 【详解】如下图所示,连接1AD 、11B D 、1AB ,设正方体1111ABCD A B C D -的棱长为1,则11112AD AB B D ===, 所以,11AB D 为等边三角形,则1160AB D ∠=,因为E 、F 分别是正方形1111D C B A 和11ADD A 的中心,则E 、F 分别是11B D 、1AD 的中点,所以,1//EF AB ,在正方体1111ABCD A B C D -中,11//BB DD 且11BB DD =,所以,四边形11BB D D 为平行四边形,则11//BD B D , 所以,异面直线EF 和BD 所成的角为1160AB D ∠=. 故选:C. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.2.B解析:B 【分析】由题意计算2,AB BD CD ===分析该几何体可以扩充为长方体,所以只用求长方体的外接球即可. 【详解】因为AB ⊥平面BCD ,BD CD ⊥且AB BD CD ==, 43A BCD V -=, 而114323A BCD V BD CD AB -=⨯⨯⨯=,所以2AB BD CD ===, 所以该几何体可以扩充为正方体方体,所以只用求正方体的外接球即可.设外接球的半径为R ,则23R = 所以外接球的表面积为2412S R ππ== 故选:B 【点睛】多面体的外接球问题解题关键是找球心和半径,求半径的方法有:(1)公式法;(2) 多面体几何性质法;(3)补形法;(4)寻求轴截面圆半径法;(5)确定球心位置法.3.B解析:B 【分析】可证F 为AB 的中点,设1DD 的中点为G ,DFC △的外接圆的球心为1O ,四面体1CDFD 的外接球的球心为O ,连接11,,,OG OF OO A B ,利用解三角形的方法可求DFC △的外接圆的半径,从而可求四面体1CDFD 的外接球的半径.【详解】设1DD 的中点为G ,DFC △的外接圆的圆心为1O ,四面体1CDFD 的外接球的球心为O ,连接11,,,OG OF OO A B ,因为平面11//A ABB 平面11D DCC ,平面1CD E ⋂平面11A ABB EF =, 平面1CD E ⋂平面111D DCC D C =,故1//EF D C , 而11//A B D C ,故1//EF A B ,故F 为AB 的中点, 所以145DF CF ==+=,故3cos 5255DFC ∠==⨯⨯,因为DFC ∠为三角形的内角,故4sin 5DFC ∠=,故DFC △的外接圆的半径为1254245⨯=,1OO ⊥平面ABCD ,1DD ⊥平面ABCD ,故11//OO DD ,在平面1GDO O 中,111,OG DD O D DD ⊥⊥,故1//OG O D , 故四边形1GDO O 为平行四边形,故1//OO GD ,1OO GD =, 所以四面体1CDFD 2541116+=故四面体1CDFD 的外接球表面积为41414164ππ⨯=,故选:B.【点睛】方法点睛:三棱锥的外接球的球的半径,关键是球心位置的确定,通常利用“球心在过底面外接圆的圆心且垂直于底面的直线上”来确定.4.B解析:B【分析】 根据圆锥侧面展开图是一个扇形,且线段25MB =计算底面圆半径即可求解. 【详解】设底面圆半径为r , 由母线长4l ,可知侧面展开图扇形的圆心角为22r r l ππα==, 将圆锥侧面展开成一个扇形,从点M 拉一绳子围绕圆锥侧面转到点B ,最短距离为BM ; 如图,在ABM 中,25,2,4MB AM AB ===,所以222AM AB MB +=,所以2MAB π∠=, 故22rππα==,解得1r =,所以圆锥的表面积为25S rl r πππ=+=,故选:B【点睛】关键点点睛:首先圆锥的侧面展开图为扇形,其圆心角为2r lπα=,其次从点M 拉一绳子围绕圆锥侧面转到点B ,绳子的最短距离即为展开图中线段MB 的长,解三角即可求解底面圆半径r ,利用圆锥表面积公式求解.5.C解析:C【分析】对A ,直角三角形的斜边大于直角边可判断;对B ,由>=EC EB DC 可判断;对C ,可得CDE ∠即异面直线DE 和AB 所成角,即可求出;对D ,EAB ∠(或EBA ∠)为直角时,BE 与平面ADE 不垂直.【详解】对A ,由题意,若90DEC ∠=︒,则DC EC >,但EC BC CD >=,故A 不正确; 对B ,若AEB △是等边三角形,显然有>=EC EB DC ,所以DEC 不会是等边三角形,故B 不正确;对C ,若AEB △是等边三角形,设边长为2,则22DE EC ==,//AB CD ,则CDE ∠即异面直线DE 和AB 所成角, 易求2cos 422CDE ∠==,故C 正确; 对D ,当AEB △是以AEB ∠为直角的直角三角形时,BE ⊥平面ADE ,当AEB △是以EAB ∠(或EBA ∠)为直角的直角三角形时,BE 与平面ADE 不垂直,故D 不正确. 故选:C.【点睛】本题考查四棱锥的有关位置关系的判断,解题的关键是正确理解长度关系,正确理解位置关系的变化.6.D解析:D【分析】先找到几何体的原图,再求出几何体的高,再求几何体的体积得解.【详解】由三视图可知几何体为图中的四棱锥1P CDD E -,由题得22437AD =-7所以几何体的体积为11(24)676732⋅+⋅=. 故选:D【点睛】方法点睛:通过三视图找几何体原图常用的方法有:(1)直接法;(2)拼凑法;(3)模型法.本题利用的就是模型法.要根据已知条件灵活选择方法求解.7.C解析:C【分析】分析出当平面P AD '⊥平面ABCD 时,四棱锥P ABCD '-的体积取最大值,求出AD 、P A '的长,然后将四棱锥P ABCD '-补成长方体P AMD QBNC '-,计算出该长方体的体对角线长,即为外接球的直径,进而可求得外接球的表面积.【详解】取AD 的中点E ,连接P E ',由于P AD '△是以P '为顶点的等腰直角三角形,则P E AD '⊥,设AD x =,则1122P E AD x '==, 设二面角P AD B '--的平面角为θ,则四棱锥P ABCD '-的高为1sin 2h x θ=, 当90θ=时,max 12h x =, 矩形ABCD 的面积为4S AB AD x =⋅=,2111216433233P ABCD V Sh x x x '-=≤⨯⨯==,解得22x =.将四棱锥P ABCD '-补成长方体P AMD QBNC '-,所以,四棱锥P ABCD '-的外接球直径为22222226R P N P A P D P Q AD AB ''''==++=+=,则6R =,因此,四棱锥P ABCD '-的外接球的表面积为2424R ππ=.故选:C.【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可. 8.C解析:C【分析】由MN 与正方体的面对角线平行,可得异面直线所成的角,此角是正三角形的内角,由此可得.【详解】作如图所示的辅助线,由于M ,N 为其所在棱的中点,所以//MN PQ ,又因为//AC PQ ,所以//AC MN ,所以CAB ∠即为异面直线AB 与MN 所成的角(或补角),易得AB AC BC ==,所以60CAB ∠=︒.故选:C .9.A解析:A【分析】利用正弦定理求出ABC 的外接圆半径,则可求出三棱锥的高,进而求出三棱锥体积.【详解】设ABC 的外接圆的圆心为D ,半径为r ,在ABC 中,72cos 4214ABC ∠==,14sin 4ABC ∴∠=, 由正弦定理可得28sin AC r ABC==∠,即4r =, 则22543OD -=,1111421427377332O ABC ABC V S OD -∴=⨯⨯=⨯⨯=. 故选:A.【点睛】本题考查球内三棱锥的相关计算,解题的关键是利用正弦定理求出ABC 的外接圆半径,利用勾股关系求出高.10.D解析:D【分析】在正方体中根据线面垂直可判断A ,根据异面直线所成角可判断B ,由余弦定理可判断CD.【详解】如图,设正方体棱长为2,在正方体中易知1DC ⊥平面11A BCD ,P 为线段1A B 上的动点,则PC ⊂平面11A BCD ,所以 1DC PC ⊥,故A 正确;因为异面直线AD 与PC 所成的角即为BC 与PC 所成的角,在Rt PBC 中不可能BC 与PC 垂直,所以异面直线AD 与PC 不可能垂直,故B 正确;由正方体棱长为2,则222222*********D P PC D C A P BP A P BP +-=+++-=+>,所以由余弦定理知1cos 0D PC ∠>,即1D PC ∠不可能是直角或者钝角,故C 正确; 设1(022)A P x x =≤≤,则2214D P x =+,222422cos 4224AP x x x x π=+-⨯=+-, 由余弦定理,222211111222cos 2AP D P AD x x AP D P D AP ∠=+--⋅, 当2x <1cos 0APD ∠<,所以1APD ∠为钝角,故D 错误.故选:D【点睛】关键点点睛:判断正方体中的角的范围时,可选择合适三角形,利用正方体中数量关系,位置关系,使用余弦定理,即可判断三角形形状或角的范围,属于中档题.11.D解析:D【分析】取a αβ⋂=,且//m a ,//n a ,利用线面平行的判定定理可判断A 选项;根据αγ⊥,βγ⊥判断平面α与β的位置关系,可判断B 选项;设AB 、AC 的中点D 、E 在平面β内,记平面ABC 为平面α,判断出A 、B 、C 三点到平面β的距离相等,可判断C 选项;过直线n 作平面γ,使得a αγ⋂=,利用线面平行、面面平行的判定定理可判断D 选项.【详解】对于A 选项,若a αβ⋂=,且//m a ,//n a ,m β⊄,n β⊄,则//m β,βn//,但α与β相交;对于B 选项,若αγ⊥,βγ⊥,则α与β平行或相交;对于C 选项,设AB 、AC 的中点D 、E 在平面β内,记平面ABC 为平面α,如下图所示:D 、E 分别为AB 、AC 的中点,则//DE BC ,DE β⊂,BC β⊄,//BC β∴,所以,点B 、C 到平面β的距离相等,由于D 为AB 的中点,则点A 、B 到平面β的距离相等,所以,点A 、B 、C 三点到平面β的距离相等,但平面α与平面β相交;对于D 选项,如下图所示:由于//n α,过直线n 作平面γ,使得a αγ⋂=,则//a n ,//n a ,a β⊄,n β⊂,//a β∴,//m β,m a A =,m α⊂,a α⊂,//αβ∴.故选:D.【点睛】方法点睛:证明或判断两个平面平行的方法有:①用定义,此类题目常用反证法来完成证明;②用判定定理或推论(即“线线平行”⇒“面面平行”),通过线面平行来完成证明; ③根据“垂直于同一条直线的两个平面平行”这一性质进行证明;④借助“传递性”来完成.12.A解析:A【分析】作出原平面图形,然后求出面积即可.【详解】45B A O '''∠=B O A '''=∠,则O A B '''△是等腰直角三角形, ∴2A B OB '''==又O C C B ''''⊥,45C O B '''∠=︒,∴1B C ''=,在直角坐标系中作出原图形为:梯形OABC ,//OA BC ,2,1OA BC ==,高22OB =∴其面积为1(21)22322S =+⨯= 故选:A【点睛】方法点睛:本题考查斜二测法画平面图形直观图,求原图形的面积,可能通过还原出原平面图形求得面积,也可以通过直观图到原图形面积的关系求解:直观图面积为S ',原图形面积为S ,则2S S '= 二、填空题13.【分析】首先把三视图转换为直观图进一步求出几何体的外接球的半径最后求出球的表面积【详解】根据几何体的三视图可知该几何体是底面为等腰三角形高为2的三棱锥体如图所示:设底面外接圆的半径为t 圆心为H 则解得 解析:414π 【分析】首先把三视图转换为直观图,进一步求出几何体的外接球的半径,最后求出球的表面积.【详解】根据几何体的三视图可知该几何体是底面为等腰三角形,高为2的三棱锥体.如图所示:设底面外接圆的半径为t ,圆心为H ,则2221(2)t t =+-,解得54t =, 设外接球的半径r ,球心为O ,则OH ⊥底面,且1OH =, 则22541()14r =+=所以41414().164S ππ=⨯⨯= 故答案为:414π 【点睛】 关键点点睛:球心与底面外接圆圆心连线垂直底面,且OH 等于棱锥高的一半,利用勾股定理求出球的半径,由面积公式计算即可.14.【分析】根据棱锥的性质证明的中点就是三棱锥的外接球球心得出半径后可求表面积【详解】取中点中点连接则因为底面所以平面是菱形则所以是的外心又底面平面所以所以到四点距离相等即为三棱锥的外接球球心又所以所以 解析:16π.【分析】根据棱锥的性质,证明PA 的中点就是三棱锥P AOD -的外接球球心,得出半径后可求表面积.【详解】取PA 中点M ,DA 中点E ,连接,ME EO ,则//ME PD ,因为PD ⊥底面ABCD ,所以ME ⊥平面ABCD ,ABCD 是菱形,则AO OD ⊥,所以E 是AOD △的外心,又PD ⊥底面ABCD ,AD ⊂平面ABCD ,所以PD AD ⊥,所以M 到,,,P A D O 四点距离相等,即为三棱锥P AOD -的外接球球心.又2PD =,3APD π∠=,所以24cos 3PA π==,所以2MA MP ==,所以三棱锥P AOD -的外接球表面积为24216S ππ=⨯=.故答案为:16π.【点睛】结论点睛:本题考查求三棱锥外接球表面积,解题关键是求出外接球球心.三棱锥的外接球球心一定在过各面外心且与此面垂直的直线上.15.【分析】根据题意画出相应的图形结合题意找出什么情况下取最大值什么情况下取最小值利用和差角正切公式求得最值得到结果【详解】根据题意如图所示:取的中点过点作球的切线切点分别为可以判断为的最小值为的最大值 解析:4747,33⎡⎤-+⎢⎥⎣⎦【分析】根据题意,画出相应的图形,结合题意,找出什么情况下取最大值,什么情况下取最小值,利用和差角正切公式求得最值,得到结果.【详解】根据题意,如图所示:取11A B 的中点H ,过H 点作球O 的切线,切点分别为,M N ,可以判断1O HN ∠为θ的最小值,1O HM ∠为θ的最大值,且1112tan 12OO O HO HO ∠===,1OH OM ON ===,所以HM HN ==tan tan NHO OHM ∠=∠=,11tan tan()1O HN O HO NHO ∠=∠-∠====+1184tan tan()631O HM O HO OHM +∠=∠+∠====, 所以tan θ的取值范围是44,33⎡+⎢⎣⎦,故答案为:⎣⎦. 【点睛】方法点睛:该题考查的是有关二面角的求解问题,解题方法如下: (1)先根据题意画图;(2)结合题意,找出在什么情况下取最大值和最小值; (3)结合图形求得相应角的正切值; (4)利用和差角正切公式求得结果.16.40°【分析】画出过球心和晷针所确定的平面截地球和晷面的截面图根据面面平行的性质定理和线面垂直的定义判定有关截线的关系根据点处的纬度计算出晷针与点处的水平面所成角【详解】画出截面图如下图所示其中是赤解析:40° 【分析】画出过球心和晷针所确定的平面截地球和晷面的截面图,根据面面平行的性质定理和线面垂直的定义判定有关截线的关系,根据点A 处的纬度,计算出晷针与点A 处的水平面所成角. 【详解】画出截面图如下图所示,其中CD 是赤道所在平面的截线;l 是点A 处的水平面的截线,依题意可知OA l ⊥;AB 是晷针所在直线.m 是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直,根据平面平行的性质定理可得可知//m CD 、根据线面垂直的定义可得AB m ⊥.. 由于40,//AOC m CD ∠=︒,所以40OAG AOC ∠=∠=︒, 由于90OAG GAE BAE GAE ∠+∠=∠+∠=︒,所以40BAE OAG ∠=∠=︒,也即晷针与点A 处的水平面所成角为40BAE ∠=︒.故答案为:40°.【点睛】本小题主要考查中国古代数学文化,解题的关键是将稳文中的数据建立平面图形,属于中档题.17.【分析】连接延长交于则是中点可得是二面角的平面角求出可得结论【详解】由已知是中心连接延长交于则是中点连接则而∴平面平面∴∴是二面角的平面角由对称性又由平面平面得∴故答案为:【点睛】关键点点睛:本题考 3 【分析】连接DO 延长交BC 于E ,则E 是BC 中点,可得MEO ∠是二面角M BC O --的平面角.求出,ME OE 可得结论. 【详解】由已知O 是BCD △中心,连接DO 延长交BC 于E ,则E 是BC 中点,连接AE ,则BC AE ⊥,BC DE ⊥,而AEDE E =,∴BC ⊥平面AED ,ME ⊂平面AED ,∴BC ME ⊥,∴MEO ∠是二面角M BC O --的平面角.2BC =,90BMC ︒∠=,由对称性2BM CM ==112ME BC ==, 又113323323EO DE ==⨯=由AO ⊥平面BCD ,EO ⊂平面BCD ,得AO EO ⊥, ∴3cos 3EO MEO ME ∠==. 故答案为:33.【点睛】关键点点睛:本题考查求二面角,解题关键是作出二面角的平面角.这可根据平面角的定义作出(并证明),然后在直角三角形中求角即得.注意一作二证三计算三个步骤.18.【分析】取AB 中点连接根据平行四边形性质可得为等腰梯形ABCD 的外心取SB 中点O 连接则可得O 是四棱锥的外接球球心在中求得r=OA 即可求得体积【详解】取AB 中点连接则所以四边形为平行四边形所以同理所以 解析:823π【分析】取AB 中点1O ,连接11,O C O D ,根据平行四边形性质,可得1O 为等腰梯形ABCD 的外心,取SB 中点O ,连接1,,,OA OC OD OO ,则可得O 是四棱锥S ABCD -的外接球球心,在Rt SAB 中,求得r=OA ,即可求得体积. 【详解】取AB 中点1O ,连接11,O C O D ,则1//CD O A , 所以四边形1ADCO 为平行四边形, 所以1=1CO ,同理1=1O D ,所以1111=O A O B O C O D ==,即1O 为等腰梯形ABCD 的外心, 取SB 中点O ,连接1,,,OA OC OD OO ,则1//OO SA ,因为SA ⊥平面ABCD ,所以1OO ⊥平面ABCD ,又2AB SA ==, 所以=OA OB OC OD ==,又SA AB ⊥,所以OA OS =,即O 是四棱锥S ABCD -的外接球球心, 在Rt SAB 中,2AB SA ==, 所以122OA SB ==, 所以3482(2)33V ππ=⨯=, 故答案为:823π. 【点睛】解决外接球的问题时,难点在于找到球心,可求得两个相交平面的外接圆圆心,自圆心做面的垂线,垂线交点即为球心,考查空间想象,数学运算的能力,属中档题.19.【分析】分别取棱的中点连接易证平面平面由题意知点必在线段上由此可判断在或处时最长位于线段中点处时最短通过解直角三角形即可求得【详解】如下图所示连分别为所在棱的中点则又平面平面平面四边形为平行四边形又 解析:[32,25]【分析】分别取棱1BB 、11B C 的中点M 、N ,连接MN ,易证平面1//A MN 平面AEF ,由题意知点P 必在线段MN 上,由此可判断P 在M 或N 处时1A P 最长,位于线段MN 中点处时最短,通过解直角三角形即可求得. 【详解】 如下图所示,连MN ,EF ,1A D ,EMM ,N ,E ,F 分别为所在棱的中点,则1//MN A D ,1//EF A D ,//EF MN ∴,又MN ⊂平面1C EF ,EF ⊂平面1C EF ,//MN ∴平面1C EF .11//,C C EM C C EM =,∴四边形1C CME 为平行四边形,1//C E CM ,又CM ⊄平面1C EF ,1C E ⊂平面1C EF ,//CM ∴平面1C EF ,又NMCM M =,∴平面//NMC 平面1C EF .P 是侧面四边形ADD 1A 1内一动点,且C 1P ∥平面CMN , ∴点P 必在线段EF 上.在Rt △11C D E 中,1C E ===同理,在Rt △11C D F 中,可得1C F =,∴△1C EF 为等腰三角形.当点P 为EF 中点O 时,1C P EF ⊥,此时1C P 最短;点P 位于,E F 处时,1C P 最长.1C O C ===11C E C F ==∴线段1C P 长度的取值范围是.故答案为: 【点睛】本题考查点、线、面间的距离问题,考查学生的运算能力及推理转化能力,属中档题,解决本题的关键是通过构造平行平面寻找P 点位置.20.【分析】根据圆锥底面圆周长为扇形弧长得圆锥底面半径设内切球半径为r ﹐圆锥高为h 结合轴截面图形计算得最后计算体积即可【详解】解:设圆锥底面半径为R 则所以设内切球半径为r ﹐圆锥高为h 则如图是圆锥轴截面三解析:3【分析】根据圆锥底面圆周长为扇形弧长得圆锥底面半径1R =,设内切球半径为r ﹐圆锥高为h ,结合轴截面图形计算得2r ,最后计算体积即可. 【详解】解:设圆锥底面半径为R ,则2233R ππ=⨯,所以1R =.设内切球半径为r ﹐圆锥高为h ,则h == 如图,是圆锥轴截面三角形图, 所以3r Rh r =-,解得:2r ,故3442223383r V πππ==⨯=. 故答案为:2π【点睛】本题考查圆锥的侧面展开图,圆锥的内切球的体积,考查空间想象能力,是中档题.三、解答题21.(1)证明见解析;(2)证明见解析. 【分析】(1)根据三角形中位线的性质,得到//EF AB ,利用线面平行的判定定理证得结果; (2)根据面面垂直的性质定理,得到BD ⊥平面ACD ,进而证得BD AC ⊥. 【详解】证明:(1)如图(2):在ABC 中,E 、F 分别是AC 、BC 中点,得//EF AB , 又AB ⊄平面DEF ,EF ⊂平面DEF ,//AB ∴平面DEF .(2)∵平面ACD ⊥平面BCD 且交线为CD ,BD CD ⊥,且BD ⊂平面BCD , ∴BD ⊥平面ACD ,又AC ⊂平面ACD ∴BD AC ⊥. 【点睛】方法点睛:该题考查的是有关空间关系的证明问题,解题方法如下:(1)熟练掌握线面平行的判定定理,在解题过程中,一定不要忘记线在面内、线在面外的条件;(2)根据面面垂直的条件,结合线线垂直,利用面面垂直的性质定理,得到线面垂直,进而证得线线垂直.22.(1)证明见解析;(210 【分析】(1)由PA ⊥底面ABCD ,得PA DE ⊥,由Rt ABH Rt DAE ≌△△,得DE AH ⊥,可得答案.(2)由可知DE ⊥平面PAH ,连接PG ,则DPG ∠即为直线PD 与平面PAH 所成线面角,在Rt PDG △中,由sin DPG ∠可得答案. 【详解】(1)因为PA ⊥底面ABCD ,DE ⊂底面ABCD ,所以PA DE ⊥,因为E ,H 分别为正方形ABCD 的边AB ,BC 的中点,,,AB DA BH AE HBAEAD ,所以Rt ABH Rt DAE ≌△△,所以BAH ADE ∠=∠,由90AED ADE ∠+∠= 所以90BAH AED ∠+∠=,所以DE AH ⊥, 因为PA ⊂平面PAH ,AH ⊂平面PAH ,PA AH A ⋂=,所以DE ⊥平面PAH .(2)由(1)可知DE ⊥平面PAH ,设AH DE G ⋂=,如图,连接PG ,则DPG ∠即为直线PD 与平面PAH 所成线面角, 因为2PA AD ==,所以22PD =,5DE =, 在Rt DAE 中,由于AG DE ⊥,所以2AD DG DE =⋅, 所以45DG =⋅,所以5DG =, 所以在Rt PDG △中,105sin 22DG DPG PD ∠===,即直线PD 与平面PAH 所成线面角的正弦值为10.【点睛】本题主要考查线面垂直的证明、线面角的求法,对于线面角的求法的步骤,作:作(或找)出斜线在平面上的射影,证:证明某平面角就是斜线与平面所成的角;算:通常在垂线段、斜线段和射影所组成的直角三角形中计算. 23.(1)证明见解析;(215;(3)12.【分析】(1)连接AC 交BD 于点O ,连接PO ,推导出BD ⊥平面PAC ,进而可得出PC BD ⊥;(2)过点O 在平面PAC 内作OF PC ⊥,垂足为点F ,连接BF ,推导出OFB ∠为二面角B PC E --的平面角,计算出OF 、BF ,可计算出cos OFB ∠,即可得解; (3)计算出PCE 的面积,利用锥体的体积公式可得出13P BCE B PCE PCE V V S OB --==⋅△,即可得解.【详解】证明:(1)连接AC 交BD 于O 点,连接PO ,∵四边形ABCD 是菱形,AC BD ∴⊥,则O 是BD 的中点,PB PD =,PO BD ∴⊥,又AC PO O =,AC 、OP ⊂平面PAC ,BD ∴⊥平面PAC ,又PC ⊂平面PAC ,PC BD ∴⊥;(2)由(1)知BO ⊥平面PAC ,PC ⊂平面PAC ,则OB PC ⊥, 过O 在平面PAC 内作OF PC ⊥于F ,连接BF ,由OB OF O ⋂=,则PC ⊥平面OBF ,BF ⊂平面OBF ,得BF PC ⊥,故OFB ∠为二面角B PC E --的平面角,四边形ABCD 是菱形,60BAD ∠=,ABD ∴为等边三角形,2BD AB AD ∴===,112OB BD ∴==,223OC OA AB OB ==-= OB ⊥平面PAC ,OP ⊂平面PAC ,OP OB ∴⊥,223OP PB OB ∴-=3OA =3OP =6PA =222OP PA OA +∴=,即OA OP ⊥,即PO AC ⊥,33626PO OC OF PC ⋅∴===,2222610122BF BO OF ⎛⎫=+=+= ⎪ ⎪⎝⎭, 故615cos 10OF OFB BF ∠===B PC E --15; (3)E 为PA 的中点,11333222PCE PAC POA S S S ∴====△△△, 又OB ⊥平面PAC ,113113322P BCE B PCE PCE V V S OB --∴==⋅=⨯⨯=△.方法点睛:求二面角常用的方法:(1)几何法:二面角的大小常用它的平面角来度量,平面角的作法常见的有: ①定义法;②垂面法,注意利用等腰三角形的性质;(2)空间向量法:分别求出两个平面的法向量,然后通过两个平面法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求二面角是锐角还是钝角. 24.(Ⅰ)证明见解析;(Ⅱ)6. 【分析】(Ⅰ)连接BD 交AC 于点O ,连接1D O ,连接11B D ,可证11//O B D O ,即可得证; (Ⅱ)依题意可得1D OD ∠是二面角1D AC D --的平面角,再根据锐角三角函数计算可得; 【详解】(Ⅰ)证明:连接BD 交AC 于点O ,连接1D O ,连接11B D , 由长方体的性质知11BO O D =,且11//BO O D , 故四边形11BO D O 是平行四边形, 所以11//O B D O .又因为1D O ⊂平面1ACD ,1O B ⊄平面1ACD , 所以1//O B 平面1ACD .(Ⅱ)解:设122AB BC AA ===,由长方体底面ABCD 是正方形,得DO AC ⊥. 因为11D A D C =,O 是AC 的中点,所以1D O AC ⊥, 所以1D OD ∠是二面角1D AC D --的平面角.在直角三角形1D DO 中,190D DO ∠=︒,易得11=D D ,221122222DO BD ==+=,()()222211523D O D C OC =-=-=得116cos 3DO D OD D O ∠== 所以二面角1D AC D --的平面角的余弦值为63.。
一、选择题1.若圆锥的内切球(球面与圆锥的侧面以及底面都相切)的半径为1,当该圆锥体积取最小值时,该圆锥体积与其内切球体积比为( )A .2:1B .4:1C .8:1D .8:32.在三棱锥P ABC -中,PA ⊥平面ABC ,120224BAC AP AB AC ∠====,,则三棱锥P ABC -的外接球的表面积是( )A .18πB .36πC .40πD .72π 3.在正方体1111ABCD A B C D -,中,M ,N ,P ,Q 分别为1A B ,1B D ,1A D ,1CD 的中点,则异面直线MN 与PQ 所成角的大小是( )A .6πB .4πC .3πD .2π 4.如图,正三棱柱111ABC A B C -的高为4,底面边长为43,D 是11B C 的中点,P 是线段1A D 上的动点,过BC 作截面AP α⊥于E ,则三棱锥P BCE -体积的最小值为( )A .3B .23C .43D .125.如图,在四棱锥P ABCD -中,底面ABCD 是矩形.其中3AB =,2AD =,PAD △是以A ∠为直角的等腰直角三角形,若60PAB ∠=︒,则异面直线PC 与AD 所成角的余弦值是( )A .2211B .2211-C .277D .211116.如图,网格纸上小正方形的边长为1,粗实线画的是某几何体的三视图,则该几何体的体积为( )A .16B .13C .1D .27.三个平面将空间分成n 个部分,则n 不可能是( )A .5B .6C .7D .88.如下图所示是一个正方体的平面展开图,在这个正方体中①//BM平面ADE ;②DE BM ⊥;③平面//BDM 平面AFN ;④AM ⊥平面BDE .以上四个命题中,真命题的序号是( )A .①②③④B .①②③C .①②④D .②③④ 9.在四棱锥P -ABCD 中,//AD BC ,2AD BC =,E 为PD 中点,平面ABE 交PC 于F ,则PF FC=( ) A .1 B .32 C .2 D .310.空间四边形PABC 的各边及对角线长度都相等,D 、E 、F 外别是AB 、BC 、CA 的中点,下列四个结论中不成立的是( )A .//BC 平面PDFB . DF ⊥平面PAEC .平面PDE ⊥平面ABCD .平面PAE ⊥平面ABC 11.已知直线a 、b 都不在平面α内,则下列命题错误的是( ) A .若//a b ,//a α,则//b αB .若//a b ,a α⊥,则b α⊥C .若a b ⊥,//a α,则b α⊥D .若a b ⊥,a α⊥,则//b α 12.如图(1),Rt ABC ,1,3,2AC AB BC ===,D 为BC 的中点,沿AD 将ACD △折起到AC D ',使得C '在平面ABD 上的射影H 落在AB 上,如图(2),则以下结论正确的是( )A .AC BD '⊥B .AD BC '⊥ C .BD C D ⊥' D .AB C D ⊥'二、填空题13.如图所示,Rt A B C '''∆为水平放置的ABC ∆的直观图,其中A C B C ''''⊥,2B O O C ''''==,则ABC ∆的面积是________________.14.如图,在正方体1111ABCD A B C D -中,E ,F ,G 分别是棱11A B ,1BB ,11B C 的中点,则下列结论中:①FG BD ⊥; ②1B D ⊥面EFG ;③面//EFG 面11ACC A ; ④//EF 面11CDD C .正确结论的序号是________.15.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40︒,则晷针与点A 处的水平面所成角的大小为_________.16.在棱长为2的正方体1111ABCD A B C D -中,P 是11A B 的中点,过点1A 作与平面1PBC 平行的截面,则此截面的面积是_______________.17.如图,正方形BCDE 的边长为a ,已知3AB BC =,将ABE △沿边BE 折起,折起后A 点在平面BCDE 上的射影为D 点,则翻折后的几何体中有如下描述:①AB 与DE 所成角的正切值是2;②//AB CE ;③B ACE V -体积是316a ;④平面ABC ⊥平面ADC . 其中正确的有______.(填写你认为正确的序号)18.如图,已知一个八面体的各条棱长均为2,四边形ABCD 为正方形,给出下列说法:①该八面体的体积为83;②该八面体的外接球的表面积为8π; ③E 到平面ADF 3;④EC 与BF 所成角为60°.其中正确的说法为__________.(填序号)19.已知扇形的面积为56π6,则由该扇形围成的圆锥的外接球的表面积为_________.20.如下图所示,三棱锥P ABC -外接球的半径为1,且PA 过球心,PAB △围绕棱PA 旋转60︒后恰好与PAC △重合.若3PB P ABC -的体积为_____________.三、解答题21.在三棱锥P ABC -中,PAC ∆和PBC ∆是边长为2的等边三角形,2AB =,O ,D 分别是AB , PB 的中点.(1)求证://OD 平面PAC(2)求证:OP ⊥平面ABC(3)求三棱锥D OBC -的体积.22.如图,已知菱形ABCD 和菱形ACFE 所在的平面互相垂直,M 为BF 的中点.(1)求证://DF 平面ACM ;(2)若2AB =,ABC CAE ∠=∠=π3,求三棱锥F BDE -的体积. 23.如图所示,四棱锥P ABCD -的底面ABCD 是平行四边形,90DBA ∠=︒,2BA BD ==,10,6,,PA PD PB E F ===分别是棱,AD PC 的中点.(1)证明://EF 平面PAB ;(2)求点B 到平面PAD 的距离.24.如图,在三棱柱111ABC A B C -中,1B C ⊥平面ABC ,侧面11ABB A 为矩形,11,2AB AA AC ===.(1)证明:平面11ABB A ⊥平面1BB C ;(2)求四棱锥11C ABB A -的体积.25.如图,在直三棱柱111ABC A B C -中,底面ABC 为正三角形,1AB 与1A B 交于点O ,E ,F 是棱1CC 上的两点,且满足112EF CC =.(1)证明://OF 平面ABE ;(2)当1CE C F =,且12AA AB =,求直线OF 与平面ABC 所成角的余弦值. 26.如图,圆柱的轴截面ABCD 是长方形,点E 是底面圆周上异于A ,B 的一点,AF DE ⊥,F 是垂足.(1)证明:AF DB ⊥;(2)若2AB =,3AD =,当三棱锥D ABE -体积最大时,求点C 到平面BDE 的距离.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据三角形相似得出圆锥的底面半径和高的关系,根据体积公式和基本不等式得出答案.【详解】设圆锥的高为h ,底面半径为r ,则当球面与圆锥的侧面以及底面都相切时,轴截面如图,由~AOE ACF 可得:22(1)11h r --=,即22r h h =-, ∴圆锥的体积22148[(2)4]33(2)323h V r h h h h ππππ===-++--. 当且仅当22h -=,即4h =时取等号.∴该圆锥体积的最小值为83π. 内切球体积为43π. 该圆锥体积与其内切球体积比2:1.故选:A .【点睛】方法点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.2.D解析:D【分析】先找出ABC 的外接圆的半径,然后取ABC 的外接圆的圆心N ,过N 作平面ABC 的垂线NG ,作PA 的中垂线,交NG 于O ,则O 是外接球球心, OA 为外接球半径,求解半径并求表面积即可.【详解】如图所示,1204BAC AB AC ∠===,,取BC 中点M ,连接AM 并延长到N 使AM =MN ,则四边形ABNC 是两个等边三角形组成的菱形,AN =BN =CN ,点N 是ABC 的外接圆圆心,过N 作平面ABC 的垂线NG ,则球心一定在垂线NG 上,因为PA ⊥平面ABC ,则PA //NG ,PA 与NG 共面,在面内作PA 的中垂线,交NG 于O ,则O 是外接球球心,半径R =OA ,Rt AON 中,122ON AP ==,4AN =,故()224232R =+=2441872S R πππ==⨯=.故选:D.【点睛】求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径;③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.本题就是采用这个方法.本题使用了定义法.3.B解析:B【分析】由M 也是1A B 的中点,P 也是1AD 中点,得平行线,从而找到异面直线MN 与PQ 所成角,在三角形中可得其大小.【详解】如图,连接1AD ,1AB ,显然M 也是1A B 的中点,P 也是1AD 中点,又N 是1B D 中点,Q 是1CD 中点,所以//MN AD ,//PQ AC ,所以CAD ∠是异面直线MN 与PQ 所成角(或补角),大小为4π. 故选:B .【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤ ⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角. 4.C解析:C【分析】因为P BCE P ABC E ABC V V V ---=-则当E ABC V -取最大值时,三棱锥P BCE -体积有最小值,建立坐标系求得当点E 的高为3时,问题得解.【详解】以点O 为原点,,,OA OD OB 分别为,,x y z 轴建立空间直角坐标系,如图所示:设点(),0,E x z ,依题意得()6,0,0A ,则()6,0,AE x z =- ,(),0,OE x z = 因为过BC 作截面AP α⊥于E ,所以AE OE ⊥则0AE OE ⋅=,故()2600x x z -++= 所以()6z x x =-3x =时max 3z =又()143P BCE P ABC E ABC ABC V V V S z ---=-=-因为max 3z =所以三棱锥P BCE -体积的最小值()1114343643332P BCE ABC V S -=-=⋅⋅=故选:C【点睛】 关键点点晴:本题的解题关键是将问题转化为求E ABC V -的最大值,通过建系求得三棱锥E ABC -的高的最大值即可.5.D解析:D【分析】在图形中找到(并证明)异面直线所成的角,然后在三角形中计算.【详解】因为//AD BC ,所以PCB ∠是异面直线PC 与AD 所成角(或其补角), 又PA AD ⊥,所以PA BC ⊥,因为AB BC ⊥,AB PA A ⋂=,,AB PA ⊂平面PAB ,所以BC ⊥平面PAB , 又PB ⊂平面PAB ,所以PB BC ⊥.由已知2PA AD ==,所以22222cos 23223cos607PB PA AB PA AB PAB =+-⋅∠=+-⨯⨯︒=22211cos 11(7)2BC PCB PC ∠===+, 所以异面直线PC 与AD 所成角的余弦值为21111. 故选:D . 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.6.B解析:B 【分析】根据三视图得到直观图,根据棱锥的体积公式可得结果. 【详解】由三视图可知,该几何体是长、宽、高分别为1,2,1的长方体中的三棱锥D ABC -,如图所以:所以该几何体的体积为111121323V =⨯⨯⨯⨯=. 故选:B 【点睛】关键点点睛:根据三视图还原出直观图是本题解题关键.7.A解析:A 【分析】三个平面不重合,先按其中平行的平面的个数分类:三个平面两两平行,两个平面平行,没有平行的平面(两两相交),对两两相交的情况,再根据三条交线互相平行,重合,交于一点,分别讨论.【详解】按照三个平面中平行的个数来分类:(1)三个平面两两平行,如图1,可将空间分成4部分;(2)两个平面平行,第三个平面与这两个平行平面相交,如图2,可将空间分成6部分;(3)三个平面中没有平行的平面:(i)三个平面两两相交且交线互相平行,如图3,可将空间分成7部分;(ii)三个平面两两相交且三条交线交于一点,如图4,可将空间分成8部分.(iii)三个平面两两相交且交线重合,如图5,可将空间分成6部分;综上,可以为4,6,7,8部分,不能为5部分, 故选:A.8.A解析:A 【分析】把正方体的平面展开图还原成正方体ABCA ﹣EFMN ,得出BM ∥平面ADNE ,判断①正确;由连接AN ,则AN ∥BM ,又ED AN ⊥,判断②正确;由BD ∥FN ,得出BD ∥平面AFN ,同理BM ∥平面AFN ,证明平面BDM ∥平面AFN ,判断③正确;由MC BD ⊥,ED ⊥AM ,根据线面垂直的判定,判断④正确. 【详解】把正方体的平面展开图还原成正方体ABCA ﹣EFMN ,如图1所示; 对于①,平面BCMF ∥平面ADNE ,BM ⊂平面BCMF , ∴BM ∥平面ADNE ,①正确;对于②,如图2所示,连接AN ,则AN ∥BM ,又ED AN ⊥,所以DE BM ⊥,②正确; 对于③,如图2所示,BD ∥FN ,BD ⊄平面AFN ,FN ⊂平面AFN ,∴BD ∥平面AFN ;同理BM ∥平面AFN ,且BD ∩BM =B ,∴平面BDM ∥平面AFN ,③正确; 对于④,如图3所示,连接AC ,则BD AC ⊥,又MC ⊥平面ABCD ,BD ⊂平面ABCD ,所以MC BD ⊥,又AC MC C ,所以BD ⊥平面ACM ,所以BD ⊥AM , 同理得ED ⊥AM ,ED BD D =,所以AM ⊥平面BDE ,∴④正确.故选:A .【点睛】关键点点睛:解决本题的关键在于展开空间想象,将正方体的平面展开图还原,再由空间的线线,线面,面面关系及平行,垂直的判定定理去判断命题的正确性.9.C解析:C 【分析】首先通过延长直线,DC AB ,交于点G ,平面BAE 变为GAE ,连结PG ,EG 交于点F ,再根据三角形中线的性质,求PFFC的值. 【详解】延长,DC AB ,交于点G ,连结PG ,EG 交PC 于点F ,//AD BC ,且2AD BC =,可得点,B C 分别是,AG DG 的中点,又点E 是PD 的中点,PC ∴和GE 是△PGD 的中线,∴点F 是重心,得2PFFC=故选:C 【点睛】关键点点睛:本题的关键是找到PC 与平面BAE 的交点,即将平面BAE 转化为平面GAE 是关键. 10.C解析:C由线面平行的判定定理可判断A ;由线面垂直的判定定理可判断B ;反证法可说明C ;由面面垂直的判定定理可判断D. 【详解】对于A ,D ,F 外别是AB ,CA 的中点,//BC DF ∴,DF ⊂平面PDF ,∴//BC 平面PDF ,故A 正确,不符合题意;对于B ,各棱长相等,E 为BC 中点,,BC AE BC PE ∴⊥⊥,PEAE E =,BC ∴⊥平面PAE ,//BC DF ,∴DF ⊥平面PAE ,故B 正确,不符合题意;对于C ,假设平面PDE ⊥平面ABC ,设DE BF O ⋂=,连接PO ,则O 是DE 中点,PO DE ∴⊥,平面PDE平面ABC DE =,PO ∴⊥平面ABC ,BF ⊂平面ABC ,PO BF ∴⊥,则PB PF =,与PB PF ≠矛盾,故C 错误,符合题意;对于D ,由B 选项 DF ⊥平面PAE , DF ⊂平面ABC ,∴平面PAE ⊥平面ABC ,故D 正确,不符合题意. 故选:C. 【点睛】本题考查线面关系和面面关系的判定,解题的关键是正确理解判断定理,正确理解垂直平行关系.11.C【分析】利用线面平行的性质和判定定理可判断A 选项的正误;由线面垂直的定义可判断B 选项的正误;根据已知条件判断b 与α的位置关系,可判断C 选项的正误;根据已知条件判断b 与α的位置关系,可判断D 选项的正误. 【详解】由于直线a 、b 都不在平面α内.在A 中,若//a α,过直线a 的平面β与α的交线m 与a 平行,因为//a b ,可得//b m ,b α⊄,m α⊂,所以,//b α,A 选项正确;在B 中,若a α⊥,则a 垂直于平面α内所有直线,//a b ,则b 垂直于平面α内所有直线,故b α⊥,B 选项正确; 在C 中,若a b ⊥,//a α,则b 与α相交或平行,C 选项错误;在D 中,若a b ⊥,a α⊥,则//b α或b α⊂,b α⊄,//b α∴,D 选项正确.故选:C. 【点睛】方法点睛:对于空间线面位置关系的组合判断题,解决的方法是“推理论证加反例推断”,即正确的结论需要根据空间线面位置关系的相关定理进行证明,错误的结论需要通过举出反例说明其错误,在解题中可以以常见的空间几何体(如正方体、正四面体等)为模型进行推理或者反驳.12.C解析:C 【分析】设AH a =,则BH a =,由线面垂直的性质和勾股定理可求得DH a AH ==,由等腰三角形的性质可证得BD ⊥DH ,再根据线面垂直的判定和性质可得选项. 【详解】设AH a =,则BH a =,因为'C H ⊥面ABD ,AB 面ABD ,DH ⊂面ABD ,所以'C H ⊥AB ,'C H ⊥DH ,'C H ⊥DB ,又Rt ABC ,1,2AC AB BC ===,D 为BC 的中点,所以'1,6C D BD B DAB π==∠=∠=,所以在'Rt AC H 中,'C H ==Rt C HD ’中,()2'222'211DH C D C H a a =-=--=,所以DH a AH ==,所以6ADH DAB π∠=∠=,又23ADB π∠=,所以2HDB π∠=,所以BD ⊥DH ,又'C HDH H =,所以BD ⊥面'C DH ,又'C D ⊂面'C DH ,所以BD ⊥'C D ,【点睛】关键点点睛:在解决折叠问题时,关键在于得出折叠的前后中,线线、线面、面面之间的位置关系的不变和变化,以及其中的边的长度、角度中的不变量和变化的量.二、填空题13.【分析】根据直观图和原图的之间的关系由直观图画法规则将还原为如图所示是一个等腰三角形直接求解其面积即可【详解】由直观图画法规则将还原为如图所示是一个等腰三角形则有所以故答案为:【点睛】关键点点睛:根 解析:82【分析】根据直观图和原图的之间的关系,由直观图画法规则将Rt A B C '''还原为ABC ,如图所示,ABC 是一个等腰三角形,直接求解其面积即可. 【详解】由直观图画法规则将Rt A B C '''还原为ABC ,如图所示,ABC 是一个等腰三角形,则有2BO OC B O O C ''''====,242AO A O ''==所以114428222ABCSBC AO =⋅=⨯⨯= 故答案为:2【点睛】关键点点睛:根据斜二测画法的规则,可得出三角形的直观图,并求出对应边长,根据面积公式求解.14.②④【分析】由是正三角形可判断①;判断出平面平面平面可判断②;假设面面则可以推出可判断③;由平面平面平面可判断④【详解】连接分别是的中点对于①因方是正三角形所以与不垂直;对于②连接因为且所以平面平面解析:②④. 【分析】由1//FG BC ,1BDC 是正三角形,可判断①;判断出1DB ⊥平面11A C B ,平面11//AC B 平面EFG ,可判断②;假设面//EFG 面11ACC A ,则可以推出1//AA EF 可判断③;由平面11//ABB A 平面11DCC D ,EF ⊂平面11ABB A ,可判断④.连接11A C ,1A B ,1BC ,BD ,1B D ,E ,F ,G 分别是1A B ,1BB ,11B C 的中点. 对于①,因方1//FG BC ,1BDC 是正三角形,所以FG 与BD 不垂直; 对于②,连接11D B ,因为1111111AC B D ,AC BB ⊥⊥,且1111B D BB B ⋂=,所以11A C ⊥平面11BDD B ,1DB ⊂平面11BDD B ,所以111AC DB ⊥,同理11BC DB ⊥,且1111A C BC C ,所以1DB ⊥平面11A C B ,因为1//A B EF ,11//AC EG ,且111A B AC A ⋂=,EF EG E =,所以平面11//AC B 平面EFG ,所以1B D ⊥平面EFG .正确;对于③,如果面//EFG 面11ACC A ,由平面EFG 平面11ABB A EF =,平面11CC A A平面111BB A A A A =,则1//AA EF ,显然不正确;对于④,因为平面11//ABB A 平面11DCC D ,EF ⊂平面11ABB A ,所以//EF 平面11CDD C ,正确故选:②④. 【点睛】方法点睛:本题主要考查了正方体中垂直与平行关系,考查了线线垂直、线面垂直的判定、线面平行的判断、面面平行的判断与性质,对于证明线线关系、线面关系,面面关系等方面的问题,必须在熟练掌握有关的定理和性质的前提下,再利用已知来进行证明, 属于中档题.15.40°【分析】画出过球心和晷针所确定的平面截地球和晷面的截面图根据面面平行的性质定理和线面垂直的定义判定有关截线的关系根据点处的纬度计算出晷针与点处的水平面所成角【详解】画出截面图如下图所示其中是赤解析:40° 【分析】画出过球心和晷针所确定的平面截地球和晷面的截面图,根据面面平行的性质定理和线面垂直的定义判定有关截线的关系,根据点A 处的纬度,计算出晷针与点A 处的水平面所成角. 【详解】画出截面图如下图所示,其中CD 是赤道所在平面的截线;l 是点A 处的水平面的截线,依题意可知OA l ⊥;AB 是晷针所在直线.m 是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直,根据平面平行的性质定理可得可知//m CD 、根据线面垂直的定义可得AB m ⊥.. 由于40,//AOC m CD ∠=︒,所以40OAG AOC ∠=∠=︒, 由于90OAG GAE BAE GAE ∠+∠=∠+∠=︒,所以40BAE OAG ∠=∠=︒,也即晷针与点A 处的水平面所成角为40BAE ∠=︒. 故答案为:40°.【点睛】本小题主要考查中国古代数学文化,解题的关键是将稳文中的数据建立平面图形,属于中档题.16.【分析】取的中点分别为连接先证明四边形是平行四边形再利用面面平行的判断定理证明平面平面可得平行四边形即为所求的截面再计算其面积即可【详解】取的中点分别为连接因为所以四边形是平行四边形所以因为所以四边 解析:6【分析】取AB ,11D C 的中点分别为,M N ,连接11,,,,A M MC CN A N PM ,先证明四边形1A MCN 是平行四边形,再利用面面平行的判断定理证明平面1//PBC 平面1A MCN ,可得平行四边形1A MCN 即为所求的截面,再计算其面积即可. 【详解】取AB ,11D C 的中点分别为,M N ,连接11,,,,A M MC CN A N PM ,因为11A P NC ,所以四边形11A PC N 是平行四边形,所以11A N PC , 因为1PM CC 所以四边形1PMCC 是平行四边形,所以1MC PC , 所以1A N MC ,所以四边形1A MCN 是平行四边形, 因为11//PC A N ,1PC ⊄平面1A MCN ,1A N ⊂平面1A MCN , 所以1//PC 平面1A MCN , 同理可证//PB 平面1A MCN , 因为1PC PB P ⋂=,所以平面1//PBC 平面1A MCN ,因此过点1A 作与平面1PBC 平行的截面,即是平行四边形1A MCN , 连接MN ,作1A H MN ⊥于点H , 由115AM A N ==,22MN = 可得()()221523A H =-=所以1111223622A MNSMN A H =⨯⨯=⨯=, 所以平行四边形1A MCN 的面积为1226A MNS =故答案为:26【点睛】关键点点睛:本题的关键点是找出过点1A 与平面1PBC 平行的截面,所以想到作平行线,利用面面平行的判断定理证明所求的截面即是平行四边形1A MCN ,先求四边形一半的面积,乘以2即可得所求平行四边形的面积,也可以直接求菱形的面积.17.①③④【分析】作出折叠后的几何体的直观图由题中条件得到是异面直线与所成的角求出其正切可判断①正确;根据线面垂直的的判定定理先证明平面可判断②错;根据等体积法由体积公式求出可判断③正确;根据面面垂直的解析:①③④【分析】作出折叠后的几何体的直观图,由题中条件,得到ABC ∠是异面直线AB 与DE 所成的角,求出其正切,可判断①正确;根据线面垂直的的判定定理,先证明CE ⊥平面ABD ,可判断②错;根据等体积法,由体积公式求出B ACE V -,可判断③正确;根据面面垂直的判定定理,可判断④正确.【详解】作出折叠后的几何体直观图如图所示:由题意,3AB a =,BE a =,∴2AE a =; ∴22AD AE DE a =-=,222AC CD AD a ∴=+=,∵//BC DE ,∴ABC ∠是异面直线AB 与DE 所成的角,在Rt ABC 中, tan 2AC ABC BC∠==①正确; 连结BD ,CE ,则CE BD ⊥,又AD ⊥平面BCDE ,CE ⊂平面BCDE ,∴CE AD ⊥,又BD AD D ,BD ⊂平面ABD ,AD ⊂平面ABD ,∴CE ⊥平面ABD ,又AB 平面ABD ,∴CE AB ⊥.故②错误.三棱锥B ACE -的体积2311113326B ACE A BCE BCE V V S AD a a a --===⨯⨯=⋅⨯. 故③正确.∵AD ⊥平面BCDE ,BC ⊂平面BCDE ,∴BC AD ⊥,又BC CD ⊥,CD AD D =,CD ⊂平面ADC ,AD ⊂平面ADC , ∴BC ⊥平面ADC ,∵BC ⊂平面ABC ,∴ABC ⊥平面ADC .故④正确.故答案为:①③④.【点睛】思路点睛:判断空间中线线、线面、面面位置关系时,一般根据相关概念,结合线面平行、垂直的判定定理及性质,以及面面平行、垂直的判定定理及性质,根据题中条件,进行判断或证明. 18.②④【分析】①求出该八面体的体积即可判断;②可得球心为正方形ABCD 对角线交点即可得出半径求出表面积;③取AD 的中点G 连接EGFGEF 过E 作求出即可;④可得为所成角【详解】①八面体的体积为;②八面体 解析:②④【分析】①求出该八面体的体积即可判断;②可得球心为正方形ABCD 对角线交点,即可得出半径求出表面积;③取AD 的中点G ,连接EG ,FG ,EF ,过E 作EH FG ⊥,求出EH 即可;④可得DEC ∠为所成角.【详解】①八面体的体积为21822(22)3⨯⨯⨯=; ②八面体的外接球球心为正方形ABCD 对角线交点,易得外接球半径为2,表面积为8π;③取AD 的中点G ,连接EG ,FG ,EF ,易得3EG FG ==AD ⊥平面EGF ,过E 作EH FG ⊥,交FG 的延长线于H ,又EH AD ⊥,AD FG G ⋂=,故EH ⊥平面ADF ,解得63EH =,所以E 到平面ADF 的距离为263; ④因为//ED BF ,所以EC 与BF 所成角为60︒.故答案为:②④.【点睛】解本题的关键是正确理解正八面体的性质,根据线面垂直关系得到点到平面的垂线段. 19.【分析】由扇形的面积及圆心角可得扇形的半径再由扇形的弧长等于圆锥的底面周长可得底面半径再由外接球的半径与圆锥的高和底面半径的关系求出外接球的半径进而求出球的表面积【详解】设扇形的长为l 半径为R 则解得 解析:36π【分析】由扇形的面积及圆心角可得扇形的半径,再由扇形的弧长等于圆锥的底面周长可得底面半径,再由外接球的半径与圆锥的高和底面半径的关系求出外接球的半径,进而求出球的表面积.【详解】设扇形的长为l ,半径为R ,则22111222S lR R α====,解得R =l 为锥底面周长2r π,∴底面的半径r =∴5=.设外接球的半径为1R ,∴()222115R R =-+,解得13R =,∴该外接球的表面积为21436R ππ=,故答案为:36π.【点睛】本题考查扇形的弧长与圆锥的底面周长的关系及外接球的半径和圆锥的高及底面半径的关系,和球的表面积公式的应用,属于中档题.20.【分析】作于可证得平面得得等边三角形利用是球的直径得然后计算出再应用棱锥体积公式计算体积【详解】∵围绕棱旋转后恰好与重合∴作于连接则∴又过球心∴而∴同理由得平面∴故答案为:【点睛】易错点睛:本题考查解析:8【分析】作BH PA ⊥于H ,可证得PA ⊥平面BCH ,得60BHC ∠=︒,得等边三角形BCH ,利用PA 是球的直径,得PB AB ⊥,然后计算出BH ,再应用棱锥体积公式计算体积.【详解】∵PAB △围绕棱PA 旋转60︒后恰好与PAC △重合,∴PAB PAC ≅△△,作BH PA ⊥于H ,连接CH ,则,CH PA CH BH ⊥=,60BHC ∠=︒,∴BC BH CH ==.又PA 过球心,∴PB AB ⊥,而2,PA PB ==,∴1AB =,同理1AC =,PB AB BH PA ⋅===,2244216BCH S BH ⎛⎫=== ⎪ ⎪⎝⎭△, 由BH PA ⊥,CH PA ⊥,CH BH H =,得PA ⊥平面BCH ,∴11333233168P ABC BCH V S PA -=⋅=⨯⨯=△. 故答案为:38.【点睛】易错点睛:本题考查求棱锥的体积,解题关键是作BH PA ⊥于H ,利用旋转重合,得PA ⊥平面BCH ,这样只要计算出BCH 的面积,即可得体积,这样作图可以得出60BHC ∠=︒,为旋转所形成的二面角的平面角,这里容易出错在误认为旋转60︒,即为60CAB ∠=︒.旋转60︒是旋转形成的二面角为60︒.应用作出二面角的平面角.三、解答题21.(1)证明见解析;(2)证明见解析;(3)112. 【分析】(1)利用三角形中位线定理证明//OD PA ,利用线面平行的判定定理证明;(2)根据条件,证明PO OC ⊥,PO AB ⊥,利用线面垂直的判定定理证明; (3)利用转化法求体积.【详解】(1)证明:O ,D 分别为AB ,PB 的中点//OD PA ∴PA ⊂平面PAC ,OD ⊄平面PAC ,//OD ∴平面PAC .(2)证明: 2AC BC ==, 2AB =,AC BC ∴⊥O 为AB 的中点,2AB =,OC AB ∴⊥,1OC =同理, PO AB ⊥,1PO =.2PC =2222PC OC PO ∴=+=,则90POC ︒∠=,即PO OC ⊥PO OC ⊥,PO AB ⊥,AB OC O ⋂=OP ∴⊥平面ABC .(3)解:由()2可知,OP ⊥平面ABC .OP ∴为三棱锥P ABC -的高,且1OP =11112111212212D OBC ABC V S OP -∆∴=⋅=⨯⨯⨯⨯= 【点睛】 立体几何解答题的基本结构:(1)第一问一般是几何关系的证明,用判定定理;(2)第二问是计算,求体积,常用的方法有:(1) 直接法;(2)等体积法;(3) 补形法;(4)向量法.22.(1)证明见解析;(2)2.【分析】(1)要证明线面平行,需先证明线线平行,(2)利用等体积转化2F BDE D OEF B OEF B OEF V V V V ----=+=三棱锥三棱锥三棱锥三棱锥,求三棱锥的体积.【详解】证明:(1)设AC 和BD 交于O ,连接OMM 和O 分别是BF 与BD 的中点,∴ //OM DF 又OM ⊂平面ACM ,DF ⊄平面ACM所以 //DF 平面ACM(2)菱形ABCD ⊥菱形ACFE ,菱形ABCD 菱形ACFE AC =又BD AC ⊥所以 BD ⊥面ACFE ,连接OE 和OF∴ D OEF B OEF V V --=三棱锥三棱锥∴ 2F BDE D OEF B OEF B OEF V V V V ----=+=三棱锥三棱锥三棱锥三棱锥 又π3ABC CAE ∠=∠=,∴2AC AB ==,OB =12OEF ACEF S S ∆==菱形∴1•13OEF B OEF V OB S ∆-==三棱锥 所以 22F BDE B OEF V V --==三棱锥三棱锥.【点睛】方法点睛:本题考查了线面平行的判断定理,意在考查转化与化归和计算求解能力,不管是证明面面平行,还是证明线面平行,都需要证明线线平行,证明线线平行的几种常见形式,1.利用三角形中位线得到线线平行;2.构造平行四边形;3.构造面面平行.23.(1)证明见解析;(2)2 【分析】(1)取PB 中点M ,证明四边形AMFE 为平行四边形,从而得到//EF AM ,再由线面平行的判定定理证明即可;(2)证明PB ⊥平面ABD ,从而求出P ABD V -,再由43B PAD V h -=,B PAD P ABD V V --=得出点B 到平面PAD 的距离.【详解】(1)证明:取PB 中点M ,连接,MF AM ,由F 为PC 中点,则//MF BC 且12MF BC =. 由已知有//,BC AD BC AD =,又由于E 为AD 中点,从而//,MF AE MF AE =,故四边形AMFE 为平行四边形,所以//EF AM .又AM ⊂平面PAB ,而EF ⊂/平面PAB ,则//EF 平面PAB(2)2,BA PB PA ===222,PA BA PB PB BA ∴=+∴⊥,同理,PB BD ⊥又,,BD BA A BD BA ⋂=⊂平面ABD。
一、选择题1.正三棱锥(底面为正三角形,顶点在底面的射影为底面中心的棱锥)的三视图如图所示,俯视图是正三角形,O是其中心,则正视图(等腰三角形)的腰长等于()A.5B.2 C.3D.22.某几何体的三视图如图所示(单位:cm),则该几何体的外接球的表面积(单位:2cm)是()A.36πB.54πC.72πD.90π3.已知AB是平面α外的一条直线,则下列命题中真命题的个数是()①在α内存在无数多条直线与直线AB平行;②在α内存在无数多条直线与直线AB垂直;③在α内存在无数多条直线与直线AB 异面;④一定存在过AB 且与α垂直的平面β.A .1个B .2个C .3个D .4个4.如图,在Rt ABC △中,1AC =,BC x =,D 是斜边AB 的中点,将BCD △沿直线CD 翻折,若在翻折过程中存在某个位置,使得CB AD ⊥,则x 的取值范围是( )A .(0,3⎤⎦B .2,22⎛⎤ ⎥ ⎝⎦C .3,23D .(]2,45.如图,在长方体1111ABCD A B C D -中,1AB AD ==,12AA =,M 为棱1DD 上的一点.当1A M MC +取得最小值时,1B M 的长为( )A 3B 6C .23D .266.已知三棱柱111ABC A B C -的所有顶点都在球O 的表面上,侧棱1AA ⊥底面111A B C ,底面111A B C △是正三角形,1AB 与底面111A B C 所成的角是45°.若正三棱柱111ABC A B C -的体积是3O 的表面积是( )A .28π3B .14π3C .56π3D .7π 37.在三棱柱111ABC A B C -中,90BAC ∠=︒,1BC AC ,且12AC BC =,则直线11B C 与平面1ABC 所成的角的大小为( )A .30°B .45°C .60°D .90°8.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A .24B .30C .47D .67 9.如图,网格纸上小正方形的边长为1,粗实线画的是某几何体的三视图,则该几何体的体积为( )A .16B .13C .1D .210.《九章算术》是古代中国乃至东方的第一步自成体系的数学专著,书中记载了一种名为“刍甍”的五面体(如图),其中四边形ABCD 为矩形,//EF AB ,若3AB EF =,ADE 和BCF △都是正三角形,且2AD EF =,则异面直线AE 与CF 所成角的大小为( )A .6πB .4π C .3π D .2π 11.在四棱锥P -ABCD 中,//AD BC ,2AD BC =,E 为PD 中点,平面ABE 交PC 于F ,则PF FC=( ) A .1 B .32C .2D .3 12.已知二面角l αβ--为60,AB α⊂,AB l ⊥,A 为垂足,CD β⊂,C l ∈,45ACD ∠=,则异面直线AB 与CD 所成角的余弦值为( )A .14B .2C .3D .12二、填空题13.如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PAD △为等边三角形,四边形ABCD 为矩形,24AB AD ==,则四棱锥P ABCD -的外接球的表面积为________.14.表面积为16π的球与一个正三棱柱各个面都相切,则这个正三棱柱的体积为___________.15.已知四面体P ﹣ABC 的外接球的球心O 在AB 上,且PO ⊥平面ABC ,2AC 3=,若四面体P ﹣ABC 的体积为32,则该球的体积为_____. 16.若三棱锥S ABC -的底面是以AB 为斜边的等腰直角三角形,23AB =7SA SB SC ===,则该三棱锥的外接球的表面积为__________.17.在三棱锥P ABC -中,PA ⊥平面ABC ,60BAC ∠=︒,23AB AC ==,2PA =,则三棱锥P ABC -外接球的半径为____________.18.棱长为a 的正四面体的外接球的表面积为______.19.在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,且ABCD 为矩形,π2DPA ∠=,23AD =2AB =,PA PD =,则四棱锥P ABCD -的外接球的体积为________. 20.正四棱台的上、下两底面边长分别是方程x 2-9x +18=0的两根,其侧面积等于两底面面积之和,则其侧面梯形的高为________.三、解答题21.如图所示,四棱锥P ABCD -的底面ABCD 是平行四边形,90DBA ∠=︒,2BA BD ==,10,6,,PA PD PB E F ===分别是棱,AD PC 的中点.(1)证明://EF 平面PAB ;(2)求点B 到平面PAD 的距离.22.如图,在三棱柱111ABC A B C -中,1B C ⊥平面ABC ,侧面11ABB A 为矩形,11,2AB AA AC ===.(1)证明:平面11ABB A ⊥平面1BB C ;(2)求四棱锥11C ABB A -的体积.23.如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥底面ABCD ,E 为PD 的中点.(1)证明://PB 平面AEC ;(2)设1AP =,3AD =P ABCD -的体积为1,求证:平面PAC ⊥平面PBD .24.如图1,在梯形ABCD 中,//BC AD ,4=AD ,1BC =,45ADC ∠=︒,梯形的高为1,M 为AD 的中点,以BM 为折痕将ABM 折起,使点A 到达点N 的位置,且平面NBM ⊥平面BCDM ,连接NC ,ND ,如图2.(1)证明:平面NMC ⊥平面NCD ;(2)求图2中平面NBM 与平面NCD 所成锐二面角的余弦值.25.在三棱锥A BCD -中,E 、F 分别为AD 、DC 的中点,且BA BD =,平面ABD ⊥平面ADC .(1)证明://EF 平面ABC ;(2)证明:BE CD ⊥.26.如图,直四棱柱1111ABCD A B C D -的底面ABCD 为平行四边形,133,5,cos ,,5AD AB BAD BD DD E ==∠==是1CC 的中点.(Ⅰ)求证:平面DBE ⊥平面1ADD ;(Ⅱ)求点1C 到平面BDE 的距离.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】可得原几何体如图所示正三棱锥A BCD -,取BD 中点E ,连接,AE CE ,设底面边长为2x ,表示出2522x AO OE -===133x OE CE ==x ,进而求出腰长.【详解】根据三视图可得原几何体如图所示正三棱锥A BCD -,取BD 中点E ,连接,AE CE ,则底面中心O 在CE 上,连接AO ,可得AO ⊥平面ABC , 由三视图可知5AB AC AD ===45AEC ∠=,设底面边长为2x ,则DE x =,则25AE x =-则在等腰直角三角形AOE 中,2522x AO OE -===, O 是底面中心,则1333x OE CE ==, 25323x x -=,解得3x =则1AO =,底面边长为23,则正视图(等腰三角形)的腰长为()22312+=. 故选:B.【点睛】本题考查根据三视图计算原几何体的相关量,解题的关键是根据正三棱锥中的关系求出底面边长. 2.A解析:A【分析】由三视图知该几何体是底面为等腰直角三角形,且侧面垂直于底面的三棱锥,由题意画出图形,结合图形求出外接球的半径,再计算外接球的表面积.【详解】解:由几何体的三视图知,该几何体是三棱锥P ABC -,底面为等腰ABC ∆, 且侧面PAB ⊥底面ABC ,如图所示;设D 为AB 的中点,又3DA DB DC DP ====,且PD ⊥平面ABC ,∴三棱锥P ABC -的外接球的球心O 在PD 上,设OP R =,则OA R =,3OD R =-, 222(3)3R R ∴=-+,解得3R =,∴该几何体外接球的表面积是32436R cm ππ=.故选:A .【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.3.C解析:C【分析】根据线面平行,线面垂直,异面直线等有关结论和定义即可判断.【详解】对于A ,若直线AB 与平面α相交,则在α内不存在直线与直线AB 平行,错误;对于B ,若直线AB 与平面α相交且不垂直,设AB M α=,过平面α外直线AB 上一点P 作PC α⊥,垂足为C ,则在平面α内过点C 一定可以作一条直线CD ,使得CD CM ⊥,所以CD AB ⊥,而在平面α内,与直线CD 平行的直线有无数条,所以在α内存在无数多条直线与直线AB 垂直,若直线AB 与平面α垂直,显然在α内存在无数多条直线与直线AB 垂直,当直线AB 与平面α平行时,显然可知在α内存在无数多条直线与直线AB 垂直,正确;对于C ,若直线AB 与平面α相交,设AB M α=,根据异面直线的判定定理,在平面α内,不过点M 的直线与直线AB 异面,所以在α内存在无数多条直线与直线AB 异面,当直线AB 与平面α平行时,显然可知在α内存在无数多条直线与直线AB 异面,正确; 对于D ,若直线AB 与平面α相交且不垂直,设AB M α=,过平面α外直线AB 上一点P 作PC α⊥,垂足为C ,所以平面ABC 与平面α垂直,若直线AB 与平面α垂直,则过直线AB 的所有平面都与平面α垂直,当直线AB 与平面α平行时,在直线AB 上取一点P 作PC α⊥,垂足为C ,所以平面ABC 与平面α垂直,正确.故真命题的个数是3个.故选:C .【点睛】本题主要考查线面平行,线面垂直,异面直线等有关结论和定义的理解和应用,熟记定义,定理和有关结论是解题的关键,属于中档题.4.A解析:A【分析】取BC 中点E ,连接DE ,AE ,若CB AD ⊥,则可证明出BC ⊥平面ADE ,则可得BC AE ⊥. 根据题目中各边长的关系可得出AE ,AD 关于x 的表达式,然后在ADE 中,利用三边关系求解即可.【详解】由题意得BC x =,则21x AD CD BD +===,如图所示,取BC 中点E ,翻折前,在图1中,连接DE ,CD ,则1122DE AC ==, 翻折后,在图2中,若CB AD ⊥,则有: ∵BC DE ⊥,BC AD ⊥,AD DE D ⋂=,且,AD DE平面ADE , ∴BC ⊥平面ADE ,∴BC AE ⊥,又BC AE ⊥,E 为BC 中点,∴1AB AC == ∴2114AE x =-21x AD +=, 在ADE 中,由三边关系得:①221111224x x ++>-②221111224x x +<+-③0x >; 由①②③可得03x <<.故选:A.【点睛】本题考查折叠性问题,考查线面垂直的判定及性质在解题中的运用,解答本题的主要思路分析在于将异面直线间的垂直转化为线面垂直关系,即作出辅助线DE 与AE ,根据题目条件确定出BC ⊥平面ADE ,得到BC AE ⊥,从而通过几何条件求解. 5.A解析:A【分析】本题首先可通过将侧面11CDD C 绕1DD 逆时针转90展开得出当1A 、M 、2C 共线时1A M MC +取得最小值,此时M 为1DD 的中点,然后根据11B A ⊥平面11A D DA 得出111B A A M ⊥,最后根据221111M A B B A M =+即可得出结果.【详解】如图,将侧面11CDD C 绕1DD 逆时针转90展开,与侧面11ADD A 共面,连接12A C ,易知当1A 、M 、2C 共线时,1A M MC +取得最小值, 因为1AB AD ==,12AA =,所以M 为1DD 的中点,12A M = 因为11B A ⊥平面11A D DA ,1A M ⊂平面11A D DA ,所以111B A A M ⊥, 则222211111(2)3M B A A M B =+=+=故选:A. 【点睛】关键点点睛:本题考查根据线面垂直判断线线垂直,能否根据题意得出当M 为1DD 的中点时1A M MC +取得最小值是解决本题的关键,考查计算能力,考查数形结合思想,是中档题.6.A解析:A 【分析】首先得到11AB A ∠是1AB 与底面111A B C 所成的角,再通过三棱柱的体积得到三棱柱的底面等边三角形的边长,最后通过球的半径,球心到底面距离,底面外接圆半径的关系计算. 【详解】因为侧棱1AA ⊥底面111A B C ,则11AB A ∠是1AB 与底面111A B C 所成的角,则1145AB A ∠=︒. 故由11111tan tan 451AA AB A A B ∠=︒==,得111AA A B =. 设111AA A B a ==,则111313323224ABC A B C a V a a -=⨯⨯⨯==三棱柱 解得2a =.所以球O 的半径22232722233R ⎛⎫⎛⎫+⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝=⎭, 所以球O 的表面积22728π4π4π33S R ⎛⎫==⨯= ⎪ ⎪⎝⎭. 故选:A . 【点睛】解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的关系和数量关系,选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.7.A解析:A 【分析】证明CBA ∠就是BC 与平面1ABC 所成的角,求出此角后,利用11//B C BC 可得结论, 【详解】∵90BAC ∠=︒,12AC BC =,∴30CBA ∠=︒, ∵1BC AC ,AB AC ⊥,1BC ABB ,1,BC AB ⊂平面1ABC ,∴AC ⊥平面1ABC ,∴CBA ∠就是BC 与平面1ABC 所成的角,即BC 与平面1ABC 所成的角是30, ∵棱柱中11//B C BC ,∴11B C 与平面1ABC 所成的角的大小为30, 故选:A .【点睛】思路点睛:本题考查求直线与平面所成的角,解题方法是定义法,即过直线一点作平面的垂直,得直线在平面上的射影,由直线与其射影的夹角得直线与平面所成的角,然后在直角三角形中求出此角.解题过程涉及三个步骤:一作出图形,二证明所作角是直线与平面所成的角,三是计算.8.D【分析】先找到几何体的原图,再求出几何体的高,再求几何体的体积得解. 【详解】由三视图可知几何体为图中的四棱锥1P CDD E -, 由题得22437AD =-=,所以几何体的高为7. 所以几何体的体积为11(24)676732⋅+⋅⋅=. 故选:D 【点睛】方法点睛:通过三视图找几何体原图常用的方法有:(1)直接法;(2)拼凑法;(3)模型法.本题利用的就是模型法.要根据已知条件灵活选择方法求解.9.B解析:B 【分析】根据三视图得到直观图,根据棱锥的体积公式可得结果. 【详解】由三视图可知,该几何体是长、宽、高分别为1,2,1的长方体中的三棱锥D ABC -,如图所以:所以该几何体的体积为111121323V =⨯⨯⨯⨯=. 故选:B关键点点睛:根据三视图还原出直观图是本题解题关键.10.D解析:D 【分析】过点F 作//FG AE 交AB 于点G ,连接CG ,则异面直线AE 与CF 所成角为CFG ∠或其补角,然后在CFG △中求解. 【详解】如下图所示,在平面ABFE 中,过点F 作//FG AE 交AB 于点G ,连接CG , 则异面直线AE 与CF 所成角为CFG ∠或其补角,设1EF =,则3AB =,2BC CF AE ===,因为//EF AB ,//FG AE ,所以,四边形AEFG 为平行四边形, 所以,2FG AE ==,1AG =,2BG =, 由于2ABC π∠=,由勾股定理可得2222CG BC BG =+=所以,222CG CF FG =+,则2CFG π∠=.故选:D. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.11.C解析:C 【分析】首先通过延长直线,DC AB ,交于点G ,平面BAE 变为GAE ,连结PG ,EG 交于点F ,再根据三角形中线的性质,求PFFC的值.延长,DC AB ,交于点G ,连结PG ,EG 交PC 于点F ,//AD BC ,且2AD BC =,可得点,B C 分别是,AG DG 的中点,又点E 是PD 的中点,PC ∴和GE 是△PGD 的中线,∴点F 是重心,得2PFFC=故选:C 【点睛】关键点点睛:本题的关键是找到PC 与平面BAE 的交点,即将平面BAE 转化为平面GAE 是关键. 12.B解析:B 【分析】作出图形,设2CD =,AD l ⊥,2AB =,然后以CA 、CD 为邻边作平行四边形ACDE ,可知BAD ∠为二面角l αβ--的平面角,异面直线AB 与CD 所成角为BAE∠或其补角,计算出ABE △三边边长,利用余弦定理计算出cos BAE ∠,即可得解. 【详解】 如下图所示:设2CD =,AD l ⊥,2AB =CA 、CD 为邻边作平行四边形ACDE ,在平面β内,AD l ⊥,2CD =,45ACD ∠=,则sin 2AD CD ACD =∠=cos 452AC CD ==,AB l ⊥,AD l ⊥,AB α⊂,AD β⊂,所以,BAD ∠为二面角l αβ--的平面角,即60BAD ∠=,AB AD ==,ABD ∴为等边三角形,则BD =,四边形ACDE 为平行四边形,//DE AC ∴,即//DE l ,AD l ⊥,AB l ⊥,DE AB ⊥∴,DE AD ⊥, AB AD A =,DE ∴⊥平面ABD ,BD ⊂平面ABD ,DE BD ∴⊥,则2BE ==,在平行四边形ACDE 中,//AE CD 且2AE CD ==, 所以,异面直线AB 与CD 所成角为BAE ∠或其补角,在ABE △中,AB =2AE BE ==,由余弦定理可得222cos 2AB AE BE BAE AB AE +-∠==⋅.因此,异面直线AB 与CD 故选:B. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.二、填空题13.【分析】先根据面面垂直取平面的外接圆圆心G 平面的外接圆圆心H 分别过两点作对应平面的垂线找到交点为外接球球心再通过边长关系计算半径代入球的表面积公式即得结果【详解】如图取的中点的中点连在上取点使得取的解析:643π【分析】先根据面面垂直,取平面PAD 的外接圆圆心G ,平面ABCD 的外接圆圆心H ,分别过两点作对应平面的垂线,找到交点为外接球球心O ,再通过边长关系计算半径,代入球的表面积公式即得结果. 【详解】如图,取AD 的中点E ,BC 的中点F ,连EF ,PE ,在PE 上取点G ,使得2PG GE =,取EF 的中点H ,分别过点G 、H 作平面PAD 、平面ABCD 的垂线,两垂线相交于点O ,显然点O 为四棱锥P ABCD -外接球的球心,由2AD =,4AB =,可得3PE =33GE OH ==,2222125AH AE EH +=+=则半径22343(5)33r OA ⎛⎫==+= ⎪ ⎪⎝⎭, 故四棱锥P ABCD -外接球的表面积为2364433ππ⎛⎫⨯= ⎪ ⎪⎝⎭. 故答案为:643π. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.14.【分析】求出正三棱柱的高底面三角形的边长和高即可求出正三棱柱的体积【详解】设球的半径为r 由得则球的半径为2正三棱柱的高为正三棱柱底面正三角形的内切圆的半径是2所以正三角形的边长是高是6正三棱柱的体积 解析:3【分析】求出正三棱柱的高、底面三角形的边长和高,即可求出正三棱柱的体积. 【详解】设球的半径为r ,由2416r π=π,得2r,则球的半径为2,正三棱柱的高为24r =,正三棱柱底面正三角形的内切圆的半径是2,所以正三角形的边长是36,正三棱柱的体积为1642⨯⨯=故答案为:【点睛】本题考查正三棱柱的内切球、正三棱柱的体积,考查空间想象能力与计算能力.15.【分析】根据四面体是球的内接四面体结合位置关系可得棱锥的形状以及棱长之间的关系利用体积公式即可代值计算【详解】设该球的半径为R 则AB =2R2ACAB2R ∴ACR 由于AB 是球的直径所以△ABC 在大圆所解析:【分析】根据四面体是球的内接四面体,结合位置关系,可得棱锥的形状,以及棱长之间的关系,利用体积公式即可代值计算. 【详解】设该球的半径为R ,则AB =2R ,2AC ==2R , ∴AC=,由于AB 是球的直径,所以△ABC 在大圆所在平面内且有AC ⊥BC , 在Rt △ABC 中,由勾股定理,得:BC 2=AB 2﹣AC 2=R 2,所以R t △ABC 面积S 12=⨯BC ×AC =2, 又PO ⊥平面ABC ,且PO =R ,四面体P ﹣ABC 的体积为32,∴VP ﹣ABC 13=⨯R R 232=3=9,R 3=所以:球的体积V 43=⨯πR 343=⨯=.故答案为:. 【点睛】本题考查三棱锥外接球体积的计算,属基础题;本题的重点是要根据球心的位置去推导四面体的几何形态,从而解决问题.16.【详解】取的中点由题意可得:所以面ABC 所以球心在直线上所以得所以 解析:494π 【详解】取AB 的中点,由题意可得:2222,3,SD DC SD DC SC ==+=,所以,SD AB SD DC ⊥⊥,SD ⊥面ABC.所以球心在直线SD 上,所以()2232R R =+-,得74R =, 所以24944S R ππ==. 17.【分析】先在等边三角形中求出外接圆半径从而可求该三棱锥的外接球的半径【详解】详解:因为所以为等边三角形所以等边外接圆的半径为如图三棱锥外接球球心为半径为设球心到平面的距离为外接圆圆心为连接则平面取中 5【分析】先在等边三角形ABC 中求出23BC =,外接圆半径2r ,从而可求该三棱锥的外接球的半径. 【详解】详解:因为023,60AB AC BAC ==∠=,所以ABC 为等边三角形, 所以23BC =ABC 外接圆的半径为23r,如图,三棱锥P ABC -外接球球心为O ,半径为R , 设球心O 到平面ABC 的距离为d ,ABC 外接圆圆心为'O , 连接,','AO AO OO ,则'OO ⊥平面ABC , 取PA 中点,D OP OA =,所以OD PA ⊥,又PA ⊥平面ABC ,所以//PA OO ',则四边形'ADOO 是矩形, 所以在PDO △和'OAO △中,由勾股定理可得()222222222R d R d ⎧=+⎪⎨=+-⎪⎩,解得:1,5d R ==. 故答案为:5.【点睛】本题主要考查了三棱锥外接球的表面积,其中根据几何体的结构特征和球的性质,求得三棱锥的外接球的半径是解答的关键,着重考查了空间想象能力,以及推理与运算能力.18.【分析】由正四面体性质可知球心在棱锥高线上利用勾股定理可求出半径R 即可求出球的面积【详解】正四面体的棱长为:底面三角形的高:棱锥的高为:设外接球半径为R 解得所以外接球的表面积为:;故答案为:【点睛】 解析:232a π 【分析】由正四面体性质可知,球心在棱锥高线上,利用勾股定理可求出半径R ,即可求出球的面积. 【详解】正四面体的棱长为:a , 33a =, 22236()32a a -⨯⨯=, 设外接球半径为R ,22263)()33R a R a =-+,解得64R a =,所以外接球的表面积为:22342a ππ⎫⨯=⎪⎪⎝⎭; 故答案为:232a π. 【点睛】本题考查球的表面积的求法,解题的关键是根据球心的位置,在正四面体中求出球的半径. 19.【分析】由矩形的边长可得底面外接圆的半径再由为等腰直角三角形可得其外接圆的半径又平面平面可得底面外接圆的圆心即为外接球的球心由题意可得外接球的半径进而求出外接球的体积【详解】解:取矩形的对角线的交点 解析:323π 【分析】由矩形的边长可得底面外接圆的半径,再由PAD △为等腰直角三角形可得其外接圆的半径,又平面PAD ⊥平面ABCD 可得底面外接圆的圆心即为外接球的球心,由题意可得外接球的半径,进而求出外接球的体积.【详解】解:取矩形的对角线的交点O 和AD 的中点E ,连接OE ,OP ,OE ,则O 为矩形ABCD 的外接圆的圆心,而2DPA π∠=,AD =2AB =,PA PD =,则//OE AB ,112OE AB ==, 12PE AD == 所以E 为PAD △的外接圆的圆心,因为平面PAD ⊥平面ABCD ,所以O 为外接球的球心,OP 为外接球的半径,在POE △中,22222214R OP PE OE ==+=+=,所以2R =, 所以外接球的体积343233V R ππ==, 故答案为:323π.【点睛】本题考查四棱锥的棱长与外接球的半径的关系及球的体积公式,属于中档题. 20.【分析】】解方程得出棱台的上下底面边长根据面积关系和比例关系求出棱台的高和小棱锥的高【详解】解方程x2-9x +18=0得x=3或x=6∴棱台的上下底面边长分别为36设棱台的斜高为h 则∴h=即答案为【 解析:52【分析】】解方程得出棱台的上下底面边长,根据面积关系和比例关系求出棱台的高和小棱锥的高.【详解】解方程x 2-9x +18=0得x=3或x=6,∴棱台的上下底面边长分别为3,6.设棱台的斜高为h ,, 则22143636452h ⨯⨯+=+=() , ∴h=52. 即答案为52. 【点睛】本题考查了棱台的结构特征,画出草图帮助观察各线段的关系比较重要.三、解答题21.(1)证明见解析;(26 【分析】(1)取PB 中点M ,证明四边形AMFE 为平行四边形,从而得到//EF AM ,再由线面平行的判定定理证明即可;(2)证明PB ⊥平面ABD ,从而求出P ABD V -,再由43B PAD V h -=,B PAD P ABD V V --=得出点B 到平面PAD 的距离.【详解】(1)证明:取PB 中点M ,连接,MF AM ,由F 为PC 中点,则//MF BC 且12MF BC =. 由已知有//,BC AD BC AD =,又由于E 为AD 中点,从而//,MF AE MF AE =,故四边形AMFE 为平行四边形,所以//EF AM .又AM ⊂平面PAB ,而EF ⊂/平面PAB ,则//EF 平面PAB(2)2,6,10BA PB PA ===.222,PA BA PB PB BA ∴=+∴⊥,同理,PB BD ⊥又,,BD BA A BD BA ⋂=⊂平面ABDPB ∴⊥平面ABD .11162226323P ABD V -∴=⨯⨯⨯⨯=⨯ 连接,PE E 为AD 中点,,PA PD PE DA =∴⊥ 又90,2,222DBA BA BD DA DE ∠=︒==∴=∴=.10222PE ∴=-=设点B 到平面PAD 的距离为h11122224323B PAD V h h -∴=⨯⨯⨯⨯=⨯ 由B PAD P ABD V V --=,解得6h =∴点B 到平面PAD 的距离为62. 【点睛】关键点睛:在求点到平面的距离时,关键是利用等体积法建立等量关系,从而得出点到平面的距离.22.(1)证明见解析;(2)33. 【分析】 (1)根据线面垂直的判定定理,先证明AB ⊥平面1BB C ,再由面面垂直的判定定理,即可证明结论成立;(2)先由(1)得到AB BC ⊥,求出BC 和1B C ,过点C 作1CD BB ⊥于点D ,求出CD ,再由棱锥的体积公式,即可求出结果.【详解】(1)∵1B C ⊥平面ABC ,AB 平面ABC ,∴1B C AB ⊥,又四边形11ABB A 为矩形,∴1AB B B ⊥.又∵111B B B C B ⋂=,1B B ⊂平面1BB C ,1B C ⊂平面1BB C ,∴AB ⊥平面1BB C , 又AB 平面11ABB A ,∴平面11ABB A ⊥平面1BB C .(2)由(1)知AB ⊥平面1BB C ,∴AB BC ⊥,则223BC AC AB =-=,从而()221231B C =-=,在1BB C △中,过点C 作1CD BB ⊥于点D ,由于平面11ABB A ⊥平面1BB C ,平面11ABB A 平面11BB C BB =, ∴CD ⊥平面11ABB A ,由1111122BC B S B C BC BB CD =⋅=⋅可得32CD =, ∴四棱锥11C ABB A -的体积为1111331233ABB A V S CD =⋅=⨯⨯⨯=.【点睛】方法点睛:证明空间中位置关系时,通常根据空间中线面、面面平行或垂直的判定定理及性质,直接证明即可;有时也可建立适当的空间直角坐标系,求出对应的直线的方向向量,以及平面的法向量等,根据空间位置的向量表示进行判断.23.(1)证明见解析;(2)证明见解析.【分析】( 1)设BD 与AC 的交点为O ,连接EO ,通过直线与平面平行的判定定理证明//PB 平面AEC ;( 2)通过体积得到底面为正方形,再由线面垂直得到面面垂直即可.【详解】(1)连接BD 交AC 于点O ,连结EO ,因为ABCD 为矩形,所以O 为BD 的中点,又E 为PD 的中点,所以//EO PB ,EO ⊂平面AEC ,PB ⊄平面AEC ,所以//PB 平面AEC .(2)因为113P ABCD V AB AD AP -=⨯⨯⨯=, 所以3AB =,所以底面ABCD 为正方形,所以BD AC ⊥,因为PA ABCD ⊥,所以BD PA ⊥,且AC PA A ⋂=,所以BD ⊥平面PAC , 又BD ⊂平面PBD ,所以平面PAC ⊥平面PBD .【点睛】本题主要考查了立体几何及其运算,要证明线面平行先证明线线平行,要证明面面垂直,先证明线面垂直,考查了学生的基础知识、空间想象力.24.(1)证明见解析;(2)33. 【分析】(1)用分析法:要证平面NMC ⊥平面NCD ,只需证明CD ⊥平面NMC ,只需CM CD ⊥和NM CD ⊥;(2)由(1)的证明,以M 为原点,MB ,MD ,MN 所在的直线分别为x ,y ,z 轴建立空间直角坐标系M xgz -,用向量法计算.【详解】解:(1)如图,梯形ABCD 中,过点C 作CH DM ⊥于点H ,连接CM ,由题意知,1CH =,122AM DM AD ===. 由45ADC ∠=︒,可得11tan 45DH ==︒, 则1HM DM DH =-=,∴CM CD ⊥,//BC MH .又BC CH =,CH MH ⊥,∴四边形BCHM 为正方形,∴BM AD ⊥.在四棱锥N BCDM -中,∵平面NBM ⊥平面BCDM ,平面NBM ⋂平面BCDM BM =,MN BM ⊥,∴NM ⊥平面BCDM .∵CD ⊂平面BCDM ,∴NM CD ⊥.∵NM CM M =,且NM ,CM ⊂平面NMC ,∴CD ⊥平面NMC .又CD ⊂平面NCD ,∴平面NMC ⊥平面NCD .(2)在四棱锥N BCDM -中,以M 为原点,MB ,MD ,MN 所在的直线分别为x ,y ,z 轴建立空间直角坐标系M xgz -,可得()0,0,0M ,()1,0,0B ,()1,1,0C ,()0,2,0D ,()0,0,2N .∵平面NBM ⊥平面BCDM ,平面NBM ⋂平面BCDM BM =,BM MD ⊥,∴MD ⊥平面NBM ,∴()0,2,0MD =是平面NBM 的一个法向量,设平面NCD 的一个法向量为(),,x y z =m ,∵()1,1,2NC =-,()0,2,2ND =-,∴00m NC m ND ⎧⋅=⎨⋅=⎩,即20220x y z y z +-=⎧⎨-=⎩, 取1y =,则1z =,1x =,∴()1,1,1=m .∴cos ,||3MD mMD m MD m ⋅==⋅,∴平面NBM 与平面NCD 所成锐二面角的余弦值为3. 【点睛】立体几何解答题的基本结构:(1)第一问一般是几何关系的证明,用判定定理;(2)第二问是计算,求角或求距离(求体积通常需要先求距离),通常可以建立空间直角坐标系,利用向量法计算.25.(1)证明见解析;(2)证明见解析.【分析】(1)利用中位线的性质可得出//EF AC ,再利用线面平行的判定定理可证得结论成立; (2)利用面面垂直的性质定理可得出BE ⊥平面ACD ,进而可证得BE CD ⊥.【详解】(1)在ADC 中,E 、F 分别是AD 、DC 的中点,//EF AC ∴.EF ⊄平面ABC ,AC ⊂平面ABC ,//EF ∴平面ABC ;(2)在ABD △中,BA BD =,E 为AD 的中点,BE AD ∴⊥,又平面ABD ⊥平面ADC ,平面ABD ⋂平面ADC AD =,BE ⊂平面ABD , BE ∴⊥平面ADC .CD ⊂平面ADC ,BE CD ∴⊥.【点睛】 方法点睛:在证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)、直角梯形等等.26.(Ⅰ)证明见解析;(Ⅱ 【分析】(Ⅰ)由余弦定理求出BD ,可得AD BD ⊥,再由1DD BD ⊥可得BD ⊥平面1ADD ,即得证;(Ⅱ)在平面1BCC 内作1C F BE ⊥,可得1C F ⊥平面BDE ,则1C F 的长就是点1C 到平面BDE 的距离,求出即可.【详解】(Ⅰ)由题意可得2222cos 16BD AD AB AB AD BAD =+-⨯∠=, 所以222AD BD AB +=,因此AD BD ⊥,在直四棱柱1111ABCD A B C D -中,1DD ⊥平面ABCD ,所以1DD BD ⊥, 又因为1AD DD D =,所以BD ⊥平面1ADD ,因为BD ⊂平面DBE ,所以平面DBE ⊥平面1ADD .(Ⅱ)如图,在平面1BCC 内作1C F BE ⊥,垂足为F . 由(Ⅰ)知BD ⊥平面1ADD ,因为平面1//ADD 平面1BCC , 所以BD ⊥平面1BCC ,所以1BD C F ⊥,又因为BD BE B ⋂=,所以1C F ⊥平面BDE .所以线段1C F 的长就是点1C 到平面BDE 的距离.因为114,3CC DD BD BC ====,所以12,13CE C E BE ===. 在平面1BCC 内,可知1BCE C FE ∽,所以1113C F BC C E BE ==,得1613C F =, 所以点1C 到平面BDE 的距离为613.【点睛】本题考查面面垂直的证明,考查点面距离的求解,解题的关键是在平面1BCC 内作1C F BE ⊥,判断出线段1C F 的长就是点1C 到平面BDE 的距离.。
一、选择题1.在正方体1111ABCD A B C D -中,点,E F 分别是梭BC ,CD 的中点,则1A F 与1C E 所成角的余弦值为( )A .5B .25C .5D .25 2.已知AB 是平面α外的一条直线,则下列命题中真命题的个数是( )①在α内存在无数多条直线与直线AB 平行;②在α内存在无数多条直线与直线AB 垂直;③在α内存在无数多条直线与直线AB 异面;④一定存在过AB 且与α垂直的平面β.A .1个B .2个C .3个D .4个3.如图,在长方体1111ABCD A B C D -中,1AB AD ==,12AA =,M 为棱1DD 上的一点.当1A M MC +取得最小值时,1B M 的长为( )A 3B 6C .23D .264.已知正方体1111ABCD A B C D -,点,EF 分别是棱11B C ,11A D 的中点,则异面直线BE ,DF 所成角的余弦值为( )A 5B .35C .45D 25 5.在我国古代,将四个角都是直角三角形的四面体称为“鳖臑”.在“鳖臑”ABCD 中,AB ⊥平面BCD ,BD CD ⊥且AB BD CD ==,若该四面体的体积为43,则该四面体外接球的表面积为( )A .8πB .12πC .14πD .16π6.已知正三棱柱111ABC A B C -中,1AB AA =,M 是1CC 的中点,则异面直线AM 与1A B 所成角的大小为( )A .π6B .π4C .π3D .π27.已知正三棱柱111ABC A B C -,的体积为163,底面积为43,则三棱柱111ABC A B C -的外接球表面积为( )A .1123πB .563πC .2243πD .28π8.已知点A ,B ,C 在半径为5的球面上,且214AB AC ==,27BC =,P 为球面上的动点,则三棱锥P ABC -体积的最大值为( )A .5673B .5273C .4973D .147 9.如图为某几何体的三视图,正视图、左视图和俯视图均为等腰直角三角形,则该几何体的表面积是( )A .23+B .223+C .63D .610.在下面四个正方体ABCD A B C D ''''-中,点M 、N 、P 均为所在棱的中点,过M 、N 、P 作正方体截面,则下列图形中,平面MNP 不与直线A C '垂直的是( ) A . B . C . D . 11.某三棱锥的三视图如图所示, 则该三棱锥的体积为( )A .16B .13C .23D .212.如果一个水平放置的平面图形的斜二测直观图是如图所示的直角梯形,其中2O A ''=,45B A O '''∠=,//B C O A ''''.则原平面图形的面积为( )A .32B .62C 322D .34二、填空题13.已知ABC 三个顶点都在球O 的表面上,且1AC BC ==,2AB =,S 是球面上异于A 、B 、C 的一点,且SA ⊥平面ABC ,若球O 的表面积为16π,则球心O 到平面ABC 的距离为____________. 14.如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PAD △为等边三角形,四边形ABCD 为矩形,24AB AD ==,则四棱锥P ABCD -的外接球的表面积为________.15.如图,圆柱的体积为16π,正方形ABCD 为该圆柱的轴截面,F 为AB 的中点,E 为母线BC 的中点,则异面直线AC ,EF 所成的角的余弦值为______.16.如图,在三棱锥P ABC -中,PA ⊥平面ABC ,AB BC ⊥,2PA AB ==,22AC =,M 是BC 的中点,则过点M 的平面截三棱锥P ABC -的外接球所得截面的面积最小值为___17.在三棱锥D ABC -中,AD ⊥平面ABC ,3AC =,17BC =1cos 3BAC ∠=,若三棱锥D ABC -的体积为73,则此三棱锥的外接球的表面积为______ 18.已知四面体P ﹣ABC 的外接球的球心O 在AB 上,且PO ⊥平面ABC ,2AC 3=,若四面体P ﹣ABC 的体积为32,则该球的体积为_____. 19.如图,已知正四面体D ABC -,P 为线段AB 上的动点(端点除外),则二面角D PC B --的平面角的余弦值的取值范围是___________.20.已知点O 为圆锥PO 底面的圆心,圆锥PO 的轴截面为边长为2的等边三角形PAB ,圆锥PO 的外接球的表面积为______.三、解答题21.如图,在四棱锥P ABCD -中,PAB △是等边三角形,CB ⊥平面,//PAB AD BC 且22PB BC AD F ===,为PC 中点.(1)求证://DF 平面PAB ;(2)求直线AB 与平面PDC 所成角的正弦值.22.一副标准的三角板(如图1),ABC ∠为直角,60A ∠=︒,DEF ∠为直角,DE EF =,BC DF =,把BC 与DF 重合,拼成一个三棱锥(如图2),设M 是线段AC 的中点,N 是线段BC 的中点.(1)求证:平面ABC ⊥平面EMN ;(2)设平面ABE 平面MNE l =,求证://l AB .23.在棱长为2的正方体1111ABCD A B C D -中,O 是底面ABCD 的中心.(1)求证:1B O//平面11DA C ;(2)求点O 到平面11DA C 的距离.24.在三棱柱111ABC A B C -中,侧面11BCC B 为矩形,AC ⊥平面11BCC B ,D ,E 分别是棱1AA ,1BB 的中点.(1)求证://AE 平面11B C D ;(2)求证:1CC ⊥平面ABC ;(3)若12AC BC AA ===,求直线AB 与平面11B C D 所成角的正弦值.25.如图,已知三棱锥P ABC -﹐PC AB ⊥,ABC 是边长为233PB =60PBC ∠=,点F 为线段AP 的中点.(1)证明:PC ⊥平面ABC ;(2)求直线BF 与平面PAC 所成角的大小.26.在四棱锥P ABCD -中,底面ABCD 为矩形,AP ⊥平面PCD ,E ,F 分别为PC ,AB 的中点求证:(1)平面PAD ⊥平面ABCD ;(2)//EF 平面PAD【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】延长DA 至G ,使AG CE =,可证11//A G C E ,得1GA F ∠是异面直线1A F 与1C E 所成的角(或其补角).在1AGF △中,由余弦定理可得结论. 【详解】延长DA 至G ,使AG CE =,连接1,GE GA ,GF ,11,AC A C ,又//AG CE 所以AGEC 是平行四边形,//,GE AC GE AC =,又正方体中1111//,AC AC AC AC =,所以1111//,AC DE AC DE =,所以11AC EG 是平行四边形,则11//A G C E ,所以1GA F ∠是异面直线1A F 与1C E 所成的角(或其补角).设正方体棱长为2,在正方体中易得15AG =,10GF =,22222112(21)3A F AA AF =+=++=,1AGF △中,2221111125cos 2253AG A F GF GA F AG A F+-∠===⋅⨯⨯. 故选:D .【点睛】方法点睛:本题考查空间向量法求异面直线所成的角,求异面直线所成角的方法: (1)定义法:根据定义作出异面直线所成的角并证明,然后解三角形得结论; (2)建立空间直角坐标系,由两异面直线的方向向量的夹角得异面直线所成的角. 2.C解析:C【分析】根据线面平行,线面垂直,异面直线等有关结论和定义即可判断.【详解】对于A ,若直线AB 与平面α相交,则在α内不存在直线与直线AB 平行,错误;对于B ,若直线AB 与平面α相交且不垂直,设AB M α=,过平面α外直线AB 上一点P 作PC α⊥,垂足为C ,则在平面α内过点C 一定可以作一条直线CD ,使得CD CM ⊥,所以CD AB ⊥,而在平面α内,与直线CD 平行的直线有无数条,所以在α内存在无数多条直线与直线AB 垂直,若直线AB 与平面α垂直,显然在α内存在无数多条直线与直线AB 垂直,当直线AB 与平面α平行时,显然可知在α内存在无数多条直线与直线AB 垂直,正确;对于C ,若直线AB 与平面α相交,设AB M α=,根据异面直线的判定定理,在平面α内,不过点M 的直线与直线AB 异面,所以在α内存在无数多条直线与直线AB 异面,当直线AB 与平面α平行时,显然可知在α内存在无数多条直线与直线AB 异面,正确; 对于D ,若直线AB 与平面α相交且不垂直,设AB M α=,过平面α外直线AB 上一点P 作PC α⊥,垂足为C ,所以平面ABC 与平面α垂直,若直线AB 与平面α垂直,则过直线AB 的所有平面都与平面α垂直,当直线AB 与平面α平行时,在直线AB 上取一点P 作PC α⊥,垂足为C ,所以平面ABC 与平面α垂直,正确.故真命题的个数是3个.故选:C .【点睛】本题主要考查线面平行,线面垂直,异面直线等有关结论和定义的理解和应用,熟记定义,定理和有关结论是解题的关键,属于中档题.3.A解析:A【分析】本题首先可通过将侧面11CDD C 绕1DD 逆时针转90展开得出当1A 、M 、2C 共线时1A M MC +取得最小值,此时M 为1DD 的中点,然后根据11B A ⊥平面11A D DA 得出111B A A M ⊥,最后根据221111M A B B A M =+即可得出结果.【详解】如图,将侧面11CDD C 绕1DD 逆时针转90展开,与侧面11ADD A 共面,连接12A C ,易知当1A 、M 、2C 共线时,1A M MC +取得最小值,因为1AB AD ==,12AA =,所以M 为1DD 的中点,12A M =因为11B A ⊥平面11A D DA ,1A M ⊂平面11A D DA ,所以111B A A M ⊥,则222211111(2)3M B A A M B =+=+=故选:A.【点睛】关键点点睛:本题考查根据线面垂直判断线线垂直,能否根据题意得出当M 为1DD 的中点时1A M MC +取得最小值是解决本题的关键,考查计算能力,考查数形结合思想,是中档题.4.B解析:B【分析】证明//BE AF ,得AFD ∠是异面直线BE ,DF 所成角或其补角,在三角形中求解即可.【详解】连接,AF EF ,∵,E F 分别是棱11B C ,11A D 的中点,∴//EF AB ,EF AB =, ∴ABEF 是平行四边形,∴//BE AF ,∴AFD ∠是异面直线BE ,DF 所成角或其补角, 设正方体的棱长为2,则111A F D F ==,22215AF DF ==+=,2223cos 25255AF DF AD AFD AF DF +-∠===⋅⨯⨯, 异面直线BE ,DF 所成角的余弦值为35. 故选:B .【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤ ⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角. 5.B解析:B【分析】由题意计算2,AB BD CD ===分析该几何体可以扩充为长方体,所以只用求长方体的外接球即可.【详解】因为AB ⊥平面BCD ,BD CD ⊥且AB BD CD ==, 43A BCD V -=, 而114323A BCD V BD CD AB -=⨯⨯⨯=,所以2AB BD CD ===, 所以该几何体可以扩充为正方体方体,所以只用求正方体的外接球即可.设外接球的半径为R ,则23R =所以外接球的表面积为2412S R ππ==故选:B【点睛】多面体的外接球问题解题关键是找球心和半径,求半径的方法有:(1)公式法;(2) 多面体几何性质法;(3)补形法;(4)寻求轴截面圆半径法;(5)确定球心位置法.6.D解析:D【分析】取AC 中点E ,连接1,A E BE ,先通过BE ⊥平面11ACC A 可得BE AM ⊥,再由1ACM A AE ≅可得1AM A E ⊥,即可得出AM ⊥平面1A BE ,即1AM A B ⊥.【详解】取AC 中点E ,连接1,A E BE ,ABC 为正三角形,BE AC ∴⊥,正三棱柱111ABC A B C -中,1CC ⊥平面ABC ,BE ⊂平面ABC ,1CC BE ∴⊥,1AC CC C =,BE ∴⊥平面11ACC A ,AM ⊂平面11ACC A ,BE AM ∴⊥,在直角三角形ACM 和直角三角形1A AE 中,1,AC A A CM AE ==,1ACM A AE ∴≅,1CAM AA E ∴∠=∠,12CAM A EA π∴∴∠+∠=,则1AM A E ⊥,1BE A E E ⋂=,AM ∴⊥平面1A BE ,1A B ⊂平面1A BE ,1AM A B ∴⊥,故异面直线AM 与1A B 所成角的大小为2π.【点睛】本题考查异面直线所成角的求解,解题的关键是通过证明AM ⊥平面1A BE 判断出1AM A B ⊥.7.A解析:A【分析】由面积和体积可得三棱柱的底面边长和高,根据特征可知外接球的球心为上下底面中心连线的中点,再由勾股定理可得半径及球的表面积.【详解】 依题意,1163443AA ==,而213sin 432ABC S AB AC A AB =⨯⨯== 解得4AB =,记ABC 的中心为О,111A B C △的中心为О1,则114O A O A ==, 取1OO 的中点D ,因为AO CO =,90AOD COD ∠=∠=,由勾股定理得AD CD =,同理可得111AD BD A D B D C D ====,所以正三棱柱的外接球的球心为即D ,AD 为外接球的半径, 由正弦定理得432sin 60AB AO ==, 故2221628433A O D D O A =+=+=, 故三棱柱111ABC ABC -的外接球表面积2281124433S R πππ==⨯=, 故选:A .【点睛】本题考查了正三棱柱外接球的表面积的求法,关键点是确定球心的位置和球的半径的长度,考查了学生的空间想象力和计算能力.8.A解析:A【分析】求出球心到平面ABC 的距离,由这个距离加上球半径得P 到平面ABC 距离的最大值,再由体积公式可得P ABC -体积的最大值.【详解】如图,M 是ABC 的外心,O 是球心,OM ⊥平面ABC ,当P 是MO 的延长线与球面交点时,P 到平面ABC 距离最大, 由214AB AC ==,7BC =,得72cos 214ACB ∠==,则14sin 4ACB ∠=, 21428sin 14AB AM CB ===∠,4AM =, 2222543OM OA AM =-=-=,358PM =+=, 又1114sin 2142777224ABC S AC BC ACB =⋅⋅∠=⨯=△ 所以最大的15677833P ABC V -=⨯=. 故选:A .【点睛】本题考查求三棱锥的体积,解题关键是确定三棱锥体积最大时P 点在球面上的位置,根据球的性质易得结论.当底面ABC 固定,M 是ABC 外心,当PM ⊥平面ABC ,且球心O 在线段PM 上时,P 到平面ABC 距离最大.9.A解析:A【分析】由三视图可知原几何体是三棱锥,平面ACD ⊥平面ABC ,ACD ACB ≅底面是等腰直角三角形,底为2AC =,高为1BE =,ABD BCD ≅是边长为2的等边三角形,计算四个三角形面积之和即可求解.【详解】由三视图可知原几何体是三棱锥:底面ACB △是等腰直角三角形,底2AC =,高1BE =,平面ACD ⊥平面ABC ,ACD ACB ≅,由三视图知ACB △中,2AC =,ACB △是等腰直角三角形,所以2AB BC == ACD △是等腰直角三角形,2AD CD ==,2AC =,222BD BE DE =+=所以等腰直角三角形ACB △的面积为12112⨯⨯=, 等腰直角三角形ACD △的面积为12112⨯⨯=,等边ABD △的面积为()233242⨯=, 等边BCD △的面积为()2332⨯=, 所以该几何体的表面积是331123+++=+, 故选:A. 10.A解析:A【分析】利用线面垂直的判定定理可判断BCD 选项,利用假设法推出矛盾,可判断A 选项.【详解】对于A 选项,连接B C ',假设A C '⊥平面MNP ,在正方体ABCD A B C D ''''-中,A B ''⊥平面BB C C '',B C '⊂平面BB C C '',A B B C '''∴⊥,所以,A B C ''为直角三角形,且A CB ''∠为锐角,因为M 、N 分别为BB '、BC 的中点,则//MN B C ',所以,MN 与A C '不垂直, 这与A C '⊥平面MNP 矛盾,故假设不成立,即A C '与平面MNP 不垂直;对于B 选项,连接B D ''、A C '',如下图所示:因为四边形A B C D ''''为正方形,则A C B D ''''⊥,CC '⊥平面A B C D '''',B D ''⊂平面A B C D '''',CC B D '''∴⊥,A C CC C ''''=,B D ''∴⊥平面A CC '',A C '⊂平面A CC '',A CB D '''∴⊥,M 、P 分别为A B ''、A D ''的中点,则//MN B D '',可得MP A C '⊥,同理可证A C MN '⊥,MP MN M ⋂=,A C '∴⊥平面MNP ;对于C 选项,连接C D '、A N '、CN 、A P '、PC ,取A B ''的中点E ,连接C E '、PE ,因为四边形CC D D ''为正方形,则CD C D ''⊥,A D ''⊥平面CC D D '',C D '⊂平面CC D D '',C D A D '''∴⊥,CD A D D ''''=,C D '∴⊥平面A CD '',A C '⊂平面A CD '',A C C D ''∴⊥, M 、N 分别为DD '、C D ''的中点,//MN C D '∴,A C MN '∴⊥,在正方形A B C D ''''中,E 、N 分别为A B ''、C D ''的中点,//A E C N ''∴且A E C N ''=, 所以,四边形A EC N ''为平行四边形,所以,//A N C E ''且A N C E ''=,同理可证四边形CC EP '为平行四边形,//C E CP '∴且C E CP '=,所以,//A N CP '且A N CP '=,所以,四边形A PCN '为平行四边形,易得A N CN '=,所以,四边形A PCN '为菱形,所以,A C PN '⊥,MN PN N =,A C '∴⊥平面MNP ;对于D 选项,连接AC 、BD ,因为四边形ABCD 为正方形,则AC BD ⊥,AA '⊥平面ABCD ,BD ⊂平面ABCD ,AA BD '∴⊥,AC AA A '⋂=,BD ∴⊥平面AA C ',A C '⊂平面AA C ',AC BD '∴⊥, M 、N 分别为CD 、BC 的中点,则//MN BD ,A C MN '∴⊥,同理可证A C MP'⊥,MN MP M⋂=,A C'∴⊥平面MNP.故选:A.【点睛】方法点睛:证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面),解题时,注意线线、线面与面面关系的相互转化;另外,在证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)、直角梯形等等.11.C解析:C【分析】根据题中所给的几何体的三视图还原几何体,得到相应的三棱锥,之后利用椎体体积公式求得结果.【详解】根据题中所给的几何体的三视图还原几何体如图所示:该三棱锥满足底面BCD△是等腰三角形,且底边和底边上的高线都是2;且侧棱AD⊥底面BCD,1AD=,所以112 =221=323V⨯⨯⨯⨯,故选:C.【点睛】方法点睛:该题考查的是有关根据所给几何体三视图求几何体体积的问题,解题方法如下:(1)应注意把握三个视图的尺寸关系:主视图与俯视图长应对正(简称长对正),主视图与左视图高度保持平齐(简称高平齐),左视图与俯视图宽度应相等(简称宽相等),若不按顺序放置和不全时,则应注意三个视图名称;(2)根据三视图还原几何体;(3)利用椎体体积公式求解即可.12.A解析:A【分析】作出原平面图形,然后求出面积即可.【详解】45B A O '''∠=B O A '''=∠,则O A B '''△是等腰直角三角形, ∴2A B OB '''==,又O C C B ''''⊥,45C O B '''∠=︒,∴1B C ''=,在直角坐标系中作出原图形为:梯形OABC ,//OA BC ,2,1OA BC ==,高22OB =∴其面积为1(21)22322S =+⨯= 故选:A【点睛】方法点睛:本题考查斜二测法画平面图形直观图,求原图形的面积,可能通过还原出原平面图形求得面积,也可以通过直观图到原图形面积的关系求解:直观图面积为S ',原图形面积为S ,则24S S '= 二、填空题13.【分析】根据题中的垂直关系确定球心再根据球的表面积公式计算再求点到平面的距离【详解】由并且平面平面且平面是直角三角形和的公共斜边取的中点根据直角三角形的性质可知所以点是三棱锥外接球的球心设则则三棱锥解析:142 【分析】 根据题中的垂直关系,确定球心O ,再根据球的表面积公式计算SA ,再求点O 到平面ABC 的距离.【详解】由222AC BC AB +=,AC BC ∴⊥,并且SA ⊥平面ABC ,BC ⊂平面ABC ,SA BC ∴⊥,且AC SA A ⋂=BC ∴⊥平面SAC ,BC SC ∴⊥,SB ∴是直角三角形SBC 和SAB 的公共斜边,取SB 的中点O ,根据直角三角形的性质可知OA OB OC OS ===,所以点O 是三棱锥S ABC -外接球的球心,设SA x =,则211222r SB x ==+, 则三棱锥S ABC -外接球的表面积2416S r ππ==,()21264x +=,解得:14x =, 点O 到平面ABC 的距离11422d SA ==.故答案为:142【点睛】 方法点睛:本题考查了球与几何体的综合问题,考查空间想象能力以及化归和计算能力,(1)当三棱锥的三条侧棱两两垂直时,并且侧棱长为,,a b c ,那么外接球的直径2222R a b c =++2)当有一条侧棱垂直于底面时,先找底面外接圆的圆心,过圆心做底面的垂线,球心在垂线上,根据垂直关系建立R 的方程.(3)而本题类型,是两个直角三角形的公共斜边的中点是外接球的球心.14.【分析】先根据面面垂直取平面的外接圆圆心G 平面的外接圆圆心H 分别过两点作对应平面的垂线找到交点为外接球球心再通过边长关系计算半径代入球的表面积公式即得结果【详解】如图取的中点的中点连在上取点使得取的解析:643π 【分析】先根据面面垂直,取平面PAD 的外接圆圆心G ,平面ABCD 的外接圆圆心H ,分别过两点作对应平面的垂线,找到交点为外接球球心O ,再通过边长关系计算半径,代入球的表面积公式即得结果.【详解】如图,取AD 的中点E ,BC 的中点F ,连EF ,PE ,在PE 上取点G ,使得2PG GE =,取EF 的中点H ,分别过点G 、H 作平面PAD 、平面ABCD 的垂线,两垂线相交于点O ,显然点O 为四棱锥P ABCD -外接球的球心,由2AD =,4AB =,可得3PE =33GE OH ==,2222125AH AE EH +=+= 则半径22343(5)3r OA ⎛⎫==+= ⎪ ⎪⎝⎭, 故四棱锥P ABCD -外接球的表面积为2364433ππ⎛⎫⨯= ⎪ ⎪⎝⎭. 故答案为:643π. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可. 15.【分析】由圆柱体积求得底面半径母线长设底面圆心为可得为异面直线与所成的角(或其补角)在对应三角形中求解可得【详解】设圆柱底面半径为则母线长为由得设底面圆心为连接则所以为异面直线所成的角在中所以故答案 解析:6 【分析】由圆柱体积求得底面半径,母线长,设底面圆心为O ,可得OEF ∠为异面直线AC 与EF 所成的角(或其补角).在对应三角形中求解可得. 【详解】设圆柱底面半径为r ,则母线长为2r ,由2216r r ππ⋅=得2r.设底面圆心为O ,连接OE ,OF .则//OE AC ,所以OEF ∠为异面直线AC ,EF 所成的角.在Rt OEF △中,2OF =,22OE =,23EF =. 所以6cos OE OEF EF ∠==. 故答案为:63.【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.16.【分析】将三棱锥补成长方体计算出三棱锥的外接球半径计算出球心到过点的截面的距离的最大值可求得截面圆半径的最小值利用圆的面积可求得结果【详解】平面将三棱锥补成长方体则三棱锥的外接球直径为所以设球心为点解析:π【分析】将三棱锥P ABC -补成长方体ABCD PEFN -,计算出三棱锥P ABC -的外接球半径R ,计算出球心到过点M 的截面的距离d 的最大值,可求得截面圆半径的最小值,利用圆的面积可求得结果. 【详解】PA ⊥平面ABC ,AB BC ⊥,将三棱锥P ABC -补成长方体ABCD PEFN -,则三棱锥P ABC -的外接球直径为22222223R PC PA AB AD PA AC ==++=+=,所以,3R =设球心为点O ,则O 为PC 的中点,连接OM ,O 、M 分别为PC 、BC 的中点,则//OM PB ,且2211222OM PB PA AB ==+= 设过点M 的平面为α,设球心O 到平面α的距离为d . ①当OM α⊥时,2d OM == ②当OM 不与平面α垂直时,2d OM <=. 综上,2d OM ≤.设过点M 的平面截三棱锥P ABC -的外接球所得截面圆的半径为r ,则221r R d =-≥,因此,所求截面圆的面积的最小值为2r ππ=. 故答案为:π. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.17.【分析】设出外接球的半径球心的外心半径r 连接过作的平行线交于连接如图所示在中运用正弦定理求得的外接圆的半径r 再利用的关系求得外接球的半径运用球的表面积公式可得答案【详解】设三棱锥外接球的半径为球心为 解析:20π【分析】设出外接球的半径R 、球心O ,ABC 的外心1O 、半径 r , 连接1AO ,过O 作的平行线OE 交AD 于 E ,连接OA ,OD ,如图所示,在ABC 中,运用正弦定理求得 ABC的外接圆的半径r ,再利用1,,R r OO 的关系求得外接球的半径,运用球的表面积公式可得答案. 【详解】设三棱锥外接球的半径为R 、球心为O ,ABC 的外心为1O 、外接圆的半径为r ,连接1AO ,过O 作平行线OE 交AD 于E ,连接OA ,OD ,如图所示,则OA OD R ==,1O A r =,OE AD ⊥,所以E 为AD 的中点.在ABC中,由正弦定理得2sin 3BC r BAC ==∠8r =. 在ABC 中,由余弦定理2222cos BC AB AC AB AC BAC =+-⋅⋅∠,可得2117963AB AB =+-⋅⋅,得4AB =.所以11sin 34223ABC S AB AC BAC =⋅⋅∠=⨯⨯⨯=△因为1133D ABC ABC V S AD AD -=⋅⋅=⨯=△AD =.连接1OO ,又1//OO AD ,所以四边形1EAO O 为平行四边形,1128EA OO AD ===,所以R ===所以该三棱锥的外接球的表面积224π4π20πS R ===.故答案为:20π.【点睛】本题考查三棱锥的外接球,及球的表面积计算公式,解决问题的关键在于利用线面关系求得外接球的球心和球半径,属于中档题.18.【分析】根据四面体是球的内接四面体结合位置关系可得棱锥的形状以及棱长之间的关系利用体积公式即可代值计算【详解】设该球的半径为R 则AB =2R2ACAB2R ∴ACR 由于AB 是球的直径所以△ABC 在大圆所 解析:3π【分析】根据四面体是球的内接四面体,结合位置关系,可得棱锥的形状,以及棱长之间的关系,利用体积公式即可代值计算. 【详解】设该球的半径为R ,则AB =2R ,2AC 3=3=2R , ∴AC 3=,由于AB 是球的直径,所以△ABC 在大圆所在平面内且有AC ⊥BC , 在Rt △ABC 中,由勾股定理,得:BC 2=AB 2﹣AC 2=R 2, 所以R t △ABC 面积S 12=⨯BC ×AC 3=2, 又PO ⊥平面ABC ,且PO =R ,四面体P ﹣ABC 的体积为32, ∴V P ﹣ABC 13=⨯R 3R 232=33=9,R 3=3 所以:球的体积V 43=⨯πR 343=⨯3=3. 故答案为:3π. 【点睛】本题考查三棱锥外接球体积的计算,属基础题;本题的重点是要根据球心的位置去推导四面体的几何形态,从而解决问题.19.【分析】当点从点运动到点时二面角的平面角逐渐增大二面角的平面角最小趋于二面角的平面角最大趋于二面角的平面角的补角求出二面角的平面角和二面角的平面角即可【详解】当点从点运动到点时二面角的平面角逐渐增大解析:11,33⎛⎫-⎪⎝⎭【分析】当点P从点A运动到点B时,二面角D PC B--的平面角逐渐增大,二面角D PC B--的平面角最小趋于二面角D AC B--的平面角,最大趋于二面角D BC A--的平面角的补角,求出二面角D AC B--的平面角和二面角D BC A--的平面角即可.【详解】当点P从点A运动到点B时,二面角D PC B--的平面角逐渐增大,二面角D PC B--的平面角最小趋于D AC B--的平面角,最大趋于二面角D BC A--的平面角的补角,设正四面体的棱长为2a,如图所示,取AC的中点E,连接DE、BE,易知DEB∠为二面角D AC B--的平面角,3DE BE a==,所以((()()()2223321cos3233a a aDEBa a+-∠==⨯⨯,同理可得:二面角D BC A--的平面角的补角的余弦值为13-,故二面角D PC B--的平面角的余弦值的取值范围是11,33⎛⎫-⎪⎝⎭,故答案为:11,33⎛⎫-⎪⎝⎭【点睛】本题主要考查了二面角的平面角的求解,考查空间想象能力,属于中档题.20.【分析】由题意知圆锥的轴截面为外接球的最大截面即过球心的截面且球心在上由等边三角形性质有即求得外接球的半径为R进而求外接球的表面积【详解】设外接球球心为连接设外接球的半径为R依题意可得在中有即解得故解析:163π【分析】由题意知圆锥PO 的轴截面为外接球的最大截面,即过球心的截面且球心在PO 上,由等边三角形性质有Rt AO O '△,即222O A AO O O ''=+求得外接球的半径为R ,进而求外接球的表面积. 【详解】设外接球球心为O ',连接AO ',设外接球的半径为R ,依题意可得1AO =,3PO =,在Rt AO O '△中,有222O A AO O O ''=+,即)22213R R =+,解得3R =, 故外接球的表面积为24164433S R πππ==⋅=. 故答案为:163π. 【点睛】本题考查了求圆锥体的外接球面积,由截面是等边三角形,结合等边三角形的性质求球半径,进而求外接球面积,属于基础题.三、解答题21.(1)证明见解析;(2)24【分析】(1)取PB 边的中点E ,即可证明四边形AEFD 为平行四边形,再根据线面平行的判定定理即可证明;(2)取BC 边的中点G ,由//DG AB ,即可得到直线AB 与平面PDC 所成角即为DG 与平面PDC 所成角,再由等体积法求得22G PCD d -=,即可求得直线AB 与平面PDC 所成角的正弦值. 【详解】解:(1)如图所示:取PB 边的中点E ,连,AE FE , 则三角形中位线可知://EF BC 且12EF BC =, 由题可知://AD BC 且12AD BC =, //AD EF ∴且AD EF =, 即四边形AEFD 为平行四边形, //DF AE ∴又DF ⊄平面,PAB AE ⊂平面PAB ,故//DF 平面PAB ; (2)取BC 边的中点G , 则//DG AB ,且2DG AB ==,直线AB 与平面PDC 所成角即为DG 与平面PDC 所成角, 又1CDGS=,且易得DC PD =,所以11223622CDPSPC DF =⋅=⨯=由等体积法,1113633P CDG G PCD G PCD V V d ---==⨯=,得22G PCD d -=, DG ∴与平面PDC 所成角的正弦值为2222= 故直线AB 与平面PDC 2. 【点睛】关键点点睛:本题解题的关键是利用等体积法求出G 点到平面PCD 的距离. 22.(1)证明见解析(2)证明见解析 【分析】(1)只要证明MN BC ⊥,EN BC ⊥,即得;。