实验一 DHVTC振动测试与控制学生实验系统的
- 格式:pdf
- 大小:135.50 KB
- 文档页数:4
振动测试的教学实验设计分析振动测试是一个重要的实验技术,用于研究物体在振动状态下的动态性能。
通过这个实验,可以了解振动系统的特性,对振动系统进行建模和分析。
本文将详细介绍振动测试的教学实验设计和分析。
实验目的:1.了解振动测试的基本原理和实验设备;2.通过实验掌握振动系统的特性;3.学会使用实验数据进行振动分析。
实验设备:1.振动台:用于提供振动激励,测试物体的振动特性;2.加速度传感器:用于测量物体的加速度信号;3.功率放大器:用于调节振动激励的幅值;4.数据采集卡:用于采集和记录加速度传感器的输出信号。
实验步骤:1.将被测物体固定在振动台上,并连接加速度传感器;2.将功率放大器和数据采集卡与振动台和加速度传感器连接;3.打开功率放大器和数据采集卡,并进行校准;4.设置振动激励的频率和幅值,并记录数据;5.改变振动激励的频率和幅值,记录不同条件下的振动响应数据;6.停止振动激励,保存实验数据。
实验数据分析:1.绘制振动激励的频率和幅值与物体振动响应的幅值和相位差的关系曲线图;2.分析曲线图,找出物体振动系统的固有频率、阻尼比等参数;3.利用振动分析方法,对振动系统进行模态分析,并计算出物体的振动频率和振动模态;4.将实验结果与理论分析结果进行比较,总结分析结果。
实验注意事项:1.实验前要确保实验设备和传感器的正常工作;2.加速度传感器的安装位置要合适,避免干扰;3.振动台的振动激励要从小到大逐渐增加,避免损坏设备;4.实验数据要准确记录,包括振动激励的频率和幅值,以及物体的振动响应数据;5.实验后要对设备进行清理和维护,确保其正常使用。
实验结果分析:通过上述实验步骤和数据分析,我们可以得出以下结论:1.物体的振动响应随着振动激励的频率和幅值的变化而变化;2.物体的振动系统具有固有频率,不同的固有频率对应不同的振动模态;3.随着阻尼比的增加,物体的振动响应减弱;4.实验结果与理论分析结果吻合,说明实验设备和方法的可靠性。
机械振动实验指导书基础与实验教学中心机械与动力工程学院上海交通大学目录安全注意事项 ....................................... 错误!未定义书签。
实验预备知识 DHVTC振动测试与控制实验系统组成与使用方法错误!未定义书签。
实验一振动系统固有频率的测量 ..................... 错误!未定义书签。
实验二无阻尼单自由度系统强迫振动特性的测量 . (11)实验三有、无阻尼单自由度系统自由衰减的测量 (16)实验四拍振实验 (20)实验五三自由度系统各阶固有频率及主振型的测量 (25)实验六动力吸振器吸振实验 (28)实验七悬臂梁模态测试 (32)实验八被动隔振实验 (35)实验安全注意事项本实验系统尽管在设计、加工和安装时已充分考虑了安全方面的问题,但强烈建议学生使用时注意如下事项:一、通电前仔细检查各活动机械部分,如激振器、偏心电机等的连接紧固情况,确保所有螺栓、卡扣等紧固无误,避免激振或旋转。
二、查看传感器、信号源、激振器等连线正确无误,确保各仪器正常工作。
三、检查各仪器电源线是否插紧插好,各仪器是否可靠接地,以防触电。
四、调压器应放置于桌面宽敞处,尽可能远离其它仪器,并且在使用时只有经检查无误后才能通电,通电前须仔细检查电机偏心轮是否紧固、调压器与电机连线、接地是否可靠,使用完毕应立即断电。
五、激振器和偏心电机工作时,禁止手或是其它物品碰到激振器顶杆和电机偏心轮,以免受伤或物品飞落。
六、所有仪器设备工作过程中发现异常应立即断电,并请专业人员检查维修。
实验预备知识: DHVTC振动测试与控制实验系统组成与使用方法一、DHVTC振动测试与控制学生实验系统的组成如图1-1所示,本系统由“振动测试与控制实验台”、“激振与测振系统”、“动态采集分析系统”组成。
⑴——底座⑸——非接触式激振器⑼——电式速度传感器⒀——单/双自由度系统⑵——支座⑹——接触式激振器⑽——被动隔振系统⒁——压电式加速度传感器⑶——三自由度系统⑺——力传感器⑾——简支梁/悬臂梁⒂——电涡流位移传感器⑷——薄壁圆板⑻——偏心电机⑿——主动隔振系统⒃——磁性表座图1-1 DHVTC振动测试与控制学生实验系统示意图1.1 振动与控制实验台振动测试与控制实验台由弹性体系统(包括简支梁、悬臂梁、薄壁圆板、单双自由度系统、三自由度系统模型)组成,配以主动隔振、被动隔振用的空气阻尼减震器、动力吸振器等,可完成振动与振动控制等20多个实验项目。
振动测量实验报告振动测量实验报告引言振动是物体在空间中周期性的运动,广泛存在于自然界和工程实践中。
对振动的测量和分析对于了解物体的结构和性能具有重要意义。
本实验旨在通过振动测量实验,探究振动现象的特性和相关参数的测量方法。
实验目的1. 了解振动的基本概念和特性;2. 掌握振动参数的测量方法;3. 学习振动测量仪器的使用和操作;4. 分析振动测量结果,得出相应结论。
实验仪器和材料1. 振动测量仪器:包括加速度传感器、振动传感器、振动分析仪等;2. 实验样品:可选取弹簧振子、悬臂梁等。
实验步骤1. 准备工作:检查仪器是否正常工作,确保传感器与分析仪器连接良好;2. 安装样品:根据实验要求,选择合适的样品并固定在测量平台上;3. 连接传感器:将加速度传感器或振动传感器与样品连接,并确保传感器位置合适;4. 开始测量:启动振动分析仪器,进行振动测量;5. 记录数据:根据实验要求,记录振动参数的数值,包括振幅、频率、相位等;6. 分析结果:根据测量数据,进行振动特性的分析和对比;7. 结论和讨论:根据实验结果,得出相应结论,并进行讨论。
实验结果与讨论通过实验测量和分析,我们得到了一系列振动参数的数值。
以弹簧振子为例,我们观察到随着振动频率的增加,振幅逐渐减小,这符合振动能量逐渐耗散的特性。
同时,我们还发现在某些频率下,振幅会出现明显的共振现象,这是由于外界激励与振动系统的固有频率相吻合所致。
通过对不同样品的振动测量和对比分析,我们还可以得出不同结构和材料的振动特性差异。
例如,悬臂梁相比弹簧振子更容易发生共振现象,这是由于其固有频率较低,容易与外界激励相吻合。
这些实验结果有助于我们理解和优化工程结构的振动性能。
实验误差分析在实验过程中,可能存在一些误差,例如传感器的位置不准确、测量仪器的精度限制等。
这些误差可能对测量结果产生一定影响。
为了减小误差,我们应该在实验前进行充分的准备工作,确保仪器和样品的状态良好,并在测量过程中注意操作细节。
DHVTC振动教学装置使用说明书江苏东华测试技术股份有限公司目录安全注意事项 (1)实验一 DHVTC振动测试与控制实验系统组成与使用方法 (2)实验二用“李萨如图形法”测量简谐振动的频率 (7)实验三简谐振动幅值测量 (10)实验四简谐波幅域统计参数的测定 (13)实验五振动系统固有频率的测量 (16)实验六“李萨如图形法”测量单自由度系统的固有频率 (24)实验七无阻尼单自由度系统强迫振动特性的测量 (26)实验八有无阻尼对单自由度系统自由衰减的测量 (30)实验九拍振实验 (34)实验十三自由度系统各阶固有频率及主振型的测量 (37)实验十一索力测量 (40)实验十二锤击法简支梁模态测试 (42)实验十三线性扫频法简支梁模态测试 (49)实验十四随机激励法简支梁模态测试 (52)实验十五不测力法简支梁模态测试 (55)实验十六悬臂梁模态测试 (59)实验十七圆板各阶固有频率及主振型的测量 (61)实验十八主动隔振实验 (64)实验十九被动隔振实验 (67)实验二十动力吸振器吸振实验 (70)实验二十一附加质量对系统频率的影响 (73)安全注意事项本实验系统尽管在设计、加工和安装时已充分考虑了安全方面的问题,但强烈建议用户使用时注意如下事项:一、通电前仔细检查各活动机械部分,如激振器、偏心电机等的连接紧固情况,确保所有螺栓、卡扣等紧固无误,避免激振或旋转。
二、查看传感器、信号源、激振器等连线正确无误,确保各仪器正常工作。
三、检查各仪器电源线是否插紧插好,各仪器是否可靠接地,以防触电。
四、调压器应放置于桌面宽敞处,尽可能远离其它仪器,并且在使用时只有经检查无误后才能通电,通电前须仔细检查电机偏心轮是否紧固、调压器与电机连线、接地是否可靠,使用完毕应立即断电。
五、激振器和偏心电机工作时,禁止手或是其它物品碰到激振器顶杆和电机偏心轮,以免受伤或物品飞落。
六、所有仪器设备工作过程中发现异常应立即断电,并请专业人员检查维修,或致电本公司。
物理实验技术中的震动控制措施在物理实验中,震动是一个不可忽视的因素,因为它可能对实验结果产生重大影响。
为了保证实验的准确性和可重复性,科学家们采取了一系列的震动控制措施。
本文将从实验室设备、实验桌、实验室环境以及实验过程等方面,探讨一些常见的震动控制措施,希望对读者有所启发。
首先,实验室设备的选择和布局对震动控制至关重要。
科学家们通常选择稳定的设备和仪器,以减少可能引起震动的因素。
例如,在实验中使用交流电源时,可以选择带有稳定电压输出的电源仪器,以避免电流突变引起震动。
此外,在设备布局时,应注意将敏感仪器和设备放置在稳固的支架上,并避免与其他设备过于接近,以减少相互振动引起的干扰。
其次,实验桌的设计和材料也对震动控制起到重要作用。
实验桌应选择稳固的结构,并使用具有良好吸震性能的材料。
例如,聚合物材料可以有效地吸收震动能量,从而减少桌面的晃动。
此外,桌面的尺寸和重量也需要考虑,较大且较重的桌面具有更好的稳定性。
另外,实验室环境对于震动控制同样非常重要。
首先,在实验室的选择上,需要考虑到周围环境的稳定性。
例如,远离道路、机械设备等可能引起震动的源头,并选择位置相对稳定的区域进行实验。
其次,在实验室的设计和装修中,应设置隔音设备和隔震措施,减少外界噪音和震动的干扰。
例如,在地板和墙壁上使用吸音材料,使用隔音窗等措施,可以有效降低实验室内的噪音和震动。
最后,实验过程中的操作技巧和注意事项也是震动控制的关键。
科学家们应注重自身的操作技巧,保持手部和身体的稳定,避免不必要的摇晃和振动。
在操作中,还需注意避免外力干扰,例如尽量避免操作面对空调出风口,避免过度呼吸等。
此外,对于需要使用电源或其他干扰源的实验,应尽量选择低干扰的设备和方法,以减少震动的可能性。
综上所述,物理实验技术中的震动控制措施是一个综合性的问题,需要从设备选择和布局、实验桌设计和材料、实验室环境以及实验过程等多个方面综合考虑。
只有综合运用各种措施,才能有效降低震动对实验结果的影响,确保实验的准确性和可重复性。
实验三振动系统固有频率的测量一、实验目的1、了解和熟悉共振前后利萨如图形的变化规律和特点;2、学习用“共振法”测试机械振动系统的固有频率(幅值判别法和相位判别法);3、学习用“锤击法”测试机械振动系统的固有频率(传函判别法);4、学习用“自由衰减振动波形自谱分析法”测试振动系统的固有频率(自谱分析法)。
二、实验装置框图图3-1实验装置框图三、实验原理对于振动系统,经常要测定其固有频率,最常用的方法就是用简谐力激振,引起系统共振,从而找到系统的各阶固有频率。
另一种方法是锤击法,用冲击力激振,通过输入的力信号和输出的响应信号进行传函分析,得到各阶固有频率。
以下对这两种方法加以说明:1、简谐力激振简谐力作用下的强迫振动,其运动方程为:t F Kx x C xm e ωsin 0=++ 方程式的解由21X X +这两部分组成:)sin cos (211t w C t w C e X D D t +=-ε21D w w D-=式中1C 、2C 常数由初始条件决定:tw A t w A X e e sin cos 212+=其中()()222222214e eeq A ωεωωωω+--=,()22222242eee q A ωεωωεω+-=,mF q 0=1X 代表阻尼自由振动基,2X 代表阻尼强迫振动项。
自由振动周期: DD T ωπ2=强迫振动项周期: ee T ωπ2=由于阻尼的存在,自由振动基随时间不断得衰减消失。
最后,只剩下后两项,也就是通常讲的定常强动,即强迫振动部分:()()()tq t q x e eee e eee ωωεωωεωωωεωωωωsin 42cos 4222222222222+-++--=通过变换可写成)sin(ϕ-=t w A X e式中 422222222214)1(/ωωεωωωee q A A A +-=+=⎪⎪⎭⎫ ⎝⎛-==22122e e arctg A A arctgωωεωϕ设频率比 ωωμe= ,Dw =ε 代入公式 则振幅 222224)1(/Dq A μμω+-=滞后相位角: 212μμϕ-=D a r c t g 因为 xst KF m K m F q ===002//ω为弹簧受干扰力峰值作用引起的静位移,所以振幅A 可写成:st st x x DA .4)1(12222βμμ=+-=其中β称为动力放大系数:2222411Dμμβ+-=)(动力放大系数β是强迫振动时的动力系数即动幅值与静幅值之比。
振动测量的实验报告1. 实验目的本实验的目的是通过使用振动传感器对不同振动源进行测量,了解振动信号的特点和测量方法,掌握实际振动信号的处理和分析技巧。
2. 实验装置和原理实验装置由振动传感器、信号调理器和示波器组成。
振动传感器可以将物体的振动信号转化为电信号;信号调理器可以对电信号进行放大和滤波处理;示波器可以将电信号转化为可视化的波形图。
振动信号的频率可以通过示波器的设置进行调整,以便观察不同频率下的振动信号。
3. 实验步骤1. 将振动传感器固定在实验台上,并接上信号调理器。
2. 将示波器与信号调理器连接,确保信号传输畅通。
3. 打开示波器,在示波器上设置合适的时间基和电压基准,以确保波形信号清晰可见。
4. 将振动传感器放置在不同的振动源旁边,观察示波器上所显示的振动信号波形。
5. 改变示波器的设置,调整不同的频率,观察波形信号的变化。
4. 实验数据记录与分析在实验中,我们观察到了来自不同振动源的振动信号,并记录了对应的波形数据。
通过对波形数据的分析,我们得到了以下结论:1. 振动信号的幅值和频率之间存在一定关系,随着频率的增加,波形信号的幅值减小。
2. 振动信号的频率越高,波形信号越接近正弦波。
3. 不同振动源产生的振动信号具有不同的频率特征,可以通过观察波形图来比较不同振动源之间的差异。
5. 实验结果讨论本次实验通过振动传感器测量了不同振动源产生的振动信号,并对波形信号进行了观察和分析。
实验结果表明振动信号的幅值和频率存在一定的关系,并且不同振动源产生的振动信号具有不同的频率特征。
这些结果对于振动信号的处理和分析具有一定的参考价值。
6. 实验总结通过本次实验,我们掌握了振动测量的基本原理和方法,并通过实际操作对振动信号的特点和测量方法有了更深入的了解。
实验结果和数据分析验证了振动信号的特性,并对实际振动信号的处理提供了指导。
在今后的研究和工程应用中,振动测量将具有重要的应用价值。
机械振动基础实验指导书机械振动基础实验指导书实验一简谐振动振幅与频率测量注意:实验结束后请将’C:\\测试技术实验教学’文件夹和自己的实验图表拷贝回去,里面有实验指导书电子版和空白实验报告电子版。
一、实验目的1、了解激振器、加速度传感器、电荷放大器的工作原理;2、熟悉并掌握激振器、加速度传感器、电荷放大器的使用方法;3、了解机械振动与振动控制实验装置的组成以及安装、调试方法;4、熟悉并掌握振动测试系统的组成;5、熟悉配套激振仪器与测振仪器的操作和使用方法。
6、根据测得的电压值求被测物体的加速度。
二、实验仪器及原理1、机械振动综台实验装置(安装双简支梁) 1套2、激振器1套3、加速度传感器1只4、电荷放大器TS5863 1台5、信号发生器TS1212B l台6、电脑l台7、测试软件l套8、采集卡 l套双简支梁的简谐振动振幅与频率测量实验原理如图1所示:加速度传感器双简支梁激振器电荷放大器采集卡电脑信号发生器TS1212B 图1 简谐振动振幅与频率测量原理图三、实验方法及步骤1、打开所有仪器电源,TS5863电荷放大器设置为100mv/UNIT。
将TS1212B信号发生器的幅度旋钮逆时钟调至最小,设置TS1212B信号发生器为“手动”模式,调节“手动扫频”至固定频率(30~60Hz任意自选),顺时针调节幅度旋钮使其输出电压为2V。
2、打开桌面程序“测试技术教学实验软件最新版”,点击菜单“高速采集”─>“中断采集”3、从对话框中点击按钮“选择采集卡型号”─>“select”,扫描通道设置为0.4、点击软件界面右下方按钮“采集”,记录软件界面右边的频率与振幅。
5、根据公式计算出加速度,加速度=振幅/100mv。
6、重复步骤4、5五次,制成下面表格后计算平均值。
注意:软件界面显示的频率应该与仪器显示的频率基本一致,实测数据以软件显示为准。
如果二者相差太远或者软件界面显示的频率一直为为设备故障。
四、实验数据整理与分析1、本测试方法能否测量非简谐振动的频率?2、表格形式次数 1 2 3 4 5 平均值频率振幅加速度m/s2五、考核与报告实验进行分组,每组人数4人,每个实验时间为小时,采用指导教师演示与学生独立操作相结合的形式完成本实验。
振动测量实验报告振动测量实验报告一、引言振动是物体在固有频率下做周期性的往复运动。
振动测量是工程领域中常见的实验,用于研究物体的振动特性以及对其进行分析和控制。
本实验旨在通过实际测量和分析,探究不同物体的振动特性,并掌握振动测量的基本方法和技巧。
二、实验装置和方法本实验使用了一台振动测量仪器,该仪器由振动传感器、信号采集模块和数据处理软件组成。
首先,将振动传感器安装在待测物体上,并连接至信号采集模块。
然后,通过数据处理软件进行数据采集和分析。
三、实验一:自由振动实验在自由振动实验中,我们选择了一个简单的弹簧振子作为待测物体。
首先,将弹簧振子拉伸至一定长度,并释放,记录振子的振动周期和振幅。
然后,通过数据处理软件绘制出振子的振动曲线,并计算出其固有频率和阻尼比。
实验结果显示,弹簧振子的振动周期为T=2π√(m/k),其中m为振子的质量,k为弹簧的弹性系数。
通过测量,我们得到了弹簧振子的振动周期,并计算出了其固有频率。
同时,我们还观察到振子的振幅随时间的变化规律,这对于分析振动系统的能量耗散和阻尼效果具有重要意义。
四、实验二:强迫振动实验在强迫振动实验中,我们选择了一个悬挂在弹簧上的质量块作为待测物体。
首先,将振动传感器安装在质量块上,并通过数据处理软件记录振动信号。
然后,通过改变驱动频率,观察质量块的振动响应,并绘制出频率-幅值曲线。
实验结果显示,在不同的驱动频率下,质量块的振动幅值存在明显的变化。
当驱动频率接近质量块的固有频率时,振动幅值达到最大值,即共振现象发生。
通过分析频率-幅值曲线,我们可以确定质量块的固有频率,并进一步研究共振现象的原理和应用。
五、实验三:阻尼振动实验在阻尼振动实验中,我们选择了一个带有阻尼装置的振动系统作为待测物体。
首先,通过改变阻尼装置的参数,调节阻尼比的大小。
然后,通过数据处理软件记录振动信号,并绘制出阻尼振动曲线。
实验结果显示,当阻尼比较小时,振动系统呈现出明显的周期性振动。
DHVTC振动教学装置使用说明书江苏东华测试技术股份有限公司目录安全注意事项 (1)实验一DHVTC振动测试与控制实验系统组成与使用方法 (2)实验二用“李萨如图形法”测量简谐振动的频率 (10)实验三简谐振动幅值测量 (14)实验四简谐波幅域统计参数的测定 (18)实验五振动系统固有频率的测量 (23)实验六“李萨如图形法”测量单自由度系统的固有频率 (34)实验七无阻尼单自由度系统强迫振动特性的测量 (36)实验八有无阻尼对单自由度系统自由衰减的测量 (41)实验九拍振实验 (46)实验十三自由度系统各阶固有频率及主振型的测量 (51)实验十一索力测量 (55)实验十二锤击法简支梁模态测试 (57)实验十三线性扫频法简支梁模态测试 (66)实验十四随机激励法简支梁模态测试 (70)实验十五不测力法简支梁模态测试 (75)实验十六悬臂梁模态测试 (80)实验十七圆板各阶固有频率及主振型的测量 (82)实验十八主动隔振实验 (87)实验十九被动隔振实验 (91)实验二十动力吸振器吸振实验 (95)实验二十一附加质量对系统频率的影响 (99)安全注意事项本实验系统尽管在设计、加工和安装时已充分考虑了安全方面的问题,但强烈建议用户使用时注意如下事项:一、通电前仔细检查各活动机械部分,如激振器、偏心电机等的连接紧固情况,确保所有螺栓、卡扣等紧固无误,避免激振或旋转。
二、查看传感器、信号源、激振器等连线正确无误,确保各仪器正常工作。
三、检查各仪器电源线是否插紧插好,各仪器是否可靠接地,以防触电。
四、调压器应放置于桌面宽敞处,尽可能远离其它仪器,并且在使用时只有经检查无误后才能通电,通电前须仔细检查电机偏心轮是否紧固、调压器与电机连线、接地是否可靠,使用完毕应立即断电。
五、激振器和偏心电机工作时,禁止手或是其它物品碰到激振器顶杆和电机偏心轮,以免受伤或物品飞落。
六、所有仪器设备工作过程中发现异常应立即断电,并请专业人员检查维修,或致电本公司。
实验一 DHVTC振动测试与控制学生实验系统的
组成与使用方法
一、实验目的
1、了解振动测试与控制实验系统的组成、安装和调整方法。
2、学会激振器、传感器与数采分析仪的操作、使用方法。
图1-1
二、DHVTC振动测试与控制学生实验系统的组成
图1-1 DHVTC振动测试与控制学生实验系统示意图
(1)底座(2)支座(3)二(三)自由度系统(4)薄壁圆板(5)非接触式激振器(6)接触式激振器(7)力传感器(8)偏心电机(9)磁电式速度传感器(10)被动隔振系统(11)简支梁(12)主动隔振系统(13)单/复式动力吸振器(14)压电式加速度传感器(15)电涡流位移传感器(16)磁性表座(17)单自由度系统
如图1-1所示,实验系统由“振动与控制实验台”、激振测振系统与动态分析仪组成。
1、振动与控制实验台
振动测试与控制实验台由弹性体系统(包括简支梁、悬臂梁、薄壁圆板、单自由度系统、二自由度系统、多自由度系统模型)配以主动隔振、被动隔振用的空气阻尼减震器、单式动
力吸振器、复式动力吸振器等组成。
可完成振动与振动控制等20多个实验的试验平台。
2、激振系统与测振系统
(1) 激振系统
激振系统包括:
DH1301正弦扫频信号源
JZ-1型接触式激振器
JZF-1型非接触式激振器
偏心电动机、调压器
力锤(包括测力传感器)
(2) 测振系统
动态采集分析仪
MT-3T型磁电式振动速度传感器
DH130压电式加速度传感器
WD302电涡流位移传感器
测力传感器
(3) 动态采集分析系统
信号调理器
数据采集仪
计算机系统(或笔记本电脑)
控制与基本分析软件
模态分析软件
三、DHVTC-59型仪器的使用方法
1、激振系统的使用方法
DH1301型正弦扫频信号源
DH1301型正弦扫频信号源是配有功率放大后的正弦激振信号源,可推动JZ-1型接触式激振器或JZF-1型非接触式激振器。
A、技术指标:频率范围0.1~9999.99Hz
谐波失真<1%
最大输出功率5w
输出电流0~500 m A
功耗20w
B、使用方法:先将DH1301信号源的输出电压调节旋钮左旋到最小位置,把激振器与输出
接线柱相连,打开电源开关,设置扫频信号的起始频率和结束频率及扫描速度。
旋转增
益旋钮,使数字电压表指示值到所期望电压值后,仪器及进入正常工作状态。
(1) JZ-1型电动式激振器的使用方法
A、技术指标:激振频率范围10~1000Hz
最大激振力200g
最大行程±1.5mm
B、使用方法:将激振器安装在支架上,并保证激振器顶杆对试件有预压力(不超过
红线),这时顶杆在激振器中所在位置应该是其行程的中间位置。
按图1-1接好配
置仪器,启动激振器信号源,即可实现对试件的激振。
(2)JZF-1型磁电式非接触激振器的使用方法
A、技术指标:激振频率范围10~1000Hz
最大激振力50g
安装间隙1~10mm
B、使用方法:将激振器安装在磁力表座上,根据被测激振件的刚度大小调节激振器与被测
激振件的初始间隙。
在做试验时,还应根据各阶固有频率的高低随时调节激振器与被测激振件的间隙,使互相不会发生碰撞。
启动激振信号源,即可实现对试件的激振。
(3) 偏心电动机和调压器的使用方法
A、由偏心电动机和调压器组成的激振设备
B、单相串激整流子电动机适用单相直流电源供电,其转速随负载或电源电压的变动而变化。
我们用改变电源电压的办法来调节电动机的转速,使电动机转速可在0~8000转/分的范围内调节。
转速的改变使电机偏心质量的离心惯性力的大小和频率发生改变,利用偏心质量的离心惯性力,即可实现对试件的激振。
2、测试系统的使用方法
(1)动态数采分析仪的使用方法
技术指标及使用方法,详细请见仪器操作手册
(2)MT-3T型磁电式速度传感器
A、技术指标:
频率范围 15Hz~1000Hz
传感器灵敏度30mv/mms-1
最大振幅 ±1mm
重量 185g
B、使用方法:利用传感器底座的M5螺钉,将MT-3T型磁电式振动速度传感器安装在被测振动体上,其外壳随振动体而振动,位于气隙间的线圈就切割磁力线,发出正比于振动速度的电势。
该电势由导线输入分析仪放大,可测量振动速度。
信号经积分或微分处理,也可测量振动位移和加速度。
本传感器只能测量垂直方向的振动。
(3)压电式加速度传感器
A、技术指标:
频率范围 1Hz~10kHz
传感器灵敏度 10PC/g
B、使用方法 :将压电式加速度传感器和电荷适调器用L5电缆连接,将电荷适调器接入数采分析仪振动测试通道,输入传感器灵敏度,既可测量振动加速度。
(4)电涡流位移传感器
A、技术指标:
频率范围 0~10kHz
传感器灵敏度 5.081V/mm
最大振幅 ±1mm
幅 值 线 性 度 0.48%F.S
B、使用方法:将电涡流位移传感器接到专用的前置器上,用专用的连接线连接采集仪和电涡流传感器的前置器,输入灵敏度,输入方式SIN_DC,即可测量位移。