热力发电厂
- 格式:pptx
- 大小:5.41 MB
- 文档页数:35
热力发电厂生产的实质是能量转换,即将燃料中的化学能通过在锅炉中燃烧转变为蒸汽的热能,并通过汽轮机的旋转变为机械能,最后通过发电机转为所需电能。
热力发电厂的类型:化石燃料发电厂,供电的凝汽式发电厂;核能发电厂,供电,供热的热电厂;再生能源发电,供电,热,冷的发电厂;垃圾发电厂,供电,热,煤气的发电厂;磁流体发电厂,多功能热电厂;新能源发电厂。
评价热力发电厂热经济性两种基本分析方法:从热力学观点来分析,只要两种基本分析方法,即基于热力学第一定律的热量法(效率法,热平衡法);基于热力学第二定律的火用方法(可用能法,做功能力法)或火商方法(火用损,做功能力损失)。
两种热经济性评价方法的比较及其应用:1,两种方法算得的总损失量和装置效率是相同的。
2,对于损失的分布,两种方法得出了不同的结果。
热量法中的能量损失以散失于环境为准,不区分能量品味的高低,故凝汽器的损失最大;火用方法中,锅炉由于燃烧、传热的严重不可逆性,可用能损失最大。
3,热量法只表明能量数量转变的结果,不能揭示能量损失的本质原因。
火用方法不仅表明能量转换的结果,并能确切揭示能量损失的部位、数量及其损失原因,考虑了不同事物有其质的区别,两者对同一事物不同侧面的认识,两者是相辅相成、互为补充,却不能相互取代。
4,定量计算采用热量法,定性分析采用火商方法。
蒸汽动力循环的循环参数:新蒸汽压力P0、温度t0,及再热后进入中压缸的再热蒸汽温度trh和进入凝汽器的排气压力pc。
现在火电厂的常用蒸汽循环为:再热循环、回热循环、热电联产循环和热电冷三联产循环。
提高蒸汽初温:排气干度x提高到x’,减少了低压缸排汽湿汽损失。
提高蒸汽温度使其比体积增大,当其他条件不变时,汽轮机高压端的叶片高度加大,相对减少了高压端漏气损失,因而可提高汽轮机的相对内效率nri,从而提高了汽轮机的绝对内效率ni=ntnri.影响提高蒸汽初参数的主要因素1,提高蒸汽初参数可提高热经济性,节约燃料2,提高t0受金属材料的制约3,提高p0受蒸汽膨胀终了时湿度的限制4,提高p0,t0影响电厂的钢材消耗和总投资5,更高蒸汽初参数,更大容量机组的可用率电厂用水量凝汽器的冷却水量Gc一般可根据冷却水倍率m来确定,即Gc=mDc,Dc为汽轮机的最大凝汽流量。
热力发电厂第一篇:热力发电厂热力发电厂1、凝汽式发电厂的能量转换过程:即燃料的化学能通过锅炉转换成蒸汽的热能,蒸汽在汽轮机中膨胀做功,将蒸汽的热能转变成机械能,通过发电机最终将机械能转换成电能。
2、汽轮机本体包括哪哪些部分?静止部分、转动部分、配汽机构。
3、热量法是以燃料化学能从数量上被利用的程度来评价电厂的热经济性,一般用于电厂热经济性定量分析。
4、凝汽式发电厂的能量转换顺序:燃料的化学能---蒸汽的热能—机械能—电能。
主要热经济性指标有能耗量(汽耗量、热耗量、煤耗量)和能耗率(汽耗率、热耗率、煤耗率)以及效率。
5、影响回热过程热经济性因素有:(1)多级回热给水总焓升在各加热器间的分配;(2)锅炉最佳给水温度;(3)回热加热级数;6、最佳给水温度:回热循环汽轮机绝对内效率为最大值时对应的给水温度称为热力学上的最佳给水温度。
7、蒸汽中间再热有哪些方法?(1)烟气再热(2)蒸汽再热(3)用中间载热质再热蒸汽的方法8、用中间载热质的再热系统需要有两个热交换器:一个装在锅炉设备烟道中,用来加热中间载热质;另一个是安装在汽轮机附近用中间载热质对汽轮机的排汽再加热。
9、混合式加热器在加热和冷凝过程中分离出来的不凝结气体和部分余汽被引至凝汽器或者专设的冷却器中。
10、高压加热器——在回热给水系统中位于给水泵至锅炉之间的加热器。
11、蒸汽冷却器的作用?作用(1)减少了回热加热器内汽水换热的不可逆损失;(2)提高加热器的出口水温;(3)减小加热器端差(4)改善回热系统热经济性;12、热力除氧器的原理:对除氧器中的水进行定压加热时,随着温度上升,水蒸发过程不断加深,水面上水蒸气的分压力逐渐加大,溶于水中的其它气体的分压力逐渐减少。
当水被加热到除氧器工作压力下的饱和温度时,水蒸气的分压力接近或等于水面上气体的全压力时,则水面上其他气体的分压力趋于零,水中也就不含其它气体。
因此除氧器不但除去了氧气,而且还除去了其它气体。
热力发电厂复习知识点
1.燃料选择:
2.燃烧系统:
燃烧系统是热力发电厂的核心部分,负责将燃料燃烧生成高温高压蒸汽。
燃烧系统包括炉膛、燃烧器和废气处理设备。
3.锅炉:
锅炉是燃烧系统的一部分,主要负责将燃烧产生的热能传递给水,产
生蒸汽用于驱动汽轮机。
常见的锅炉类型有火管锅炉、水管锅炉和循环流
化床锅炉。
4.汽轮机:
汽轮机是热力发电厂的动力设备,通过接收高压高温蒸汽,通过转子
传递动能,驱动发电机产生电能。
汽轮机分为背压汽轮机和凝汽汽轮机两
种类型。
5.发电机:
发电机是电站的重要组成部分,将汽轮机轴转动的机械能转化为电能。
根据发电机的类型,热力发电厂可以分为同步发电机和异步发电机。
6.热回收:
在热力发电过程中,燃料燃烧产生的烟气会带走大量的热能。
热力发
电厂常常使用余热锅炉或热管换热器来回收这些热能,提高能源利用效率。
7.辅助设备:
8.发电系统:
发电系统是整个热力发电厂的核心组成部分,包括变压器、电缆、开关设备等。
发电系统将发电机产生的电能输送到电网,供用户使用。
9.自动化控制:
10.环境保护:
11.预防维护:
以上是热力发电厂的一些重要知识点。
了解这些知识点可以帮助我们更好地理解热力发电厂的工作原理和运行机制。
热力发电厂是重要的能源供应设备,对于经济发展和生活保障都具有重要意义。
对热力发电厂的认识和看法
热力发电厂是一种利用化石燃料(如煤、石油、天然气等)或可再生能源(如太阳能、风能等)产生热能,并将其转化为电能的工厂。
它是电力生产的重要组成部分,为人们的生活和工业生产提供了大量的电力资源。
热力发电厂的优点是能够大规模地产生电能,并且相对稳定可靠。
它可以通过调整燃料的供应来适应不同的负荷需求,保证电力供应的连续性和稳定性。
此外,热力发电厂还可以利用余热进行供暖,提高能源利用效率。
然而,热力发电厂也存在一些问题。
首先,它的燃料消耗量大,会产生大量的温室气体和其他污染物,对环境造成负面影响。
其次,热力发电厂的建设和运营成本较高,需要大量的资金和技术投入。
此外,热力发电厂还存在一定的安全风险,需要采取相应的措施来保障人员和设备的安全。
因此,对于热力发电厂,我们应该持谨慎的态度。
在建设和运营过程中,应该采取有效的环保措施,减少对环境的影响。
同时,也应该加强安全管理,确保人员和设备的安全。
此外,还应该不断探索和应用新的技术,提高能源利用效率,减少燃料消耗和污染物排放,推动电力行业的可持续发展。
热力发电厂的工作原理探讨热力发电厂是一种利用热能转化为电能的能源转换设备,其工作原理是基于热力学和热工学原理。
本文将从热力发电厂的基本原理、主要设备、工作流程以及发电效率等方面对热力发电厂的工作原理进行探讨。
一、热力发电厂的基本原理热力发电厂利用燃烧燃料或直接利用地热能源,产生高温高压的蒸汽或工质,通过蒸汽或工质驱动汽轮机或其他热机进行功的转换,进而驱动发电机产生电能。
二、热力发电厂的主要设备1. 燃烧设备:热力发电厂通常采用燃煤、燃油、燃气等燃料进行燃烧,产生高温高压的燃气或燃烧产物。
2. 锅炉:燃气或燃烧产物经过燃烧设备的燃烧后,会进入锅炉内,与锅炉内的水进行热交换,使水蒸发生成高温高压的蒸汽。
3. 汽轮机:蒸汽从锅炉中排出后,进入汽轮机,蒸汽的压力能够驱动汽轮机叶片转动,产生转动功。
4. 发电机:汽轮机驱动发电机转子旋转,通过电磁感应原理产生电流,进而产生电能。
5. 辅助设备:包括冷却水系统、给排水系统、烟气处理系统等,用于辅助电厂的正常运行和环境保护。
三、热力发电厂的工作流程1. 燃烧过程:燃料经过燃烧设备的燃烧产生高温高压的燃气或燃烧产物。
2. 热交换过程:燃气或燃烧产物进入锅炉,与锅炉内的水进行热交换,使水蒸发产生高温高压的蒸汽。
3. 功转换过程:蒸汽从锅炉中排出后,进入汽轮机,驱动汽轮机叶片转动,产生转动功。
4. 电能生成过程:汽轮机驱动发电机转子旋转,通过电磁感应产生电流,进而将机械能转化为电能。
5. 辅助过程:冷却水系统、给排水系统和烟气处理系统等辅助设备用于保证电厂的正常运行和环境保护。
四、热力发电厂的发电效率热力发电厂的发电效率是指单位热值的燃料输入与发电量之比。
影响热力发电厂发电效率的因素有燃料的热值、锅炉的效率、汽轮机和发电机的效率等。
热力发电厂发电效率的提高是节约能源和减少环境污染的重要手段。
总结:热力发电厂的工作原理是通过燃烧燃料或直接利用地热能源产生高温高压的蒸汽或工质,通过蒸汽或工质驱动汽轮机或其他热机进行功的转换,进而驱动发电机产生电能。
热力发电厂简介
热力发电厂是一种利用燃烧化石燃料或核能来产生热能,再通过蒸汽轮机转化为电能的工厂。
这种发电方式是目前世界上最常见的发电方式之一,其在全球范围内占据了重要的地位。
热力发电厂通常通过燃烧煤、天然气或核能来产生高温高压的蒸汽,然后利用蒸汽轮机将高温高压的蒸汽转化为机械能,再通过发电机将机械能转化为电能。
这种发电方式具有燃烧效率高、成本低、可靠性强等特点,因此在能源生产中占据了主导地位。
热力发电厂还可以利用余热发电,将废热通过热交换装置和蒸汽轮机转化为电能,提高了能源利用率。
此外,部分热力发电厂还可以利用温泉、地热等可再生能源来产生热能,进一步减少了环境污染和资源消耗。
总的来说,热力发电厂是以燃烧燃料或核能为动力,通过热能-机械能-电能转化过程产生电能的重要设施。
随着能源问题的日益凸显,热力发电厂的发展将继续占据重要地位,成为未来能源生产的主力军之一。
热力发电厂的生产过程1. 简介热力发电厂是利用燃烧燃料产生高温高压蒸汽,并通过蒸汽驱动涡轮发电机组转动产生电能的发电设备。
其生产过程通常包括燃料供应、燃烧过程、蒸汽发生过程、涡轮发电过程和余热利用等环节。
2. 燃料供应热力发电厂通常使用多种燃料,如煤炭、天然气、石油、生物质等。
这些燃料会经过处理后送入燃料储存区。
在生产过程中,根据需求,燃料通过输送设备(如皮带输送机、提升机等)被送入燃料库或燃料仓,待用于燃烧过程。
3. 燃烧过程燃料从燃料库或燃料仓进入锅炉,进行燃烧过程。
在锅炉内,燃料与空气充分混合后,通过点火器点火,燃烧释放热量。
烟气在锅炉内自底向上流动,与管道内的水接触进行换热,在此过程中烟气温度逐渐降低,转化为高温高压蒸汽。
4. 蒸汽发生过程蒸汽发生器接收燃烧过程中产生的高温高压烟气,并进一步将其转化为高温高压蒸汽。
该过程中,烟气通过与水相接触进行换热,将部分热量转移到水中,使其蒸发并转化为蒸汽。
蒸汽发生过程的关键设备是蒸汽锅炉,它通常由蒸汽发生器、过热器和再热器等组成,以提高蒸汽的温度和压力。
5. 涡轮发电过程生成的高温高压蒸汽进入涡轮机组,驱动涡轮机组转动,通过转子与定子之间的磁场相互作用,将机械能转化为电能。
涡轮机组通常由高压缸、中压缸和低压缸组成,以便在蒸汽压力的不同阶段对涡轮进行适当的能量提取和功率调节。
6. 余热利用在涡轮发电过程中,蒸汽在驱动涡轮旋转后会变为低压蒸汽,被冷凝成水。
然而,在冷凝过程中,蒸汽释放的大量热量并没有完全利用,因此一般还会安装余热回收系统。
该系统通过将冷凝后的水通过换热器与还未完全凝结的蒸汽进行换热,将余热传递给进入锅炉的冷凝水,从而提高锅炉的能效。
7. 结论热力发电厂的生产过程主要包括燃料供应、燃烧过程、蒸汽发生过程、涡轮发电过程和余热利用等环节。
通过这些环节的协调和配合,热力发电厂能够高效地将燃料的化学能转化为电能。
该过程不仅为社会提供了丰富的电力资源,还起到了环境保护和能源节约的作用。
1,可靠性管理热力发电厂可靠性是指在预定时间内合规定的技术条件下,保持系统设备,部件原件付出额定电力能力,并以量化的一系列可靠性指标来实现.2 寿命管理以设备运行状态及技术材料的长期连续的监督为基础,计算其寿命损耗,并适时的进行各种探伤检查全面掌握设备技术状况及时维修或更换,使设备在使用年限内发挥最佳效益,或延长寿命.3热量法热量法以热效率或热损失率来衡量能量转换过程的热经济性.5 标准煤耗率其表明一个电厂范围内的能量转换过程的技术完善程度,也反映其管理水平和运行水平,同时也是厂际,班组间的经济评比,考核的重要指标之一。
7 临界状态点参数:压力22.115Mp温度374.15°C当水的状态参数达到临界点时在饱和水与饱和蒸汽之间不在有汽水共存的两相区存在。
8 火电厂冷端火电厂的蒸汽终参数即汽轮机的排气压力Pc,不仅与凝气设备有关,还与汽轮机的低压部分以及供水冷却系统有关总称为火电厂的冷端。
9冷却倍率m凝汽器的冷却水量与汽轮机的最大凝气流量之比Gc=mDcDc为汽轮机的最大凝汽流量Gc为冷却水量12 焓降分配法将每一级加热器内水的焓升取为前一级至本级的蒸汽在汽轮机中的焓降。
15 热力系统热力系统是热力发电厂实现热工转换热力部分的工艺系统热力系统图用来反映热力发电厂热力系统的图19表面式加热器端差是指出口端差θ,即加热器汽侧压力下的饱和水温t sj 与出口水温t wj 之间的差值。
θ=t sj—t wj称上端差。
疏水冷却器端差则是指入口端差θ。
它是指离开疏水冷却器的疏水温度t′sj与进口水温t wj+1间的差值θ=t′sj—t wj+1 又称下端差。
20 锅炉排污率以锅炉排污量Db1与锅炉额定蒸发量Db的百分比24 什么是热负荷由热电厂通过热网向热用户供应的不同用途的热量称为热负荷分为生产热负荷,热水供应热负荷,采暖及通风热负荷25 发电厂原则性热力系统是将锅炉设备,汽轮机设备以及相关的辅助设备作为整体的全厂性的热力系统。
热力发电厂动力循环和热经济性分析热力发电厂是一种重要的能源生产设施,它通过将燃料燃烧产生的热能转化为电能,以满足人们的用电需求。
热力发电厂的运行原理是,将燃料燃烧后的烟气送至锅炉中,通过锅炉中的水蒸气增压,使其在高压下旋转汽轮机,从而带动发电机发电的轮回循环。
动力循环是热力发电厂的核心,主要包括锅炉、汽轮机、再热器、凝汽器和泵等设备。
锅炉是热力发电厂最重要的设备之一,其主要作用是将燃料燃烧产生的热能传递给锅炉水,使其蒸发成为高温高压蒸汽,并向汽轮机提供动力。
汽轮机是将高压高温蒸汽中的能量转化为旋转能的设备,它将蒸汽中的能量变成轴功,推动轮子旋转。
再热器是将汽轮机排出的低温低压干蒸汽再加热为高温高压蒸汽的设备,以增加汽轮机的输出功率。
凝汽器则是将汽轮机排出的低压湿蒸汽冷凝为水的设备,它将利用完毕的蒸汽排放到大气中。
热力发电厂的热经济性是指其能源输入与电能输出之间的比例,也就是其运行效率。
热力发电厂的热经济性取决于多个因素,如锅炉效率、汽轮机效率、再热器效率和凝汽器效率等。
这些因素的提高可以更好地发挥燃料的能量,从而提高发电厂的经济性。
锅炉效率是热力发电厂的关键因素之一,它反映了锅炉所能吸收燃料中化学能的能力。
提高锅炉效率有很多方法,如提高锅炉的烟气回收率、增加锅炉水循环流量、改善燃烧条件等。
这些措施可以使锅炉更充分地利用燃料中的能量,从而提高锅炉的效率。
汽轮机效率是指汽轮机将蒸汽的能量转化为电能的能力。
提高汽轮机效率可以通过改进汽轮机设计和技术、提高蒸汽温度和压力等方法实现。
同时,为了更好地利用汽轮机排出的低温低压干蒸汽的能量,热力发电厂引入了再热器设备,这可以增加汽轮机的输出功率。
凝汽器效率是指凝汽器将排出的低压湿蒸汽冷凝为水的能力。
凝汽器效率的提高可以通过改进凝汽器设计、优化循环水冷却系统等措施实现。
同时,凝汽器效率的升高还有助于提高循环水冷却系统的效率,减少对环境的影响。
综上所述,动力循环的优化以及热经济性的提高是热力发电厂的重要技术措施。
热力发电厂简介1. 热力发电厂的定义和作用热力发电厂是一种利用燃煤、燃气或核能等热源产生蒸汽,再通过蒸汽驱动汽轮机发电的装置。
热力发电厂通过将燃料的能量转化为电能,成为现代社会供电不可或缺的基础设施之一。
2. 热力发电厂的组成和工作原理一个典型的热力发电厂由以下几个主要组成部分构成:2.1 燃料供应系统燃料供应系统主要负责将燃料输入热力发电厂进行燃烧。
常见的燃料包括煤炭、天然气和石油等。
在燃料供应系统中,燃料经过处理和净化后被送入燃烧炉。
2.2 燃烧系统燃烧系统是热力发电厂的核心部分,它通过将燃料燃烧产生的高温高压气体转化为蒸汽,进一步驱动汽轮机发电。
燃烧系统包括燃烧炉、锅炉和燃烧控制系统等。
2.3 蒸汽轮机系统蒸汽轮机系统接收由燃烧系统产生的高温高压蒸汽,将其转化为机械能。
蒸汽通过高速旋转的汽轮机驱动发电机运转,发电机则将机械能转化为电能。
2.4 发电系统发电系统由发电机、变压器和电力配电系统等组成。
发电机将机械能转化为电能,变压器将发电机产生的低电压电能转化为适用于输送和供应的高电压电能。
电力配电系统负责将发电厂产生的电能联网输送到各个用户。
3. 热力发电厂的优势和应用范围3.1 优势热力发电厂相比其他发电方式具有以下优势:•燃料资源丰富:燃煤、燃气等燃料资源广泛存在,且相对稳定,可以提供可靠的能源供应。
•热效率高:热力发电厂的热效率通常较高,可以充分利用燃料的热能,减少能源浪费。
•规模化运作:热力发电厂通常建设在较大的规模上,可以实现集中供电,提高供电效率。
3.2 应用范围热力发电厂广泛应用于以下领域:•城市供电:热力发电厂为城市提供稳定的电力供应,满足居民和工商业的用电需求。
•工业生产:热力发电厂可以为工矿企业提供稳定的电力供应,支撑工业生产运作。
•农村电气化:热力发电厂可以为农村地区提供电力,促进农村经济的发展和改善农民生活条件。
4. 热力发电厂的发展趋势随着环保意识的提升和可再生能源的发展,热力发电厂的未来将面临以下几个发展趋势:•燃料多样化:热力发电厂将逐渐采用更多的可再生能源,如风能、太阳能和生物质能等,以减少对传统燃料的依赖。