数学北师大版七年级下册《感受可能性》同步练习
- 格式:doc
- 大小:378.50 KB
- 文档页数:5
教学设计感受可能性课题:感受可能性学科:数学适用年级:七年级下教材版本:北师大版【教材分析】在小学阶段,学生对确定性现象与不确定性现象已经有了初步的体验,通过具体实例感受了简单的随机现象,本节课明确了必然事件、不可能事件、随机事件的概念,然后,通过游戏让学生体会随机事件发生的可能性有大有小。
【学情分析】学生已具备了一定的学习能力,能对生活中的常见现象发生的可能性进行一定的分析和判断,但缺乏系统知识来规范.教学过程中创设的问题情境应生动活泼、直观形象,且贴近生活。
由于学生概括能力较弱,推理能力还有待不断发展,所以在教学时,可让学生分组合作与交流,帮助他们通过直观形象地感知来理解抽象逻辑关系,体会不确定事件的特点。
【教学目标】1)知识目标:通过猜测与游戏的方式,让学生进入问题情境,切身感受什么是不可能事件、必然事件、确定事件与不确定事件,知道事件发生的可能性是有大小的。
2)能力目标:使学生在教师的指导下自主地发现问题、探究问题,获得结论,感受数学和实际生活的联系,进一步发展学生合作交流的能力和数学表达能力。
3)情感目标:通过创设游戏情景,使学生主动参与,做数学实验,增强学生的数学应用意识,初步培养学生以科学数据为依据分析问题、解决问题的良好习惯。
【教学重难点】教学重点:体会事件发生的确定性与不确定性。
教学难点:理解生活中不确定现象的特点,不确定事件发生的可能性大小,树立一定的随机观念。
【教学策略设计】①在教师的组织下,以学生为主体,探索性教学。
②让学生在经历猜测、试验、探究、交流与分析过程中获得结论。
【教学过程】【板书设计】感受可能性确定事件事先能肯定它一定会发生的事件叫必然事件事件事先能肯定它一定不会发生的事件叫不可能事件不确定事件——事先无法肯定它会不会发生的事件叫随机事件随机事件发生的可能性有大有小。
《感受可能性》作业设计方案(第一课时)一、作业目标本作业旨在让学生通过实际操作,深入理解概率的基本概念,感受可能性的存在与变化,培养学生的逻辑思维能力和解决实际问题的能力,同时增强学生对数学学习的兴趣和热情。
二、作业内容1. 基础练习:(1)请学生根据日常生活中的实例,列举出与“可能性”相关的场景,并尝试用数学语言表达出来。
如:“明天下雨的可能性是多少?”等。
(2)完成一系列概率计算题,包括简单事件的概率计算、等可能事件的概率计算等。
2. 实践活动:(1)设计一个简单的摸球游戏。
准备一个不透明的袋子,里面放入不同颜色的球(如红、黄、蓝、绿等),每个颜色的球数量相等。
让学生多次摸球,记录每次摸到各种颜色球的情况,并计算摸到每种颜色球的可能性。
(2)小组合作,设计一个转盘游戏。
转盘上分为不同的区域,每个区域代表不同的结果(如数字、颜色等),让学生通过多次转动转盘来感受可能性的大小。
3. 探究作业:(1)学生需通过网络或书籍等途径,收集有关概率的历史发展和应用实例,并在课堂上进行分享。
(2)鼓励学生自行设计一个与“可能性”有关的实际项目或活动,并实施完成。
如设计一个抽奖活动、掷骰子游戏等。
三、作业要求1. 基础练习部分需认真完成,注重理解和准确度。
2. 实践活动部分需小组合作完成,注重观察和记录。
每个学生需记录下自己及小组成员的实践活动过程和结果,分析可能性与事件之间的关系。
3. 探究作业部分需学生主动查找资料、设计活动,并详细记录设计思路和实施过程。
鼓励学生创新思维,设计出有创意和实用性的项目。
4. 所有作业需按时提交,字迹工整,思路清晰。
四、作业评价1. 基础练习部分将根据正确率和理解程度进行评价。
2. 实践活动部分将根据观察记录的详细程度、分析的准确性和小组合作的默契度进行评价。
3. 探究作业部分将根据设计的创意性、实施的可行性以及资料的查找和整理情况进行评价。
五、作业反馈1. 教师将对每位学生的作业进行认真批改,指出错误并给出正确答案。
课题6.1 感受可能性玉林中学(石羊校区)初中数学组徐娟学情分析七年级学生已经具备一定的学习能力,能对生活中常见现象发生的可能性进 行一定的分析和判断,但缺乏系统知识来规范.学生在日常生活中接触过一些不 确定的现象,但他们对这些不确定现象的观察往往是零星的,短暂的.同时,七 年级学生天真活泼,对新鲜事物敏感,对未知的事物既好奇又敢于质疑, 很愿意 投入到合作探究的实践活动中去.所以在教学时,可以让学生分组合作与交流, 帮助他们通过猜测、试验、直观形象地感知来理解抽象逻辑关系,是完成本节任 务的关键.教学目标1. 通过两个游戏,经历猜测、试验、收集实验数据、分析试验结果等过程,体 会数据的随机性; 2. 理解不确定事件(随机事件)的概念,能区分确定事件与不确定事件,并感 受不确定事件发生的可能性有大有小. 教学重难点重点:能判断必然事件、不可能事件、随机事件的类型;难点:能理解必然事件、不可能事件、随机事件的区别与转化关系; 理解确定事件与必然事件、不可能事件的关系. 教学流程:教学活动 一游戏引入,感悟概念1. 游戏规则:三份扑克牌,每份 6张.选三名同学分别摸扑克牌,摸到的 花色为红色加1分,黑色不得分,摸了之后放回,摸三次.总分最高的同学评为 “幸运之星”.(1) 第1号6张花色全是红色,1号同学总分为3;(2) 第2号6张花色3张红色,3张黑色,2号同学总分为不确定; (3) 第3号6张花色全是黑色,3号同学总分为0.2.师:真的是 1 号同学的运气好, 3号同学的运气不好吗?我们来观察一 下三份扑克牌的秘密.师:这个游戏公平吗? 生:不公平.师:1 号同学一定能摸到红色吗?一定能摸到黑色吗? 生:.…师:揭示课题《感受可能性》 ,板书课题: 6.1 感受可能性师:2 号同学一定能摸出红色吗?一定摸出黑色吗?概念:(1)在一定条件下,肯定会发生的事件称为必然事件.(2)在一定条件下,肯定它一定不会发生的事件称为不可能事件.(3)必然事件与不可能事件统称为确定事件.(4)事先无法肯定它会不会发生的事件称为不确定事件.(5)在大量重复试验中具有某种规律的不确定事件称为随机事件.设计意图:以游戏引入课题,让学生参与其中,调动学生的积极性,加深学生对必然事件、不可能事件、随机事件的认识.二、自主学习,理解概念阅读教材,记忆概念,科代表领读例1. 指出下列事件中:a.标准大气压下加热到100 °C时,水沸腾;b.随意掷一枚质地均匀的骰子,向上的点数是10;c.随意掷一枚质地均匀的骰子,向上的点数不超过6;d.随意掷一枚质地均匀的骰子,向上的点数是1;e.13 个人中,至少有两个人出生的月份相同;f.抛掷一百次硬币,全部正面朝上.必然事件:___________________ ;不可能事件:__________________ ;确定事件:___________________ ;不确定事件:___________________ .2、生:写出生活中的几个确定事件和不确定事件(随机事件) . 师:请学生代表发言,引导学生分析确定事件的类别:必然事件、不可能事件.设计意图:通过举例,理解确定事件和不确定事件的概念.三、合作探究,运用概念游戏:准备的扑克牌数张,每个小组有6张扑克牌数字分别为:1,2,3,4,5,6,规则如下:(1)小组一起做游戏,每组选1 名同学摸牌,每组可以摸一次,也可以连续地摸几次;(2)当摸出的数字和不超过10时,如果决定停止摸,那么你组的得分就是所摸出的点数和;当摸出的数字和超过10时,必须停止摸,并且你组的得分为0.(3)比较各组的得分,谁的得分多谁组就获胜.做4次上面的游戏,并将每次结果填入下表中:第1次数字第2次数字第3次数字1・・・得分第1次游戏第2次游戏第3次游戏总分・・・・・・・・・・・・小组讨论:在做游戏的过程中,你组是如何决定是继续摸牌还是停止摸牌的?思考一下两名同学的说法有道理吗?小明:摸到的数字和已经是5,根据游戏规则,再摸一次,如果摸出的点数不是6,那么得分就会增加,而摸出的数字不是6的可能性比是6的可能性大,所以我决定继续摸.______________ _ ____________________ J小颖:摸出的点数和已经是9,根据游戏规则,再摸一次,如果摸出的点数不是1,那么得分就会变成0,而摸出的点数是1的可能性要比不是1的可能性小,所以我决定停止摸.___________________________________________________________________ f师:引导学生得出结论,并板书:一般地,不确定事件发生的可能性是有大有小的.例2 . (1) 一个袋中装有8个红球、2个白球,每个球除了颜色外都相同。
第六章概率初步1 感受可能性【知识与技能】通过猜测与游戏的方式,让学生进入问题情境,切身感受什么是不可能事件、必然事件、确定事件与不确定事件,知道事件发生的可能性是有大小的.【过程与方法】使学生在教师的指导下自主地发现问题、探究问题、获得结论,感受数学和实际生活的联系,进一步发展学生合作交流的能力和数学表达能力.【情感态度】通过创设游戏情景,使学生主动参与,做数学实验,增强学生的数学应用意识,初步培养学生以科学数据为依据分析问题、解决问题的良好习惯.【教学重点】事件发生的确定性与不确定性.【教学难点】理解生活中不确定现象的特点,不确定事件发生的可能性大小,树立一定的随机观念.一、情景导入,初步认知(结合动画欣赏)播放一段天气预报,“天有不测风云”,这句话被引申为世界上有很多事情具有偶然性,人们不能事先判定这些事情是否会发生?但是随着人们对事件发生可能性的深入研究,人们发现许多偶然事件的发生也是有规律可循的.课题:随机事件【教学说明】具体情境的引入,提高了学生学生的兴趣和动力.二、思考探究,获取新知生活中有哪些事情一定会发生,哪些事情一定不会发生,哪些事情可能会发生?思考:①随机投掷一枚均匀的骰子,掷出的点数会是10吗?②随机投掷一枚均匀的骰子,掷出的点数一定不超过6吗?③随机投掷一枚均匀的骰子,掷出的点数一定是1吗?让学生们思考,并请学生回答.探究1:教师提问——“下列事件一定发生吗?”1.玻璃杯从10米高处落到水泥地面上会破碎;2.太阳从东方升起;3.今天星期三,明天星期四;4.瓮中捉鳖.【归纳结论】像这样,在一定条件下一定能发生的事件,叫做必然事件.探究2:教师提问——“下列事件一定能发生吗?”1.太阳从西方升起;2.一个数的绝对值小于0;3.水中捞月.【归纳结论】像这样,在一定条件下不可能发生的事件,叫做不可能事件.必然事件和不可能事件统称为确定事件.探究3:教师提问——“下列事件一定能发生吗?”1.从商店买瓶绿茶饮料中奖了.2.掷一枚硬币,有国徽的一面朝上.3.张彩票恰好中奖.4.办公室老师从我们班选一个人去打水,你被选中.5.守株待兔.【归纳结论】像这样,我们事先无法确定它会不会发生,这样的事件称为不确定事件,也称为随机事件.【教学说明】使学生在有趣的问题中体会不确定事件(随机事件),提高学生学习数学的兴趣,积累丰富的数学活动经验,让学生感受到数学和实际生活的联系.探究4:游戏——掷骰子游戏利用质地均匀的骰子和同桌做游戏,规则如下:(1)两人同时游戏,各自掷一枚骰子,每人可以只掷一次骰子,也可以连续地掷几次骰子.(2)当掷出的点数和不超过10时,如决定停止掷,那么你的得分就是所掷出的点数和;当掷出的点数和超过10时,必须停止掷,并且你的得分为0.(3)比较两人的得分,谁的得分多谁就获胜.多做几次上面的游戏,并将最终结果填入课本P137上表中.在做游戏的过程中,你是如何决定是继续掷骰子还是停止掷骰子的?议一议:在做游戏时,如果前面掷出的点数和已经是5,你是决定继续掷还是决定停止掷?如果掷出的点数和已经是9呢?探究5:不透明的桶子中有3个红球,1个白球,所有的球除颜色外,其它完全相同.从中任意摸一个球,你认为摸到哪种颜色的球的可能性较大,说说你的理由.【归纳结论】一般地,不确定事件发生的可能性是有大小的.【教学说明】通过游戏使学生体会生活中许多不确定事件发生的可能性是有大小的.同时以游戏引入知识,学生接受起来会更自然,印象会更深刻.三、运用新知,深化理解1.将一枚硬币向上抛掷10次,其中正面向上恰有5次是( B ).A.必然事件B.随机事件C.不可能事件D.无法确定.2.一个袋中有5个红球,2个白球,从中任意摸出3个,下列事件中是不可能事件的是( C ).A.3个都是红球B.至少1个是红球C.3个都是白球D.至多1个是白球3.下列事件是必然事件的是( C )A.打开电视机,正在转播足球比赛B.小麦的亩产量一定为10000公斤C.在只装有5个红球的袋中摸出1球是红球D.农历十五的晚上一定能看到圆月4.下列事件中,随机事件是( C )A.没有水分,种子仍能发芽B.等腰三角形两个底角相等C.从13张红桃扑克牌中任抽一张,是红桃AD.从13张方块扑克牌中任抽一张,是红桃105.同时掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,下列事件中是不可能发生的事件是( D )A.点数之和为12B.点数之和小于3C.点数之和大于4且小于8D.点数之和为136.从一副扑克牌中任意抽出一张,则下列事件中可能性最大的是( D )A.抽出一张红心B.抽出一张红色老KC.抽出一张梅花JD.抽出一张不是Q的牌7.不透明的袋子中装有4个红球,3个黑球,5个蓝球,每个球除颜色不同外,其它都一样,从中任意摸出一球,则摸出球的可能性最大.答案:蓝8.在200件产品中,有192件一级品,8件二级品,则下列事件:(如果没有请填“无”)①在这200件产品中任意选出9件,全部是一级品;②在这200件产品中任意选出9件,全部是二级品;③在这200件产品中任意选出9件,不全是一级品;④在这200件产品中任意选出9件,至少一件是一级品,其中是必然事件;是不可能事件;是随机事件.答案:④,②,①③【教学说明】通过亲身体验,把问题渗透到游戏中,找到求随机事件中可能性大小的方法,培养学生发现问题、解决问题的能力.四、师生互动,课堂小结1.理解确定事件与不确定事件;2.知道不确定事件发生的可能性有大有小;3.合理运用所学知识分析解决相关问题.五、教学板书1.布置作业:教材“习题6.1”中第1、2、3题.2.完成同步练习册中本课时的练习.这种开放性的游戏活动课,学生热情高涨,时间要把握好,课前准备要充分,否则影响整个课堂效果;另外,怎样应对学生“动”起来后发生的各种令教师始料不及的问题,是教师随时要面临的,这也要求教师不断地提高业务水平与课堂应对技巧.2 频率的稳定性【知识与技能】1.通过试验让学生理解当试验次数较大时,试验频率稳定在某一常数附近,并据此能估计出某一事件发生的频率.2.学会根据问题的特点,用统计来估计事件发生的概率,培养分析问题,解决问题的能力.【过程与方法】通过对问题的分析,理解用频率来估计概率的方法,渗透转化和估算的思想方法.【情感态度】通过对实际问题的分析,培养使用数学的良好意识,激发学习兴趣,体验数学的应用价值;进一步体会“数学就在我们身边”,发展学生应用数学的能力.【教学重点】通过对事件发生的频率的分析来估计事件发生的概率.【教学难点】通过对事件发生的频率的分析来估计事件发生的概率.一、情景导入,初步认知抛掷一枚图钉,落地后会有几种情况?这几种情况的可能性一样大吗?【教学说明】培养学生猜测游戏结果的能力,并从中初步体会试验结果可能性有可能不同.二、思考探究,获取新知探究1:图钉试验1.两人一组做20次掷图钉游戏,并将数据记录在下表中:介绍频率定义:在n 次重复试验中,不确定事件A 发生了m 次,则比值nm 称为事件发生的频率.2.累计全班同学的试验结果,并将试验数据汇总填入下表:3.请同学们根据已填的表格,完成下面的折线统计图小明共做了400次掷图钉游戏,并记录了游戏的结果绘制了下面的折线统计图,观察图象,钉尖朝上的频率的变化有什么规律?【归纳结论】在试验次数很大时,钉尖朝上的频率都会在一个常数附近摆动,即钉尖朝上的频率具有稳定性.【教学说明】通过绘制折线统计图的过程,使学生进一步对数据进行处理,观察形象直观的统计图进而得出结论,突出本节课的重点.学生分组讨论课本P141议一议的两个问题,进一步加深对频率稳定性的认识,初步体会用频率可以估计事件发生的可能性的大小.探究2:硬币试验1.同桌两人做20次掷硬币的游戏,并将数据填在下表中:2.各组分工合作,分别累计进行到20、40、60、80、100、120、140、160、180、200次正面朝上的次数,并完成下表:3.根据上表,完成课本P143折线统计图.观察上面的折线统计图,你发现了什么规律?4.观察P144表上的数学家所作的掷硬币试验的数据.表中的数据支持你发现的规律吗?【归纳结论】(1)在试验次数很大时事件发生的频率,都会在一个常数附近摆动,这个性质称为:频率的稳定性.(2)我们把这个刻画事件A发生的可能性大小的数值,称为事件A的概率,记为P(A).(3)一般地,大量重复的试验中,我们常用不确定事件A发生的频率来估计事件A发生的概率.5.想一想:事件A 发生的概率P(A)的取值范围是什么?必然事件发生的概率是多少?不可能事件发生的概率又是多少?【归纳结论】必然事件发生的概率为1;不可能事件发生的概率为0;不确定事件A 发生的概率P(A)是0与1之间的一个常数.【教学说明】一是通过实验让学生体验等可能性事件发生的可能性的发现过程,当试验的次数较少时,折线在“0.5水平直线”的上下摆动的幅度较大,与开始的猜测有矛盾,让学生动脑得出造成这种结果的原因是实验的次数不够,培养学生发现问题、解决问题的能力.从而使学生自发的把全班试验的结果都统计出来,学会进行实验和收集实验数据;二是培养学生的合作精神,通过实验和收集实验数据的过程增进学生之间的感情,并明白团队精神的重要性.三、运用新知,深化理解1.一箱灯泡有24个,合格率为80%,从中任意拿一个是次品的概率为( A )A.0.2B.80%C.2420 D.1 2.从标有1、2、3、4、5的5个小球中任取2个,它们的和是偶数的概率是( C ) A.101 B. 51 C. 52 D.以上均不对 3.一名运动员连续射靶10次,其中2次命中10环,2次命中9环,6次命中8环,针对某次射击,下列说法正确的是( C )A.射中10环的可能性最大B.命中9环的可能性最大C.命中8环的可能性最大D.以上可能性均等4.袋中有红球12个,白球k 个,这些球除颜色外完全相同.小刚通过多次摸球试验后发现摸到白球的频率稳定在25%,则估计口袋中白球有 个.解:∵小刚通过多次摸球试验后发现摸到白球的频率稳定在25%,则 12k k =0.25, k=4,∴口袋中白球很可能有4个.5.一粒木质中国象棋子“兵”,它的正面雕刻一个“兵”字,它的反面是平的.将它从一定高度下掷,落地反弹后可能是“兵”字面朝上,也可能是“兵”字面朝下.由于棋子的两面不均匀,为了估计“兵”字面朝上的概率,某试验小组做了棋子下掷试验,试验数据如下表:(1)请将数据补充完整;(2)画出“兵”字面朝上的频率折线统计图;(3)如果试验继续进行下去,根据上表的数据,这个试验的频率将稳定在它的概率附近,请你估计这个概率是多少?解:(1)所填数字为40×0.45=18,66÷120=0.55;(2)折线图:(3)根据表中数据,试验频率为0.7,0.45,0.63,0.59,0.52,0.55,0.56,0.55稳定在0.55左右,故估计概率的大小为0.55.【教学说明】使学生形成分析数据、计算数据、绘制表格、归纳总结的数学思维,同时进一步体会频率的稳定性.四、师生互动,课堂小结1.通过本节课的学习,你了解了哪些知识?2.在本节课的教学活动中,你获得了哪些活动体验?五、教学板书1.布置作业:教材“习题6.3”中第1、2题.2.完成同步练习册中本课时的练习.在小组做出猜测之前,应该留给学生充分的独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问.教师应对小组合作给予适当的指导,包括知识的启发引导.学生交流合作中注意的问题及对困难学生的帮助等,使小组合作学习更具实效性.教师应注意激发学生的内在动机,通过学生的发现给他们带来满意和内在的激励.3 等可能事件的概率第1课时计算简单事件发生的概率【知识与技能】通过摸球游戏,帮助学生了解计算一类事件发生的可能性的方法,体会概率的意义.【过程与方法】通过本节课的学习,帮助学生更容易地感受到数学与现实生活的联系,体验到数学在解决实际问题中的作用,培养学生实事求是的态度及合作交流的能力.【情感态度】通过环环相扣、层层深入的问题设置以及分组游戏的设置,鼓励学生积极参与,培养学生自主、合作、探究的能力,培养学生学习数学的兴趣.【教学重点】概率的意义及其计算方法的理解与应用【教学难点】灵活应用概率的计算方法解决各种类型的实际问题.一、情景导入,初步认知任意掷一枚均匀的硬币,可能出现哪些结果?每种结果出现的可能相同吗?正面朝上的概率是多少?【教学说明】本节课的内容是要学会简单的概率计算的方法,所以在学习新课以前复习有关简单掷硬币正面朝上的概率,为后面的学习打好基础.二、思考探究,获取新知探究:一个袋中有5个球,分别标有1,2,3,4,5这5个号码,这些球除号码外都相同,搅匀后任意摸出一个球.(1)会出现哪些可能的结果?(2)每个结果出现的可能性相同吗?猜一猜它们的概率分别是多少?1.这里我们提到的抛硬币,掷骰子和前面的摸球游戏有什么共同点?设一个实验的所有可能结果有n个,每次试验有且只有其中的一个结果出现.如果每个结果出现的可能性相同,那么我们就称这个试验的结果是等可能的.2.想一想:你能找一些结果是等可能的实验吗?【归纳结论】一般地,如果一个试验有n个等可能的结果,事件A包含其中的m个结果,m那么事件A发生的概率为:P(A)=n【教学说明】通过小组合作交流讨论,学生能够准确理解何为等可能试验,并且大家共同合作得出求等可能试验中事件A的概率公式.在本环节中有利于培养学生与他人的合作、互助意识,锻炼学生与他人的沟通、协作能力.三、运用新知,深化理解1.见教材P例11472.一道单项选择题有A、B、C、D四个备选答案,当你不会做的时候,从中随机地选一个答案,你答对的概率是 . 答案:41. 3.一副扑克牌,任意抽取其中的一张,①P(抽到大王)= .②P(抽到3)= .③P(抽到方块)= . 答案:①541,②272,③5413. 4.一个袋中装有3个红球,2个白球和4个黄球,每个球除颜色外都相同.从中任意摸出一球,则:P (摸到红球)= ,P (摸到白球)= ,P (摸到黄球)= . 答案:31,92,94. 5.有7张纸签,分别标有数字1,1,2,2,3,4,5,从中随机地抽出一张,求:(1)抽出标有数字3的纸签的概率;(2)抽出标有数字1的纸签的概率;(3)抽出标有数字为奇数的纸签的概率.答案:(1)71,(2)72,(3)74. 6.任意掷一枚均匀骰子.(1)掷出的点数大于4的概率是多少?(2)掷出的点数是偶数的概率是多少?解:任意掷一枚均匀骰子,所有可能的结果有6种:掷出的点数分别是1,2,3,4,5,6,因为骰子是均匀的,所以每种结果出现的可能性相等.(1)掷出的点数大于4的结果只有2两种:掷出的点数分别是5,6. 所以P (掷出的点数大于4)=3162=. (2)掷出的点数是偶数的结果有3种:掷出的点数分别是2,4,6.所以P(掷出的点数是偶数)=2163=.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.五、教学板书1.布置作业:教材“习题6.4”中第1、2、3题.2.完成同步练习册中本课时的练习.通过环环相扣的问题的设立与智力大比拼题目的设置,为学生提供展示自己聪明才智的机会,并且在此过程中更利于教师发现学生分析问题、解决问题的独到见解,以及思维的误区,以便指导今后的教学.课堂上要把激发学生学习热情和获得学习能力的目标放在教学首位,通过运用各种启发、激励的语言以及组织小组合作学习,帮助学生形成积极主动的求知态度.在教学的过程中,应该留给学生充分独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问.第2课时游戏的公平性【知识与技能】通过小组合作、交流、试验,理解游戏的公平性,并能根据不同问题的要求设计出符合条件的摸球游戏.【过程与方法】再次经历数据的收集、整理和简单分析、作出决策的合作交流过程.发展学生的随机意识;让学生在小组活动中通过相互间的合作与交流,进一步发展学生合作交流的能力和数学表达能力.【情感态度】在实验过程中体会数据的客观真实性,感受数学与现实生活的密切关系,增强学生的数学应用意识,初步培养学生以科学数据为依据分析问题、解决问题的良好习惯.【教学重点】摸球类问题的原则,会进行摸球类的游戏.【教学难点】根据题意添加条件使游戏具有公平性.一、情景导入,初步认知在一个装有2个红球和3个白球(每个球除颜色外完全相同) 的盒子中任意摸出一个球,摸到红球小明获胜,摸到白球小凡获胜,这个游戏对双方公平吗?【教学说明】对于这个游戏的公平性的问题是本节课的教学重点和教学难点,让学生探究讨论游戏的公平与否,从而产生学生认识问题上的矛盾冲突,激发学习的积极性.二、思考探究,获取新知探究:设计摸球游戏1.用4个除颜色外完全相同的球设计一个摸球游戏.使得摸到白球的概率为1 2,摸到红球的概率也是12.2.用4个除颜色外完全相同的球设计一个摸球游戏.使得摸到红球的概率为1 2,摸到白球和黄球的概率都是14.3.选取10个除颜色外完全相同的球设计一个摸球游戏,使得摸到红球的概率为12,摸到白球的概率也是12.4.能否用7个除颜色外完全相同的球设计一个摸球游戏.使得摸到红球的概率是12,摸到黄球和白球的概率都是14.【教学说明】逆向思维能力是思维能力的一个重要组成部分.加强从正向思维转向逆向思维的培养,能有效地提高学生思维能力和创新意识.三、运用新知,深化理解1.规定:在一副去掉大、小王的扑克牌中,牌面从小到大的顺序为:2、3、4、5、6、7、8、9、10、J、Q、K、A,且牌面的大小与花色无关.(1)小明和小颖做摸牌游戏,他们先后从这副去掉大、小王的扑克牌中任意抽取一张牌 (不放回),谁摸到的牌面大,谁就获胜现小明已经摸到的牌面为4,然后小颖摸牌,P(小明获胜 )=_______. P(小颖获胜 )=_______.(2)若小明已经摸到的牌面为2,然后小颖摸牌,P(小明获胜 ) =_______.P(小颖获胜 )=_______.(3)现小明已经摸到的牌面为 A,然后小颖摸牌,P(小明获胜 )=_______. P(小颖获胜 )=_______.答案:略2.小明和小刚都想去看周末的足球赛,但却只有一张球票,小明提议用如下的办法决定到底谁去看比赛:小明找来一个转盘,转盘被等分为8份,随意的转动转盘,若转到颜色为红色,则小刚去看足球赛;转到其它颜色,小明去.你认为这个游戏公平吗? 如果你是小明,你能设计一个公平的游戏吗?解:不公平因为,小刚去的概率为38,而小明去的概率为58.将转盘等分成2份,涂成两种颜色,这样就比较公平.【教学说明】学生应用所学新知解决典型概率问题,解决与生活实际联系紧密的问题.同时可以通过分组竞赛的方式培养学生学习数学的积极性.达到提高学生的学习效率,增强学生的自信心的目的.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.五、教学板书1.布置作业:教材“习题6.5”中第1、2、3题.2.完成同步练习册中本课时的练习.通过学生自己动手、动脑、主动解决问题的教学方法,培养学生通过观察、思考发现问题,从而产生想要解决问题、分析问题的欲望,通过自己动手操作,完成任务,解决问题,获得成功的喜悦,树立了自信心.这样教给学生的不单单是知识和技能,而且还教给了学生获取知识的方法.第3课时计算与面积相关的事件的概率【知识与技能】1.了解一类事件发生概率的计算方法,并能进行简单计算,能设计符合要求的简单概率模型.2.了解概率的大小与面积的关系,能设计符合要求的简单概率模型.【过程与方法】在分组讨论合作探究的过程中体会事件发生的不确定性,进一步体会“数学就在我们身边”.【情感态度】初步认识概率与人类生活的密切联系,感受概率的应用价值,增强学生学数学、用数学的意识,提高学生之间的合作交流能力和学习数学的兴趣.【教学重点】会进行简单的概率计算.【教学难点】会进行简单的概率计算.一、情景导入,初步认知以“传球游戏”开始,诱发学生的学习兴趣,寓教于乐.要求:学生座位安排成方阵形式,开展传球活动.(教师可以对学生活动给予一定的指导,发出口令“开始”、“停”,学生进行循环传球游戏.让学生体验事件的随机性.)游戏结束后提出问题:球落在男、女生的概率分别为多大?【教学说明】以游戏的形式对求概率进行复习,并为本节课做铺垫,同时提高了学生的学习兴趣.二、思考探究,获取新知探究1:下图是卧室和书房的示意图,图中每一方块除颜色外,其它都相同.一小球在卧室和书房中自由地滚动,并随机停留在某块方砖上.思考下列问题:1.小球在卧室和书房中自由地滚动,并随机停留在某块方砖上,在哪个房间里,小球停留在黑砖上的概率大?(学生:在卧室里)2.你是怎样分析的?(生:黑色方砖的块数多些)3.你觉得小球停留在黑砖上的概率大小与什么有关?【教学说明】由这些问题引发学生的思考,使知识间的过渡自然、轻松、直观的初步体验几何概率.探究2:假如小球在如图所示的地板上自由地滚动,并随机停留在某块方砖上,它最终停留在黑色方砖上的概率是多少?各小组讨论.交流后派代表说出自己的分析思路和答案,(选3~4个小组代表讲解).思考下列问题,由小组讨论得出结论并交流.互相补充完善,并派代表回答.1.题中所说“自由地滚动,并随机停留在某块方砖上”说明了什么?2.小球停留在方砖上所有可能出现的结果有几种?停留在黑砖上可能出现的结果有几种?3.小球停留在黑砖上的概率是多少?怎样计算?4.小球停留在白砖上的概率是多少?它与停留在黑砖上的概率有何关系?5.如果黑砖的面积是5平方米,整个地板的面积是20平方米,小球停留在黑砖上的概率是多少?【教学说明】通过这一系列问题,使学生充分体验随机性的必要性以及几何概率的含义,并掌握概率的计算方法.以问题串的形式引导学生逐步深入的思考.便于加深对本节课知识的理解,有助于相关知识的消化.探究3:如图是一个可以自由转动的转盘,转动转盘,当转盘停止时,指针落在蓝色区域和红色区域的概率分别是多少?首先让学生独立思考.书写答案,然后小组交流,最后全班展示,教师总结. 注意让学生重点讨论以下三种答案:方案一:指针不是落在蓝色区域就是落在红色区域,落在蓝色区域和红色区域的概率相等,所以P (落在蓝色区域)=P (落在红色区域)=21. 方案二:先把红色区域等分成2份,这样转盘被分成3个扇形区域,其中1个是蓝色,2个是红色,所以P (落在蓝色区域)=31,P (落在红色区域)=32.方案三:利用圆心角度数计算,所以P (落在蓝色区域)=31360120 ,P (落。
知识点总结1.在一定条件下一定发生的事件,叫做必然事件;在一定条件下一定不会发生的事件,叫做不可能事件;必然事件和不可能事件统称为确定事件。
有些事情事先无法肯定它会不会发生,这些事情称为不确定事件,也称为随机事件。
2.在试验次数很大时,不确定事件发生的频率都会在一个常数附近摆动,这就是频率的稳定性。
一般地,把刻画事件A发生的可能性大小的数值,称为事件A发生的概率,记为P(A).3.注意:在大量重复试验中,我们常用不确定事件发生的频率来估计事件发生的概率说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同.4.事件A发生的概率记作P(A)则:0≤P(A)≤1。
必然事件发生的概率为1,不可能事件发生的概率为0,不确定事件发生的概率P(A)为0与1之间的一个常数。
5.等可能事件概率(1)一次试验中,可能出现的结果有限多个.(2)一次试验中,各种结果发生的可能性相等.设一个实验的所有可能的结果有n种,每次试验有且只有其中的一种结果出现,如果每种结果出现的可能性相同,那么我们就称这个实验的结果是等可能的。
一般地,如果一个试验有n种等可能的结果,事件A包含其中的m种结果,那么事件A发生的概率为:P(A)=m/n注意:0≤P(A)≤1一共有n种结果,每种结果出现的可能性都相同,事件A出现的结果有m 种,所以事件A发生的概率为P(A)=m/n6.游戏是否公平:游戏对双方公平是指双方获胜的可能性相同,即获胜概率相同。
导学案●学习目标:知识技能目标:掌握必然事件,不可能事件和随机事件的特点,并能对有关事件做出准确判断.过程方法目标:经历实验操作、观察、和总结,归纳出三种事件的各自的本质属性,并抽象成数学概念.情感态度目标:通过“摸球”这样一个有趣的试验,形成对随机事件发生的可能性大小作定性分析的能力,了解影响随机事件发生的可能性大小的因素.●重点难点:随机事件的特点并能对生活中的随机事件做出准确判断;对随机事件发生的可能性大小的定性分析.●学习过程互动探究1.随机投掷一枚均匀的骰子,掷出的点数会是10吗?2.随机投掷一枚均匀的骰子,掷出的点数一定不超过6吗?3.随机投掷一枚均匀的骰子,掷出的点数一定是1吗?自主学习(看书66页并填空):1.必然事件:在一定条件下,有些事情我们事先能肯定它一定_____,这些事情称为必然事件.2.不可能事件事件:有些事情我们事先能肯定它一定_______,这些事情称为不可能事件事件.3.确定事件:____________和___________统称为确定事件4.不确定事件:有许多事情我们事先无法肯定它会不会发生,这些事情称______________也称为随机事件.知识应用1、指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件?(1)两直线平行,内错角相等;(2)将油滴入水中,油会浮在水面上;(3)任意买一张电影票,座位号是2的倍;(4)任意投掷一枚均匀的骰子,掷出的点数是奇数;(5)13个人中,至少有两个人出生的月份相同;(6)经过有信号灯的十字路口,遇见红灯;(7)在装有3个球的布袋里摸出4个球(8)抛出的篮球会下落。
北师大版七年级数学下册《6.1 感受可能性》说课稿一. 教材分析北师大版七年级数学下册《6.1 感受可能性》这一章节主要让学生初步接触概率知识,通过实验和游戏等活动,让学生感受事件发生的可能性,并能够利用概率知识解决一些实际问题。
教材从生活实例出发,引导学生探究概率的基本概念和方法,培养学生的动手操作能力和数据分析能力。
二. 学情分析学生在进入七年级之前已经学习了初中数学的基础知识,对于一些简单的数学运算和逻辑推理已经有了一定的掌握。
但是,对于概率这一概念,学生可能比较陌生,需要通过具体的实验和案例来理解和掌握。
此外,学生的动手操作能力和团队协作能力也需要进一步的培养。
三. 说教学目标1.让学生通过实验和游戏等活动,初步了解概率的基本概念和方法。
2.培养学生的动手操作能力和数据分析能力。
3.引导学生运用概率知识解决一些实际问题,提高学生的应用能力。
四. 说教学重难点1.概率的基本概念和方法。
2.如何运用概率知识解决实际问题。
五. 说教学方法与手段1.采用问题驱动的教学方法,引导学生通过实验和游戏等活动,自主探究概率的基本概念和方法。
2.利用多媒体教学手段,展示实验和游戏的过程,增强学生的直观感受。
3.小组讨论和汇报,培养学生的团队协作能力和口头表达能力。
六. 说教学过程1.导入:通过一个简单的抽奖游戏,引出概率的概念,激发学生的兴趣。
2.探究:让学生分组进行实验,如抛硬币、掷骰子等,统计实验结果,引导学生发现事件发生的可能性。
3.讲解:教师讲解概率的基本概念和方法,如频率、概率等,并给出一些实际例题。
4.练习:让学生进行一些概率计算练习,巩固所学知识。
5.应用:引导学生运用概率知识解决一些实际问题,如抽签、摸奖等。
6.总结:教师和学生一起总结本节课所学内容,强调重点和难点。
七. 说板书设计板书设计要简洁明了,能够突出概率的基本概念和方法。
可以设计如下:八. 说教学评价教学评价主要通过学生的课堂表现、作业完成情况和概率计算练习的正确率来进行。
第六章概率初步第1节感受可能性1、P138-随堂练习-1下列事件中,哪些就是必然事件?哪些就是随机事件?(1)将油滴入水中,油会浮在水面上;(2)任意掷一枚质地均匀的骰子,掷出的点数就是奇数。
2、P138-随堂练习-2小明任意买一张电影票,座位号就是2的倍数与座位号就是5的倍数的可能性哪个大?3、P138-习题6、1-1下列事件中,哪些就是必然事件?哪些就是不可能事件?哪些就是随机事件?(1)抛出的篮球会下落;(2)一个射击运动员每次射击的命中环数;(3)任意买一张电影票,座位号就是2的倍数;(4)早上的太阳从西方升起。
4、P138-习题6、1-2一个袋中装有8个红球、2个白球,每个球除颜色外都相同。
任意摸出一个球,摸到哪种颜色球的可能性大?说说您的理由。
5、P138-习题6、1-3下图就是一个可以自由转动的转盘,转动转盘,当转盘停止时,指针落在哪个区域的可能性大?说明您的理由。
6、P139-习题6、1-4下图表示各袋中球的情况,每个球除颜色外都相同,任意摸出一个球,请您按照摸到红球的可能性由大到小进行排列。
7、P139-习题6、1-5如图就是一个可以自由转动的转盘,利用这个转盘与同伴做下面的游戏:(1)自由转动转盘,每人分别将转出的数填入四个方格中的任意一个(2)继续转动转盘,每人再将转出的数填入剩下的任意一个方格中;(3)转动四次转盘后,每人得到一个“四位数”;(4)比较两人得到的“四位数”,谁的大谁就获胜。
多做几次上面的游戏,在做游戏的过程中,您的策略就是什么?您积累了什么样的获胜经验?第2节频率的稳定性8、P142-随堂练习某射击运动员在同一条件下进行射击,结果如下表所示:(1)完成上表;(2)根据上表,画出该运动员击中靶心的频率的折线统计图;(3)观察画出的折线统计图,击中靶心的频率的变化有什么规律?对某批产品的质量进行随机抽查,结果如下表所示: 随机抽取的产品数n 1 500 1000 合格的产品数m 9 19 47 93 187 467 935 合格率m n(1)完成上表;(2)根据上表,画出产品合格率变化的折线统计图;(3)观察画出的折线统计图,产品合格率的变化有什么规律?10、 P142-习题6、2-2抛一个如图所示的瓶盖,盖口向上或盖口向下的可能性就是否一样大?怎样才能验证自己结论的正确性?11、 P145-随堂练习-1小凡做了5次抛均匀硬币的试验,其中有3次正面朝上,2次正面朝下,因此她认为正面朝上的概率大约为35 ,朝下的概率约为25 ,您同意她的观点不?您认为她再多做一些试验,结果还就是这样不?掷一枚质地均匀的硬币,正面朝上的概率为12 ,那么,掷100次硬币,您能保证恰好50次正面朝上不?与同伴进行交流。
第01讲感受可能性、频率的稳定性(5类热点题型讲练)1.通过对生活中各种事件的概率的判断,归纳出必然事件、不可能事件和随机事件的特点,并根据这些特点对有关事件做出准确的判断;(重点)2.知道事件发生的可能性是有大小的.(难点)3.理解频率和概率的意义;4.了解频率与概率的关系,能够用频率估计某一事件的概率.(重点,难点)知识点01确定事件(必然事件、不可能事件)与不确定事件在一定条件下一定发生的事件,叫做必然事件;在一定条件下一定不会发生的事件,叫做不可能事件;必然事件和不可能事件统称为确定事件。
有些事情事先无法肯定它会不会发生,这些事情称为不确定事件,也称为随机事件。
知识点02确定事件与随机事件(1)确定事件:事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.(2)随机事件:在一定条件下,可能发生也可能不发生的事件,称为随机事件.(3)事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件,其中,①必然事件发生的概率为1,即P(必然事件)=1;②不可能事件发生的概率为0,即P(不可能事件)=0;③如果A为不确定事件(随机事件),那么0<P(A)<1.知识点03利用频率估计概率(1)大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.(2)用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.(3)当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.题型01必然事件【例题】(2024·贵州·模拟预测)下列诗句所描述的事件中,属于必然事件的是()A.黄河入海流B.手可摘星辰C.锄禾日当午D.大漠孤烟直【变式训练】1.(2023·广西贵港·模拟预测)下列事件中,是必然事件的是()A.任意画一个三角形,其内角和为180B.打开电视机,正在播放“天宫课堂”C.疫情期间,对从疫情高风险区归来的人员进行核酸检测,检测结果为阳性D.某校开展“喜迎二十大,筑梦向未来”主题学习活动中,抽到甲同学分享发言2.(2024九年级·全国·竞赛)下列事件是必然事件的是()A.同时抛掷两颗骰子,朝上的面上的点数之和不等于1B.日出时,正在玩倒立的人看到的太阳不是从东方升起的C.含有钢铁的东西放在江面上一定会沉入江底D.滚动一枚硬币,硬币不倒题型02随机事件【例题】(23-24九年级上·内蒙古鄂尔多斯·期末)下列事件是随机事件的是()A.一匹马奔跑的速度是700米/秒B.射击运动员射击一次,命中10环C.两个负数的和是负数D.在只装有白球的袋子中摸出黑球【变式训练】1.(23-24九年级上·贵州黔东南·期末)下列事件中,是随机事件的是()A.在一副扑克牌中抽出一张,抽出的牌是黑桃6;B.在一个只装了红球的袋子里,摸出一个白球;C.明天太阳从东方升起;D.画一个三角形,其内角和是180 .2.(22-23九年级上·浙江台州·期末)下列事件中,属于随机事件的是()A.掷一次骰子,朝上一面的点数大于0B.从装有6个白球的袋中摸出一个红球C.奥运射击冠军杨倩射击一次,命中靶心D.明天太阳从西方升起题型03事件发生的可能性大小【例题】(23-24八年级下·江苏泰州·期中)从一副扑克牌中任意抽取1张:①这张牌是“A”;②这张牌是“红心”;③这张牌是“黑色的”,将这些事件的序号按发生的可能性从小到大的顺序排列为.【变式训练】1.(22-23八年级下·江苏徐州·期中)抛掷一枚质地均匀的正方体骰子一次,下列3个事件:①向上一面的点数是奇数;②向上一面的点数是3的倍数;③向上一面的点数不小于3.其中发生的可能性最大的事件是.(填写你认为正确的序号即可)2.(23-24八年级下·江苏宿迁·期中)箱子中有5个白球、7个黑球及m个红球.它们仅有颜色不同,若从中随机摸出一球,结果是红球的可能性比黑球的可能性小,同时又比白球的可能性大,则m的值是.题型04概率的意义理解【例题】(23-24九年级上·浙江舟山·期中)以下说法合理的是()A.小明做了3次掷图钉的实验,发现2次钉尖朝上,由此他说钉尖朝上的概率是23 B.某彩票的中奖概率是5%,那么买100张彩票一定有5张中奖C.小明做了3次掷均匀硬币的实验,其中有一次正面朝上,2次正面朝下,他认为再掷一次,正面朝上的概率还是1 2D.某射击运动员射击一次只有两种可能的结果:中靶与不中靶,所以他击中靶的概率是12【变式训练】1.(23-24九年级上·贵州黔东南·期中)“从江县明天降水概率是30%”,对此消息下列说法中正确的是()A.从江县明天将有30%的地区降水B.从江县明天将有30%的时间降水C.从江县明天降水的可能性较小D.从江县明天肯定不降水2.(23-24九年级上·山西临汾·阶段练习)下列说法正确的是()A.抛掷一枚质地均匀的硬币,抛掷10次,一定有5次出现正面.B.“从布袋中取出1个黑球的概率是0”,意思是取出1个黑球的可能性很小.C.抛掷一枚质地均匀的硬币,抛掷次数很多时,出现正面的频率会稳定在0.5附近.D.“明天降雨的概率为70%”意思是明天有70%的时间在降雨.题型05关于频率与概率关系说法正误【例题】(22-23九年级上·广东潮州·期末)下列说法正确的是().A.不可能事件发生的概率为1B.随机事件发生的概率为13C.概率很小的事件不可能发生D.随着试验次数的增加,频率一般会越来越接近概率【变式训练】1.(22-23七年级下·山东烟台·期末)下列说法中正确的是()A.小明在装有红绿灯的十字路口,“遇到红灯”是随机事件B.确定事件发生的概率是1C.抛掷一枚质地均匀的正方体骰子600次,点数为1与点数为6的频率相同D.从某校1000名男生中随机抽取2名进行引体向上测试,其中有一名成绩不及格,说明该校50%的男生引体向上成绩不及格2.(2023·北京丰台·二模)掷一枚质地均匀的硬币m次,正面向上n次,则nm的值()A.一定是12B.一定不是12C.随着m的增大,越来越接近12D.随着m的增大,在12附近摆动,呈现一定的稳定性一、单选题1.下列事件为确定事件的是()A.在一张纸上任意画两条线段,这两条线段相交B.抛掷1枚质地均匀的硬币反面朝上C.某人投篮一次,命中篮筐D.长度分别是2cm、4cm、5cm的三条线段能围成一个三角形2.下列说法正确的是()A.一枚质地均匀的硬币,任意掷一次,正、反两面朝上的可能性相同B.任意买一张电影票,座位号一定是偶数C.篮球运动员在三分线罚球,球一定被投入篮球框D.掷一枚质地均匀的骰子,朝上的点数一定大于33.校篮球队员小亮训练定点投篮以提高命中率.下表是小亮一次训练时的进球情况:投篮数(次)50100150200…·进球数(次)4081118160…则下列说法正确的是()A.小亮每投10个球,一定有8个球进B.小亮投球前8个进,第9,10个一定不进C.小亮比赛中的投球命中率一定为80%D.小亮比赛中投球命中率可能超过80%4.图,有两个大小不一的转盘甲、乙,分别被分为6个面积相等的扇形,并标有不同的数字,小颖和小瑞分别转动转盘甲、乙,若规定转到“3”所在的扇形区域获胜,则获胜概率较大的是()A.小颖B.小瑞C.一样大D.无法确定5.数学课上老师带领学生做“频率的稳定性”试验时,统计了某结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是()A.在玩“石头、剪刀、布”的游戏中,小颖随机出的是“石头”.B.一副去掉大小王的普通扑克牌(52张,四种花色)洗匀后,从中任抽一张牌,花色是梅花.C.不透明袋子中有1个红球和4个白球,每个球除颜色外都相同,从中任取一球是白球.D.掷一枚质地均匀的硬币,硬币落下后朝上的是正面.二、填空题6.“购买一张彩票,中奖”这一事件是(填“必然事件”“不可能事件”“随机事件”)7.请指出在下列事件中,是随机事件的有.(填序号)①通常温度降到0℃以下,纯净的水结冰;②随意翻到一本书的某页,这页的页码是奇数;③购买1张彩票,中奖;④明天太阳从东方升起.8.袋子里有3个红球,4个黄球和2个白球,除颜色外其他均相同.从袋子中任意取出一个球,取到黄球的可能性大小是.9.一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上,每块地砖的大小、质地完全相同,那么该小球停留在白色区域的概率是.10.抽奖啦!现有3个不透明箱子,箱子内放有若干小球(除颜色外其余均相同).规定:每次只能摸一个小球,摸出红球奖励一杯奶茶,摸出黄球奖励一支雪糕,若小丽想得到一杯奶茶,应选择从号箱子里摸球,如愿的可能性最大.三、解答题11.下列事件中哪些事件是必然事件,哪些事件是不可能事件,哪些事件是不确定事件?(1)在一个装只有白球和黑球的袋中摸球,摸出红球.(2)任意抛掷一枚图钉,结果钉尖着地.(3)在标准大气压下,气温为2摄氏度时,冰能熔化成水.(4)在一张纸上任意画两条线段,这两条线段相交.(5)某运动员跳高最好成绩是10.1米.(6)从车间刚生产的产品中任意抽一个,是次品.必然事件有______,不可能事件有______,不确定事件有______(填序号)12.甲袋中放着22个红球和7个黑球,乙袋中放着42个白球和16个黑球,三种球除颜色外没有任何区别,将两袋中的球搅匀,从两个袋中各任取一个球,哪个袋中取出黑球的可能性大?13.将牌面数字分别是5,6,7,8的四张扑克牌背面朝上,洗匀后放在桌面上,甲、乙两人每次同时从桌面上抽出一张牌,并计算摸出的这两个牌面上的数字之和,记录后将牌放回并背面朝上,洗匀后进行重复试验,在试验中出现“和为13”的试验数据如下表:试验总次数306090120180240330450“和为13”出现的次数132430375882110150“和为13”出现的频率0.430.400.310.340.33(1)请将表中的数据补充完整;(2)如果试验维续进行下去,根据上表数据,出现“和为13”的频率可能稳定在左右.(上述结果均保留两位小数)14.小颖和小红两位同学在做投掷骰子(质地均匀的正方体)试验,他们共做了60次试验,试验的结果如下表:朝上的点数123456出现的次数79682010(1)计算出现“3点朝上”的频率和“5点朝上”的频率.(2)小颖说:“根据试验得出,出现‘5点朝上’的机会最大.”小红说:“如果投掷600次,那么出现‘6点朝上’的次数正好是100次.”小颖和小红的说法正确吗?为什么?15.下列五个事件中,哪些是必然事件.哪些是不可能事件.哪些是随机事件.根据你的判断,把这些事件的序号按发生的可能性从小到大的顺序排列.(1)13人中至少有2人的生日在同一个月;(2)手机号码的末位数字为偶数;(3)2 的绝对值小于0;(4)从装有1个黄球和8个红球的袋子中摸出1个球是红球;(5)从装有3个白球和6个红球的袋子中摸出1个球是红球.16.以下四个事件:事件A:抛掷一个硬币时,得到一个正面;事件B:在一小时内你步行可以走80千米;事件C:在一个装有2个红球,3个黄球,5个蓝球的袋子中,球的质量、大小完全相同,从中摸出一个黄球;事件D:两数之和是负数,则其中必有一个是负数.(1)可能事件的是______,必然事件的是_________.(2)请你把相应事件发生的机会用对应的字母A、B、C、D表示在数轴的对应点上.。
北师大版七年级数学下册教学设计(含解析):第六章概率初步1感受可能性一. 教材分析本节课为人教版七年级数学下册第六章概率初步的第一节,主要内容是让学生感受可能性。
通过本节课的学习,学生能够理解随机事件的概念,并能用概率来描述事件的可能性。
教材通过丰富的实例,引导学生感受概率在生活中的应用,培养学生的数学应用意识。
二. 学情分析学生在之前的学习中已经掌握了集合的概念,对一些基本的数学运算也有所了解。
但是,对于概率这一概念,学生可能比较陌生,难以理解。
因此,在教学过程中,教师需要通过生动的实例和生活中的现象,帮助学生理解和掌握概率的概念。
三. 教学目标1.知识与技能:让学生理解随机事件的概念,学会用概率来描述事件的可能性。
2.过程与方法:通过实例分析,让学生感受概率在生活中的应用,培养学生的数学应用意识。
3.情感态度与价值观:激发学生对概率学习的兴趣,培养学生的数学思维能力。
四. 教学重难点1.重点:让学生理解随机事件的概念,会用概率来描述事件的可能性。
2.难点:让学生理解概率的计算方法,并能运用到实际问题中。
五. 教学方法1.情境教学法:通过生活中的实例,让学生感受概率的存在,激发学生的学习兴趣。
2.问题驱动法:引导学生提出问题,并通过分析问题来理解概率的概念。
3.合作学习法:让学生在小组合作中,共同探讨问题的解决方案,培养学生的团队协作能力。
六. 教学准备1.教学素材:准备一些与生活相关的实例,如抛硬币、抽奖等,用于引导学生感受概率的存在。
2.教学工具:多媒体课件、黑板、粉笔等。
七. 教学过程1.导入(5分钟)教师通过抛硬币的实例,引导学生感受概率的存在。
例如,抛一枚硬币,正面朝上的概率是多少?让学生思考并回答。
2.呈现(10分钟)教师通过多媒体课件,呈现一些与概率相关的实例,如抽奖、骰子等,让学生观察并思考其中的概率问题。
3.操练(10分钟)教师提出一些关于概率的问题,让学生进行计算。
例如,抛两枚硬币,同时正面朝上的概率是多少?让学生独立思考并回答。
1感受可能性1.下列事件是必然事件的是(D)A.乘坐公共汽车恰好有空座B.同位角相等C.打开手机就有未接电话D.三角形的内角和等于180°2.(2019·湖北武汉江岸区月考)下列事件中,是随机事件的是(C)A.通常温度降到0 ℃以下,纯净的水结冰B.明天太阳从东方升起C.购买1张彩票,中奖D.任意画一个三角形,其内角和是360°3.小明同学参加“献爱心”活动,买了2元一注的爱心福利彩票5注,则“小明中奖”的事件为随机事件(填“必然”“不可能”或“随机”).4.一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为4,这个事件是不可能事件 (填“必然事件”“不可能事件”或“随机事件”).5.从一副扑克牌中抽出5张红桃、4张梅花、3张黑桃放在一起洗匀后,从中一次随机抽出10张,恰好红桃、梅花、黑桃3种牌都抽到,这件事情(D)A.可能发生B.不可能发生C.很可能发生D.必然发生6.小明的书包里装有大小、形状完全一样的6本作业本,其中语文作业本3本,数学作业本2本,英语作业本1本,那么他从书包中随机抽出1本作业本,可能性最大的是抽出语文作业本.7.下列第一排表示各盒中球的情况,第二排的语言描述了摸到蓝球的可能性大小,请你用线把第一排盒子与第二排的描述连接起来,使之相符.解:如图所示.8.(2018·福建中考)投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是(D)A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于129.(教材P139,习题6.1,T5改编)如图,转盘中8个扇形的面积都相等,任意转动转盘1次,当转盘停止转动时,估计下列事件发生的可能性的大小,并将这些事件的序号按发生的可能性从小到大的顺序排成一列: (2)(1)(4)(3) .(填序号)(1)指针落在标有3的区域内;(2)指针落在标有9的区域内;(3)指针落在标有数字的区域内;(4)指针落在标有奇数的区域内.10.在三个不透明的布袋中分别放入一些除颜色不同外其他都相同的玻璃球,并搅匀,具体情况如下表:布袋编号12 3布袋中玻璃球的颜色、数量2个绿球、2个黄球、5个红球1个绿球、4个黄球、4个红球6个绿球、3个黄球(1)随机地从1号布袋中摸出1个玻璃球,该球是黄色、绿色或红色的;(2)随机地从2号布袋中摸出2个玻璃球,2个球中至少有1个不是绿色的;(3)随机地从3号布袋中摸出1个玻璃球,该球是红色的;(4)随机地从1号和2号布袋中分别摸出1个玻璃球,2个球的颜色一致.解:(1)(2)是必然事件,(3)是不可能事件,(4)是随机事件.2 频率的稳定性1.在中考体育跳绳项目测试中,1 min 跳160次为达标.小敏在预测时1 min 跳的次数分别为165,155,140,162,164,则她在预测中达标的次数是 3 ,达标的频率是 0.6 . 2.某自行车厂在一次质量检查中,从5 000辆自行车中随机抽查了100辆,查得合格率为96%,估计这5 000辆自行车中大约有 200 辆车不合格.3.做重复试验:抛掷一枚啤酒瓶盖1 000次.经过统计得“凸面向上”的次数为420,则可以由此估计抛掷这枚啤酒瓶盖出现“凸面向上”的概率约为( B ) A .0.22 B .0.42 C .0.50 D .0.584.(2019·江苏泰州中考)小明和同学做“抛掷质地均匀的硬币试验”,获得的数据如表:抛掷次数 100 200 300 400 500 正面朝上的频数5398156202244A .20B .300C .500D .8005.在一个不透明的布袋中装有黄、白两种颜色的球(除颜色外其他都相同)共40个.小王通过多次摸球试验后发现,摸到黄球的频率稳定在0.35左右,则布袋中黄球可能有( B ) A .12个 B .14个 C .18个 D .28个6.(2019·江西南昌一模)元旦那天,某超市设立了一个如图所示的可以自由转动的转盘,开展有奖购买的活动,顾客购买物品就能获得一次转动转盘的机会,当转盘停止时,就可以获得指针所在区域相对应的奖品.下表是该活动的一组统计数据.假如你去转动一次转盘,获得铅笔的概率大约是 0.70 .(结果精确到0.01)转动转盘的次数n 100 150 200 500 800 1 000 落在“铅笔”区域的次数m 68 108 140 355 560 690 落在“铅笔”区域的频率mn0.680.720.700.710.700.69下面是小明和同学做“抛掷图钉试验”获得的数据: 抛掷次数n 100 200 300 400 500 600 700 800 900 1 000 钉尖不着地的频数m63120 186 252 310 360 434 488 549 610 钉尖不着地的频率m n0.630.600.620.630.620.600.620.610.610.61(1)填写表中的空格;(2)画出该试验中,钉尖不着地的频率的折线统计图;(3)观察折线统计图,你发现了什么?(4)根据“抛掷图钉试验”的结果,估计“钉尖着地”的概率为 0.39 .解:(3)观察折线图可以发现:随着抛掷次数的增加,钉尖不着地的频率逐渐稳定在0.61附近.易错点 不能正确理解频率的稳定性的含义8.小明在抛啤酒瓶盖(规定凹面为正)时,共抛了10次,结果有7次正面朝上,于是他说:“在抛掷啤酒瓶盖时正面朝上的概率是0.7.”你认为他的说法正确吗?为什么? 解:不正确.因为他的试验次数太少,不能用该频率估计事件发生的概率,只有试验次数较多时,其频率才与概率相近.9.(2019·北京朝阳区一模)某班同学随机抛掷一枚硬币的试验结果如下表所示:①表中没有出现“正面向上”的概率是0.5的情况,所以不能估计“正面向上”的概率是0.5;②这次试验抛掷次数的最大值是500,此时“正面向上”的频率是0.48,所以“正面向上”的概率是0.48;③抛掷硬币“正面向上”的概率应该是确定的,但是大量重复试验反映的规律并非在每一次试验中都发生.其中合理的是(C)A.①② B.①③C.③ D.②③10.在不透明的袋子中有黑棋子10枚和白棋子若干枚(它们除颜色外其他都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:A.60枚B.50枚C.40枚D.30枚11.(2019·浙江绍兴中考)为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高x(cm)统计如下:(D) A.0.85 B.0.57C.0.42 D.0.1512.(2019·河南模拟)一个不透明的袋子中装有若干个大小相同的白球,现取8个与白球除颜色外完全相同的黑球放入袋子中,摇匀之后,随机摸出一个球,记下颜色并放回.经过大量重复试验后,发现摸出黑球的频率稳定在0.1附近,则估计袋子中原有白球约 72 个.13.(2019·河北唐山路南区一模)某校研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干名学生的兴趣爱好,并将调査结果绘制成下面两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中,一共调查了多少名学生?(2)通过计算,补全条形统计图;(3)若该校爱好运动的学生共有600名,求该校共有学生大约多少名;(4)在全校同学中随机选取一名学生参加演讲比赛,用频率估计概率,求选出的恰好是爱好阅读的学生的概率.解:(1)40÷40%=100(名).(2)爱好上网的人数为100×10%=10,爱好阅读的人数为100-40-20-10=30.补全条形统计图,如图所示.(3)600÷40%=1 500(名).(4)因为爱好阅读的学生人数所占的百分比为30%,所以用频率估计概率,则选出的恰好是爱好阅读的学生的概率为310.3 等可能事件的概率第1课时 简单概率的计算1.一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,该球是黄球的概率为( C ) A.12 B.15 C.310 D.7102.小明掷一枚质地均匀的骰子,骰子的六个面上分别刻有1,2,3,4,5,6点,得到的点数为奇数的概率是( C )A.16B.13C.12D.233.某市电视台在举办的《开心就唱》歌手大赛活动中,号召观众发短信为参赛者投支持票,投票短信每1万条为1组,每组抽出1个一等奖,3个二等奖,6个三等奖.张艺同学发了1条短信,她获奖的概率是( B ) A.110 000 B.11 000 C.1100 D.1104.(2019·湖南娄底涟源模拟)从“绿水青山就是金山银山”中任选一个字,选出“山”的概率是( A )A.310B.110C.19D.185.某校七(1)班有男生25人,女生24人,从中任选一人,是男生的概率是 2549 .6.从一副扑克牌(去掉“大王”和“小王”)中任意抽出1张. (1)抽到红桃的概率是多少? (2)抽到“2”的概率是多少? (3)抽到红桃“2”的概率是多少?解:一副扑克牌中共有54张,去掉“大王”和“小王”后还剩52张,其中红桃有13张,“2”有4张,红桃“2”有1张.(1)P (抽到红桃)=1352=14.(2)P (抽到“2”)=452=113.(3)P (抽到红桃“2”)=152.7.某口袋中有20个球,其中白球x 个,绿球2x 个,其余为黑球.甲从口袋中任意摸出一个球,若为绿球则甲获胜;甲摸出的球放回口袋中,乙再从口袋中任意摸出一个球,若为黑球则乙获胜.当x 等于多少时,游戏对甲、乙双方都公平( B ) A .3 B .4 C .5 D .68.有编号为1~10的10张卡片,甲从中任意抽取一张,若其号码数能被3整除,则甲获胜;将甲抽取的卡片放回后,乙也从中任意抽取一张,若其号码数能被4整除,则乙获胜.这项游戏对甲、乙两人公平吗?若不公平,应如何添加卡片?(添加的卡片上的编号与原来卡片上的编号不同)解:不公平.在1~10中能被3整除的数字是3,6,9,共3个;能被4整除的数字是4,8,共2个.所以P (甲获胜)=310,P (乙获胜)=210=15.因为310≠15,所以这项游戏对甲、乙两人不公平.若要使这项游戏对甲、乙两人公平,则可以添加编号为“16”或“20”的卡片(答案不唯一,能被4整除,不能被3整除即可). 9.设计摸球游戏:(1)用12个除颜色外其他都相同的球,设计一个摸球游戏,使摸到红球的概率为12,摸到黄球的概率为13;(2)如果要使摸到红球的概率为23,摸到黄球的概率为16,那么摸球游戏至少要设置几个球?解:(1)红球:12×12=6(个);黄球:12×13=4(个).设计游戏如下:在一个不透明的口袋中装有除颜色外其他都相同的12个球,其中红球有6个,黄球有4个,白(其他颜色也可以)球有2个.从中任意摸出一个球,则摸到红球的概率为12,摸到黄球的概率为13. (2)设有x 个球,则23x +16x =56x .因为x 是6的倍数,所以x 的最小值为6. 故摸球游戏至少设置6个球.易错点 摸球问题中仅从颜色来划分结果10.甲袋中放有17个黄球、4个白球,乙袋中放有300个黄球、100个白球、20个红球,这几种球除了颜色以外没有任何区别,两袋中的球都已经各自搅匀,从袋中任意摸1个球,如果想摸出1个白球,选哪个袋摸球成功的机会大? 解:因为在甲袋中P (摸出1个白球)=417+4=421,在乙袋中P (摸出1个白球)=100300+100+20=521>421,所以选乙袋摸球成功的机会大.11.(2019·黑龙江齐齐哈尔中考)在一个不透明的口袋中,装有一些除颜色外其他完全相同的红、白、黑三种颜色的小球.已知袋中有红球5个,白球23个,且从袋中随机摸出1个红球的概率是110,则袋中黑球的个数为( C )A .27B .23C .22D .1812.(2019·江苏徐州铜山区二模)一个两位数,它的十位数字是5,个位数字是抛掷一枚质地均匀的骰子(六个面分别为1~6点)朝上一面的数字,任意抛掷这枚骰子一次,得到的两位数是4的整数倍的概率等于( A )A.13B.16C.23D.1213.在x 2□2xy □y 2的□中,分别填上“+”或“-”,在所得的代数式中,能构成完全平方式的概率是( A )A.12B.34 C .1 D.1414.有5张卡片,上面分别画有圆、等边三角形、正方形、平行四边形、直角梯形,将卡片画有图形的一面朝下随意放在桌上,任取一张,那么取到卡片对应图形是轴对称图形的概率是( C )A.15B.25C.35D.4515.甲、乙两人投掷两个普通的正方体骰子,规定掷出“和为7”则甲赢,掷出“和为8”则乙赢,这个游戏是否公平( B ) A .公平 B .对甲有利 C .对乙有利D .不能判断16.(2019·四川成都锦江区期末)电影《流浪地球》上映,小玲准备买票观看,在选择座位时,她发现理想的位置只剩了第六排的4个座位和第七排的3个座位.她从这7个座位中随机选择1个座位,是第六排座位的概率为 47.17.一枚质地均匀的骰子,骰子的六个面上分别刻有1~6的点数,投掷这枚骰子一次,向上一面的点数是2或3的概率是a6,则a 的值是 2 .18.如图,在3×3的方格中,A ,B ,C ,D ,E ,F 分别位于格点上,从C ,D ,E ,F 四个点中任取一点,与点A ,B 构成三角形,则所构成的三角形为等腰三角形的概率是 34.19.请将下列事件发生的概率标在图中(用字母表示):(1)记为点A :随意掷两枚质地均匀的骰子,朝上一面的点数之和为1; (2)记为点B :抛出的篮球会落下;(3)记为点C :从装有3个红球、7个白球的口袋中任取1个球,恰好是白球(这些球除颜色外其他完全相同).解:(1)是不可能事件,其概率为0; (2)是必然事件,其概率为1; (3)是随机事件,其概率为73+7=0.7.20.有四张形状、大小、颜色、质地都相同的卡片,正面分别写有数字-2,-1,1,2,将这四张卡片背面向上洗匀,从中任取1张卡片,记卡片上的数字为A ;放回洗匀后再任取1张,记卡片上的数字为B .于是得到有理数A B.(1)第1张卡片上可能出现的结果: -2,-1,1,2 ; 第2张卡片上可能出现的结果: -2,-1,1,2 . (2)求有理数A B恰好是整数的概率.解:(2)根据抽取结果,得到的A B 有16种不同的结果,分别是1,2,-2,-1,12,1,-1,-12,-12,-1,1,12,-1,-2,2,1.其中结果是整数的有12种,所以P ⎝ ⎛⎭⎪⎫有理数A B 恰好是整数=1216=34.21.(2019·山东东营期末)如图,把一个木制正方体的表面涂上颜色,然后将正方体分割成27个大小相同的小正方体,从这些小正方体中任意取出一个,求取出的小正方体出现以下情况的概率.(1)只有一面涂有颜色; (2)至少有两面涂有颜色; (3)各个面都没有涂颜色.解:(1)因为只有一面涂有颜色的小正方体有6个, 所以P (只有一面涂有颜色)=627=29.(2)因为至少有两面涂有颜色的小正方体有12+8=20(个), 所以P (至少有两面涂有颜色)=2027.(3)因为各个面都没有涂颜色的小正方体只有1个, 所以P (各个面都没有涂颜色)=127.第2课时 求简单的几何概率1.(2019·江苏南京鼓楼区一模)如图所示的12个大小相同的小正方形,其中5个小正方形已涂上阴影,现随机丢一粒豆子在这12个小正方形内,则它落在阴影部分的概率是( B )A.56B.512C.59D.7122.(2019·江苏苏州二模)如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是( A )A.12B.13C.14D.163.如图,在边长为1的小正方形网格中,△ABC 的三个顶点均在格点上,若向正方形网格中投针,落在△ABC 内部的概率是( C )A.12B.34C.38D.7164.(2019·四川绵阳涪城区自主招生)一个路口的红绿灯,红灯亮的时间为30秒,黄灯亮的时间为5秒,绿灯亮的时间为40秒.当某人到达路口时,看见的是红灯的概率是( B )A.15B.25C.35D.455.一只蚂蚁在如图所示的长方形地砖上爬行,蚂蚁停在阴影部分的概率是 12.6.一张写有密码的纸片被随意埋在如图所示的长方形区域内(每个方格大小一样). (1)写有密码的纸片埋在哪个区域的可能性较大? (2)分别计算写有密码的纸片埋在三个区域内的概率; (3)写有密码的纸片埋在哪两个区域的概率相同?1区2区3区解:(1)埋在2区的可能性较大.(2)P (埋在1区)=14,P (埋在2区)=12,P (埋在3区)=14.(3)埋在1区与3区的概率相同.7.(2019·广西桂林中考)如图,一个圆形转盘被平均分成6个全等的扇形,任意旋转这个转盘1次,则当转盘停止转动时,指针指向阴影部分的概率是( D )A.12B.13C.14D.168.如图,转动质量均匀的转盘,当转盘停止时,指针落在白色区域的概率是( A )A.34B.12C.13D.149.(2019·辽宁沈阳和平区模拟)如图,把一个圆形转盘按1∶2∶3∶4的比例分成A ,B ,C ,D 四个扇形区域,自由转动转盘,停止后指针落在B 区域的概率为( C )A.35B.25C.15D.11010.(2019·山东济南商河一模)如图所示,用扇形统计图反映地球上陆地面积与海洋面积所占比例.若宇宙中一块陨石落在地球上,且落在陆地上的概率是0.3,则陆地面积对应的圆心角的度数是 108 度.11.某商人制作了一个如图所示的转盘游戏,取名为“开心大转盘”,游戏规定:参与者自由转动转盘.若指针指向字母“A ”,则收费2元;若指针指向字母“B ”,则奖3元;若指针指向字母“C ”,则奖1元.一天,前来寻开心的人转动转盘80次,你认为该商人是盈利的可能性大还是亏损的可能性大?为什么?解:商人盈利的可能性大.理由如下:指针指向“A ”的次数是80×48=40;指针指向“B ”的次数是80×18=10;指针指向“C ”的次数是80×38=30.所以商人收入:40×2=80(元);商人支出:10×3+30×1=60(元). 因为80>60,所以商人盈利的可能性大.易错点 认为概率大小与转盘大小有关而致错12.用力旋转如图所示的转盘甲和转盘乙的指针,如果想让指针停在蓝色区域内,则下列说法中正确的是( C )A .转盘乙大,蓝色区域的面积也大,所以选转盘乙成功的可能性较大B .每个转盘只有两种颜色,指针不是停在蓝色区域内就是停在红色区域内,成功的可能性都是50%C .转盘甲和转盘乙蓝色区域的面积各占转盘面积的25%,所以停在蓝色区域内的机会都是25%D .指针转的速度越快,停在蓝色区域内的可能性就越大13.(2019·湖北武汉江汉区模拟)如图,一块飞镖游戏板由大小相等的小正方形格子构成,向游戏板内随机投掷一枚飞镖,击中黑色区域的概率是( B ) A.59 B.13 C.518 D.23 14.(2019·山东枣庄峄城区期末)转动下列各个转盘,指针指向红色区域的概率最大的是( D )15.(2018·江苏苏州中考)如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是( C )A.12B.13C.49D.5916.(2019·北京顺义区二模)某公司的班车在7:30,8:00,8:30从某地发车,小李在7:50至8:30之间到达车站乘坐班车,如果他到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( B )A.13B.12C.23D.3417.(2019·河南信阳二模)二十四节气列入联合国教科文组织人类非物质文化遗产代表作名录.太阳运行的轨道是一个圆形,古人将之称作“黄道”,并把黄道分为24份,每15°就是一个节气,统称“二十四节气”.这一时间认知体系被誉为“中国的第五大发明”.如图,指针落在惊蛰、春分、清明区域的概率是 18.18.(2019·贵州贵阳模拟)欧阳修在《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿”,可见卖油翁的技艺之高超.如图所示,若铜钱的直径为4 cm ,中间有边长为1 cm 的正方形小孔,随机向铜钱上滴一滴油(油滴大小忽略不计),则油恰好落入孔中的概率是 14π.19.(2019·陕西铜川岐山期末)乐乐家附近的商场为了吸引顾客,设立了一个可以自由转动的转盘,AB 为转盘的直径,如图所示,并规定:顾客消费50元(含50元)以上,就能获得一次转转盘的机会,如果转盘停止后,指针正好对准9折、8折、7折区域,顾客就可以获得相应的优惠.(1)某顾客消费40元,是否可以获得转转盘的机会?(2)某顾客正好消费66元,他转一次转盘,获得三种打折优惠的概率分别是多少?解:(1)因为规定消费50元(含50元)以上才能获得一次转转盘的机会,40<50,所以某顾客消费40元,不能获得转盘的机会.(2)由题意,得P (获得9折优惠)=90360=14;P (获得8折优惠)=60360=16;P (获得7折优惠)=30360=112.第六章概率初步1.下列事件中,是不可能事件的是(D)A.买一张电影票,座位号是奇数B.射击运动员射击一次,命中9环C.明天会下雨D.度量三角形的内角和,结果是360°2.“368人中一定有2人的生日是相同的”是(B)A.随机事件B.必然事件C.不可能事件D.以上都不对3.下列事件:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是100 ℃;③掷一次骰子,向上一面的点数是2.其中是随机事件的是①③ .(填序号)4.袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是(D)A.3个B.不足3个C.4个D.5个或5个以上5.七年级(6)班共有学生54人,其中男生有30人,女生有24人,若在此班上任意找一名学生,找到男生的可能性比找到女生的可能性大 (填“大”或“小”).6.给出以下四个事件:①电灯通电时“发热”;②某人射击一次“中靶”;③掷一枚硬币“出现正面”;④在常温下“铁熔化”.你认为可能性最大的是① ,最小的是④ .7.下表记录了一名球员在罚球线上投篮的结果,这名球员投篮一次,投中的概率约是(C) 投篮次数1050100150200250300500投中次数 4 35 60 78 104 123 152 251 投中频率0.400.700.600.520.520.490.510.508.某人在做掷硬币试验时,抛掷m 次,正面朝上有n 次⎝⎛⎭⎪⎫即正面朝上的频率是P =n m ,则下列说法中正确的是( D ) A .P 一定等于12B .P 一定不等于12C .多投一次,P 更接近12D .随着抛掷次数逐渐增加,P 稳定在12附近9.在一个不透明的布袋中有除颜色外其他都相同的红、黄、蓝球共200个,某位同学经过多次摸球试验后发现,其中摸到红球和蓝球的频率分别稳定在35%和55%,则口袋中可能有黄球 20 个.10.某地区林业局要考察一种树苗移植的成活率,对该地区这种树苗移植成活情况进行调查统计,并绘制了如图所示的统计图,根据统计图提供的信息解决下列问题: (1)这种树苗成活的频率稳定在 0.9 ,成活的概率估计值为 0.9 . (2)该地区已经移植这种树苗5万棵. ①估计这种树苗成活 4.5 万棵;②如果该地区计划成活18万棵这种树苗,那么还需移植这种树苗约多少万棵?解:(2)②18÷0.9-5=15(万棵). 答:该地区还需移植这种树苗约15万棵.11.一个不透明的盒子里装有只有颜色不同的黑、白两种颜色的球共40个,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,活动进行中的一组统计数据如下所示:摸球的次数n 200 300 400 500 800 1 000 摸到白球的次数m 116 192 232 295 484 601 摸到白球的频率m n0.580.640.580.590.6050.601(1)当摸球的次数很大时,请估计摸到白球的频率将会接近多少; (2)如果你从盒子中任意摸出一球,那么摸到白球的概率约是多少? (3)试估算盒子中黑、白两种颜色的球各有多少个?(4)请你应用上面频率与概率的关系的思想解决下面的问题:一个不透明的口袋里装有若干个白球,在不允许将球倒出来数的情况下,如何估计口袋中白球的个数(可以借助其他工具及用品)?请写出解决这个问题的主要步骤及估算方法. 解:(1)0.60. (2)0.60.(3)盒子中白球的个数约为40×0.60=24(个), 则黑球的个数为40-24=16(个).(4)①添加:向口袋中添加一定数目的黑球,并充分搅匀;②试验:进行次数很多的摸球试验(有放回),记录摸到黑球和白球的次数,分别计算频率,由频率估计概率;③估算:黑球个数摸到黑球的概率=球的总个数,球的总个数×摸到白球的概率=白球的个数(答案不唯一).12.小军旅行箱的密码是一个六位数,但他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是( A )A.110B.19C.16D.15 13.如图,某农民在A ,B ,C ,D 四块田里插秧时,不慎将手表丢入田里,直到收工时才发现,则手表丢在哪一块田里的可能性大些( D )A .AB .BC .CD .D14.向如图所示的正三角形区域扔沙包(区域中每一个小正三角形除颜色外完全相同),假设沙包击中每一个小正三角形是等可能的,扔沙包一次,击中阴影区域的概率等于( C )A.16B.14C.38D.5815.5张分别写有-1,2,0,-4,5的卡片(除数字不同以外其余都相同),现从中任意取出1张卡片,则该卡片上的数字是负数的概率是 25.16.小兰和小青两人做游戏,有一个质量分布均匀的正六面体骰子,骰子的六面分别标有1,2,3,4,5,6.如果掷出的骰子的点数是质数,则小兰赢;如果掷出的骰子的点数是3的倍数,则小青赢.该游戏规则对 小兰 有利.17.掷一个骰子,观察向上一面的点数,求下列事件的概率: (1)点数为偶数; (2)点数大于2且小于5.解:掷一个骰子,向上一面的点数可能为1,2,3,4,5,6,共6种情况,这些点数出现的可能性相等.(1)点数为偶数有3种可能,即点数为2,4,6, 所以P (点数为偶数)=36=12.(2)点数大于2且小于5有2种可能,即点数为3,4, 所以P (点数大于2且小于5)=26=13.18.如图,小明家里的阳台地面铺设着黑、白两种颜色的18块方砖(除颜色不同外其余都相同),他从房间里向阳台抛小皮球,小皮球最终随机停留在某块方砖上. (1)求小皮球分别停留在黑色方砖与白色方砖上的概率;(2)上述哪个概率较大?要使这两个概率相等,应改变第几行第几列的哪块方砖的颜色?怎样改变?解:(1)由图可知,阳台地面共铺有18块方砖,其中白色方砖8块,黑色方砖10块,故小。
《6.1 感受可能性》同步练习2
一、选择题
1.事件“在电视机上任选一个频道,正在播放天气预报节目”是()A.必然事件 B.不确定事件 C.确定事件 D.不可能事件
2.下列事件是不可能事件的是()
A.数轴上的数右边的总比左边的大
B.随便翻开数学七年级(上)课本,一下翻到88页
C.我国沿海每年都会刮台风
D.小周口袋里有两个黄乒乓球,可他任意一摸,却摸出一个白乒乓球
3.掷一枚均匀的硬币3次,前两次都是正面朝上,则第三次()
A.不可能反面朝上 B.有可能反面朝上
C.一定正面朝上 D.一定反面朝上
4.如图,是一个自由转动的转盘,当转盘停止转动时,
指针落在区域的可能性最大()
A.A B.B C.C D.D (第4题)
5.某班有54名同学,其中男生有29名,女生25名,任意找一名同学,下列说法正确的是()
A.找到男生和女生可能性一样大 B.找到男生的可能性大
C.找到女生的可能性大 D.不能确定找到哪个性别的同学的可能性大
6.两枚质地均匀的正方体骰子每个面分别有1—6个点,同时抛掷它们,则()A.点数之和可能是12 B.点数之和必然是13
C.点数之和不可能等于12 D.点数之和可能等于1
7.在“谁转出的四位数大”的游戏中,如果第一次转出2,那么你肯定不能把它放在()上。
A.个位 B.十位 C.个位或十位 D.千位
8.射击打靶训练时,靶子(如图)是由5个多轮的同
心圆构成,那么可能性最小的是射中()
A.第7环 B.第6环 C.第10环 D.第9环(第8题)
9.在“谁能转出四位数大”的游戏中,转出9999的可能性与转出1111的可能性相比()A. 9999大 B.1111大 C.一样大 D.无法判断
10.袋子里有8个红球,m个白球,3个黑球,每个球除颜色外都相同,从中任意摸出一个球,若摸到红球的可能性最大,则m的值不可能是()
A.1 B.3 C.5 D.8
11.小慧任意买一张体育彩票,末位数字在下列情况中可能性较大的是()A.末位数字是3的倍数 B.末位数字是2的倍数
C.末位数字是5的倍数 D.末位数字是素数
12.从一副扑克牌中任选两张,下列情况中可能性最小的是()
A.一张黑桃,一张方块 B.两张都是红桃
C.一张A,一张K D.一张大王,一张5
二、填空题
13.生活中,许多事情我们事先无法肯定它会不会发生,这些事情称为事件。
14.从1、3、5、7、9中任选一个数,这个数是偶数的事件是事件。
15.从你班中任意送一名同学当数学课代表,选中你的可能性与不选中你的可能性,较大的是。
16.有一只蚂蚁在如图的图案上爬来爬去,两圆半径分别
为1和2,则蚂蚁最终停留在白色区域的可能停
在灰色区域的可能性(填“>”、“<”或“=”)
17.在一个均匀的方体骰子中,其中有5个面分别有1,2,2,3,4这5个数,任意掷一次,如果掷“3”朝上的可能性与掷“2”朝上的可能性相同,则该骰子第6个面上应标上数字。
18.用如图的转盘可转出的最大的四位数是,最小的四位数
是。
19.一次“猜灯谜”活动中准备了40个谜语,20个知识题和
10个脑筋急转弯,小明从中抽取一个,很有可能抽到。
20.如图所示为投飞镖的靶子,则击中
色的可能要小一些。
(填”白”或”黑”)
21.在盒子中装有10个白球,若要使摸到白球的可能性比摸到不是白球的可能性大,则在这个盒子中至多能放入个其他颜色的球。
22.一个密码箱,它的密码是由0~9之中的2个数字组成,若主人只记住一个数码是1,那最多试次才能把密码箱打开。
三、解答题
23.指出下列事件是确定事件还是不确定事件
(1)地球绕着太阳转。
(2)打开电视机,正在播报有关伊拉克的新闻。
(3)小明用5秒就跑完了100米。
24.下面第一排表示五个书架上各种资料的情况。
请用第二排的语音来描述抽到数学资料的可能性大小,并用线连起来。
25.有一个转盘游戏,转盘平均分成10份(如图),分别标有1、2、……、10这10个数字,转盘上有固定的指针,转动转盘,当转盘停止转动时,指针指向的数字即为转出的数字.两人进行游戏,一人转动转盘,另一人猜数,如果猜的数与转出的数情况相Array符,则猜数的人获胜,否则转盘的人获胜.猜数的方法为下列三种中的一
种:
(1)猜奇数或偶数;
(2)猜是3的倍数或不是3的倍数;
(3)猜大于4的数或不大于4的数.
如果你是猜数的游戏者,为了尽可能取胜,你选哪种猜法?怎样猜?
请简要说明你的理由.
26.喜讯:台客隆超市为迎接元旦,决定举办名为“新年大酬宾,转盘转转转”的活动,办法是:在门口设立一个大转盘,大转盘上划出不同区域,并注明各种奖品的名称,当指针停在该区域时,就得到相对应的奖品,奖品如下:
(1)山地自行车(200元)
(2)衬衫(100元)
(3)洗发水(30元)
(4)香皂(10元)
(5)雨伞(5元)
(6)谢谢惠顾(无奖品)
如果你已经是该超市经理,请你在下面的图中画出你的设计。
参考答案
一、选择题:1、B 2、D 3、B 4、A 5、B 6、 7、D 8、C 9、C 10、D 11、B 12、D
二、填空题:13、不确定; 14、不可能; 15、不选中你的可能性; 16、> 17、3 18、8888;1111.19、谜语;20、黑;21、9;22、10;
三、解答题:23、(1)确定事件;(2)不确定事件;(3)不确定事件;24、20份数学 0份科学————一定抽到数学 15份数学 5份科学————很可能抽到数学 10份数学 10份科学————可能抽到数学 5份数学 15份科学————不太可能抽到数学 0份数学 20份科学————不可能抽到数学
25、选(2)种;猜不是3的倍数.因为猜中奇数或偶数的可能性都是0.5;
猜是3的倍数的可能性是0.3;而猜不是3的倍数的可能性是0.7;
猜大于4的数的可能性是0.6而猜不大于4的数的可能性是0.4;所以
应选(2)中猜不是3的倍数.
26、把圆分成相等的20份;(1)山地自行车占1份;(2)衬衫占2份;
(3)洗发水占3份;(4)香皂占4份;(5)雨伞占5份;(6)谢谢
惠顾占6份.(因为答案不唯一,所以,只要回答正确即可.)。