液压与气压传动复习要点
- 格式:ppt
- 大小:645.50 KB
- 文档页数:55
液压与气压传动知识点液压和气压传动是现代工业中常用的两种传动方式。
液压传动是指利用压力传递力或者运动的一种动力传动方式,而气压传动则是利用气体的压缩和膨胀来传动力或者运动的一种动力传动方式。
液压传动和气压传动都具有一定的优点和局限性,可以根据实际使用环境和需求来选择适合的传动方式。
一、液压传动的基本原理和特点:1.液压传动基本原理:液压传动使用液体介质传递力或者动力。
利用液体的不可压缩性和容量不变性,通过压力的传递来实现力或者运动的传递。
2.液压传动的特点:(1)可以传递大量的力和扭矩,具有较大的工作能力。
(2)传动平稳,无冲击。
(3)传动效率高。
(4)传动精度高。
(5)需要专门的液压系统设备,维护成本相对较高。
二、气压传动的基本原理和特点:1.气压传动基本原理:气压传动利用气体的压缩和膨胀来传递力或者动力。
通过控制气体的压力和流量来实现力或者运动的传递。
2.气压传动的特点:(1)传动部件轻便,结构简单。
(3)传动速度较快。
(4)传动力和运动平稳性相对较差。
(5)传动效率较低。
(6)需要专门的气压系统设备,维护成本相对较高。
三、液压传动和气压传动的比较:1.功能比较:(1)液压传动一般用于需要稳定传动、大功率和大扭矩传输的场合,例如大型机械设备和工程机械等。
(2)气压传动一般用于工作环境复杂、易爆炸和易燃的场合,例如石油、化工和冶金等行业。
2.优缺点比较:(1)液压传动的优点是传动平稳、效率高、精度高,但成本较高,对环境要求较高。
(2)气压传动的优点是结构简单、安全可靠,但传动力和运动平稳性较差,效率较低。
3.应用领域比较:(1)液压传动广泛应用于船舶、冶金、矿山、工程机械等领域。
(2)气压传动广泛应用于汽车、矿山、石油、化工等领域。
总结起来,液压传动和气压传动都有各自的适用场合和优缺点。
在选择传动方式时,需要根据实际工作环境、力量要求、精度要求和经济成本等方面综合考虑,选择最适合的传动方式。
液压与气压传动知识点1、液压与气压工作原理:它首先通过能量转换装置(如液压泵,空气压缩机)将原动机(如电动机)的机械能转变为压力能,然后通过封闭管道,控制原件等,由另一能量转换装置(液压缸或者气缸,液压马达或气动马达)将液体(气体)的压力能转变为机械能,驱动负载,使执行机构得到所需要的动力,完成所需的运动。
2、液压与气压传动系统的组成:动力元件,执行元件,控制调节元件,辅助元件,工作介质。
3、黏性的意义:液体在外力作用下流动时,液体分子间的内聚力会阻碍其分子的相对运动,即具有一定的内摩擦力,这种性质成为液体的黏性。
常用的黏度有3种:动力黏度,运动黏度,相对黏度。
4、液压油分为3大类:石油型、合成型、乳化型。
5、液体压力有如下的特性:1、液体的压力沿着内法线方向作用于承压面。
2、静止液体内任意一点的压力在各个方向上都相等。
5、液体压力分为绝对压力和相对压力。
6、真空度:如果液体中某一点的绝对压力小于大气压力,这时,比大气压小的那部分数值叫做真空度。
7、帕斯卡原理:P198、理想液体:一般把既无黏性又不可压缩的液体称为理想液体。
9、恒定流动:液体流动时,若液体中任何一点处的压力、速度和密度等参数都不随时间而变化,则这种流动称为恒定流动(或定常流动、非时变流动)。
当液体整个作线形流动时,称为一维流动。
10、液流分层,层与层之间互不干扰,液体的这种流动状态称为层流。
液流完全紊乱,这时液体的流动状态称为紊流。
11、临界雷诺数P23雷诺数的物理意义:雷诺数是液流的惯性力对黏性力的无因次比。
当雷诺数较大时,液体的惯性力起主导作用,液体处于紊流状态;当雷诺数较小时,黏性力起主导作用,液体处于层流状态。
12、连续性方程是质量守恒定律在流体力学中的一种表达形式。
13、伯努利方程是能量守恒定律在流体力学中的一种表达形式。
14、动量方程是动量定理在流体力学中的具体应用。
15、沿程压力损失:液体在等径直管中流动时,因黏性摩擦而产生的压力损失称为沿程压力损失。
液压与气压传动知识点复习总结〔很全〕一,根本慨念1,液压传动装置由动力元件,控制元件,执行元件,辅助元件和工作介质〔液压油〕组成2,液压系统的压力取决于负载,而执行元件的速度取决于流量,压力和流量是液压系统的两个重要参数 其功率N=PQ3, 液体静压力的两个根本特性是:静压力沿作用面法线方向且垂直于受压面;液体中任一点压力大小与方位无关.4,流体在金属圆管道中流动时有层流和紊流两种流态,可由临界雷诺数〔Re=2000~2200〕判别,雷诺数〔Re 〕其公式为Re=VD/υ,〔其中D 为水力直径〕, 圆管的水力直径为圆管的经。
5,液体粘度随工作压力增加而增大,随温度增加减少;气体的粘度随温度上升而变大, 而受压力影响小;运动粘度与动力粘度的关系式为ρμν=, 6,流体在等直径管道中流动时有沿程压力损失和局部压力损失,其与流动速度的平方成正比.22ρλv l d p =∆, 22v p ρξ=∆. 层流时的损失可通过理论求得λ=64eR ;湍流时沿程损失其λ与Re 及管壁的粗糙度有关;局部阻力系数ξ由试验确定。
7,忽略粘性和压缩性的流体称理想流体, 在重力场中理想流体定常流动的伯努利方程为γρυ++22P h=C(常数),即液流任意截面的压力水头,速度水头和位置水头的总和为定值,但可以相互转化。
它是能量守恒定律在流体中的应用;小孔流量公式q=C d A t ρp ∆2,其与粘度根本无关;细长孔流量q=∆ld μπ1284P 。
平板缝隙流量q=p lbh ∆μ123,其与间隙的 三次方成正比,与压力的一次与方成正比. 8,流体在管道流动时符合连续性原理,即2111V A V A =,其速度与管道过流面积成反比.流体连续性原理是质量守衡定律在流体中的应用.9,在重力场中,静压力根本方程为P=P gh O ρ+; 压力表示:.绝对压力=大气压力+表压力; 真空度=大气压力-绝对压力. 1Mp=10pa 6,1bar=105pa.10,流体动量定理是研究流体控制体积在外力作用下的动量改变,通常用来求流体对管道和阀件的作用力;其矢量表达式为:F=)(12V V q dtdmv -=ρ;=F 222z y x f f f ++. f z y x f f ,,分别是F 在三个坐标上的图影。
1、动力粘度的物理意义是单位速度梯度下的切应力。
2、静压力的基本方程为p=p+ρgh。
3、般齿轮啮合系数ε必须大于1。
4、解决齿轮泵困油现象的方法是在齿轮泵的两侧端盖上铣两条卸荷槽。
5、溢流阀的作用有调节系统的流量,并保持系统的压力基本稳定,用于过载保护,作卸荷阀,远程调压6、液压传动是利用液体的压力能来做功的。
7、液体在管内流动时有层流和端流两种流态,液体的流态由雷诺数判断。
8、液压系统中的压力损失有局部压力损失和沿程压力损失两种。
9、液压传动系统由动力元件、执行元件、控制元件、辅助元件及工作介质五部分组成,各部分的作用分别为向系统提供动力源、将液压泵提供的液压能转变为机械能、对液体的流动方向、压力的高低以及流量的大小进行预期的控制、保证液压系统有效地传递力和运动,提高液压系统的工作性能、实现各种不同的控制功能。
其中液压泵的作用为将原动机输出的机械能转换为工作液体的压力能。
10、液压传动系统的调速方法有节流调速、容积调速、容积节流调速。
11、齿轮泵的瞬时流量是脉动的,齿轮泵的齿数越少,脉动率越大。
12、液压系统基本控制回路按其功能不同分方向、速度、压力控制回路。
13、油箱分总体式油箱和分离式油箱。
油箱的作用是储存油液,散发油液中的热量、逸出混在油液中的气体、沉淀油中的污物。
14、液压泵单位时间内排出液体的体积称为泵的流量,它的大小与泵的排量和转速有关。
15、根据节流阀在油路中的位置,节流调速回路可分为进油节流调速回路,回油节流调速回路,旁路节流调速回路。
16、当柱塞泵的柱塞数为奇数时,流量脉动系数较小。
17、单作用叶片泵通过改变定子和转子之间的偏心距来变量。
它能否实现双向变量能。
18、油液的粘度随温度的升高而降低,随压力的升高而增加。
19、液压控制阀的作用是控制液压系统中执行元件的压力,流量和方向,可分为方向控制阀、压力控制阀和流量控制阀。
20、滑阀阀芯上环形槽的作用是减小径向不平衡力(防止液压卡紧)。
液压与气压传动知识点1、液压与气压工作原理:它首先通过能量转换装置(如液压泵,空气压缩机)将原动机(如电动机)的机械能转变为压力能,然后通过封闭管道,控制原件等,由另一能量转换装置(液压缸或者气缸,液压马达或气动马达)将液体(气体)的压力能转变为机械能,驱动负载,使执行机构得到所需要的动力,完成所需的运动。
2、液压与气压传动系统的组成:动力元件,执行元件,控制调节元件,辅助元件,工作介质。
3、黏性的意义:液体在外力作用下流动时,液体分子间的内聚力会阻碍其分子的相对运动,即具有一定的内摩擦力,这种性质成为液体的黏性。
常用的黏度有3种:动力黏度,运动黏度,相对黏度。
4、液压油分为3大类:石油型、合成型、乳化型。
5、液体压力有如下的特性:1、液体的压力沿着内法线方向作用于承压面。
2、静止液体内任意一点的压力在各个方向上都相等。
5、液体压力分为绝对压力和相对压力。
6、真空度:如果液体中某一点的绝对压力小于大气压力,这时,比大气压小的那部分数值叫做真空度。
7、帕斯卡原理:P198、理想液体:一般把既无黏性又不可压缩的液体称为理想液体。
9、恒定流动:液体流动时,若液体中任何一点处的压力、速度和密度等参数都不随时间而变化,则这种流动称为恒定流动(或定常流动、非时变流动)。
当液体整个作线形流动时,称为一维流动。
10、液流分层,层与层之间互不干扰,液体的这种流动状态称为层流。
液流完全紊乱,这时液体的流动状态称为紊流。
11、临界雷诺数P23雷诺数的物理意义:雷诺数是液流的惯性力对黏性力的无因次比。
当雷诺数较大时,液体的惯性力起主导作用,液体处于紊流状态;当雷诺数较小时,黏性力起主导作用,液体处于层流状态。
12、连续性方程是质量守恒定律在流体力学中的一种表达形式。
13、伯努利方程是能量守恒定律在流体力学中的一种表达形式。
14、动量方程是动量定理在流体力学中的具体应用。
15、沿程压力损失:液体在等径直管中流动时,因黏性摩擦而产生的压力损失称为沿程压力损失。
1.液压系统的工作原理:1).液压是以液体作为工作介质来进行能量传递和转换的;2).液压以液体压力能来传递动力和运动的;3).液压的工作介质是在受控制、受调节的状态下进行的。
2.液压传动系统的组成:动力装置、控制及调节装置、执行元件、辅助装置、工作介质。
3.液压传动系统的组成部分的作用:1)动力装置:对液压传动系统来说是液压泵,其作用是为液压传动系统提供压力油;对气压传动系统来说是气压发生装置(气源装置),其作用是为气压传动系统提供压缩空气。
2)控制及其调节装置:用来控制工作介质的流动方向、压力和流量,以保证执行元件和工作机构按要求工作;3)执行元件:在工作介质的作用下输出力和速度(或转矩和转速),以驱动工作机构作功;4)辅助装置:一些对完成主要工作起辅助作用的元件,对保证系统正常工作有着重要的作用;5)工作介质:利用液体的压力能来传递能量。
4.液压传动的特点:优点:1)与电动机相比,在同等体积下,液压装置能产生更大的动力;2)液压装置容易做到对速度的无极调节,而且调速范围大,并且对速度的调节还可以在工作过程中进行;3)液压装置工作平稳,换向冲击小,便于实现频繁换向;4)液压装置易于实现过载保护,能实现自润滑,使用寿命长;5)液压装置易于实现自动化,实现复杂的运动和操作;6)液压元件易于实现系列化、标准化和通用化,便于设计、制造和推广使用;缺点:7)液压传动无法保证严格的传动比;8)液压传动有较多的能量损失(泄露损失、摩擦损失等),传动效率相对低;9)液压传动对油温的变化比较敏感,不宜在较高或较低的温度下工作;10)液压传动在出现故障时不易诊断。
5.在液压传动技术中,液压油液最重要的特性是它的可压缩性和粘性。
6.粘温特性:温度升高,粘度显著下降的特性。
7.静止液体的压力性质:1)液体的压力沿着内法线方向上相等;2)静止液体内任一点处的压力在各个方向上都相等。
8.帕斯卡原理:在密闭容器内,施加于静止液体上的压力可以等值传递到液体内各点,也称静压传递原理。
1、动力粘度的物理意义是单位速度梯度下的切应力。
2、静压力的基本方程为p=p o+p gh。
3、般齿轮啮合系数&必须大于1。
4、解决齿轮泵困油现象的方法是在齿轮泵的两侧端盖上铣两条卸荷槽。
5、溢流阀的作用有调节系统的流量,并保持系统的压力基本稳定,用于过载保护,作卸荷阀,远程调压6液压传动是利用液体的压力能来做功的。
7、液体在管内流动时有层流和端流两种流态,液体的流态由雷诺数判断。
8、液压系统中的压力损失有局部压力损失和沿程压力损失两种。
9、液压传动系统由动力元件、执行元件、控制元件、辅助元件及工作介质五部分组成,各部分的作用分别为向系统提供动力源、将液压泵提供的液压能转变为机械能、对液体的流动方向、压力的高低以及流量的大小进行预期的控制、保证液压系统有效地传递力和运动,提高液压系统的工作性能、实现各种不同的控制功能。
其中液压泵的作用为将原动机输出的机械能转换为工作液体的压力能。
10、液压传动系统的调速方法有节流调速、容积调速、容积节流调速。
11、齿轮泵的瞬时流量是脉动的,齿轮泵的齿数越少,脉动率越大。
12、液压系统基本控制回路按其功能不同分方向、速度、压力控制回路。
13、油箱分总体式油箱和分离式油箱。
油箱的作用是储存油液,散发油液中的热量、逸出混在油液中的气体、沉淀油中的污物。
14、液压泵单位时间内排出液体的体积称为泵的流量,它的大小与泵的排量和转速有关。
15、根据节流阀在油路中的位置,节流调速回路可分为进油节流调速回路,回油节流调速回路,旁路节流调速回路。
16、当柱塞泵的柱塞数为奇数时,流量脉动系数较小。
17、单作用叶片泵通过改变定子和转子之间的偏心距来变量。
它能否实现双向变量?能。
18、油液的粘度随温度的升高而降低,随压力的升高而增加。
19、液压控制阀的作用是控制液压系统中执行元件的压力,流量和方向,可分为方向控制阀、压力控制阀和流量控制阀。
20、滑阀阀芯上环形槽的作用是减小径向不平衡力(防止液压卡紧)。
液压与气压传动整理资料1.系统压力取决于外负载,外负载的运动速度取决于流量。
2.液压与气压传动系统主要有一下5个部分组成:(1)能源装置;(2)执行元件;(3)控制元件;(4)辅助元件;(5)工作介质。
3.液体黏性的大小用黏度表示。
常用的黏度有三种:(1)运动黏度;(2)动力黏度;(3)相对黏度。
4.液压系统中的工作油面具有双重作用:(1)作为传递能量的介质;(2)作为润滑剂润滑运动零件的工作表面。
5.在液压传动系统中,由于工作情况突变使液体在系统中流动受阻而引起液体的压力在某一瞬间突然急剧上升,形成一个压力峰值,这种现象称为液压冲击6.在液压系统中,如果某点处的压力低于液压油液所在温度下的空气分离压力时,原先溶解在液体中的空气就会分离出来,使液体中迅速出现大量气泡,这种现象叫做气穴现象。
7.液压工作的必要条件:(1)形成密封工作腔;(2)其密封工作腔容积大小交替变化;(3)吸、压油腔隔开,并具有良好的密封性。
8.液压泵将输入的机械能转换成压力能,为执行元件提供压力油。
9.液压缸根据结构特点分为活塞式、柱塞式、回转式三大类,根据作用方式分为单作用式和双作用式。
10.液压马达作为系统的执行元件,在系统输入的压力能转换为旋转运动的机械能而对外做功。
11.对于各种操纵方式的三位四通和三位五通换向滑阀,阀芯在中间位置时各油路口的连通情况称为换向阀的中位机能。
12.液体在系统中流动时的能量损失:(1)沿程压力损失;、(2)局部压力损失。
13.常用液压阀直动型先导型特征:与负载并联,进口压力负反馈;作用:调压、稳压、限压(安全阀)特征:与负载串联,出口压力负反馈;作用:降低液压系统某一分支油路的压力特征:与负载串联,进口压力负反馈;作用:控制多个执行元件的顺序动作,进口测压(不可调)(可调)作用:节流调速、负载阻尼、压力缓冲14.常用液压阀区别15.常用的三位换向阀滑阀机能O型H型Y型K型M型四通五通快进:进油路:过滤器→变量液压泵14→单向阀13→换向阀12(左位)→行程阀8(右位)→液压缸7左腔;回油路:液压缸7右腔→换向阀12(左位)→单向阀3→行程阀8(右位)→液压缸7左腔。
一、填空题1.液压系统中的压力取决于(负载),执行元件的运动速度取决于(流量)。
2.液压传动装置由动力元件、执行元件、控制元件和辅助元件四部分组成,其中(动力元件)和(执行元件)为能量转换装置。
3.液体在管道中存在两种流动状态,(层流)时粘性力起主导作用,(紊流)时惯性力起主导作用,液体的流动状态可用(雷诺数)来判断。
4.在研究流动液体时,把假设既(无粘性)又(不可压缩)的液体称为理想流体。
5.由于流体具有(粘性),液流在管道中流动需要损耗一部分能量,它由(沿程压力)损失和(局部压力)损失两部分组成。
6.液流流经薄壁小孔的流量与(小孔通流面积)的一次方成正比,与(压力差)的1/2次方成正比。
通过小孔的流量对(温度)不敏感,因此薄壁小孔常用作可调节流阀。
7.通过固定平行平板缝隙的流量与(压力差)一次方成正比,与(缝隙值)的三次方成正比,这说明液压元件内的(间隙)的大小对其泄漏量的影响非常大。
8.变量泵是指(排量)可以改变的液压泵,常见的变量泵有(单作用叶片泵)、(径向柱塞泵)、(轴向柱塞泵)其中(单作用叶片泵)和(径向柱塞泵)是通过改变转子和定子的偏心距来实现变量,(轴向柱塞泵)是通过改变斜盘倾角来实现变量。
9.液压泵的实际流量比理论流量(大);而液压马达实际流量比理论流量(小)。
10.斜盘式轴向柱塞泵构成吸、压油密闭工作腔的三对运动摩擦副为(柱塞与缸体、缸体与配油盘、滑履与斜盘)。
11.外啮合齿轮泵的排量与(模数)的平方成正比,与的(齿数)一次方成正比。
因此,在齿轮节圆直径一定时,增大(模数),减少(齿数)可以增大泵的排量。
12.外啮合齿轮泵位于轮齿逐渐脱开啮合的一侧是(吸油)腔,位于轮齿逐渐进入啮合的一侧是(压油)腔。
13.为了消除齿轮泵的困油现象,通常在两侧盖板上开(卸荷槽),使闭死容积由大变少时与(压油)腔相通,闭死容积由小变大时与(吸油)腔相通。
14.齿轮泵产生泄漏的间隙为(端面)间隙和(径向)间隙,此外还存在(啮合)间隙,其中(端面)泄漏占总泄漏量的80%〜85%。
1.液压系统的工作原理:1).液压是以液体作为工作介质来进行能量传递和转换的;2).液压以液体压力能来传递动力和运动的;3).液压的工作介质是在受控制、受调节的状态下进行的。
2.液压传动系统的组成:动力装置、控制及调节装置、执行元件、辅助装置、工作介质。
3.液压传动系统的组成部分的作用:1)动力装置:对液压传动系统来说是液压泵,其作用是为液压传动系统提供压力油;对气压传动系统来说是气压发生装置(气源装置),其作用是为气压传动系统提供压缩空气。
2)控制及其调节装置:用来控制工作介质的流动方向、压力和流量,以保证执行元件和工作机构按要求工作;3)执行元件:在工作介质的作用下输出力和速度(或转矩和转速),以驱动工作机构作功;4)辅助装置:一些对完成主要工作起辅助作用的元件,对保证系统正常工作有着重要的作用;5)工作介质:利用液体的压力能来传递能量。
4.液压传动的特点:优点:1)与电动机相比,在同等体积下,液压装置能产生更大的动力;2)液压装置容易做到对速度的无极调节,而且调速范围大,并且对速度的调节还可以在工作过程中进行;3)液压装置工作平稳,换向冲击小,便于实现频繁换向;4)液压装置易于实现过载保护,能实现自润滑,使用寿命长;5)液压装置易于实现自动化,实现复杂的运动和操作;6)液压元件易于实现系列化、标准化和通用化,便于设计、制造和推广使用;缺点:7)液压传动无法保证严格的传动比;8)液压传动有较多的能量损失(泄露损失、摩擦损失等),传动效率相对低;9)液压传动对油温的变化比较敏感,不宜在较高或较低的温度下工作;10)液压传动在出现故障时不易诊断。
5.在液压传动技术中,液压油液最重要的特性是它的可压缩性和粘性。
6.粘温特性:温度升高,粘度显著下降的特性。
7.静止液体的压力性质:1)液体的压力沿着内法线方向上相等;2)静止液体内任一点处的压力在各个方向上都相等。
8.帕斯卡原理:在密闭容器内,施加于静止液体上的压力可以等值传递到液体内各点,也称静压传递原理。