第九章二阶线性常微分方程级数解法
- 格式:ppt
- 大小:529.50 KB
- 文档页数:38
微分方程的级数解法微分方程是数学中的一门重要分支,广泛应用于物理学、工程学、经济学等领域。
在微分方程的解法中,级数解法是一种常见且有效的方法。
本文将介绍微分方程的级数解法,并通过具体的例子来说明其应用。
一、级数解法的基本思想级数解法是通过将微分方程的解表示为级数形式,然后利用级数的性质来求解微分方程。
其基本思想是将未知函数表示为幂级数的形式,然后将其代入微分方程中,通过比较系数的方法确定级数的各项。
二、级数解法的步骤级数解法的步骤可以概括为以下几个方面:1. 假设未知函数的级数解形式,通常选择幂级数形式,如y(x)=∑(n=0)^(∞)a_n(x-x_0)^n。
2. 将级数解代入微分方程中,得到方程的各项。
3. 比较方程两边各项的系数,得到递推关系式。
4. 解递推关系式,确定级数解中的各项系数。
5. 根据级数解的收敛性,确定级数解的有效区间。
三、例子:求解二阶常系数线性齐次微分方程考虑一个二阶常系数线性齐次微分方程:y''(x)+ay'(x)+by(x)=0,其中a、b为常数。
假设未知函数的级数解形式为y(x)=∑(n=0)^(∞) a_nx^n。
将级数解代入微分方程中,得到:∑(n=0)^(∞) a_n(n(n-1)x^(n-2)+anx^(n-1)+bx^n)=0。
比较方程两边各项的系数,得到递推关系式:a_0=0,a_1=0,(n(n-1)a_n+a(n+1)a_(n+1)+ba_n)=0。
解递推关系式,确定级数解中的各项系数:由a_0=0可知,a_n=0(n≥0)。
根据递推关系式,可得:a_2=-ba_0/(2(2-1))=-b/2,a_3=-ba_1/(3(3-1))=0,a_4=-ba_2/(4(4-1))=b^2/(2*4),...根据级数解的收敛性,确定级数解的有效区间:根据级数解的收敛性定理,级数解的有效区间至少包含级数展开点x=0。
因此,级数解的有效区间为整个实数集。
二阶线性常微分方程的幕级数解法二阶线性常微分方程的幕级数解法 从微分方程学中知道,在满足某些条件下,可以用幕级数来表示 一个函数。
因此,自然想到,能否用慕级数来表示微分方程的解呢? 例1、求方程)「-小=0的通解解: 设 y = a 0+a l x + a 2x 2 + + +•••为方程的解,这里q(20,1,2,…”…)是待定常系数,将它对x 微分两次, 有 y =2-k/2 + 3・2a 3x + ・•・ + n{n 一 \)a n x^2 + (n + \)na n ^}x n ^ + ・・・ 将y, y 的表达式代入方程,并比较的同次基的系数,得到 —x<x<co 2-1«2 =0 > 3-2a 3 — q = 0、 4-3a 4 — q = 0, 5・4y —a 2 = 0,… 或一般的可推得伽= -------- - ------- ,2-3-5-6••…(3k — l)・3k 53・4・6・7••…3&・(3k + l)G = °其中5,①是任意的,因而代入设的解中可得:“■X X X y = 1 H ----- 1 ------------- -- ----------------------------------- ■・•] + "[ [x + --- F° 2-3 2-3-56 2-3-56・•••・⑶2-1)・3料 1 3-4 3・4・6・7 •…这个幕级数的收敛半径是无限大的,因而级数的和(其中包括两个任 意常数5及①)便是所要求的通解。
X 1 ---------- + •…]•(3/7 + 1)例6求方程八2卩-4y = 0的满足初值条件7(0) = 0及严=1的解。
解设级数y =兔> + a}x + a2x2+ …+ a n x n+ … 为方程的解。
首先,利用初值条件,可以得到«() = 0 >因而y = x + a2x2 + + • • • + a n x n+•••y =\ + 2a2x + 3a3x2 + ・・・ + na n x n 1+ • •・y = 2a2 + 3-2a3x + • • • + n(n-i)ci ft x r 2+•••将y, y, y”的表达式带入原方程,合并x的各同次幕的项,并令各项系数等于零,得到2勺=0,® =1“ =0厂・・,4” =―"”亠…77-1因而I n 1 1 n 1a s =刁4 =°4 =- = —^8 =0,為=石,…最后得111 n如k伙-1)! k\ ~k对一切正整数斤成立。