第九章二阶线性常微分方程级数解法
- 格式:ppt
- 大小:529.50 KB
- 文档页数:38
微分方程的级数解法微分方程是数学中的一门重要分支,广泛应用于物理学、工程学、经济学等领域。
在微分方程的解法中,级数解法是一种常见且有效的方法。
本文将介绍微分方程的级数解法,并通过具体的例子来说明其应用。
一、级数解法的基本思想级数解法是通过将微分方程的解表示为级数形式,然后利用级数的性质来求解微分方程。
其基本思想是将未知函数表示为幂级数的形式,然后将其代入微分方程中,通过比较系数的方法确定级数的各项。
二、级数解法的步骤级数解法的步骤可以概括为以下几个方面:1. 假设未知函数的级数解形式,通常选择幂级数形式,如y(x)=∑(n=0)^(∞)a_n(x-x_0)^n。
2. 将级数解代入微分方程中,得到方程的各项。
3. 比较方程两边各项的系数,得到递推关系式。
4. 解递推关系式,确定级数解中的各项系数。
5. 根据级数解的收敛性,确定级数解的有效区间。
三、例子:求解二阶常系数线性齐次微分方程考虑一个二阶常系数线性齐次微分方程:y''(x)+ay'(x)+by(x)=0,其中a、b为常数。
假设未知函数的级数解形式为y(x)=∑(n=0)^(∞) a_nx^n。
将级数解代入微分方程中,得到:∑(n=0)^(∞) a_n(n(n-1)x^(n-2)+anx^(n-1)+bx^n)=0。
比较方程两边各项的系数,得到递推关系式:a_0=0,a_1=0,(n(n-1)a_n+a(n+1)a_(n+1)+ba_n)=0。
解递推关系式,确定级数解中的各项系数:由a_0=0可知,a_n=0(n≥0)。
根据递推关系式,可得:a_2=-ba_0/(2(2-1))=-b/2,a_3=-ba_1/(3(3-1))=0,a_4=-ba_2/(4(4-1))=b^2/(2*4),...根据级数解的收敛性,确定级数解的有效区间:根据级数解的收敛性定理,级数解的有效区间至少包含级数展开点x=0。
因此,级数解的有效区间为整个实数集。
二阶线性常微分方程的幕级数解法二阶线性常微分方程的幕级数解法 从微分方程学中知道,在满足某些条件下,可以用幕级数来表示 一个函数。
因此,自然想到,能否用慕级数来表示微分方程的解呢? 例1、求方程)「-小=0的通解解: 设 y = a 0+a l x + a 2x 2 + + +•••为方程的解,这里q(20,1,2,…”…)是待定常系数,将它对x 微分两次, 有 y =2-k/2 + 3・2a 3x + ・•・ + n{n 一 \)a n x^2 + (n + \)na n ^}x n ^ + ・・・ 将y, y 的表达式代入方程,并比较的同次基的系数,得到 —x<x<co 2-1«2 =0 > 3-2a 3 — q = 0、 4-3a 4 — q = 0, 5・4y —a 2 = 0,… 或一般的可推得伽= -------- - ------- ,2-3-5-6••…(3k — l)・3k 53・4・6・7••…3&・(3k + l)G = °其中5,①是任意的,因而代入设的解中可得:“■X X X y = 1 H ----- 1 ------------- -- ----------------------------------- ■・•] + "[ [x + --- F° 2-3 2-3-56 2-3-56・•••・⑶2-1)・3料 1 3-4 3・4・6・7 •…这个幕级数的收敛半径是无限大的,因而级数的和(其中包括两个任 意常数5及①)便是所要求的通解。
X 1 ---------- + •…]•(3/7 + 1)例6求方程八2卩-4y = 0的满足初值条件7(0) = 0及严=1的解。
解设级数y =兔> + a}x + a2x2+ …+ a n x n+ … 为方程的解。
首先,利用初值条件,可以得到«() = 0 >因而y = x + a2x2 + + • • • + a n x n+•••y =\ + 2a2x + 3a3x2 + ・・・ + na n x n 1+ • •・y = 2a2 + 3-2a3x + • • • + n(n-i)ci ft x r 2+•••将y, y, y”的表达式带入原方程,合并x的各同次幕的项,并令各项系数等于零,得到2勺=0,® =1“ =0厂・・,4” =―"”亠…77-1因而I n 1 1 n 1a s =刁4 =°4 =- = —^8 =0,為=石,…最后得111 n如k伙-1)! k\ ~k对一切正整数斤成立。
山东教育学院物理科学与技术系《数学物理方法》教学大纲一、课程概述1、《数学物理方法》是物理学专业本科的一门重要的基础课,它是前导课程《高等数学》的延伸,为后继开设的《电动力学》、《量子力学》以及《电子技术》等课程提供必需的数学理论知识和计算工具。
本课程在本科物理学专业中占有重要的地位,本专业学生必须掌握它们的基本内容,否则对后继课的学习将会带来很大困难。
在物理学专业的所有课程中,本课程是相对难学的一门课,学生应以认真的态度来学好本课程。
2、本课程的主要内容包括复变函数、傅立叶变换、数学物理方程、特殊函数等。
理论力学中常用的变分法,量子力学中用到的群论以及现代物理中用到的非线性微分方程理论等,虽然也属于《数学物理方法》的内容,但在本大纲中不作要求。
可以在后续的选修课中加以介绍。
3、本课程的内容为数学课程,注重逻辑推理和具有一定的系统性和严谨性。
但是,它与其它的数学课有所不同。
本课程内容有深广的物理背景,实用性强。
因此,在这门课的教学过程中,不能单纯地追求理论上的完美、严谨,而忽视其应用。
学生在学习时,不必过分地追求一些定理的严格证明、复杂公式的精确推导,更不能死记硬背,而应重视其应用技巧和处理方法。
4、本课程的内容是几代数学家与物理学家进行长期创造性研究的成果,几乎处处都闪耀创新精神的光芒。
教师应当提示学生注意在概念建立、定理提出的过程中所用的创新思维方法,在课堂教学中应尽可能地体现历史上的创造过程,提高学生的创造性思维能力。
二、目的要求1、为了使学生能学好物理学专业的理论物理课程, 胜任中学物理教学及适应社会主义现代化建设的需要, 在本门课程中系统讲授复变函数和数学物理方程的基本理论和基本方法,并介绍数学物理中常用的几种特殊函数。
要求学生对规定的内容有一个总体了解。
掌握其中的基本概念,熟悉一些重要的理论及公式,并使所学到的知识在头脑中形成合理的结构。
2、大纲贯彻少而精的原则,着重让学生掌握最基本的理论知识和计算方法.在讲授过程中紧密联系物理实际, 但也注意保证数学概念的严格性和理论的系统性。
数学物理方法总结第一章 复变函数复数的代数式:z=x+iy复数的三角式和指数式:(cos sin )z ρϕϕ=+和i z e ϕρ=欧拉公式:{1sin ()21cos ()2iz iz iz izz e e iz e e --=-=+柯西-黎曼方程(或称为柯西-黎曼条件):{u u x yv v x y∂∂=∂∂∂∂=-∂∂ (其中f(z)=u+iv)函数f(z)=u+iv 在点0z 及其领域上处处可导,则称f(z)在0z 点解析.在区域B 上每一点都解析,则称f(z)是在区域B 上的解析函数.解析函数的性质:1.若函数f(z)=u+iv 在区域B 上解析,则12(,),(,)u x y C v x y C ==(12,C C 为常数)是B 上的两组正交曲线族.2.若函数在区域B 上解析,则u,v 均为B 上的调和函数,即22220u vx y ∂∂+=∂∂ 例题: 已知某解析函数f(z)的实部22(,)u x y x y =-,求虚部和这个解析函数.解答: 由于22ux∂∂=2;22v y ∂∂=-2;则22220u v x y ∂∂+=∂∂曲线积分法u x ∂∂=2x;u y ∂∂=-2y.根据C-R 条件有:v x∂∂=2y;v y ∂∂=2x.于是 22dv ydx xdy =+;(,0)(,)(0,0)(,0)(,)(,)(,0)(22)(22)(22)22x x y x x y x y x v ydx xdy C ydx xdy ydx xdy Cxdy C xy C=++=++++=+=+⎰⎰⎰⎰凑全微分显式法由上式可知dv=2ydx+2xdy贝易得dv=d(2xy)则显然v=2xy+C不定积分法上面已有—=2y;丝=2xdx dy则第一式对y积分,x视为参数,有v=J2xy+(p(x)=2xy+(p(x)......................dv...上式对x求导有一=2y+^\x),而由C-R条件可知(p\x)=0,dx从而(p(x)=C.故v=2xy+C.f(z)=x2-y2+i(2x y+C)=z2+iC第二章复变函数的积分单连通区域柯西定理如果函数f(z)在闭单连通区域B上解析,则沿B上任意一分段光滑闭合闭合曲线1(也可以是B的边界),有血/⑵也=0.复连通区域柯西定理如果f(z)是闭复连通区域上的单值解析函数,则山任)也+£由/(z)也=0.式中1为区域外边界线,诸l为区域内边界线,积分均沿边界线的正方向进行.即血力>)也=力血/(z)d z.柯西公式f(a)=t^-也""dz2m z-an次求导后的柯西公式f(〃)(z)=£山声舄化2mi中(。
二阶常微分方程解的存在问题分析摘要本文首先介绍了二阶常系数齐次线性微分方程的一般解法——特征方程法及二阶常系数非齐次线性微分方程的待定系数法,然后又介绍了一些可降阶的微分方程类型。
接着,讨论了二阶变系数微分方程的幂级数解法并论述了如何利用变量代换法将某些变系数方程化为常系数方程。
另外,本文还介绍了求解初值问题的另一种方法——拉普拉斯变换法。
最后,给出了二阶微分方程的存在唯一性定理的证明以及它在科学研究、工程技术以及数学建模中解决实际问题的一些应用。
1.引言1.1常微分方程的发展过程与研究途径二阶线性微分方程是常微分方程中一类很重要的方程。
这不仅是因为其一般理论已经研究地比较清楚,而且还因为它是研究非线性微分方程的基础,在工程技术和自然科学中有着广泛的应用。
在科学研究、工程技术中,常常需要将某些实际问题转化为二阶常微分方程问题。
因此,研究不同类型的二阶常微分方程的求解方法及探讨其解的存在唯一性问题是十分重要的。
常微分方程已有悠久的历史,而且继续保持着进一步发展的活力,主要原因是它的根源深扎在各种实际问题之中。
牛顿最早采用数学方法研究二体问题,其中需要求解的运动方程就是常微分方程。
他把两个物体都理想化为质点,得到3个未知函数的3个二阶方程组,经简单计算证明,可化为平面问题,即两个未知函数的两个二阶微分方程组。
用现在叫做“首次积分”的办法,完全解决了它的求解问题。
17世纪就提出了弹性问题,这类问题导致悬链线方程、振动弦的方程等等。
20世纪30年代直至现在,是常微分方程各个领城迅速发展、形成各自相对独立的而又紧密联在一起的分支学科的时期。
1927-1945年间定性理论的研究主要是跟无线电技术联系在一起的。
第二次世界大战期间由于通讯等方面的要求越来越高,大大地激发了对无线电技术的研究,特别是非线性振动理论的研究得到了迅速的发展。
40年代后数学家们的注意力主要集中在抽象动力系统的拓扑特征, 如闭轨是否存在、结构是否稳定等, 对于二维系统已证明可以通过奇点及一些特殊的闭轨和集合来判断结构稳定性与否;而对于一般系统这个问题尚未解决。
第九章二阶常微分方程级数解法•§9.1 特殊函数常微分方程•§9.2 常点邻域上的级数解法•§9.3 正则奇点邻域上的级数解法•§9.4 施图姆-刘维尔本征值问题•前面讨论的都是两个自变量的偏微分方程,涉及到的本征函数都是三角函数,除了圆形泊松问题外,大多是反射对称的问题;•从现在开始,我们要讨论三维的定解问题。
实际的边界问题可能具有其它对称性,比如球或柱对称边界,这时的本征函数采用三角函数就不方便了,我们将发现新的本征函数和本征值,并且用它们做级数展开来求解偏微分方程。
•本章主要讨论拉普拉斯方程、亥姆霍兹方程等在球坐标系、柱坐标系满足的常微分方程及其定解。
我们依然采用分离变量法。
§9.2 常点邻域上的级数解法•前面我们通过分离变量法得到了一些特殊的二阶常微分方程,本节讨论这些方程在特定的边界条件下的定解问题。
•这些二阶常微分方程大多不能用通常的方法,比如直接积分的方法求解;•通常采用幂级数解法,即在某一选定的点的邻域上将待求的解表示成系数待定的级数,得到系数之间的递推关系,然后利用边界条件确定所有系数的值。
•级数求解问题的关键在于收敛性。
•考虑一般的复变函数w(z)的线性二阶常微分方程:w’’+p(z)w’+q(z)w=0, w(z 0)=C 0, w’(z 0)=C 1. 其中z 为复变数,z 0为选定的点。
•(一)方程的常点和奇点:在z 0邻域,如果p(z)和q(z)是解析的,则z 0称作方程的常点;如果p(z)和q(z)是奇异的,则z 0称作方程的奇点。
•(二)常点邻域上的级数解:如果线性二阶常微分方程的系数p(z)和q(z)在点z 0的邻域|z-z 0|<R 是解析函数,则方程在这个圆中存在满足初值条件的唯一解析解。
•因此可以把解表示成此邻域上的泰勒级数形式:•后面的任务就是确定这些级数解的系数a k ,通常会得到它们之间的一些递推关系。