2018高三数学(理)一轮复习课时作业(十二) 函数模型及其应用
- 格式:doc
- 大小:737.99 KB
- 文档页数:5
专题12 函数模型及其应用1.综合考查函数的性质;2.考查一次函数、二次函数、分段函数及基本初等函数的建模问题;3.考查函数的最值.1.几类函数模型及其增长差异(1)几类函数模型(2)(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;(3)解模:求解数学模型,得出数学结论;(4)还原:将数学问题还原为实际问题的意义.以上过程用框图表示如下:【疑点清源】1.要注意实际问题的自变量的取值范围,合理确定函数的定义域.2.解决实际应用问题的一般步骤(1)审题:深刻理解题意,分清条件和结论,理顺其中的数量关系,把握其中的数学本质.(2)建模:由题设中的数量关系,建立相应的数学模型,将实际问题转化为数学问题.(3)解模:用数学知识和方法解决转化出的数学问题.(4)还原:回到题目本身,检验结果的实际意义,给出结论.高频考点一、用函数图象刻画变化过程例1、(1)设甲、乙两地的距离为a(a>0),小王骑自行车以匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又以匀速从乙地返回到甲地用了30分钟,则小王从出发到返回原地所经过的路程y和其所用的时间x的函数图象为( )(2)物价上涨是当前的主要话题,特别是菜价,我国某部门为尽快实现稳定菜价,提出四种绿色运输方案.据预测,这四种方案均能在规定的时间T内完成预测的运输任务Q0,各种方案的运输总量Q与时间t的函数关系如图所示,在这四种方案中,运输效率(单位时间的运输量)逐步提高的是( )【感悟提升】判断函数图象与实际问题变化过程相吻合的两种方法(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图象.(2)验证法:当根据题意不易建立函数模型时,则根据实际问题中两变量的变化快慢等特点,结合图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.【变式探究】已知正方形ABCD的边长为4,动点P从B点开始沿折线BCDA向A点运动.设点P运动的路程为x,△ABP的面积为S,则函数S=f(x)的图象是( )答案 D解析依题意知当0≤x≤4时,f(x)=2x;当4<x≤8时,f(x)=8;当8<x≤12时,f(x)=24-2x,观察四个选项知,选D.高频考点二已知函数模型的实际问题例2、候鸟每年都要随季节的变化而进行大规模的迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v(单位:m/s)与其耗氧量Q之间的关系为v=a+b log3Q10(其中a、b是实数).据统计,该种鸟类在静止的时候其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1m/s.(1)求出a 、b 的值;(2)若这种鸟类为赶路程,飞行的速度不能低于2m/s ,则其耗氧量至少要多少个单位? 解 (1)由题意可知,当这种鸟类静止时,它的速度为0m/s ,此时耗氧量为30个单位,故有a +b log 33010=0,即a +b =0;当耗氧量为90个单位时,速度为1m/s ,故a +b log 39010=1,整理得a +2b =1.解方程组⎩⎪⎨⎪⎧a +b =0,a +2b =1,得⎩⎪⎨⎪⎧a =-1,b =1.(2)由(1)知,v =-1+log 3Q 10.所以要使飞行速度不低于2m/s ,则有v ≥2,即-1+log 3Q10≥2,即log 3Q10≥3,解得Q ≥270.所以若这种鸟类为赶路程,飞行的速度不能低于2m/s ,则其耗氧量至少要270个单位. 【感悟提升】求解所给函数模型解决实际问题的关注点 (1)认清所给函数模型,弄清哪些量为待定系数. (2)根据已知利用待定系数法,确定模型中的待定系数. (3)利用该模型求解实际问题.【变式探究】某般空公司规定,乘飞机所携带行李的质量(kg)与其运费(元)由如图的一次函数图象确定,那么乘客可免费携带行李的质量最大为kg.答案 19解析 由图象可求得一次函数的解析式为y =30x -570,令30x -570=0,解得x =19. 高频考点三 构造函数模型的实际问题例3、某汽车销售公司在A ,B 两地销售同一种品牌的汽车,在A 地的销售利润(单位:万元)为y 1=4.1x -0.1x 2,在B 地的销售利润(单位:万元)为y 2=2x ,其中x 为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是( )A .10.5万元B .11万元C .43万元D .43.025万元答案 C【变式探究】(1)世界人口在过去40年翻了一番,则每年人口平均增长率约是(参考数据lg2≈0.3010,100.0075≈1.017)()A.1.5%B.1.6%C.1.7%D.1.8%(2)某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n次涨停(每次上涨10%),又经历了n次跌停(每次下跌10%),则该股民这支股票的盈亏情况(不考虑其他费用)为( )A.略有盈利B.略有亏损C.没有盈利也没有亏损D.无法判断盈亏情况答案(1)C (2)B解析(1)设每年人口平均增长率为x,则(1+x)40=2,两边取以10为底的对数,则40lg(1+x)=lg2,所以lg(1+x)=lg240≈0.0075,所以100.0075=1+x,得1+x≈1.017,所以x≈1.7%.(2)设该股民购进这支股票的价格为a元,则经历n次涨停后的价格为a(1+10%)n=a×1.1n元,经历n次跌停后的价格为a×1.1n×(1-10%)n=a×1.1n×0.9n=a×(1.1×0.9)n =0. 99n·a<a,故该股民这支股票略有亏损.【举一反三】某市出租车收费标准如下:起步价为8元,起步里程为3km(不超过3km按起步价付费);超过3km但不超过8km时,超过部分按每千米2.15元收费;超过8km时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了km.答案9【变式探究】 (1)一个人喝了少量酒后,血液中的酒精含量迅速上升到0.3mg/mL ,在停止喝酒后,血液中的酒精含量以每小时25%的速度减少,为了保障交通安全,某地根据《道路交通安全法》规定:驾驶员血液中的酒精含量不得超过0.09 mg/mL ,那么,此人至少经过小时才能开车.(精确到1小时)(2)某企业投入100万元购入一套设备,该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.为使该设备年平均费用最低,该企业需要更新设备的年数为( )A .10B .11C .13D .21 答案 (1)5 (2)A解析 (1)设经过x 小时才能开车. 由题意得0.3(1-25%)x≤0.09,∴0.75x≤0.3,x ≥log 0.750.3≈4.19.∴x 最小为5. (2)设该企业需要更新设备的年数为x , 设备年平均费用为y ,则x 年后的设备维护费用为2+4+…+2x =x (x +1), 所以x 年的平均费用为y =100+0.5x +x x +1x=x +100x+1.5,由基本不等式得y =x +100x+1.5≥2x ·100x+1.5=21.5,当且仅当x =100x,即x =10时取等号,所以选A.高频考点四、函数应用问题例4、已知美国某手机品牌公司生产某款手机的年固定成本为40万美元,每生产1万部还需另投入16万美元.设公司一年内共生产该款手机x 万部并全部销售完,每万部的销售收入为R (x )万美元,且R (x )=⎩⎪⎨⎪⎧400-6x ,0<x ≤40,7400x-40000x 2,x >40.(1)写出年利润W (万美元)关于年产量x (万部)的函数解析式;(2)当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润.解 (1)当0<x ≤40时,W =xR (x )-(16x +40) =-6x 2+384x -40,当x >40时,W =xR (x )-(16x +40) =-40000x-16x +7360.所以W =⎩⎪⎨⎪⎧-6x 2+384x -40,0<x ≤40,-40000x -16x +7360,x >40.(2)①当0<x ≤40时,W =-6(x -32)2+6104, 所以W max =W (32)=6104;②当x >40时,W =-40000x-16x +7360,由于40000x+16x ≥240000x×16x =1600,当且仅当40000x=16x ,即x =50∈(40,+∞)时,取等号, 所以W 取最大值为5760. 综合①②知,当x =32时,W 取得最大值6104万元。
第9节函数模型及其应用【选题明细表】知识点、方法题号一次、二次函数模型2,3,7,8指数、对数函数模型1,4,10函数模型的综合应用5,6,9,11,12,13基础巩固(时间:30分钟)1.某新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y与投放市场的月数x之间关系的是( C )(A)y=100xﻩ(B)y=50x2-50x+100(C)y=50×2x(D)y=100log2x+100解析:根据函数模型的增长差异和题目中的数据可知,应为指数函数模型.故选C.2.(2017·广元三模)某城区按以下规定收取水费:若每月用水不超过20 m3,则每立方米水费按2元收取;若超过20 m3,则超过的部分按每立方米3元收取,如果某户居民在某月所交水费的平均价为每立方米2.20元,则这户居民这月共用水( D )(A)46 m3ﻩ(B)44 m3(C)26 m3ﻩ(D)25 m3解析:设这户居民这个月共用水x立方米,20×2+(x-20)×3=2.2x,40+3x-60=2.2x,0.8x=20,x=25.他这个月共用了25立方米的水.故选D.3.有一批材料可以建成200 m的围墙,如果用此材料一边靠墙围成一个矩形场地,中间用同样材料隔成三个面积相等的矩形,如图所示,则围成矩形场地最大面积为( B )(A)2000 m2ﻩ(B)2 500 m2(C)2800 m2ﻩ(D)3 000 m2解析:设每个小矩形长为x,宽为y,则4x+3y=200,S=3xy=x(200-4x)=-4x2+200x=-4(x-25)2+2 500,所以x=25时,Smax=2 500(m2).故选B.4.某工厂2017年生产某产品2万件,计划从2018年开始每年比上一年增产20%,从哪一年开始这家工厂生产这种产品的年产量超过6万件(已知lg 2=0.301 0,lg 3=0.4771)( D)(A)2021年(B)2022年ﻩ(C)2023年(D)2024年解析:设再过n年这家工厂生产这种产品的年产量超过6万件,根据题意,得2(1+20%)n>6,即1.2n>3,两边取对数,得nlg 1.2>lg 3,所以n>≈6.031 6.所以n=7,即2017+7=2024.所以从2024年开始这家工厂生产这种产品的年产量超过6万件.故选D.5.(2017·山西长治期中)制作一个面积为1 m2,形状为直角三角形的铁架框,有下列四种长度的铁管供选择,较经济的(够用,又耗材最少)是( C)(A)4.6 mﻩ(B)4.8 mﻩ(C)5 m (D)5.2 m解析:设一条直角边为x,则另一条直角边是,斜边长为,故周长C=x++≥2+2≈4.82,当且仅当x=时等号成立,故较经济的(够用,又耗材最少)是5 m.故选C.6.(2016·长春联合测试)某位股民购进某只股票,在接下来的交易时间内,他的这只股票先经历了n次涨停(每次上涨10%),又经历了n次跌停(每次下跌10%),则该股民这只股票的盈亏情况(不考虑其他费用)为( B )(A)略有盈利(B)略有亏损(C)没有盈利也没有亏损(D)无法判断盈亏情况解析:设该股民购这只股票的价格为a,则经历n次涨停后的价格为a(1+10%)n=a×1.1n,经历n次跌停后的价格为a×1.1n×(1-10%)n=a×1.1n×0.9n=a×(1.1×0.9)n=0.99n·a<a,故该股民这只股票略有亏损.故选B.7.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x为m.解析:设内接矩形另一边长为y,则由相似三角形性质可得=,解得y=40-x,所以面积S=x(40-x)=-x2+40x=-(x-20)2+400(0<x<40),当x=20时,S max=400(m2).答案:208.某人根据经验绘制了2017年元旦前后,从12月21日至1月7日自己种植的西红柿的销售量y(千克)随时间x(天)变化的函数图象,如图所示,则此人在12月26日大约卖出了西红柿千克.解析:前10天满足一次函数关系式,设为y=kx+b,将点(1,10)和点(10,30)代入函数解析式得解得k=,b=,所以y=x+,则当x=6时,y=.答案:能力提升(时间:15分钟)9.某地区植被破坏、土地沙化越来越严重,最近三年测得沙漠增加的面积分别为198.5公顷、399.6公顷和793.7公顷,则沙漠增加面积y(公顷)关于年数x的函数关系较为近似的是( C )(A)y=200x(B)y=100x2+100x(C)y=100×2x(D)y=0.2x+log2x解析:对于A,x=1,2时,符合题意,x=3时,相差较大,不符合题意; 对于B,x=1时,符合题意,x=2,3时,相差较大,不符合题意;对于C,x=1,2,3时,y值都近似符合题意;对于D,x=1,2,3时,相差较大,不符合题意.故选C.10.某工厂产生的废气经过过滤后排放,过滤过程中废气的污染物数量P mg/L与时间t h间的关系为P=P0e-kt.若在前5个小时消除了10%的污染物,则污染物减少50%所需要的时间约为(已知lg 2=0.301 0,lg 3=0.477 1)( B )(A)26小时(B)33小时ﻩ(C)36小时 (D)42小时解析:由题意,前5个小时消除了10%的污染物,因为P=P0e-kt,所以(1-10%)P0=P0e-5k,所以k=-ln 0.9;则P=P0,当P=50%P0时,有50%P0=P0,所以ln0.9=ln 0.5,所以t=≈33,即污染物减少50%需要花33小时.故选B.11.已知投资x万元经销甲商品所获得的利润为P=;投资x万元经销乙商品所获得的利润为Q=(a>0).若投资20万元同时经销这两种商品或只经销其中一种商品,使所获得的利润不少于5万元,则a 的最小值为 .解析:设投资乙商品x万元(0≤x≤20),则投资甲商品(20-x)万元. 利润分别为Q=(a>0),P=,因为P+Q≥5,0≤x≤20时恒成立,则化简得a≥,0≤x≤20时恒成立.(1)x=0时,a为一切实数;(2)0<x≤20时,分离参数a≥,0<x≤20时恒成立,所以a≥,a的最小值为.答案:12.(2017·南昌二模)网店和实体店各有利弊,两者的结合将在未来一段时期内,成为商业的一个主要发展方向.某品牌行车记录仪支架销售公司从2017年1月起开展网络销售与实体店体验安装结合的销售模式.根据几个月运营发现,产品的月销量x万件与投入实体店体验安装的费用t万元之间满足x=3-函数关系式.已知网店每月固定的各种费用支出为3万元,产品每1万件进货价格为32万元,若每件产品的售价定为“进货价的150%”与“平均每件产品的实体店体验安装费用的一半”之和,则该公司最大月利润是万元.解析:由题知t=-1,(1<x<3),所以月利润:y=(48+)x-32x-3-t=16x--3=16x-+-3=45.5-[16(3-x)+]≤45.5-2=37.5,当且仅当x=时取等号,即月最大利润为37.5万元.答案:37.513.某化工厂从今年一月起,若不改善生产环境,按生产现状,每月收入为70万元,同时将受到环保部门的处罚,第一个月罚3万元,以后每月增加2万元.如果从今年一月起投资500万元添加回收净化设备(改造设备时间不计),一方面可以改善环境,另一方面也可以大大降低原料成本.据测算,添加回收净化设备并投产后的前5个月中的累计生产净收入g(n)是生产时间n个月的二次函数g(n)=n2+kn(k 是常数),且前3个月的累计生产净收入可达309万,从第6个月开始,每个月的生产净收入都与第5个月相同.同时,该厂不但不受处罚,而且还将得到环保部门的一次性奖励100万元.(1)求前8个月的累计生产净收入g(8)的值;(2)问经过多少个月,投资开始见效,即投资改造后的纯收入多于不改造时的纯收入.解:(1)据题意g(3)=32+3k=309,解得k=100,所以g(n)=n2+100n,(n≤5)第5个月的净收入为g(5)-g(4)=109(万元),所以,g(8)=g(5)+3×109=852万元.(2)g(n)=即g(n)=若不投资改造,则前n个月的总罚款3n+×2=n2+2n,令g(n)-500+100>70n-(n2+2n),得g(n)+n2-68n-400>0.显然当n≤5时,上式不成立;当n>5时,109n-20+n2-68n-400>0, 即n(n+41)>420,又n∈N,解得n≥9.所以,经过9个月投资开始见效.。
专题2.12 函数模型及其应用班级__________ 姓名_____________ 学号___________ 得分__________(满分100分,测试时间50分钟)一、填空题:请把答案直接填写在答题卡相应的位置........上(共10题,每小题6分,共计60分). 1. 在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为________m. 【答案】202.如果在今后若干年内,我国国民经济生产总值都控制在平均每年增长9%的水平,那么要达到国民经济生产总值比1995年翻两番的年份大约是________.(lg2=0.301 0,lg3=0.477 1,lg109=2.037 4,lg0.09=-2.954 3) 【答案】2011年【解析】 设1995年总值为a ,经过x 年翻两番,则a ·(1+9%)x=4a .∴x =2lg2lg1.09≈16.3. 给出下列函数模型:①一次函数模型;②幂函数模型;③指数函数模型;④对数函数模型.下表是函数值y 随自变量x 变化的一组数据,它最可能的函数模型是________(填序号).【答案】①【解析】根据已知数据可知,自变量每增加1函数值增加2,因此函数值的增量是均匀的,故为一次函数模型. 4.一个容器装有细沙a cm 3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,t min 后剩余的细沙量为y =a e-bt(cm 3),若经过8 min 后发现容器内还有一半的沙子,则再经过________min ,容器中的沙子只有开始时的八分之一. 【答案】16【解析】当t =0时,y =a ;当t =8时,y =a e-8b=12a , ∴e-8b=12,容器中的沙子只有开始时的八分之一时, 即y =a e -bt=18a . e-bt=18=(e -8b )3=e -24b,则t =24,所以再经过16 min. 5.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式y =(116)t -a (a 为常数),如图所示,根据图中提供的信息,回答下列问题:(1)从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式为__________________________.(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么从药物释放开始,至少需要经过________小时后,学生才能回到教室. 【答案】(1)y =⎩⎪⎨⎪⎧10t ,0≤t ≤0.1,116t -0.1,t >0.1 (2)0.66.某工厂产生的废气经过过滤后排放,排放时污染物的含量不得超过1%.已知在过滤过程中废气中的污染物数量P (单位:mg/L)与过滤时间t (单位:h)之间的函数关系为P =P 0e -kt (k ,P 0均为正的常数).如果在前5个小时的过滤过程中污染物被排除了90%,那么至少还需过滤 才可以排放. 【答案】5 h【解析】设原污染物数量为a ,则P 0=a .由题意有10%a =a e -5k,所以5k =ln10.设t h 后污染物的含量不得超过1%,则有1%a ≥a e-tk,所以tk ≥2ln10,t ≥10.因此至少还需过滤10-5=5 h 才可以排放.7.某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km 按起步价付费);超过3 km 但不超过8 km 时,超过部分按每千米2.15元收费;超过8 km 时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________ km. 【答案】9【解析】设出租车行驶x km 时,付费y 元,则y =⎩⎪⎨⎪⎧9,0<x ≤3,8+x -+1,3<x ≤8,8+2.15×5+x -+1,x >8.由y =22.6,解得x =9.8.某杂志每本原定价2元,可发行5万本,若每本提价0.20元,则发行量减少4 000本,为使销售总收入不低于9万元,需要确定杂志的最高定价是 【答案】3元9.某单位“五一”期间组团包机去上海旅游,其中旅行社的包机费为30 000元,旅游团中的每人的飞机票按以下方式与旅行社结算:若旅游团中的人数在30或30以下,飞机票每张收费1 800元.若旅游团的人数多于30人,则给以优惠,每多1人,机票费每张减少20元,但旅游团的人数最多有75人,那么旅游团的人数为_______人时,旅行社获得的利润最大. 【答案】60【解析】设旅游团的人数为x 人,飞机票为y 元,利润为Q 元,依题意,①当1≤x ≤30时,y =1 800元,此时利润Q=yx-30 000=1 800x-30 000,此时最大值是当x=30时,Q max =1 800×30-30 000=24 000(元);②当30<x ≤75时,y=1 800-20(x-30)=-20x+2 400,此时利润Q=yx-30 000 =-20x 2+2 400x-30 000=-20(x-60)2+42 000,所以当x=60时,旅行社可获得的最大利润42 000元.综上,当旅游团的人数为60人时,旅行社获得的利润最大.10.某地西红柿从2 月1日起开始上市,通过市场调查,得到西红柿种植成本Q(单位:元/100 kg)与上市时间t(单位:天)的数据如下表:. Q=at+b,Q=at 2+bc+c,Q=a ·b t,Q=a ·log b t 利用你选取的函数,求得:(1)西红柿种植成本最低时的上市天数是________. (2)最低种植成本是________(元/100kg).【答案】(1)120 (2)80二、解答题:解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内.....。
2018年高考数学一轮复习 第二章 函数、导数及其应用 课时达标12函数模型及其应用 理[解密考纲]本考点考查函数在实际生活中的应用等.在近几年的高考中选择题、填空题、解答题都出现过.选择题、填空题通常排在中间位置,解答题往往与其他知识综合考查,题目难度中等.一、选择题1.(2017·湖南永州模拟)某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y 与投放市场的月数x 之间关系的是( C )A .y =100xB .y =50x 2-50x +100 C .y =50×2xD .y =100log 2x +100解析:根据函数模型的增长差异和题目中的数据可知,应为指数型函数模型,代入数据验证即可得,应选C .2.(2016·河北唐山检测)某食品厂定期购买面粉,已知该厂每天需要面粉6吨,每吨面粉的价格为1 800元,面粉的保管等其他费用为平均每吨每天3元,购买面粉每次需支付运费900元.求该厂多少天购买一次面粉,才能使平均每天所支付的总费用最少( B )A .9天B .10天C .11天D .12天解析:设该厂应每隔x 天购买一次面粉,则购买量为6x 吨,由题意可知,面粉的保管等其他费用为3[6x +6(x -1)+6(x -2)+…+6×1]=9x (x +1), 设平均每天所支付的总费用为y 1元,则y 1=9xx ++900x +1 800×6=900x+9x +10 809≥2900x·9x +10 809=10 989,当且仅当9x =900x,即x =10时取等号.即该厂每隔10天购买一次面粉,才能使平均每天所支付的总费用最少,故选B . 3.国家规定某行业征税如下:年收入在280万元及以下的税率为p %,超过280万元的部分按(p +2)%征税,有一公司的实际缴税比例为(p +0.25)%,则该公司的年收入是( D )A .560万元B .420万元C .350万元D .320万元解析:设该公司的年收入为x 万元,纳税额为y 万元,则由题意,得y =⎩⎪⎨⎪⎧x ×p %,x ≤280,280×p %+x -p +,x >280,依题意有,280×p %+x -280p +x=(p +0.25)%,解之得x =320(万元).4.世界人口在过去40年内翻了一番,则每年人口平均增长率是(参考数据lg 2≈0.301 0,100.007 5≈1.017)( C )A .1.5%B .1.6%C .1.7%D .1.8%解析:设每年世界人口平均增长率为x ,则(1+x )40=2,两边取以10为底的对数,则40lg(1+x )=lg 2,所以lg(1+x )=lg 240≈0.007 5,所以100.007 5=1+x ,得1+x =1.017,所以x =1.7%.5.某校甲、乙两食堂某年1月份的营业额相等,甲食堂的营业额逐月增加,并且每月增加值相同;乙食堂的营业额也逐月增加,且每月增加的百分率相同.已知本年9月份两食堂的营业额又相等,则本年5月份( A )A .甲食堂的营业额较高B .乙食堂的营业额较高C .甲、乙两食堂的营业额相同D .不能确定甲、乙哪个食堂的营业额较高解析:设甲、乙两食堂1月份的营业额均为m ,甲食堂的营业额每月增加a (a >0),乙食堂的营业额每月增加的百分率为x ,由题意可得,m +8a =m ×(1+x )8,则5月份甲食堂的营业额y 1=m +4a ,乙食堂的营业额y 2=m ×(1+x )4=mm +8a ,因为y 21-y 22=(m +4a )2-m (m +8a )=16a 2>0,所以y 1>y 2,故本年5月份甲食堂的营业额较高.6.(2017·北京朝阳区模拟)某房地产公司计划出租70套相同的公寓房.当每套房月租金定为3000元时,这70套公寓能全租出去;当月租金每增加50元时(设月租金均为50元的整数倍),就会多一套房子不能出租.设租出的每套房子每月需要公司花费100元的日常维修等费用(设租不出的房子不需要花这些费用).要使公司获得最大利润,每套房月租金应定为( B )A .3 000元B .3 300元C .3 500元D .4 000元解析:由题意,设利润为y 元,租金定为3 000+50x 元(0≤x ≤70,x ∈N ). 则y =(3 000+50x )(70-x )-100(70-x ) =(2 900+50x )(70-x ) =50(58+x )(70-x )≤50⎝⎛⎭⎪⎫58+x +70-x 22,当且仅当58+x =70-x ,即x =6时,等号成立,故每月租金定为3 000+300=3 300(元)时,公司获得最大利润,故选B .二、填空题7.某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,则截取的矩形面积的最大值为180.解析:依题意知:20-x x =y -824-y ,即x =54(24-y ),y ∈[8,24),∴阴影部分的面积S =xy =54(24-y )y =54(-y 2+24y ),∴当y =12时,S 有最大值为180.8.有一批材料可以建成200 m 长的围墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样材料隔成三个面积相等的矩形(如图所示),则围成场地的最大面积为2_500_m 2(围墙厚度不计).解析:设矩形场地的宽度为x m ,则矩形场地长(200-4x )m ,面积S =x (200-4x )=-4(x -25)2+ 2 500.故当x =25时,S 取得最大值2 500,即围成场地的最大面积为2 500 m 2.9.(2017·山东潍坊模拟)某地西红柿从2月1日起开始上市,通过市场调查,得到西红柿种植成本Q (单位:元/100 kg)与上市时间t (单位:天)的数据关系如下表:根据上表数据,Q 与上市时间t 的变化关系.Q =at +b ,Q =at 2+bt +c ,Q =a ·b t ,Q =a ·log b t利用你选取的函数,求得:(1)西红柿种植成本最低时的上市天数是120. (2)最低种植成本是80(元/100 kg). 解析:根据表中数据可知函数不单调, 所以Q =at 2+bt +c 且开口向上,对称轴t =-b2a=60+1802=120. 代入数据⎩⎪⎨⎪⎧3 600a +60b +c =116,10 000a +100b +c =84,32 400a +180b +c =116,得⎩⎪⎨⎪⎧b =-2.4,c =224,a =0.01,所以西红柿种植成本最低时的上市天数是120,最低种植成本是14 400a +120b +c =14 400×0.01+120×(-2.4)+224=80.三、解答题10.(2017·湖北鄂州月考)如图所示,已知边长为8米的正方形钢板有一个角被锈蚀,其中AE =4米,CD =6米.为了合理利用这块钢板,在五边形ABCDE 内截取一个矩形块BNPM ,使点P 在边DE 上.(1)设MP =x 米,PN =y 米,将y 表示成x 的函数,求该函数的解析式及定义域; (2)求矩形BNPM 面积的最大值.解析:(1)作PQ ⊥AF 于Q ,所以PQ =8-y ,EQ =x -4,在△EDF 中,EQ PQ =EFFD,所以x -48-y =42,所以y =-12x +10,定义域为{x |4≤x ≤8}.(2)设矩形BNPM 的面积为S ,则S (x )=xy =x ⎝⎛⎭⎪⎫10-x 2=-12(x -10)2+50,所以S (x )是关于x 的二次函数,且其开口向下,对称轴为x =10,所以当x ∈[4,8],S (x )单调递增,所以当x =8米时,矩形BNPM 面积取得最大值48平方米.11.某产品原来的成本为1 000元/件,售价为1 200元/件,年销售量为1万件,由于市场饱和顾客要求提高,公司计划投入资金进行产品升级.据市场调查,若投入x 万元,每件产品的成本将降低34x 元,在售价不变的情况下,年销售量将减少2x 万件,按上述方式进行产品升级和销售,扣除产品升级资金后的纯利润记为f (x )(单位:万元).(1)求f (x )的函数解析式;(2)求f (x )的最大值,以及f (x )取得最大值时x 的值.解析:(1)依题意,产品升级后,每件的成本为1 000-3x 4元,利润为200+3x4元,年销售量为1-2x万件,纯利润为f (x )=⎝ ⎛⎭⎪⎫200+3x 4⎝ ⎛⎭⎪⎫1-2x -x =198.5-400x -x 4. (2)f (x )=198.5-400x -x4≤198.5-2×400x ×x 4=178.5,当且仅当400x =x4, 即x =40时等号成立.所以f (x )取最大值时的x 的值为40.12.某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为1.80元,当用水超过4吨时,超过部分每吨3.00元,某月甲、乙两户共交水费y 元,已知甲、乙两户该月用水量分别为5x 吨,3x 吨.(1)求y 关于x 的函数;(2)若甲、乙两户该月共交水费26.4元,分别求出甲、乙两户该月的用水量和水费. 解析:(1)当甲的用水量不超过4吨时,即5x ≤4,乙的用水量也不超过4吨,y =1.8(5x +3x )=14.4x ;当甲的用水量超过4吨,乙的用水量不超过4吨时,即3x ≤4,且5x >4,y =4×1.8+3x ×1.8+3(5x -4)=20.4x -4.8.当乙的用水量超过4吨时,即3x >4,y =2×4×1.8+3×[(3x -4)+(5x -4)]=24x -9.6.所以y =⎩⎪⎨⎪⎧14.4x ⎝⎛⎭⎪⎫0≤x ≤45,20.4x -4.8⎝ ⎛⎭⎪⎫45<x ≤43,24x -9.6⎝ ⎛⎭⎪⎫x >43.(2)由于y =f (x )在各段区间上均单调递增,当x ∈⎣⎢⎡⎦⎥⎤0,45时,y ≤f ⎝ ⎛⎭⎪⎫45<26.4;当x ∈⎝ ⎛⎦⎥⎤45,43时,y ≤f ⎝ ⎛⎭⎪⎫43<26.4; 当x ∈⎝ ⎛⎭⎪⎫43,+∞时,令24x -9.6=26.4,解得x =1.5. 所以甲户用水量为5x =7.5吨,付费S 1=4×1.8+3.5×3=17.70(元); 乙用户用水量为3x =4.5吨,付费S 2=4×1.8+0.5×3=8.70(元).。
课时作业(十二) [第12讲函数模型及其应用](时间:45分钟分值:100分)基础热身图K12-11.“红豆生南国,春来发几枝?”,图K12-1给出了红豆生长时间t(月)与枝数y(枝)的散点图,那么红豆生长时间与枝数的关系用下列哪个函数模型拟合最好?( )A.y=t2B.y=log2tC.y=2tD.y=2t22.等边三角形的边长为x,面积为y,则y与x之间的函数关系式为( )A.y=x2B.y=错误!x2C.y=错误!x2 D.y=错误!x23.某工厂第三年的产量比第一年的产量增长44%,若每年的平均增长率相同(设为x),则以下结论正确的是()A.x>22% B.x<22%C.x=22% D.x的大小由第一年的产量确定4.某种储蓄按复利计算利息,若本金为a元,每期利率为r,存期是x,本利和(本金加利息)为y元,则本利和y随存期x变化的函数关系式是________.错误!5.某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y与投放市场的月数x之间关系的是( )A.y=100x B.y=50x2-50x+100C.y=50×2x D.y=100log2x+1006.[2012·华南师大附中模拟] 在股票买卖过程中,经常用到两种曲线,一种是即时价格曲线y=f(x),一种是平均价格曲线y=g(x)(如f(2)=3表示开始交易后第2小时的即时价格为3元;g(2)=4表示开始交易后两个小时内所有成交股票的平均价格为4元).下面所给出的四个图象中,实线表示y=f(x),虚线表示y=g(x),其中可能正确的是( )图K12-27.[2012·商丘一模] 某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L1=5.06x-0.15x2和L2=2x,其中x为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得的最大利润为( )A.45.606万元B.45.6万元C.45.56万元D.45.51万元8.[2013·荆州中学一检] 下列所给4个图象中,与所给3件事吻合最好的顺序为( )(a)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学;(b)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;(c)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.图K12-3A.(1)(2)(4) B.(4)(2)(3)C.(4)(1)(3) D.(4)(1)(2)9.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x件,则平均仓储时间为\f(x,8)天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( )A.60件B.80件 C.100件 D.120件图K12-410.一位设计师在边长为3的正方形ABCD中设计图案,他分别以A,B,C,D为圆心,以b错误!为半径画圆,由正方形内的圆弧与正方形边上线段(圆弧端点在正方形边上的连线)构成了丰富多彩的图形,则这些图形中实线部分总长度的最小值为________.图K12-511.某汽车运输公司购买了一批豪华大客车投入营运,据市场分析每辆客车营运的总利润y (单位:10万元)与营运年数x(x∈N)为二次函数关系(如图K12-5所示),若每辆客车营运的年平均利润最大,则营运的年数为________年.12.某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km按起步价收费);超过3 km但不超过8 km时,超过部分按每千米2.15元收费;超过8 km时,超过的部分按每千米2.85元收费,每次乘车需付燃油附加费1元,现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________千米.图K12-613.[2013·上海南汇一中月考] 为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(mg)与时间t(h)成正比;药物释放完毕后,y与t的函数关系式为y=错误!错误!(a为常数),如图K12-6所示,据测定,当空气中每立方米的含药量降低到0.25 mg以下时,学生方可进教室,那从药物释放开始,至少需要经过________h后,学生才能回到教室.14.(10分)某地上年度电价为0.8元,年用电量为1亿千瓦时.本年度计划将电价调至0.55元~0.75元之间,经测算,若电价调至x元,则本年度新增用电量y(亿千瓦时)与(x-0.4)元成反比例.又当x=0.65时,y=0.8.(1)求y与x之间的函数关系式;(2)若每千瓦时电的成本价为0.3元,则电价调至多少时,本年度电力部门的收益将比上年增加20%?[收益=用电量×(实际电价-成本价)]15.(13分)[2013·重庆北江中学月考] 围建一个面积为360 m2的矩形场地,要求矩形场地的一面利用旧墙(利用的旧墙需维修),其他三面围墙要新建,在旧墙对面的新墙上要留一个宽度为2 m的进出口,如图K12-7所示.已知旧墙的维修费为45元/m,新墙的造价为180元/m.设利用的旧墙长度为x(单位:m),修建此矩形场地围墙的总费用为y(单位:元).(1)将y表示为x的函数;(2)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用.图K12-7错误!16.(12分)江苏省环保研究所对市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数f(x)与时刻x(时)的关系为f(x)=错误!+2a+错误!,x∈[0,24],其中a 是与气象有关的参数,且a ∈错误!.若用每天f (x )的最大值为当天的综合放射性污染指数,并记作M(a ).(1)令t =\f (x,x2+1),x ∈[0,24],求t 的取值范围;(2)省政府规定,每天的综合放射性污染指数不得超过2,试问目前市中心的综合放射性污染指数是否超标?ﻬ课时作业(十二)【基础热身】1.A [解析] 由函数的图象知B显然不符,将t =6代入发现C不符,将t =2代入发现D 不符,故选A .本题也可取几个特殊点代入验证.2.D [解析] y=12·x ·x ·sin 60°=错误!x 2.故选D. 3.B [解析] (1+x)2=1+44%,解得x =0.2<0.22.故选B.4.y =a (1+r )x(x∈N *) [解析] 按复利的计算方法得y =a (1+r )x(x ∈N *),注意不要忘记定义域.【能力提升】5.C [解析] 根据函数模型的增长差异和题目中的数据可知,应为指数型函数模型.6.C [解析] 开始交易时,即时价格和平均价格应该相等,A 错误;开始交易后,平均价格应该跟随即时价格变动,在任何时刻其变化幅度应该小于即时价格变化幅度,B,D 均错误,故选C.7.B [解析] 依题意可设甲地销售x辆,则乙地销售(15-x )辆,所以总利润S=5.06x -0.15x 2+2(15-x)=-0.15x 2+3.06x+30(0≤x ≤15,x ∈N ).所以当x =10时,S m ax =45.6(万元).8.D [解析] 图(4)中有一段时间显示离开家的距离为零,与(a )吻合;图(1)中有一段时间显示离开家的距离没有变化,与(b)吻合;图(2)显示离开家的距离在不断加快,图(3)显示离开家的距离在增加,但是增加的速度越来越慢.故选D .9.B [解析] 仓储费用\f(x,8)×x×1=\f (x 2,8),每件产品的生产准备费用与仓储费用之和 y =错误!=错误!+错误!≥2错误!=20,当且仅当错误!=错误!,即x =80时等号成立,所以每批应生产产品80件,故选B. 10.3π [解析] 由题意实线部分的总长度为l =4(3-2b )+2πb =(2π-8)b +12,l 关于b 的一次函数的一次项系数2π-8<0,故l 关于b为单调减函数,因此,当b 取最大值时,l取得最小值,结合图形知,b 的最大值为32,代入上式得l 最小=(2π-8)×错误!+12=3π. 11.5 [解析] 依题意设二次函数的解析式为y=a (x -6)2+11,将点(4,7)代入,解得a =-1,所以y =-(x-6)2+11=-x 2+12x -25,则年平均利润为错误!=错误!=12-x+25x≤12-2错误!=2,当且仅当x =5时,年平均利润达到最大值. 12.9 [解析] 设乘客每次乘坐出租车需付费用为f (x )元,由题意得,f(x )=错误!令f(x )=22.6,解得x =9.13.0.6 [解析] 由图可知,当t =0.1时,y =1,代入y =错误!错误!得a =0.1,所以y =错误!错误!.依题意得错误!错误!<0.25,即错误!错误!<错误!,解得t >0.6.14.解:(1)因为y 与(x -0.4)成反比例,所以设y =错误!(k ≠0).把x =0. 65,y=0.8代入上式,得0.8=k 0.65-0.4,k=0.2. 所以y=错误!=错误!,即y 与x 之间的函数关系式为y =错误!(0.55≤x ≤0.75).(2)根据题意,得错误!·(x -0.3)=1×(0.8-0.3)×(1+20%).整理,得x 2-1.1x +0.3=0,解得x1=0.5,x 2=0.6.经检验x1=0.5,x2=0.6都是所列方程的根.因为x 的取值范围是0.55~0.75,故x =0.5不符合题意,应舍去.所以x=0.6.所以当电价调至0.6元时,本年度电力部门的收益将比上年度增加20%.15.解:(1)设矩形的另一边长为a m,则y =45x +180(x-2)+180·2a =225x+360a -360,由已知xa =360,得a=360x. 所以y =225x +错误!-360(x >0).(2)∵x >0,∴225x +错误!≥2错误!=10 800.∴y=225x +3602x-360≥10 440.当且仅当225x=错误!时,等号成立. 即当x =24 m 时,修建围墙的总费用最小,最小总费用是10 440元.【难点突破】16.解:(1)当x =0时,t =0;当0<x ≤24时,x +1x≥2(当x =1时取等号), 所以t =错误!=错误!∈0,错误!,即t的取值范围是0,错误!.(2)当a∈0,\f (1,2)时,记g (t )=|t-a |+2a +23, 则g (t )=错误!因为g (t )在[0,a]上单调递减,在a ,\f (1,2)上单调递增, 且g (0)=3a +错误!,g 错误!=a+错误!,g (0)-g \f(1,2)=2a -错误!.故M (a)=错误!即M (a )=错误!所以当且仅当a ≤49时,M(a )≤2. 故当0≤a ≤错误!时不超标,当错误!<a ≤错误!时超标.。
课时提升作业(十二)函数模型及其应用(45分钟100分)一、选择题(每小题5分,共40分)1.(2014·宁波模拟)将甲桶中的a升水缓慢注入空桶乙中,t分钟后甲桶中剩余的水符合指数衰减曲线y=ae nt,假设5分钟后甲桶和乙桶的水量相等,若再过m分钟后甲桶中的水只有升,则m的值为( )A.8B.10C.12D.15【解析】选B.由已知条件可得ae5n=,e5n=.由ae nt=,得e nt=,所以t=15,m=15-5=10.2.(2014·南昌模拟)如图,正方形ABCD的顶点A,B,顶点C,D位于第一象限,直线l:x=t(0≤t≤)将正方形ABCD分成两部分,记位于直线l左侧阴影部分的面积为f(t),则函数S=f(t)的图象大致是( )【解析】选C.f(t)增长的速度先快后慢,故选C.3.某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x,y应为( )A.x=15,y=12B.x=12,y=15C.x=14,y=10D.x=10,y=14【思路点拨】利用三角形相似列出x与y的关系式,用y表示x.从而矩形面积可表示为关于y 的函数.【解析】选A.由三角形相似得=,得x=(24-y),由0<x≤20得,8≤y<24,所以S=xy=-(y-12)2+180,所以当y=12时,S有最大值,此时x=15.4.(2014·温州模拟)某商场宣传在“五一黄金周”期间对顾客购物实行一定的优惠,商场规定:①如一次性购物不超过200元,不予以折扣;②如一次性购物超过200元但不超过500元的,按标价给予九折优惠;③如一次性购物超过500元,其中500元给予九折优惠,超过500元的部分给予八五折优惠. 某人两次去购物,分别付款176元和432元,如果他只去一次购买同样的商品,则应付款( ) A.608元 B.574.1元C.582.6元D.456.8元【解析】选 C.设一次性购物总标价为x元,根据题意,应付款y=付款176元时没有折扣.付款432元时标价为432÷0.9=480(元).故两次购物的标价为176+480=656(元).500×0.9+(656-500)×0.85=582.6(元).5.(2014·北京模拟)在半径为R的半球内有一内接圆柱,则这个圆柱的体积的最大值是( )A.πR3B.πR3C.πR3D.πR3【解析】选A.设圆柱的高为h,则圆柱的底面半径为,圆柱的体积为V=π(R2-h2)h=-πh3+πR2h(0<h<R),V′=-3πh2+πR2=0,h=时V有最大值为V=πR3.6.(2014·杭州模拟)一张正方形的纸片,剪去两个一样的小矩形得到一个“E”形图案,如图所示,设小矩形的长、宽分别为x,y,剪去部分的面积为20,若2≤x≤10,记y=f(x),则y=f(x)的图象是( )【思路点拨】先根据已知构建函数y=f(x)解析式,再结合图象作出选择.【解析】选A.由题意知,xy=10,即y=,且2≤x≤10.【加固训练】一水池有两个进水口,一个出水口,每个水口的进、出水速度如图甲、乙所示.某天0点到6点,该水池的蓄水量如图丙所示.给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水也不出水.则一定正确的是( )A.①B.①②C.①③D.①②③【解析】选A.由丙图知0点到3点蓄水量为6,故应两个进水口进水,不出水,故①正确.由丙图知3点到4点间1小时蓄水量少1个单位,故1个进水1个出水,故②错误.由丙图知4点到6点蓄水量不变,故可能不进水也不出水或两个进水一个出水,故③错误. 7.(2014·郑州模拟)某种新药服用x小时后血液中的残留量为y毫克,如图所示为函数y=f(x)的图象,当血液中药物残留量不小于240毫克时,治疗有效.设某人上午8:00第一次服药,为保证疗效,则第二次服药最迟的时间应为( )A.上午10:00B.中午12:00C.下午4:00D.下午6:00【解析】选C.当x∈[0,4]时,设y=k1x,把(4,320)代入,得k1=80,所以y=80x.当x∈[4,20]时,设y=k2x+b.把(4,320),(20,0)代入得解得所以y=400-20x.所以y=f(x)=由y≥240,得或解得3≤x≤4或4<x≤8,所以3≤x≤8.故第二次服药最迟应在当日下午4:00.【方法技巧】求解由图象给出函数模型解决实际问题的技巧对于函数模型由函数图象给出的实际问题,求解时应根据图象的形状,找到相应的函数模型,用待定系数法求得解析式,再运用该解析式解决实际问题.8.(能力挑战题)如图,A,B,C,D是某煤矿的四个采煤点,m是公路,图中所标线段为道路,ABQP,BCRQ,CDSR近似于正方形.已知A,B,C,D四个采煤点每天的采煤量之比约为5∶1∶2∶3,运煤的费用与运煤的路程、所运煤的质量都成正比.现要从P,Q,R,S中选出一处设立一个运煤中转站,使四个采煤点的煤运到中转站的费用最少,则地点应选在( )A.P点B.Q点C.R点D.S点【思路点拨】分别求出地点选在P,Q,R,S时,四个采煤点的煤运到中转站的费用,然后比较即可.【解析】选B.根据题意设A,B,C,D四个采煤点每天所运煤的质量分别为5x,x,2x,3x,正方形的边长为l(l>0).运煤的费用与运煤的路程、所运煤的质量都成正比,比例系数为k,k>0,则地点选在点P,其运到中转站的费用为k(5xl+2xl+6xl+12xl)=25kxl;地点选在点Q,其运到中转站的费用为k(10xl+xl+4xl+9xl)=24kxl;地点选在点R,其运到中转站的费用为k(15xl+2xl+2xl+6xl)=25kxl;地点选在点S,其运到中转站的费用为k(20xl+3xl+4xl+3xl)=30kxl.综上可知地点应选在Q,煤运到中转站的费用最少.【误区警示】本题易因不能准确确定采煤点和中转站的路程关系而导致错误.二、填空题(每小题5分,共20分)9.某种病毒经30分钟繁殖为原来的2倍,且知病毒的繁殖规律为y=e kt(其中k为常数,t表示时间,单位:小时,y表示病毒个数),则k= ,经过5小时,1个病毒能繁殖为个. 【解析】由已知得2=,所以=ln2,即k=2ln2,当t=5时,y=e(2ln2)×5==210=1024.答案:2ln2 102410.(2014·衢州模拟)一高为H,满缸水量为V的鱼缸截面如图所示,其底部破了一个小洞,满缸水从洞中流出.若鱼缸水深为h时的水的体积为V1,则函数V1=f(h)的大致图象可能是图中的.【解析】当h=0时,V1=0可排除①③;由于鱼缸中间粗两头细,所以当h在附近时,体积变化较快;h小于时,体积增加越来越快;h大于时,体积增加越来越慢.答案:②11.如图,书的一页的面积为600cm2,设计要求书面上方空出2cm的边,下、左、右方都空出1cm 的边,为使中间文字部分的面积最大,这页书的长、宽应分别为.【思路点拨】设这页书的长为xcm,根据面积为600cm2将宽用x表示,再将中间文字部分的面积S用x表示,进而求函数最值.【解析】设这页书的长为xcm,宽为ycm,则xy=600,所以y=,则中间文字部分的长为:x-2-1=(x-3)cm,宽为:y-2=cm,所以其面积S=(x-3)=606-2.又解得3<x<300,所以S≤606-2×2=486,当且仅当=x,即x=30时,S max=486,此时y=20.答案:30cm,20cm12.(能力挑战题)某医院为了提高服务质量,对挂号处的排队人数进行了调查,发现:当还未开始挂号时,有N个人已经在排队等候挂号;开始挂号后排队的人数平均每分钟增加M人.假定挂号的速度是每个窗口每分钟K个人,当开放一个窗口时,40分钟后恰好不会出现排队现象;若同时开放两个窗口时,则15分钟后恰好不会出现排队现象.根据以上信息,若要求8分钟后不出现排队现象,则需要同时开放的窗口至少应有个.【解析】设要同时开放x个窗口才能满足要求,则由①②,得代入③,得60M+8M≤8×2.5Mx,解得x≥3.4.故至少同时开放4个窗口才能满足要求.答案:4【加固训练】(2012·福建高考)某地区规划道路建设,考虑道路铺设方案,方案设计图中,点表示城市,两点之间连线表示两城市间可铺设道路,连线上数据表示两城市间铺设道路的费用,要求从任一城市都能到达其余各城市,并且铺设道路的总费用最小.例如,在三个城市道路设计中,若城市间可铺设道路的线路图如图1,则最优设计方案如图2,此时铺设道路的最小总费用为10.现给出该地区可铺设道路的线路图如图3,则铺设道路的最小总费用为.【解析】根据题目中图3给出的信息及题意,要求的是铺设道路的最小总费用,且从任一城市都能到达其余各城市,可将图3调整为如图所示的结构(线段下方的数字为两城市之间铺设道路的费用).此时铺设道路的总费用为2+3+1+2+3+5=16.答案:16三、解答题(13题12分,14~15题各14分)13.某种出口产品的关税税率为t,市场价格x(单位:千元)与市场供应量p(单位:万件)之间近似满足关系式:p=,其中k,b均为常数.当关税税率t=75%时,若市场价格为5千元,则市场供应量为1万件;若市场价格为7千元,则市场供应量约为2万件.(1)试确定k,b的值.(2)市场需求量q(单位:万件)与市场价格x近似满足关系式:q=2-x,当p=q时,市场价格称为市场平衡价格,当市场平衡价格不超过4千元时,试确定关税税率的最大值.【解析】(1)由已知⇒解得b=5,k=1.(2)当p=q时,=2-x,所以(1-t)(x-5)2=-x⇒t=1+=1+.而f(x)=x+在(0,4]上单调递减,所以当x=4时,f(x)有最小值,故当x=4时,关税税率的最大值为500%.【误区警示】本题在对f(x)=x+求最小值时,易误为f(x)≥2=10,原因是忽视了该函数的定义域(0,4],而用基本不等式求最小值.14.(2014·湖州模拟)某校学生社团心理学研究小组在对学生上课注意力集中情况的调查研究中,发现其注意力指数p与听课时间t之间的关系满足如图所示的曲线.当t∈(0,14]时,曲线是二次函数图象的一部分,当t∈[14,40]时,曲线是函数y=log a(t-5)+83(a>0且a≠1)图象的一部分.根据专家研究,当注意力指数p大于等于80时听课效果最佳.(1)试求p=f(t)的函数关系式.(2)老师在什么时段内安排核心内容能使得学生听课效果最佳?请说明理由.【解析】(1)t∈(0,14]时,设p=f(t)=c(t-12)2+82(c<0),将(14,81)代入得c=-,t∈(0,14]时,p=f(t)=-(t-12)2+82;t∈[14,40]时,将(14,81)代入y=log a(t-5)+83,得a=, 所以p=f(t)=(2)t∈(0,14]时,由-(t-12)2+82≥80,解得12-2≤t≤12+2,所以t∈[12-2,14],t∈(14,40]时,由lo(t-5)+83≥80,解得5<t≤32,所以t∈(14,32],所以t∈[12-2,32],即老师在t∈[12-2,32]时段内安排核心内容能使得学生听课效果最佳.15.(能力挑战题)某企业接到生产3000台某产品的A,B,C三种部件的订单,每台产品需要这三种部件的数量分别为2,2,1(单位:件).已知每个工人每天可生产A部件6件,或B部件3件,或C部件2件.该企业计划安排200名工人分成三组分别生产这三种部件,生产B部件的人数与生产A部件的人数成正比,比例系数为k(k为正整数).(1)设生产A部件的人数为x,分别写出完成A,B,C三种部件生产需要的时间.(2)假设这三种部件的生产同时开工,试确定正整数k的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案.【解析】(1)设完成A,B,C三种部件的生产任务需要的时间(单位:天)分别为T1(x),T2(x),T3(x),由题设有T1(x)==,T2(x)=,T3(x)=.其中x,kx,200-(1+k)x均为1到200之间的正整数.(2)完成订单任务的时间为f(x)=max{T1(x),T2(x),T3(x)},其定义域为.易知,T1(x),T2(x)为减函数,T3(x)为增函数.注意到T2(x)=T1(x),于是①当k=2时,T1(x)=T2(x),此时f(x)=max{T1(x),T3(x)}=max.由函数T1(x),T3(x)的单调性知,当=时f(x)取得最小值,解得x=.由于44<<45,而f(44)=T1(44)=,f(45)=T3(45)=,f(44)<f(45),故当x=44时完成订单任务的时间最短,且最短时间为f(44)=.②当k>2时,T1(x)>T2(x),由于k为正整数,故k≥3,此时≥=.记T(x)=,φ(x)=max{T1(x),T(x)},易知T(x)是增函数,则f(x)=max{T1(x),T3(x)}≥max{T1(x),T(x)}=φ(x)=max.由函数T1(x),T(x)的单调性知,当=时φ(x)取最小值,解得x=.由于36<<37,而φ(36)=T1(36)=>, φ(37)=T(37)=>,此时完成订单任务的最短时间大于.③当k<2时,T1(x)<T2(x),由于k为正整数,故k=1,此时f(x)=max{T2(x),T3(x)}=max.由函数T2(x),T3(x)的单调性知,当=时f(x)取最小值,解得x=,类似①的讨论,此时完成订单任务的最短时间为,大于.综上所述,当k=2时,完成订单任务的时间最短,此时,生产A,B,C三种部件的人数分别为44,88,68.。
专题2.12 函数模型及其应用【考纲解读】【直击考点】题组一常识题1.[教材改编] 函数模型:①y=1.002x,②y=0.25x,③y=log2x+1.随着x的增大,增长速度的大小关系是____________.【解析】根据指数函数、幂函数、对数函数的增长速度关系可得.①>②>③2.[教材改编] 某公司市场营销人员的个人月收入与其每月的销售量的关系满足一次函数,已知销售量为1000件时,收入为3000元,销售量为2000件时,收入为5000元,则营销人员没有销售量时的收入是________元.【解析】设收入y与销售量x的关系为y=kx+b,则有3000=1000k+b,5000=2000k +b,解得k=2,b=1000,所以y=2x+1000,故没有销售量时的收入y=2×0+1000=1000.3.[教材改编] 某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是________元.【解析】设进货价为a元,由题意知132×(1-10%)-a=10%·a,解得a=108.题组二常错题4.据调查,某自行车存车处在某星期日的存车量为4000辆次,其中变速车存车费是每辆一次0.3元,普通车存车费是每辆一次0.2元.若普通车存车量为x辆次,存车费总收入为y元,则y关于x的函数关系式是________.【解析】y =0.2x +(4000-x )×0.3=-0.1x +1200(0≤x ≤4000,x ∈N ),这里不能忽略x 的取值范围,否则函数解析式失去意义.5.等腰三角形的周长为20,腰长为x ,则其底边长y =f (x )=________________.题组三 常考题6.某市职工收入连续两年持续增加,第一年的增长率为a ,第二年的增长率为b ,则该市这两年职工收入的年平均增长率为______________.【解析】设年平均增长率为x ,则有(1+a )(1+b )=(1+x )2,解得x =(1+a )(1+b )-1.7.某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =ekx +b(e=2.718 28…为自然对数的底数,k ,b 为常数).若该食品在0 ℃的保鲜时间是240小时,在22 ℃的保鲜时间是60小时,则该食品在11℃的保鲜时间是________小时.【解析】由题意,⎩⎪⎨⎪⎧240=e b,60=e 22k +b , 得⎩⎪⎨⎪⎧240=e b,2-1=e 11k ,于是当x =11时,y =e 11k +b =e 11k ·e b =2-1×240=120.8.要制作一个容积为16 m 3,高为1 m 的无盖长方体容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________.【解析】设长方体底面边长分别为x ,y ,则y =16x,所以容器的总造价为z =2(x +y )×10+20xy =20⎝⎛⎭⎪⎫x +16x +20×16,由基本不等式得,z =20⎝ ⎛⎭⎪⎫x +16x +20×16≥40x ·16x+320=480,当且仅当x =y =4,即底面是边长为4的正方形时,总造价最低.【知识清单】1.几种常见的函数模型2.三种函数模型性质比较【考点深度剖析】解答应用问题的程序概括为“四步八字”,即①审题:弄清题意,分清条件和结论,理顺数量关系,初步选择模型;②建模:把自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;③求模:求解数学模型,得出数学结论;④还原:将数学结论还原为实际问题的意义.【重点难点突破】考点1 一次函数与二次函数模型【1-1】某电信公司推出两种手机收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内通话时间t(分钟)与电话费s(元)的函数关系如图所示,当通话150分钟时,这两种方式电话费相差_________元.【答案】10【解析】依题意可设s A(t)=20+kt,s B(t)=mt,又s A(100)=s B(100),∴100k+20=100m,得k-m=-0.2,于是s A (150)-s B (150)=20+150k -150m =20+150×(-0.2)=-10, 即两种方式电话费相差10元.【1-2】将进货单价为80元的商品按90元出售时,能卖出400个.若该商品每个涨价1元,其销售量就减少20个,为了赚取最大的利润,售价应定为每个_________元. 【答案】95【思想方法】(1)二次函数的最值一般利用配方法与函数的单调性解决,但一定要密切注意函数的定义域,否则极易出错;(2)确定一次函数模型时,一般是借助两个点来确定,常用待定系数法; (3)解决函数应用问题时,最后要还原到实际问题. 【温馨提醒】1.易忽视实际问题的自变量的取值范围,需合理确定函数的定义域.2.注意问题反馈.在解决函数模型后,必须验证这个数学结果对实际问题的合理性. 考点2 分段函数模型【2-1】提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20≤x ≤200时,车流速度v 是车流密度x 的一次函数.(1)当0≤x ≤200时,求函数v (x )的表达式.(2)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f (x )=x ·v (x )可以达到最大,并求出最大值(精确到1辆/小时). 【答案】(1) v (x )=⎩⎪⎨⎪⎧60,0≤x ≤20,200-x3,20<x ≤200.(2) 当x =100时,f (x )在区间(20,200]上取得最大值.【解析】(1)由题意:当0≤x ≤20时,v (x )=60;【2-2】某公司研制出了一种新产品,试制了一批样品分别在国内和国外上市销售,并且价格根据销售情况不断进行调整,结果40天内全部销完.公司对销售及销售利润进行了调研,结果如图所示,其中图①(一条折线)、图②(一条抛物线段)分别是国外和国内市场的日销售量与上市时间的关系,图③是每件样品的销售利润与上市时间的关系.(1)分别写出国外市场的日销售量f (t )与上市时间t 的关系及国内市场的日销售量g (t )与上市时间t 的关系;(2)国外和国内的日销售利润之和有没有可能恰好等于6 300万元?若有,请说明是上市后的第几天;若没有,请说明理由.【答案】(1) f (t )=⎩⎪⎨⎪⎧2t ,0≤t ≤30,-6t +240,30<t ≤40. g (t )=-320t 2+6t (0≤t ≤40). (2) 上市后的第30天.【思想方法】(1)实际问题中有些变量间的关系不能用同一个关系式给出,而是由几个不同的关系式构成,如出租车票价与路程之间的关系,应构建分段函数模型求解.(2) 分段函数的最值是各段的最大(最小)者的最大者(最小者).【温馨提醒】构造分段函数时,要力求准确、简洁,做到分段合理、不重不漏. 考点3 指数函数模型【3-1】一片森林原来面积为a ,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的14,已知到今年为止,森林剩余面积为原来的22. (1)求每年砍伐面积的百分比;(2)到今年为止,该森林已砍伐了多少年? (3)今后最多还能砍伐多少年?【答案】(1) x =1-⎝ ⎛⎭⎪⎫12110 (2) 5.(3)15.【3-2】某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n 次涨停(每次上涨10%),又经历了n 次跌停(每次下跌10%),判定该股民这支股票的盈亏情况(不考虑其他费用). 【答案】略有亏损【解析】设该股民购这支股票的价格为a ,则经历n 次涨停后的价格为a (1+10%)n=a ×1.1n,经历n 次跌停后的价格为a ×1.1n×(1-10%)n=a ×1.1n×0.9n=a ×(1.1×0.9)n=0.99n·a <a ,故该股民这支股票略有亏损. 【思想方法】(1)指数函数模型,常与增长率相结合进行考查,在实际问题中有人口增长、银行利率、细胞分裂等增长问题可以利用指数函数模型来解决.(2)应用指数函数模型时,关键是对模型的判断,先设定模型,再将已知有关数据代入验证,确定参数,从而确定函数模型.(3)y =a (1+x )n通常利用指数运算与对数函数的性质求解.【温馨提醒】解指数不等式时,一定要化为同底,且注意对应函数的单调性.【易错试题常警惕】数学实际应用问题,一定要正确理解题意,选择适当的函数模型;合理确定实际问题中自变量的取值范围;必须验证答案对实际问题的合理性.如:如图所示,在矩形CD AB 中,已知a AB =,C b B =(a b >).在AB 、D A 、CD 、C B 上分别截取AE 、AH 、CG 、CF 都等于x ,当x 为何值时,四边形FG E H 的面积最大?求出这个最大面积.【易错点】忽略实际问题中自变量的取值范围,造成与实际问题不相符合的错误结论.m的矩形蔬菜温室,在温室内,沿左、右两侧【练一练】某村计划建造一个室内面积为8002与后侧内墙各保留m宽的通道,沿前侧内墙保留m宽的空地,当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大面积是多少?m.【答案】当矩形温室的边长各为40m,20m时,蔬菜的种植面积最大,最大面积是6482。
.向一杯子中匀速注水时,杯中水面高度h随时间t
)
从题图看出,在时间段[0,t1],[t1,t2]内水面高度是匀速上升的,在
上升快,故选A.
某电信公司推出两种手机收费方式:A 种方式是月租与电话费s (元)的函数关系如图所示,当通话元 D.40
元
的鱼缸截面如图所示,其底部破了一个小洞,满缸水从洞时的水的体积为v ,则函数
=0可排除①、③;由于鱼缸中间粗两头细,∴当
×
所以当一次订购550件时,该厂获得利润最大,最大利润为6 050元.
11.近年来,某企业每年消耗电费约24万元,为了节能减排,决定安装一个可使用15年的太阳能供电设备接入本企业电网,安装这种供电设备的工本费(单位:万元)与太阳能电池板的面积(单位:平方米)成正比,比例系数约为0.5.为了保证正常用电,安装后采用太阳能和电能互补供电的模式.假设在此模式下,安装后该企业每年消耗的电费C (单位:万元)
与安装的这种太阳能电池板的面积x (单位:平方米)之间的函数关系是C (x )=k
20x +100
(x ≥0,
k 为常数).记y 为该企业安装这种太阳能供电设备的费用与该企业15年共将消耗的电费之和.
(1)试解释C (0)的实际意义,并建立y 关于x 的函数关系式; (2)当x 为多少平方米时,y 取得最小值?最小值是多少万元? 解析:(1)C (0)的实际意义是安装这种太阳能电池板的面积为0时的用电费用,即未安装太阳能供电设备时,该企业每年消耗的电费.
由C (0)=k
100
=24,得k =2 400,
所以y =15× 2 40020x +100+0.5x =1 800
x +5+0.5x ,(x ≥0).
(2)因为y =1 800
x +5
+0.5(x +5)-2.5
≥2 1 800×0.5-2.5=57.5,
当且仅当1 800
x +5
=0.5(x +5),即x =55时取等号,
所以当x 为55平方米时,y 取得最小值为57.5万元.
12.如图所示,已知边长为8米的正方形钢板有一个角被锈蚀,其中AE =4米,CD =6米.为合理利用这块钢板,在五边形ABCDE 内截取一个矩形BNPM ,使点P 在边DE 上.
(1)设MP =x 米,PN =y 米,将y 表示成x 的函数,求该函数的解析式及定义域; (2)求矩形BNPM 面积的最大值. 解析:
(1)作PQ ⊥AF 于Q ,所以PQ =(8-y )米,EQ =(x -4)米. 又△EPQ ∽△EDF ,
所以EQ PQ =EF
FD ,即x -48-y =42
.
所以y =-1
2
x +10,定义域为{x |4≤x ≤8}.
(2)设矩形BNPM 的面积为S 平方米,
则S (x )=xy =x ⎝⎛⎭⎫10-x 2=-1
2
(x -10)2+50, S (x )是关于x 的二次函数,且其图象开口向下,对称轴为x =10,所以当x ∈[4,8]时,S (x )单调递增.
所以当x=8米时,矩形BNPM的面积取得最大值,为48平方米.。