华为高铁LTE无线网络覆盖方案
- 格式:pdf
- 大小:3.70 MB
- 文档页数:36
HUAWEI TECHNOLOGIES Co., HUAWEI Confidential目录不可忽视的高速覆盖需求业务特征分析及建网建议高速覆盖商用经验铁路不断提速已经成为趋势l 十一五期间,我国将建设新线19800公里,其中设计时速在350公里以上高铁就超过5457公里l 伴随中国铁路第六次大提速,大量铁路线时速已经达到160~200公里高铁高铁高速严重影响用户体验和运营商品牌运营商收益和品牌受到影响用户体验差KPI变差高速l多普勒效应l部分车体信号穿透损耗超过20dB铁路提速l切换成功率下降l接通率下降l掉话率上升l掉网频繁l语音质量差l数据业务质量下降l吞吐量降低,甚至掉线l用户投诉大幅上升,对品牌影响严重l话务量降低导致收益降低高速列车Vs普通列车对比测试结果高速列车与普通列车测试效果对比-相同测试设备和人员l实际测试结果表明:覆盖效果相当时,高速列车中各项通话指标均低于普通列车,特别是用户的通话体验,两者存在明显差异l随着车速提高,差距将越来越大GSM网络建设面临的新课题l如何分享业界成功的高铁覆盖经验,提升现网的KPI指标和用户体验,是国内移动运营商面临的焦点问题之一目录不可忽视的高速覆盖需求业务特征分析及建网建议高速覆盖商用经验高速场景主要特征高速覆盖的主要特征l 移动速度超过220公里/小时,多普勒效应明显l 高速移动中切换成功率下降l 列车穿透损耗大l 个性化覆盖需求多l 沿线建站困难,建站成本高高铁现网需全新理念规划才能满足高铁覆盖需求高铁现状质量不佳与普通场景一体规划对多普勒频移的校正快速切换的要求技术难点AB降低建网TCOD个性化的网络覆盖设计C高速覆盖的技术难点l 多普勒频移校正、快速切换控制是突出的两大难题对高速覆盖的技术建议1、降低多普勒频移影响高速覆盖 技术建议2、完善高速切换算法 3、针对性网规网优设计 4、降低高速覆盖建设TCOHUAWEI TECHNOLOGIES Co., Ltd.HUAWEI ConfidentialPage 11高速移动产生多普勒频移)F0+2*fd F1+2*fd(F0-2*fd F1-2*fd F0 --- 下行频率 F1 --- 上行频率fd =l lf * v * cosθ C频移大小和运动速度成正比,运动速度越快频偏越大 MS靠近和远离基站,合成频率会在中心频率上下偏移n nMS靠近基站,波长变短,频率增大 MS远离基站,波长变长,频率减少l高速载体上的MS频繁改变与基站之间的距离,频移现象非常严重HUAWEI ConfidentialPage 12HUAWEI TECHNOLOGIES Co., Ltd.频移严重影响基站的解调性能频偏造成的性能损失14 12 10AfcOff(FER 1%) AfcOn(FER 1%)E b v s N 0( d B )876 43.220.81.6 0.09 0.10 00 0.020.030.050.071002003004005006007008009001000Frequency Offset(Hz)l 频偏会导致无线链路极不稳定,多普勒效应将严重影响基站解调性能 l 仿真结果表明:频率越高,频偏越大,性能损失越大,对基站解调影响越大HUAWEI TECHNOLOGIES Co., Ltd. HUAWEI ConfidentialPage 13高速覆盖建议采用900M频段,降低多普勒影响fd = f * v * cosθ (频率越高,频偏越大) C1800M900Ml 900M频段覆盖能力比1800M 频段大 6~10dBl 相同车速时,1800M比900M多普勒频偏大一倍,性能损失更大l 900M在现网已经连续覆盖HUAWEI TECHNOLOGIES Co., Ltd.HUAWEI ConfidentialPage 14增强AFC算法应对多普勒频移l AFC是针对铁路快速移动的特点设计的基站频率校正算法 l 通过快速测算由于高速所带来的频率偏移,补偿多普勒效应,改善无线链 路的稳定性,从而提高解调性能(Doppler frequency offset)) 1) 2HUAWEI TECHNOLOGIES Co., Ltd.HUAWEI ConfidentialPage 15唯一通过430公里时速验证的系统l 在综合考虑了协议要求、高铁频偏模型、隧道覆盖模型、实际高速场景(外 场实测信号)的基础上,根据不同业务信道结构特征,设计了性能优异的 AFC算法 l 支持450 Km/h的终端运动速度华为独特AFC和业界AFC性能比较频偏造成的R A C H 性能损失3AFC打开时TCH在频偏场景下的性能损失 频偏类型 高铁频偏 缓变区 高铁频偏 时变区 性能损失(dB) <0.1 0.5AFC算法1 AFC算法2Pe rf orma n ce Lo s s(dB )210 0 200 400 600 800 1000FreqOffset(Hz)AFC算法1-业界算法; AFC算法2 -华为算法HUAWEI TECHNOLOGIES Co., Ltd.HUAWEI ConfidentialPage 16对高速覆盖的技术建议1、降低多普勒频移影响高速覆盖 技术建议2、完善高速切换算法 3、针对性网规网优设计 4、降低高速覆盖建设TCOHUAWEI TECHNOLOGIES Co., Ltd.HUAWEI ConfidentialPage 17链型邻区优先切换算法,确保移动方向高效切换l 改造原网,充分利用高铁线型覆盖特点,形成链形邻区 l 针对高铁沿线链形小区,让用户沿运动方向优先切换到前向链型邻区,减 少切换次数,提升切换效率,提升业务质量 l 避免前后小区乒乓切换 l 避免侧向小区无序无效切换,Cell 6 Cell 1 Cell 2 Cell 8 Cell 3 Cell 9 Cell 7 Cell 4 Cell 5切换方向列车运行方向HUAWEI TECHNOLOGIES Co., Ltd.HUAWEI ConfidentialPage 18创新的语音业务高速频偏切换算法1l利用多普勒效应判断MS是否快速 移动及移动方向高速频偏 切换算法加快切换速度 提升成功率2l根据终端运动速度, 判断是否启动高速频 偏算法3l减少判决时间,加快切换速度HUAWEI TECHNOLOGIES Co., Ltd.HUAWEI ConfidentialPage 19高速覆盖下的切换带规划l 根据快速切换算法触发时间的估算,完成2次快速切换的时间为5~6秒,建 议设计为7~8秒 l 合理切换带既要满足高速切换时间,又要尽可能减少基站数目车速Km/h 200 切换时间 7s 8s 389m 444m 486m 556m 583m 667m 680m 778m 778m 889m 875m 1000m 250 300 350 400 450HUAWEI TECHNOLOGIES Co., Ltd.HUAWEI ConfidentialPage 20完善的数据业务快速重选算法NC0重选方式 终端自行重选l 优化参数,优先快速重选链型前向小区l针对链型前向小区,增大重选滞后电平值CRO l针对链型前向小区,减小重选惩罚时间参数l采用与语音类似的快速重选算法NC2重选方式 网络控制重选l利用多普勒效应判断MS是否快速移动及移动方向 l根据终端运动速度,判断是否启动高速频偏算法 l减小重选判决时间,加快重选速度HUAWEI TECHNOLOGIES Co., Ltd.HUAWEI ConfidentialPage 21增强NACC技术提升数据业务性能在终端切换前,将目标小区B的系 统消息在源小区A提前发送给终端小 SI 区 B小区 A小区 Bl 数据业务中断时间长主要原因:切换后在目标小区读广播消息过程较长 l NACC大幅度缩短切换引起的数据中断时间,由几秒降低为300~700毫 秒,业务体验大大提升 l 加快对前一小区的所占用资源的释放,有效提升网络容量HUAWEI TECHNOLOGIES Co., Ltd.HUAWEI ConfidentialPage 22对高速覆盖的技术建议1、降低多普勒频移影响高速覆盖 技术建议2、完善高速切换算法 3、针对性网规网优设计 4、降低高速覆盖建设TCOHUAWEI TECHNOLOGIES Co., Ltd.HUAWEI ConfidentialPage 23覆盖规划考虑新型列车的穿透损耗24dB 14dB10dB12dBCRH列车T型列车K型列车庞巴迪列车l 在进行覆盖设计时,必须以最大穿透损耗的车型作为覆盖优化的目标HUAWEI TECHNOLOGIES Co., Ltd.HUAWEI ConfidentialPage 24合理覆盖设计提升无线性能避免越区覆盖产生 l 尽可能与铁路保持一定距离,克服多普勒效应l l弱场覆盖需考虑 特殊覆盖方案, 如使用直放站1 基站选址 合理5 特殊场景 特殊考虑加强覆 络 网计 设 盖3 天馈选择 得当l2 切换区域 控制严格l时间需满足最少 两次切换4 站型选择 有针对性l针对不同场景选择天线 l 天线方位角尽可能不与铁路平行 ,使主瓣有一定夹角可以使用功分器对小区进行分裂为单小区双方向 l S1/1站型需特殊考虑方向角,避免出现0,180度 l S1/1夹角小的需考虑天线前后比较小的天线HUAWEI TECHNOLOGIES Co., Ltd.HUAWEI ConfidentialPage 25站型和天线选择方案单小区单向覆盖方案C e ll ACell BCell CC e llDl 高增益窄波瓣天线,基站覆盖范围大, 切换次数少,适用周边用户比较少的农 村区域,铁路较笔直 l 中等增益天线,适用市区,郊区,沿途 有车站,铁路有弧度区域 l 功分 器增 加 了 3.5dB 损耗, 降低 了基 站 覆盖范围,但两个扇区为同一个小区, 减少了切换次数,且不需要考虑天线前 后比的问题。
lte高铁解决方案
《LTE高铁解决方案》
在现代社会中,高铁已成为人们出行的主要交通工具之一。
然而,在高铁行驶过程中,由于速度快、信号覆盖范围广、移动信号频繁切换等特点,传统的通信网络往往难以满足高铁列车上的通信需求。
为了解决这一问题,LTE高铁解决方案应运
而生。
LTE高铁解决方案利用LTE技术,通过建设专用的高铁通信
基站和网络,实现高铁列车上的移动通信需求。
相比传统的
2G、3G网络,LTE高铁解决方案具有更高的带宽、更快的传
输速度、更稳定的信号覆盖和更强的抗干扰能力,能够有效满足高铁列车上的通信需求,实现高速移动环境下的无缝覆盖和业务连续性。
在LTE高铁解决方案中,除了建设专用的高铁通信基站和网
络外,还可以采用MIMO(多输入多输出)技术、天线分集
技术等技术手段,提高信号的传输速率和可靠性。
此外,还可以通过对信道估计、多天线自适应调制解调器等技术的应用,进一步提高信号的传输可靠性和通信质量,确保高铁列车上的通信服务稳定和高效。
在未来,随着5G技术的发展和应用,LTE高铁解决方案还将
进一步升级,实现更高的带宽、更低的时延和更好的覆盖性能,为高铁列车上的通信服务带来更好的体验和更多的应用场景。
总的来说,《LTE高铁解决方案》以其先进的技术和可靠的性能,为高铁列车上的通信需求提供了有效的解决方案,为人们出行带来更便利、更快捷的通信体验。
高铁参数优化之多频组网优化提升“用户感知,网络价值”专题概述随着高铁及动车的快速发展,无论是列车运营还是乘客数据业务通信都有高速数据业务需求。
对于运营商,更有效的提供轨道无线宽带业务,是吸引用户并提升用户满意度的必备条件。
在本专题中,优化人员通过测试数据与网络场景结合分析,制定了负荷区域特点的多频组网方案。
并在昌九高铁完成试点,通过特性化高铁多频组网参数组,南昌昌九高铁区域各方面网络指标得到明显的提升,平均RSRP 提升2dB、SINR 提升1.7dB,覆盖率提升7 个百分点,下行速率提升7Mbps 以上。
沿线18 个站点系统内切换成功率由99.11%提升至99.53%;用户感知速率由18.95Mbps 提升至20.21Mbps;区域日均流量由171.4GB 提升至206.7GB,提升幅度约为20.6%,每月增收近2.1 万元。
一、专题背景随着中国高铁线路的普及,高铁逐渐代替普通铁路和飞机成为了人们出行的主要方式,南昌作为全国高铁车次排名第19 的城市,巨大高铁客流量带来了巨大的网络流量价值。
高铁由于“速度快、损耗大、负荷高”各类网络痛点导致未能充分发挥高铁流量价值,本次通过1.8G 站点提升用户感知,800M 站点保障用户覆盖两个方面提升高铁网络价值。
二、高铁场景概述2.1. 高铁场景特点2.1.1. 线状覆盖高铁路线一般呈线状分布,和通常的基站部署场景有着很大不同,按照通常的基站部署方式来覆盖铁路沿线,其覆盖效率将会十分低下,因此铁路沿线的基站需要呈线状分布。
且由于高铁的线状特点,建议在进行高铁站点规划时,采用”Z”字型左右交叉的站点分布进行高铁沿线覆盖,提升路线覆盖均衡性。
2.1.2. 列车运行速度快目前,全球运营的高速铁路包括德国的ICE、法国的TGV、西班牙的AVE 和日本的新干线,最高运营速度约在200~350km/h 之间;武广高铁、京沪高铁最高运营速度也达350km/h,而上海磁悬浮列车最高时速更是达到431km/h。
基于lte⾼铁⽆线通信⽅案基于LTE技术的⾼铁⽆线通信⽅案1 引⾔我国铁路经过⼏次⼤幅度的提速后,列车运⾏速度越来越快。
⽬前正在运⾏的⾼速铁路,包括武⼴⾼铁、郑西⾼铁以及即将开通的京沪⾼铁,列车速度已经达到并超过了350km/h,这标志着我国⾼速铁路已经达到了世界先进⽔平。
列车速度的提升和新型车厢的出现带来了⾼效和舒适,同时对⾼速环境下通信服务的种类和质量的要求也越来越⾼,这⽆疑对铁路⽆线通信提出了更为苛刻的要求。
⾼速铁路的⽆线通信环境包罗万象,除了城市和平原,还有⾼⼭、丘陵、⼽壁、沙漠、桥梁和隧道。
可以说涵盖了⼏乎所有的⽆线通信场景。
所以,如何在⾼速移动环境下保持好的⽹络覆盖和通信质量,是对LTE技术的挑战。
2 关键技术对于移动通信系统⽽⾔,当移动终端速度达到350km/h以后,则需要考虑以下关键技术。
第⼀:⾼速列车使⽤的传播模型;第⼆:列车的⾼速使得多普勒频移效应明显;第三:列车的⾼速使得终端频繁的切换;第四:⾼速列车强度的加⼤使得电波的穿透损耗也进⼀步增加;第五:⾼铁覆盖⽹络和公⽹之间的相互影响关系。
(1) 传播模型在⽆线⽹络规划中,通常使⽤经验的传播模型预测路径损耗中值,⽬的是得到规划区域的⽆线传播特性。
⾼铁使⽤的传播模型,在整个⽹络规划中具有⾮常重要的作⽤。
传播模型在具体应⽤时,必须对模型中各系数进⾏必要的修正,它的准确度直接影响⽆线⽹络规划的规模、覆盖预测的准确度,以及基站的布局情况。
(2) 多普勒频移效应⾼速覆盖场景对LTE系统性能影响最⼤的效应是多普勒效应。
当电磁波发射源与接收器发⽣相对运动的时候,会导致所接收到的传播频率发⽣改变。
当运动速度达到⼀定阀值时,将会引起传输频率的明显改变,这称之为多普勒频移。
多普勒频移将使接收机和发射机之间产⽣频率偏差,⽽且多普勒频移会影响上⾏接⼊成功率、切换成功率,还会对系统的容量和覆盖产⽣影响。
(3) ⼩区切换对于⾼速移动的终端⽽⾔,⾼速移动会造成终端在⼩区之间的快速切换。
浅谈高铁场景 4G无线网络覆盖方案【摘要】:当前,我国乘坐高铁出行的人越来越多,高铁4G无线网络覆盖成为了各大电信运营商急需解决的问题。
本文论述了高速场景4G无线网络覆盖面临的挑战,并提出了组网部署策略和覆盖方案,以供大家参考。
关键词:高铁场景;4G;无线网络;覆盖;一、高铁场景4G无线网络覆盖面临的挑战高铁场景通信覆盖的特点是速度快、穿透损耗大、切换频繁,在车厢内使用移动通信网络面临着更大的挑战,其主要表现有:1、高铁列车运行速度高。
列车高速的运动,必然会带来接收端接收信号频率的变化,即产生多普勒效应,且这种效应是瞬时变的,高速引起接收机的解调性能下降,这是一个极大的挑战;2、穿透车体导致网络信号损耗大。
高铁列车采用全封闭车厢体结构,这导致信号在车内穿透损耗较大,从而导致掉线率、切换成功率、连接成功率等 KPI (关键绩效)指标发生变化,网络性能下降。
3、网络切换频繁。
由于单站覆盖范围有限,在列车高速移动之下,穿越单站覆盖所需时间是很短的,必然在短时间内频繁穿越多个小区。
终端移动速度过快,可能导致穿越覆盖区的时间小于系统切换处理最小时延,从而引起切换失败,产生掉线,影响了网络整体性能。
二、高铁场景4G无线网络组网部署策略1、组网策略。
高铁场景4G网络覆盖,可以考虑采用同频组网,也可以考虑使用异频组网。
(1)同频组网。
同频组网采用和大网宏站相同的频点、参数覆盖,不单独设置。
该组网需要兼顾高铁沿线及附近区域的网络覆盖和业务需求;(2)异频组网。
这是高铁覆盖目前普遍采用的组网方案,该组网是针对高铁场景使用单独的频点覆盖,配合独立参数配置以保证高铁场景的网络质量。
对比同频组网,异频组网采用单独位置设区,无需考虑高铁站点与周边站点间的频率干扰,避免覆盖和容量的降低,降低了因位置区更新导致的寻呼失败等异常情况。
通常下,一般高铁沿线场景可选用F或D频段双通道设备+高增益窄波束天线进行背靠背组网。
特殊场景则采用泄漏电缆方式覆盖,每个物理点安装一台RRU(射频拉远单元),以功分方式实现不同方向信号,多RRU进行小区合并实现覆盖。
高铁场景下LTE网络覆盖的解决方案探讨摘要:高铁现在已经成为人们日常出行的必要交通工具之一,而随着高铁的覆盖,各大运营商也需要在高铁内实现网络全覆盖,高铁是各个运营商进行竞争的重要场所,而在高铁场景下LTE网络覆盖不仅可以有效促进各个运营商业业务收入的增长,还能帮助运营商建立良好的企业形象和社会形象,提高企业品牌价值。
本文就对高铁场景下LTE网络覆盖的解决方案进行探讨与研究。
关键词:高铁场景;LTE网络覆盖;解决方案随着高速铁路在全球范围内的得到广泛应用和发展,在移动互联网时代到来的同时,人们对于高铁通信需求在不断增加,因此在高铁中实现网络全覆盖是通信行业发展的必然需求[1]。
而高铁则成为我国各大运营商竞相竞争的重要场所,其中LTE系统具有时延短,带宽大等诸多特点,为高铁宽带无线通信提供了技术支持,同时在高铁内实现网络覆盖,具有业务需求量集中、运行速度快、覆盖场景复杂等诸多特点,因此对LTE系统在高铁场景下实现无线覆盖的解决方案提供了更高的要求。
一.高铁场景下LTE技术的组网特点在铁路沿线进行LTE技术组网覆盖,主要是采用链状站点来进行覆盖,并配合一定的特性来提高站点的心梗,并应对多普勒频移,因此对于站点的拓扑要求十分严格,要求其具备多个特点:首先在覆盖方式上,针对高铁场景需要建设专用的覆盖站点,并保持专网专用和覆盖的深度,采用双通道RRU级联合并的组网形态。
在这一场所下业务承载着铁路旅客,而业务量的大小则取决于旅客所使用的服务量大小。
在组网过程中还要具备多个RRU级联共小区,减少小区间的切换,从而使网络性能提高[2]。
其次,对于周边区域来说,当网络频率相同时,则高铁专用网络容易和公共网络产生同频干扰,因此需要严格控制专网信号。
在基站布局中由于基站和铁路间距较小,对于基站间的距离要求较高,且周围环境较为复杂,基站的定点难度较大。
最后,在专网建设过程中需要遵循新建和现网资源利用相结合的方式,对于现网资源的利用仅仅是指现有的电源、铁塔和机房等配套资源,对于天馈和主设备仍采用新建的方式,不通过现网小区来对铁路进行覆盖。
浅谈高速铁路的LTE无线网网络覆盖一、高铁4G无线网覆盖背景高速铁路,简称“高铁”,是指通过改造原有线路(直线化、轨距标准化),使最高营运速率达到不小于每小时200公里,或者专门修建新的“高速新线”,使营运速率达到每小时至少250公里的铁路系统。
高速铁路除了在列车在营运达到一定速度标准外,车辆、路轨、操作都需要配合提升.随着环境问题的日益严峻,交通运输各行业中,从单位运量的能源消耗、对环境资源的占用、对环境质量的保护、对自然环境的适应以及运营安全等方面来综合分析,铁路的优势最为明显。
然而高铁将通过中国大部分,把中国变成一个“中国村"。
图1-1 CRH(China Railway High-speed),即中国高速铁路与传统的高速公路和航空运输相比,高铁的主要优势有:载客量高、输送力强、速度较快、安全性好、正点率高、舒适方便、能耗较低。
高铁作为一种高效经济的城际交通方式,日渐成为人们中长距离出行的首选.随着智能终端及移动互联网业务的高速发展,用户搭乘高铁出行时,有越来越多的移动办公和网络娱乐需求,如电话会议、视频点播、互动游戏、上网等。
由于高端商务客户云集,高铁通信逐步成为各运营商品牌展示、获取可观经济利润及拉升高端客户黏合度的新竞争领域。
如何在高速运行、客流集中、业务容量高、部署场景复杂的高铁内提供高质量的网络覆盖,成为运营商和设备商面临的重大挑战。
图1—2 2020年中国高速铁路网络二、高铁无线网络覆盖面临的问题1、穿透损耗大,高速铁路的新型列车采用全封闭车厢结构,车箱体为不锈钢或铝合金等金属材料,车窗玻璃为较厚的玻璃材料,导室外无线信号在高速列车内的穿透损耗较大,给车体内的无线覆盖带来较大困难。
不同的入射角对应的穿透损耗不同,当信号垂直入射时的穿透损耗最小。
当基站的垂直位置距离铁道较近时,覆盖区边缘信号进入,车厢的入射角小,穿透损耗大。
实际测试表明,当入射角小于10度以后,穿透损耗增加的斜率变大。