大学物理 公式
- 格式:pdf
- 大小:1.05 MB
- 文档页数:12
第一章质点运动学和牛顿运动定律平均速度v=△r△t 大学物理公式大全向心加速度a=v2R瞬时速度v=lim △rdr=△t0△t dt△r lim ds1.3速度v=limdt△t0△t△t0平均加速度a=△v△ta=lim△v d v瞬时加速度〔加速度〕=△t0△t dt瞬时加速度a=dv=d2r dt dt2匀速直线运动质点坐标x=x0+vt 变速运动速度v=v0+at变速运动质点坐标x=x0+v0t+1 at2222速度随坐标变化公式:v-v00=2a(x-x)自由落体运动竖直上抛运动v gt v v0gty1at2y0122vt gt2v22gy v2v022gy圆周运动加速度等于切向加速度与法向加速度矢量和a=a t+a n加速度数值a=a t2a n2法向加速度和匀速圆周运动的向心加速度相同a n=v2R切向加速度只改变速度的大小a t=dvdtv ds R dΦRωdt dt角速度ωdφdt角加速度αdωd2φdt dt2角加速度a与线加速度a、a间的关系n ta n=v2(Rω)2Rω2a t=dvR dωRαR R dt dt牛顿第一定律:任何物体都保持静止或匀速直线运动状态,除非它受到作用力而被迫改变这种状态。
牛顿第二定律:物体受到外力作用时,所获得的加速度a的大小与外力F的大小成正比,与物体的质量m成反比;加速度的方向与外力的方向相同。
抛体运动速度分量vx v0cosav y v0sina gtxv0cosa?t抛体运动距离分量y v0sina?t1gt22v02sin2a射程X=g射高Y=v02sin2a2g飞行时间y=xtga—gx2g轨迹方程y=xtga—gx22v02cos2a1.37 F=ma牛顿第三定律:假设物体A以力F1作用与物体B,那么同时物体B必以力F2作用与物体A;这两个力的大小相等、方向相反,而且沿同一直线。
万有引力定律:自然界任何两质点间存在着相互吸引力,其大小与两质点质量的乘积成正比,与两质点间的距离的二次方成反比;引力的方向沿两质点的连线m1m2G为万有引力称量×F=Gr210-1122N?m/kg重力P=mg(g重力加速度)重力P=GMmr2有上两式重力加速度g=GM(物体的重力加速度与r2物体本身的质量无关,而紧随它到地心的距离而变)胡克定律F=—kx(k是比例常数,称为弹簧的劲度大学物理公式大全系数)dL最大静摩擦力 f 最大=μ0N 〔μ0静摩擦系数〕dt如果对于某一固定参考点, 质点〔系〕滑动摩擦系数 f=μN(μ滑动摩擦系数略小于μ)第二章守恒定律动量P=mvd(mv) dP牛顿第二定律F=dtdt动量定理的微分形式Fdt=mdv=d(mv)dvF=ma=mdtt 2v 2Fdt = d(mv)=mv 2-mv 1t 1v 1常矢量所受的外力矩的矢量和为零,那么此质点对于该参考点的角动量保持不变。
引言概述:大学物理是一门研究物质的基本原理和规律的学科,是自然科学中最基础、最广泛且最重要的学科之一。
在学习大学物理过程中,理解和掌握物理公式是至关重要的。
本文将对大学物理中一些重要的公式进行总结和阐述,帮助读者更好地理解和应用这些公式。
正文内容:1.力学1.1牛顿第一定律1.1.1物体在匀速直线运动中的惯性1.1.2例子及应用1.2牛顿第二定律1.2.1力和加速度的关系1.2.2例子及应用1.3牛顿第三定律1.3.1相互作用力和作用力的大小和方向1.3.2例子及应用1.4动能定理1.4.1动能的定义和计算1.5万有引力定律1.5.1质点间引力的大小和方向1.5.2例子及应用2.热学2.1热力学第一定律2.1.1内能的变化与热量和功的关系2.1.2例子及应用2.2热力学第二定律2.2.1热机效率和热流的方向2.2.2例子及应用2.3热扩散定律2.3.1温度梯度和热传导的关系2.3.2例子及应用2.4理想气体状态方程2.4.1理想气体的变化状态和方程2.4.2例子及应用2.5熵的增加原理2.5.1熵的定义和增加原理3.电学3.1库伦定律3.1.1静电力和电荷的关系3.1.2例子及应用3.2电场强度3.2.1电场和电荷的关系3.2.2例子及应用3.3电势能与电势3.3.1电势能和电势的定义3.3.2例子及应用3.4电流和电阻3.4.1电流和电阻的关系3.4.2例子及应用3.5电磁感应3.5.1法拉第电磁感应定律和楞次定律3.5.2例子及应用4.光学4.1光的折射和反射4.1.1折射定律和反射定律4.1.2例子及应用4.2光的波动性和粒子性4.2.1光的干涉和衍射现象4.2.2例子及应用4.3光的色散和偏振4.3.1光的色散和偏振现象4.3.2例子及应用4.4光的透射和吸收4.4.1光的透射和吸收定律4.4.2例子及应用4.5光的干涉和衍射4.5.1光的干涉和衍射现象4.5.2例子及应用5.量子力学5.1波粒二象性5.1.1波动方程和粒子的能量5.1.2例子及应用5.2不确定性原理5.2.1不确定性原理和粒子的位置和动量5.2.2例子及应用5.3斯特恩格拉赫实验5.3.1双缝干涉和波粒二象性的实验验证5.3.2例子及应用5.4薛定谔方程5.4.1薛定谔方程和波函数的解释5.4.2例子及应用5.5电子结构5.5.1电子能级和原子结构的描述5.5.2例子及应用总结:大学物理中的公式总结了物质世界中各种现象和规律的数学表达方式。
大学物理公式总结引言:大学物理是自然科学中的一门基础学科,掌握物理公式是学好物理的关键。
物理公式是在长期实验和理论研究的基础上总结、归纳出来的。
在这篇文章中,我将为大家总结一些常见的大学物理公式,并简要介绍这些公式的应用。
1. 动力学公式:1.1 牛顿第二定律:F = ma(F代表力,m代表物体质量,a代表物体加速度)牛顿第二定律是经典力学的基石,描述了物体受到的力和其加速度之间的关系。
它可以用于解释物体在受力作用下的运动状态。
1.2 动能公式:K = (1/2)mv^2(K代表动能,m代表物体质量,v代表物体速度)动能公式是描述物体动能与质量以及速度之间关系的公式。
它告诉我们,当物体速度增加时,其动能也会增加。
1.3 势能公式:U = mgh(U代表势能,m代表物体质量,g代表重力加速度,h代表物体高度)势能公式是描述物体势能与质量、重力加速度以及高度之间关系的公式。
它可以用于解释物体在重力场中的储能情况。
2. 热力学公式:2.1 热力学第一定律:Q = ΔU + W(Q代表系统吸收的热量,ΔU代表系统内能的变化,W代表系统对外界做的功)热力学第一定律描述了系统内能的变化与热量和功之间的关系。
根据这个公式,我们可以推导出热功定理和热机效率等重要概念。
2.2 热容公式:Q = mcΔT(Q代表系统吸收的热量,m代表物体质量,c代表物质的比热容,ΔT代表温度变化)热容公式描述了物体吸收的热量与其质量、比热容和温度变化之间的关系。
它可以用于计算物体在受热或冷却过程中需要吸收或释放的热量。
3. 电磁学公式:3.1 库仑定律:F = k * (|q1 * q2| / r^2)(F代表电场力,k代表库仑常数,q1和q2代表电荷量,r代表距离)库仑定律描述了两个电荷之间的相互作用力与它们的电荷量以及距离之间的关系。
这个定律是电磁学的基础之一,用于解释电荷之间的相互作用。
3.2 电路定律:3.2.1 欧姆定律:V = IR(V代表电压,I代表电流,R代表电阻)欧姆定律是描述电路中电压、电流和电阻之间关系的基本定律。
引言:大学物理是一门关于自然界中物体运动的科学。
力学是大学物理的重要部分之一,研究物体的运动、受力及其相互作用的规律。
在学习力学时,掌握重要的物理公式是至关重要的,这些公式能够帮助我们理解物体的运动并进行相关计算。
本文总结了大学物理力学部分常用的公式,旨在帮助读者更好地掌握和应用力学知识。
概述:一、加速度的公式:1.平均加速度:加速度定义为单位时间内速度的变化量。
平均加速度公式为a=(vu)/t,其中a表示加速度,v表示最终速度,u 表示初速度,t表示时间。
2.瞬时加速度:瞬时加速度定义为单位时间趋近于0时的平均加速度。
瞬时加速度可以通过取极限的方式计算得到。
在常见的匀加速直线运动中,瞬时加速度是恒定的。
二、速度的公式:1.平均速度:平均速度是指单位时间内物体行进的距离与时间的比值。
平均速度公式为v=(su)/t,其中v表示平均速度,s表示距离,u表示初速度,t表示时间。
2.瞬时速度:瞬时速度是指在某一瞬间物体所具有的速率。
瞬时速度可以通过取极限的方式计算得到。
在匀速直线运动中,瞬时速度是恒定的且与平均速度相等。
三、位移的公式:1.平均位移:平均位移是指物体在一段时间内的位移与时间的比值。
平均位移公式为s=(v+u)t/2,其中s表示平均位移,v表示最终速度,u表示初速度,t表示时间。
2.瞬时位移:瞬时位移是指物体在某一瞬间的位移。
瞬时位移可以通过取极限的方式计算得到。
在匀速直线运动中,瞬时位移与平均位移相等。
四、力的公式:1.牛顿第二定律:牛顿第二定律描述了力与物体加速度的关系。
牛顿第二定律公式为F=ma,其中F表示力,m表示物体质量,a 表示加速度。
2.弹力公式:弹力是指弹性体在受到外力作用后恢复原状的力。
弹力公式为F=kx,其中F表示弹力,k表示弹簧的弹性系数,x 表示弹簧变形的长度。
五、功和能量的公式:1.功的公式:功是由力所作的位移所做的工作。
功的公式为W=Fscosθ,其中W表示功,F表示力,s表示位移,θ表示力的方向与位移方向之间的夹角。
毕奥-沙伐尔定律:2004r r l Id B d⨯⋅=πμ 磁场叠加原理:⎰⨯=L r r l Id B 204πμ运动电荷的磁场:2004r r v q B ⨯⋅=πμ 磁场的高斯定理:0=⋅⎰⎰S S d B磁通量:⎰⎰⋅=Sm S d BΦ安培环路定理:∑⎰=⋅I l d B L0μ载流直导线:()120sin sin 4ββπμ-=aIB 圆电流轴线上任一点:()23222032022R x IR rIR B +==μμ载流螺线管轴线上任一点:()120cos cos 2ββμ-=nIB安培力:B l Id f d ⨯=, ⎰⨯=LB l Id f载流线圈在均匀磁场中所受的磁力矩:B P M m ⨯= 洛仑兹力:B v q f⨯=磁力的功:∆ΦΦΦΦI A Id A I =−−→−==⎰恒量21bIBR U HAA =',nq R H 1=法拉第电磁感应定律:dt d i Φε-=动生电动势:⎰⋅⨯=a bab l d )B v (ε感生电动势,涡旋电场:S d tB l d E Lk i⋅∂∂-=⋅=⎰⎰⎰ε 自感:IN L Φ=, dt dI L L -=ε,221LI W m =互感:212112I N M Φ=,121221I N M Φ= 2112M M =dt dI M 21212-=ε, dtdIM 12121-=ε 磁场的能量:μω2212B BH m ==,⎰=Vm m dV W ω 麦克斯韦方程组的积分形式:i S q S d D ∑=⋅⎰⎰(1) 0=⋅⎰⎰S S d B(2)⎰⎰⎰⋅∂∂-=⋅S L S d t B l d E(3)⎰⎰⎰⋅∂∂+=⋅S L S d )t D (l d Hδ (4)E D ε=, H Bμ=, E γδ=平面简谐波方程:)]urt (cos[H H )]u rt (cos[E E {-=-=ωω00 坡印廷矢量:H E S⨯=相长干涉和相消干涉的条件:ππϕ∆)k (k {122+±±= 3210,,,k = 减弱,相消干涉)加强,相长干涉)((2/)12({λλδ+±±=k k ,(21ϕϕ=)杨氏双缝干涉:(暗纹)(明纹)3,2,12,1,0)4/()12()2/({==-±±=k k a D k a kD x λλ 薄膜反射的干涉:2/)12({2sin 222122λλλδ+=+-=k k i n n e劈尖反射的干涉: 21222/)k (k {ne λλλδ+=+=空气劈尖:l sin 2λθ=, 玻璃劈尖:nlsin 2λθ= 牛顿环:3,2,12/)12(=-=k R k r λ(明环),,,k kR r 210==λ(暗环)迈克尔逊干涉仪:λ∆∆N d =2 单缝的夫琅和费衍射:)3,2,1(2)12()3,2,1(22{sin =+±=±=k k k ka 明暗条纹λλϕafl λ20=, 20l a f l ==λ 光栅公式:λϕk b a ±=+sin )( 倾斜入射:,1,0)sin )(sin (=±=++k k b a λϕθ缺级公式:,,k 'k aba k '21±±=+=最小分辨角:D.min λθ221=分辨率:min1θ=R布喇格公式:3212,,k k sin d ==λϕ 布儒斯特定律:12210n n n tgi == 马吕斯定律:α20cos I I =洛仑兹变换:2222221111ββββ-+=-+=⎪⎪⎩⎪⎪⎨⎧−−−→−--=--=⎪⎪⎩⎪⎪⎨⎧-→'x c u 't t 'ut 'x x x c u t 't utx 'x "u "u 狭义相对论动力学:① 201β-=m m② 201β-==v m mv P③ 2mc E =, 2mc E ∆∆=202c m mc E k -=④ 20222E c P E +=斯特藩-玻尔兹曼定律: 4T )T (E B σ=4281067.5---⋅⋅⨯=K m W σ唯恩位移定律:b T m =⋅λ, K m .b ⋅⨯=-3108972普朗克公式: 12),(52-=-Tk hcB e hc T e λλπλ爱因斯坦方程:A mv h +=221ν 红限频率:hA =0ν 康普顿散射公式:)cos 1(ϕλ∆-=cm he 光子: νεh =, λhP =三条基本假设:定态,nh hn L =⋅=π2,m n E E h -=ν 两条基本公式:2220men h r n πε=oA n 2529.0= 2220418nh me E n ⋅-=εeV n 26.13-= ,3,2,1=n粒子的能量:νh mc E ==2粒子的动量:λhmv P ==测不准关系 h P x x ≥⋅∆∆。
1.理想气体物态方程:pV=NkT 变形1:Pv=νRT (R=N A k)变形2:P=nkT (n=N/V为分子数密度)2.理想气体压强公式:P=(1/3)nmv^2 变形:P=2/3nεk (εk分子平均平动动能)3理想气体平均平动动能与温度关系:1/2mv^2=εk=3/2kT4方均根速率: Vrms=(3kT/m)^(1/2)= (3Rt/M)^(1/2)5自由度:单i=3 双刚=5 双非=7 三以上刚=6 ε =i1/2kT6理想气体内能:E=N A i1/2kT =i/2RT7三种统计速率:1)最概然速率V p=(2kT/m)^(1/2)= (2RT/M)^(1/2) 2)平均速率v =(8kT/πm)^(1/2) 3)4 8分子平均碰撞次数:Z,分子连续两次碰撞间的路程均值叫做平均自由程λλ=v/ Z Z =1.41πd ^2 vn 9准静态过程中体积变化做功:ΔW=PΔV=(Sv1v2)pdV10.摩尔定体热容:C v,m=dQ/dT dE=:C v,m* dT11热机效率:η=W/Q1 =(Q1-Q2)/Q1 =1-Q1/Q2 (Q1为吸热量 Q2为热源吸收量)12等体过程中V为常量,即dW=0 dQ=dE 吸收热量全部转化为内能13转动定理:M=Jα常见转动惯量1)中心轴细棒:ml^2 /12 2)圆柱体:mR^2 / 2 3)薄圆环J=mR24)端点轴细棒:J=ml2/14平行轴定理:J=J C+md215电容器电能:W=1/2 QU=1/2 CU216 电场能量密度:w=1/2εΕ217.磁场能量:W=1/2 LI2 密度w=W/V=B2/2μ19.毕奥撒法尔定律:dB=(μ0/4π)*(Idlsinθ/r^2)= (μ0/4π)*(Idl e r/r^2)20.运动电荷磁场:B=(μ0/4π)*(qvr/r^3)21.无限长直导线B=μ0I/2πr022.库伦定律 F=(1/4πε0)(q1q2/r^2)e r23圆形载流导线轴线上一点 B=(μ0/2)(R2I/(R2+x2)3/2) x>>R B=μ0IR2/2x3A-B 等温膨胀内能不变对外做功W1=从T1高温处吸热Q1W1=Q1=vRTT1ln(V2/V1)B-C 绝热膨胀对外做功等于气体减少的内能W2=vCv,m(T1-T2)C-D 等温压缩:外界对气体做功等于气体给低温热源的热量W3=Q2= vRTT2ln(V4/V3)。
引言:大学物理基本公式是物理学中最基础、最重要的公式集合之一。
这些公式描述了物体的运动、力与能量之间的关系,是理解和应用物理学的基石。
本文将详细介绍大学物理中的基本公式,包括运动学、力学、动能学、静电学和电磁学的公式,以及它们的应用。
概述:大学物理中的基本公式分为不同的分支,涵盖了运动学、力学、动能学、静电学和电磁学等多个方面。
这些公式帮助我们描述物体的运动、力的产生与传递、能量的转化以及电荷之间的相互作用。
它们不仅仅是应试工具,更是我们认识和理解物理学原理的重要工具。
正文内容:一、运动学公式1.位移公式:位移等于速度乘以时间。
2.速度公式:速度等于位移的改变量除以时间的改变量。
3.加速度公式:加速度等于速度的改变量除以时间的改变量。
4.牛顿第一定律:当物体处于匀速直线运动或静止状态时,净力为零。
5.牛顿第二定律:物体的加速度与净力成正比,与质量成反比。
二、力学公式1.牛顿第三定律:对于任何两个相互作用的物体,彼此之间的作用力大小相等、方向相反。
2.万有引力公式:两个物体之间的引力与它们的质量和距离的平方成正比。
3.弹簧力公式:弹簧的弹力与弹簧的劲度系数和弹簧伸长或缩短的距离成正比。
4.阻力公式:物体在流体中运动时受到的阻力与其速度的平方成正比。
5.动量定理:物体的冲量等于物体的质量乘以加速度的改变量。
三、动能学公式1.动能公式:动能等于物体的质量乘以速度的平方除以2。
2.功与动能定理:功等于物体的动能的改变量。
3.功率公式:功率等于单位时间内做功的大小。
4.引力势能公式:物体在重力场中的引力势能等于物体的质量乘以重力加速度的改变量乘以高度的改变量。
5.弹性势能公式:物体在弹簧中的弹性势能等于劲度系数的一半乘以弹簧伸长或缩短的距离的平方。
四、静电学公式1.库仑定律:两个电荷之间的力与电荷的大小和距离的平方成正比。
2.电场强度公式:电场强度等于电荷的大小除以电荷产生的电场的面积。
3.电势公式:电势等于电场强度乘以电荷产生的电场的距离。
第一章 质点运动学和牛顿运动定律1.1平均速度 v =t△△r1.2 瞬时速度 v=lim 0△t →△t △r =dt dr1. 3速度v=dtds==→→lim lim△t 0△t △t△r 1.6 平均加速度a =△t△v1.7瞬时加速度(加速度)a=lim 0△t →△t△v =dt dv1.8瞬时加速度a=dt dv =22dt rd1.11匀速直线运动质点坐标x=x 0+vt 1.12变速运动速度 v=v 0+at 1.13变速运动质点坐标x=x 0+v 0t+21at 21.14速度随坐标变化公式:v 2-v 02=2a(x-x 0) 1.15自由落体运动 1.16竖直上抛运动⎪⎩⎪⎨⎧===gy v at y gtv 22122 ⎪⎪⎩⎪⎪⎨⎧-=-=-=gy v v gt t v y gt v v 221202200 1.17 抛体运动速度分量⎩⎨⎧-==gt a v v av v yx sin cos 001.18 抛体运动距离分量⎪⎩⎪⎨⎧-•=•=20021sin cos gt t a v y t a v x1.19射程 X=g av 2sin 21.20射高Y=gav 22sin 201.21飞行时间y=xtga —ggx 21.22轨迹方程y=xtga —av gx 2202cos 2 1.23向心加速度 a=Rv 21.24圆周运动加速度等于切向加速度与法向加速度矢量和a=a t +a n1.25 加速度数值 a=22n t a a +1.26 法向加速度和匀速圆周运动的向心加速度相同a n =Rv 21.27切向加速度只改变速度的大小a t =dtdv1.28 ωΦR dtd R dt ds v ===1.29角速度 dtφωd =1.30角加速度 22dt dtd d φωα== 1.31角加速度a 与线加速度a n 、a t 间的关系a n =222)(ωωR R R R v == a t =αωR dtd R dt dv ==牛顿第一定律:任何物体都保持静止或匀速直线运动状态,除非它受到作用力而被迫改变这种状态。
第一章 质点运动学和牛顿运动定律平均速度 v =t△△r1.2 瞬时速度 v=lim△t →△t △r =dtdr速度v=dtds==→→lim lim△t 0△t △t△r 平均加速度a =△t△v瞬时加速度加速度a=lim△t →△t △v =dtdv瞬时加速度a=dt dv =22dtrd匀速直线运动质点坐标x=x 0+vt 变速运动速度 v=v 0+at变速运动质点坐标x=x 0+v 0t+21at 2 速度随坐标变化公式:v 2-v 02=2ax-x 0 自由落体运动 竖直上抛运动抛体运动速度分量⎩⎨⎧-==gt a v v av v yx sin cos 00抛体运动距离分量⎪⎩⎪⎨⎧-•=•=20021sin cos gt t a v y t a v x射程 X=g av 2sin 2射高Y=gav 22sin 20飞行时间y=xtga —ggx 2轨迹方程y=xtga —av gx 2202cos 2向心加速度 a=Rv 2圆周运动加速度等于切向加速度与法向加速度矢量和a=a t +a n加速度数值 a=22n t a a +法向加速度和匀速圆周运动的向心加速度相同a n =Rv 2切向加速度只改变速度的大小a t =dtdvωΦR dtd R dt ds v ===角速度 dtφωd =角加速度 22dt dtd d φωα== 角加速度a 与线加速度a n 、a t 间的关系a n =222)(ωωR RR R v == a t =αωR dtd R dt dv == 牛顿第一定律:任何物体都保持静止或匀速直线运动状态,除非它受到作用力而被迫改变这种状态.牛顿第二定律:物体受到外力作用时,所获得的加速度a 的大小与外力F 的大小成正比,与物体的质量m 成反比;加速度的方向与外力的方向相同.1.37 F=ma牛顿第三定律:若物体A 以力F 1作用与物体B,则同时物体B 必以力F 2作用与物体A ;这两个力的大小相等、方向相反,而且沿同一直线.万有引力定律:自然界任何两质点间存在着相互吸引力,其大小与两质点质量的乘积成正比,与两质点间的距离的二次方成反比;引力的方向沿两质点的连线 F=G221rm m G 为万有引力称量=×10-11N •m 2/kg 2重力 P=mg g 重力加速度 重力 P=G2r Mm有上两式重力加速度g=G2rM物体的重力加速度与物体本身的质量无关,而紧随它到地心的距离而变胡克定律 F=—kx k 是比例常数,称为弹簧的劲度系数最大静摩擦力 f 最大=μ0N μ0静摩擦系数 滑动摩擦系数 f=μN μ滑动摩擦系数略小于μ0 第二章 守恒定律 动量P=mv 牛顿第二定律F=dtdPdt mv d =)( 动量定理的微分形式 Fdt=mdv=dmv F=ma=mdtdv ⎰21t t Fdt =⎰21)(v v mv d =mv 2-mv 1 冲量 I= ⎰21t t Fdt动量定理 I=P 2-P 1平均冲力F 与冲量 I=⎰21t t Fdt =F t 2-t 1平均冲力F =12t t I -=1221t t Fdt t t -⎰=1212t t mv mv --质点系的动量定理 F 1+F 2△t=m 1v 1+m 2v 2—m 1v 10+m 2v 20左面为系统所受的外力的总动量,第一项为系统的末动量,二为初动量 质点系的动量定理:∑∑∑===-=ni ni i i ni ii ivm v m t F 111△作用在系统上的外力的总冲量等于系统总动量的增量质点系的动量守恒定律系统不受外力或外力矢量和为零∑=n i ii v m 1=∑=ni i i vm 1=常矢量mvR R p L =•=圆周运动角动量 R 为半径mvd d p L =•= 非圆周运动,d 为参考点o 到p 点的垂直距离φsin mvr L = 同上φsin Fr Fd M == F 对参考点的力矩 F r M •= 力矩dtdL M = 作用在质点上的合外力矩等于质点角动量的时间变化率⎪⎭⎪⎬⎫==常矢量L dt dL 0如果对于某一固定参考点,质点系所受的外力矩的矢量和为零,则此质点对于该参考点的角动量保持不变.质点系的角动量守恒定律∑∆=ii i r m I 2 刚体对给定转轴的转动惯量αI M = 刚体的合外力矩刚体在外力矩M 的作用下所获得的角加速度a 与外合力矩的大小成正比,并于转动惯量I 成反比;这就是刚体的定轴转动定律. ⎰⎰==vmdv r dm r I ρ22 转动惯量 dv 为相应质元dm 的体积元,p 为体积元dv 处的密度ωI L = 角动量dtdLIa M == 物体所受对某给定轴的合外力矩等于物体对该轴的角动量的变化量dL Mdt =冲量距000ωωI I L L dL Mdt LL tt -=-==⎰⎰常量==ωI L θcos Fr W =r F W •=力的功等于力沿质点位移方向的分量与质点位移大小的乘积ds F dr F dW W b L a b L a b L a ab θcos )()()(⎰=•⎰=⎰=n b L a b L a WW W dr F F F dr F W +++=•++⎰=•⎰= 2121)()()(合力的功等于各分力功的代数和tWN ∆∆=功率等于功比上时间 dtdWt W N t =∆∆=→∆0limv F v F tsF N t •==∆∆=→∆θθcos cos lim 0瞬时功率等于力F 与质点瞬时速度v 的标乘积2022121mv mv mvdv W v v -=⎰=功等于动能的增量221mv E k =物体的动能k k E E W -=合力对物体所作的功等于物体动能的增量动能定理 )(b a ab h h mg W -=重力做的功 )()(ba b a ab r GMmr GMm dr F W ---=•⎰=万有引力做的功222121b ab a ab kx kx dr F W -=•⎰=弹性力做的功p p p E E E W baab∆-=-=保势能定义mgh E p =重力的势能表达式r GMmE p -=万有引力势能221kx E p =弹性势能表达式k k E E W W -=+内外质点系动能的增量等于所有外力的功和内力的功的代数和质点系的动能定理k k E E W W W -=++非内保内外保守内力和不保守内力p p p E E E W ∆-=-=0保内系统中的保守内力的功等于系统势能的减少量)()(00p k p k E E E E W W +-+=+非内外p k E E E +=系统的动能k 和势能p 之和称为系统的机械能0E E W W -=+非内外质点系在运动过程中,他的机械能增量等于外力的功和非保守内力的功的总和功能原理常量时,有、当非内外=+===p k E E E W W 00如果在一个系统的运动过程中的任意一小段时间内,外力对系统所作总功都为零,系统内部又没有非保守内力做功,则在运动过程中系统的动能与势能之和保持不变,即系统的机械能不随时间改变,这就是机械能守恒定律.02022121mgh mv mgh mv +=+重力作用下机械能守恒的一个特例20202221212121kx mv kx mv +=+弹性力作用下的机械能守恒第三章 气体动理论1毫米汞柱等于 1mmHg=1标准大气压等户760毫米汞柱1atm=760mmHg=×105Pa 热力学温度 T=+t气体定律==222111T V P T V P 常量 即 TV P =常量阿付伽德罗定律:在相同的温度和压强下,1摩尔的任何气体所占据的体积都相同.在标准状态下,即压强P 0=1atm 、温度T 0=时,1摩尔的任何气体体积均为v 0= L/mol罗常量 N a =1023 mol -1普适气体常量R 00T v P ≡ 国际单位制为: J/压强用大气压,体积用升×10-2 理想气体的状态方程: PV=RT M Mmolv=molM M质量为M,摩尔质量为M mol 的气体中包含的摩尔数R 为与气体无关的普适常量,称为普适气体常量 理想气体压强公式 P=231v mn n=VN为单位体积中的平均分字数,称为分子数密度;m 为每个分子的质量,v 为分子热运动的速率P=VNn nkT T N R V N mV N NmRT V M MRT A A mol ====(为气体分子密度,R 和N A 都是普适常量,二者之比称为波尔兹常量k=K J N RA/1038.123-⨯= 气体动理论温度公式:平均动能kT t 23=ε平均动能只与温度有关完全确定一个物体在一个空间的位置所需的独立坐标数目,称为这个物体运动的自由度.双原子分子共有五个自由度,其中三个是平动自由度,两个适转动自由度,三原子或多原子分子,共有六个自由度 分子自由度数越大,其热运动平均动能越大.每个具有相同的品均动能kT 21 kT i t 2=ε i 为自由度数,上面3/2为一个原子分子自由度1摩尔理想气体的内能为:E 0=RT ikT N N A A 221==ε 质量为M,摩尔质量为M mol 的理想气体能能为E=RT iM M E M M E mol mol 200==υ气体分子热运动速率的三种统计平均值最概然速率就是与速率分布曲线的极大值所对应哦速率,物理意义:速率在p υ附近的单位速率间隔内的分子数百分比最大mkTm kT p 41.12≈=υ温度越高,p υ越大,分子质量m 越大p υ因为k=A N R和mNA=Mmol 所以上式可表示为molmol A p M RTM RT mN RTmkT 41.1222≈===υ平均速率molmol M RTM RT m kT v 60.188≈==ππ 方均根速率molmol M RT M RT v 73.132≈=三种速率,方均根速率最大,平均速率次之,最概速率最小;在讨论速率分布时用最概然速率,计算分子运动通过的平均距离时用平均速率,计算分子的平均平动动能时用分均根第四章 热力学基础热力学第一定律:热力学系统从平衡状态1向状态2的变化中,外界对系统所做的功W ’和外界传给系统的热量Q 二者之和是恒定的,等于系统内能的改变E 2-E 1W ’+Q= E 2-E 1Q= E 2-E 1+W 注意这里为W 同一过程中系统对外界所做的功Q>0系统从外界吸收热量;Q<0表示系统向外界放出热量;W>0系统对外界做正功;W<0系统对外界做负功dQ=dE+dW 系统从外界吸收微小热量dQ,内能增加微小两dE,对外界做微量功dW平衡过程功的计算dW=PS dl =P dVW=⎰21V V PdV平衡过程中热量的计算Q =)(12T T C M Mmol-C为摩尔热容量,1摩尔物质温度改变1度所吸收或放出的热量等压过程:)(12T T C M MQ p molp -= 定压摩尔热容量等容过程:)(12T T C M MQ v molv -= 定容摩尔热容量内能增量 E 2-E 1=)(212T T R iM Mmol -dE等容过程2211 T P T P V RM M T P mol ===或常量 Q v =E 2-E 1=)(12T T C M Mv mol-等容过程系统不对外界做功;等容过程内能变化等压过程2211 T V T V P RM M T V mol ===或常量 )()(121221T T R M M V V P PdV W V V mol⎰-=-== W E E Q P +-=12等压膨胀过程中,系统从外界吸收的热量中只有一部分用于增加系统的内能,其余部分对于外部功R C C v p =- 1摩尔理想气体在等压过程温度升高1度时比在等容过程中要多吸收焦耳的热量,用来转化为体积膨胀时对外所做的功,由此可见,普适气体常量R 的物理意义:1摩尔理想气体在等压过程中升温1度对外界所做的功.泊松比 vp C C =γR i C R i C p v 222+==ii C C vp 2+==γ 等温变化2211 V P V P RT M MPV mol===或常量 121211ln lnV V RT M M W V V V P W mol ==或 等温过程热容量计算:12ln V V RT M MW Q mol T ==全部转化为功 绝热过程三个参数都变化γγγ2211 V P V P PV ==或常量绝热过程的能量转换关系⎥⎦⎤⎢⎣⎡--=-12111)(11r V V V P W γ )(12T T C M MW v mol--= 根据已知量求绝热过程的功 W循环=21Q Q - Q2为热机循环中放给外界的热量热机循环效率 1Q W 循环=η Q 1一个循环从高温热库吸收的热量有多少转化为有用的功121211Q Q Q Q Q -=-=η< 1 不可能把所有的热量都转化为功 制冷系数 212'2Q Q Q W Q -==循环ω Q2为从低温热库中吸收的热量第五章 静电场库仑定律:真空中两个静止的点电荷之间相互作用的静电力F的大小与它们的带电量q 1、q 2的乘积成正比,与它们之间的距离r 的二次方成反比,作用力的方向沿着两个点电荷的连线.221041r q q F πε=基元电荷:e=C 1910-⨯ ;0ε真空电容率=1210-⨯ ;41πε=910⨯rr q q F ˆ412210πε=库仑定律的适量形式 场强 0q F E =r r Q q F E 3004πε==r 为位矢 电场强度叠加原理矢量和电偶极子大小相等电荷相反场强E 3041r Pπε-= 电偶极距P=ql电荷连续分布的任意带电体⎰⎰==rr dq dE E ˆ4120πε 均匀带点细直棒θπελθcos 4cos 20ldxdE dE x == θπελθsin 4sin 20ldxdE dE y == []j sos a i a rE )(cos )sin (sin 40ββπελ-+-=无限长直棒 j rE 02πελ=dSd E EΦ=在电场中任一点附近穿过场强方向的单位面积的电场线数电通量θcos EdS EdS d E ==ΦdS E d E •=Φ ⎰⎰•=Φ=ΦsE E dS E d⎰•=ΦsE dS E 封闭曲面高斯定理:在真空中的静电场内,通过任意封闭曲面的电通量等于该封闭曲面所包围的电荷的电量的代数和的01ε⎰∑=•S q dS E 01ε 若连续分布在带电体上=⎰Qdq 01ε) ˆ4120R r r rQ E 〉=(πε 均匀带点球就像电荷都集中在球心E=0 r<R 均匀带点球壳内部场强处处为零2εσ=E 无限大均匀带点平面场强大小与到带点平面的距离无关,垂直向外正电荷)11(400ba ab r r Qq A -=πε 电场力所作的功 ⎰=•Ldl E 0 静电场力沿闭合路径所做的功为零静电场场强的环流恒等于零电势差 ⎰•=-=ba b a ab dl E U U U 电势⎰•=无限远aa dl E U 注意电势零点)(b a ab ab U U q U q A -=•= 电场力所做的功rrQ U ˆ40πε=带点量为Q 的点电荷的电场中的电势分布,很多电荷时代数叠加,注意为r∑==ni ii a r q U 104πε电势的叠加原理⎰=Qa r dqU 04πε 电荷连续分布的带电体的电势rr PU ˆ430πε=电偶极子电势分布,r 为位矢,P=ql21220)(4x R Q U +=πε 半径为R 的均匀带电Q 圆环轴线上各点的电势分布W=qU 一个电荷静电势能,电量与电势的乘积E E 00εσεσ==或 静电场中导体表面场强U qC = 孤立导体的电容 U=RQ 04πε 孤立导体球R C 04πε= 孤立导体的电容 21U U qC -=两个极板的电容器电容dS U U qC 021ε=-=平行板电容器电容)ln(2120R R L U QC πε==圆柱形电容器电容R2是大的rUU ε=电介质对电场的影响0U U C C r ==ε 相对电容率 dSdC C r r εεεε===00 ε= 0εεr 叫这种电介质的电容率介电系数充满电解质后,电容器的电容增大为真空时电容的r ε倍.平行板电容器rE E ε0=在平行板电容器的两极板间充满各项同性均匀电解质后,两板间的电势差和场强都减小到板间为真空时的r ε1E=E 0+E /电解质内的电场 省去几个2033r R DE r εερε==半径为R 的均匀带点球放在相对电容率r ε的油中,球外电场分布2221212CU QU C Q W ===电容器储能 第六章 稳恒电流的磁场dtdqI =电流强度单位时间内通过导体任一横截面的电量j dS dI j ˆ垂直=电流密度 安/米2⎰⎰•==SSdS j jd I θcos 电流强度等于通过S 的电流密度的通量dtdqdS j S-=•⎰电流的连续性方程 ⎰•SdS j =0 电流密度j 不与与时间无关称稳恒电流,电场称稳恒电场.⎰+-•=dl E K ξ 电源的电动势自负极经电源内部到正极的方向为电动势的正方向⎰•=LK dl E ξ电动势的大小等于单位正电荷绕闭合回路移动一周时非静电力所做的功.在电源外部E k =0时,就成了qvF B max=磁感应强度大小 毕奥-萨伐尔定律:电流元Idl 在空间某点P 产生的磁感应轻度dB 的大小与电流元Idl 的大小成正比,与电流元和电流元到P 电的位矢r 之间的夹角θ的正弦成正比,与电流元到P 点的距离r 的二次方成反比.20sin 4r Idl dB θπμ=πμ40为比例系数,A m T •⨯=-70104πμ为真空磁导率⎰-==)cos (4sin 421020θθπμθπμcon R IrIdl B 载流直导线的磁场R 为点到导线的垂直距离RIB πμ40=点恰好在导线的一端且导线很长的情况RIB πμ20=导线很长,点正好在导线的中部232220)(2χμ+=R IR B 圆形载流线圈轴线上的磁场分布RIB 20μ=在圆形载流线圈的圆心处,即x=0时磁场分布302xISB πμ≈在很远处时 平面载流线圈的磁场也常用磁矩P m ,定义为线圈中的电流I 与线圈所包围的面积的乘积.磁矩的方向与线圈的平面的法线方向相同.ISn P m = n 表示法线正方向的单位矢量.NISn P m = 线圈有N 匝 3024xP B mπμ=圆形与非圆形平面载流线圈的磁场离线圈较远时才适用RIB απϕμ40=扇形导线圆心处的磁场强度 RL=ϕ为圆弧所对的圆心角弧度nqvS QI ==t△ 运动电荷的电流强度 20ˆ4rrqv B ⨯=πμ 运动电荷单个电荷在距离r 处产生的磁场dS B ds B d •==Φθcos 磁感应强度,简称磁通量单位韦伯Wb⎰•=ΦSm dS B 通过任一曲面S 的总磁通量⎰=•SdS B 0 通过闭合曲面的总磁通量等于零I dl B L0μ=•⎰ 磁感应强度B 沿任意闭合路径L 的积分⎰∑=•LI dl B 内0μ在稳恒电流的磁场中,磁感应强度沿任意闭合路径的环路积分,等于这个闭合路径所包围的电流的代数和与真空磁导率0μ的乘积安培环路定理或磁场环路定理I lNnI B 00μμ== 螺线管内的磁场rIB πμ20=无限长载流直圆柱面的磁场长直圆柱面外磁场分布与整个柱面电流集中到中心轴线同rNIB πμ20=环形导管上绕N 匝的线圈大圈与小圈之间有磁场,之外之内没有θsin BIdl dF =安培定律:放在磁场中某点处的电流元Idl,将受到磁场力dF,当电流元Idl 与所在处的磁感应强度B 成任意角度θ时,作用力的大小为:B Idl dF ⨯= B 是电流元Idl 所在处的磁感应强度.⎰⨯=LB Idl Fθsin IBL F = 方向垂直与导线和磁场方向组成的平面,右手螺旋确定aI I f πμ22102=平行无限长直载流导线间的相互作用,电流方向相同作用力为引力,大小相等,方向相反作用力相斥.a 为两导线之间的距离.aI f πμ220= I I I ==21时的情况θθsin sin B P ISB M m •== 平面载流线圈力矩B P M m ⨯= 力矩:如果有N 匝时就乘以N6.42 θsin qvB F = 离子受磁场力的大小垂直与速度方向,只改变方向不改变速度大小B qv F ⨯= F 的方向即垂直于v 又垂直于B,当q 为正时的情况)(B v E q F ⨯+= 洛伦兹力,空间既有电场又有磁场Bm q vqB mv R )(==带点离子速度与B 垂直的情况做匀速圆周运动qBmv R T ππ22==周期 qBmv R θsin =带点离子v 与B 成角θ时的情况.做螺旋线运动qBmv h θπcos 2= 螺距 dBIR U HH=霍尔效应.导体板放在磁场中通入电流在导体板两侧会产生电势差vBl U H = l 为导体板的宽度dBI nq U H 1=霍尔系数nq R H 1=由此得到公式B Br =μ 相对磁导率加入磁介质后磁场会发生改变大于1顺磁质小于1抗磁质远大于1铁磁质'0B B B +=说明顺磁质使磁场加强'0B B B -=抗磁质使原磁场减弱)(0S LI NI dl B +=•⎰μ 有磁介质时的安培环路定理 I S 为介质表面的电流NI I NI S μ=+ r μμμ0=称为磁介质的磁导率∑⎰=•内I dl BLμH B μ= H 成为磁场强度矢量⎰∑=•LI dl H 内 磁场强度矢量H 沿任一闭合路径的线积分,等于该闭合路径所包围的传导电流的代数和,与磁化电流及闭合路径之外的传导电流无关有磁介质时的安培环路定理nI H =无限长直螺线管磁场强度 nI nI H B r μμμμ0===无限长直螺线管管内磁感应强度大小第七章 电磁感应与电磁场电磁感应现象:当穿过闭合导体回路的磁通量发生变化时,回路中就产生感应电动势.楞次定律:闭合回路中感应电流的方向,总是使得由它所激发的磁场来阻碍感应电流的磁通量的变化任一给定回路的感应电动势ε的大小与穿过回路所围面积的磁通量的变化率dt d m Φ成正比dt d Φ=ξ dt d Φ-=ξdtd Ndt d Φ-=ψ-=ξ ψ叫做全磁通,又称磁通匝链数,简称磁链表示穿过过各匝线圈磁通量的总和Blv dt dx Bl dt d -=-=Φ-=ξ动生电动势 B v ef E mk ⨯=-=作用于导体内部自由电子上的磁场力就是提供动生电动势的非静电力,可用洛伦兹除以电子电荷⎰⎰++•⨯=•=__)(dl B v dl E k ξBlv dl B v ba =•⨯=⎰)(ξ 导体棒产生的动生电动势θξsin Blv = 导体棒v 与B 成一任一角度时的情况⎰•⨯=dl B v )(ξ磁场中运动的导体产生动生电动势的普遍公式IBlv I P =•=ξ 感应电动势的功率 t NBS ωωξsin =交流发电机线圈的动生电动势ωξNBS m = 当t ωsin =1时,电动势有最大值m ξ 所以可为t m ωωξξsin =⎰•-=s dS dtdBξ 感生电动势 ⎰•=LE dl 感ξ感生电动势与静电场的区别在于一是感生电场不是由电荷激发的,而是由变化的磁场所激发;二是描述感生电场的电场线是闭合的,因而它不是保守场,场强的环流不等于零,而静电场的电场线是不闭合的,他是保守场,场强的环流恒等于零.1212I M =ψ M 21称为回路C 1对C2额互感系数.由I1产生的通过C2所围面积的全磁通2121I M =ψM M M ==21回路周围的磁介质是非铁磁性的,则互感系数与电流无关则相等1221I I M ψ=ψ= 两个回路间的互感系数互感系数在数值上等于一个回路中的电流为1安时在另一个回路中的全磁通dt dI M12-=ξ dtdIM 21-=ξ 互感电动势dtdI dtdI M 2112ξξ-=-= 互感系数LI =ψ 比例系数L 为自感系数,简称自感又称电感IL ψ=自感系数在数值上等于线圈中的电流为1A 时通过自身的全磁通dtdIL-=ξ 线圈中电流变化时线圈产生的自感电动势dtdI L ξ-=V n L 20μ=螺线管的自感系数与他的体积V 和单位长度匝数的二次方成正比221LI W m =具有自感系数为L 的线圈有电流I 时所储存的磁能V n L 2μ= 螺线管内充满相对磁导率为r μ的磁介质的情况下螺线管的自感系数nI B μ=螺线管内充满相对磁导率为rμ的磁介质的情况下螺线管内的磁感应强度221H w m μ=螺线管内单位体积磁场的能量即磁能密度⎰=V m BHdV W 21磁场内任一体积V 中的总磁场能量r NIH π2=环状铁芯线圈内的磁场强度 22RIrH π=圆柱形导体内任一点的磁场强度 第八章 机械振动022=+kx dtxd m 弹簧振子简谐振动2ω=mkk 为弹簧的劲度系数 0222=+x dtxd ω弹簧振子运动方程)cos(ϕω+=t A x 弹簧振子运动方程)sin('ϕω+=t A x 2'πϕϕ+=)sin(ϕωω+-==t A dtdx u 简谐振动的速度x a 2ω-=简谐振动的加速度 πω2=T ωπ2=T 简谐振动的周期T1=ν简谐振动的频率πνω2= 简谐振动的角频率弧度/秒 ϕcos 0A x = 当t=0时ϕωsin 0A u =-22020ωu x A += 振幅00x u tg ωϕ-= 00x uarctg ωϕ-= 初相 )(sin 21212222ϕωω+==t mA mu E k 弹簧的动能)cos(2121222ϕωω+==t kA kx E p 弹簧的弹性势能222121kx mu E += 振动系的总机械能2222121kA A m E ==ω总机械能守恒)cos(ϕω+=t A x 同方向同频率简谐振动合成,和移动位移)cos(212212221ϕϕ-++=A A A A A 和振幅22112211cos cos sin sin ϕϕϕϕϕA A A A tg ++=第九章 机械波9.1 νλλ==Tv 波速v 等于频率和波长的乘积介质的杨氏弹介质的切变弹性模量纵波横波ρρN Yv Nv ==固体 ρBv =纵波 B 为介质的荣变弹性模量在液体或气体中传播)(cos λωxt A y -= 简谐波运动方程)(2cos )(2cos )(2cos x vt A x T t A x vt A y -=-=-=λπλπλπ νλ=v 速度等于频率乘以波长简谐波运动方程的几种表达方式 )(2)(1212x x vv --=∆--=∆λπϕχχωϕ或简谐波波形曲线P2与P1之间的相位差负号表示p2落后)(2cos )(2cos )(cos λπλπωx T t A x vt A v x t A y +=+=+=沿负向传播的简谐波的方程)(sin 21222vx t VA E k -∆=ωωρ 波质点的动能)(sin )(21222vx t A V E P -∆=ωωρ波质点的势能)(sin 21222vx t VA E E p k -∆==ωωρ波传播过程中质元的动能和势能相等)(sin 222vxt VA E E E p k -∆=+=ωωρ质元总机械能)(sin 222vx t A V E -=∆=ωωρε波的能量密度2221ωρεA =波在一个时间周期内的平均能量密度vS ε=P 平均能流2221ωρεvA v I == 能流密度或波的强度 0logI IL = 声强级 )cos(21ϕω+=+=t A y y y 波的干涉,2,1,02)(2)(1212=±=---=∆k k r r πλπϕϕϕ波的叠加两振动在P 点的相位差为派的偶数倍时和振幅最大,3,2,1,0)12()(2)(1212=+±=--=∆-k k r r πλπϕϕϕ波的叠加两振动在P 点的相位差为派的偶数倍时和振幅最小,2,1,0,2221=±=-=k k r r λδ两个波源的初相位相同时的情况,2,1,0,2)12(21=+±=-=k k r r λδ第十章 电磁震荡与电磁波0122=+q LC dtq d 无阻尼自由震荡有电容C 和电感L 组成的电路)cos(0ϕω+=t Q q )sin(0ϕω+-=t I ILC 1=ω LC T π2= LC121πυ=震荡的圆频率角频率、周期、频率 με00B E =电磁波的基本性质电矢量E,磁矢量BB E με1=和磁导率分别为介质中的电容率和με)(212μεBE W W W m e +=+= 电磁场的总能量密度EB v W S μ1=•= 电磁波的能流密度με1=v第十一章 波动光学12r r -=δ 杨氏双缝干涉中有S 1,S 2发出的光到达观察点P 点的波程差2221)2(D d x r +-= D 为双缝到观测屏的距离,d 为两缝之间的距离,r1,r2为S1,S2到P 的距离 Ddx •=δ 使屏足够远,满足D 远大于d 和远大于x 的情况的波程差D dx •=∆λπϕ2相位差)2,1,0( ±±==k dDk x λ 各明条文位置距离O 点的距离屏上中心节点 )2,1,0(2)12( ±±=•+=k d D k x λ各暗条文距离O 点的距离 λdDx =∆ 两相邻明条纹或暗条纹间的距离 明条纹)2,1,0(222==+=k kh λλδ 劈尖波程差 2sin λθ=l 两条明暗条纹之间的距离l相等R k r k λ= 牛顿环第k 几暗环半径R 为透镜曲率半径2λ•=∆N d 迈克尔孙干涉仪可以测定波长或者长度N 为条纹数,d 为长度时为暗纹中心)3,2,1(22sin =±=k ka λϕ 单缝的夫琅乔衍射 ϕ为衍射角,a 为缝宽时为明纹中心))( 3,2,1(22sin =+±=k k a λϕaλϕϕ=≈sin 半角宽度 af ftg x λϕ22≈=∆单缝的夫琅乔衍射中央明纹在屏上的线宽度 Dm λθδθ22.1=<如果双星衍射斑中心的角距离m δθ恰好等于艾里斑的角半径即此时,艾里斑虽稍有重叠,根据瑞利准则认为此时双星恰好能被分辨,m δθ成为最小分辨角,其倒数 λδθ22.11Dm R ==叫做望远镜的分辨率或分辨本领与波长成反比,与透镜的直径成正比)3,2,1,0(sin =±=k k d λϕ 光栅公式满足式中情况时相邻两缝进而所有缝发出的光线在透镜焦平面上p 点会聚时将都同相,因而干涉加强形成明条纹a I I 20cos = 强度为I0的偏振光通过检偏器后强度变为第十二章 狭义相对论基础 2')(1c v l l -= 狭义相对论长度变换 2')(1c v t t -∆=∆狭义相对论时间变换 2''1cvu v u u x x x ++= 狭义相对论速度变换 20)(1c v m m -= 物体相对观察惯性系有速度v 时的质量dm c dE k 2= 动能增量202c m mc E k -= 动能的相对论表达式 200c m E = 2mc E =物体的静止能量和运动时的能量 爱因斯坦纸能关系式420222c m p c E +=相对论中动量和能量的关系式p=E/c第十三章 波和粒子 2021m mv eV = V 0为遏制电压,e 为电子的电量,m 为电子质量,v m 为电子最大初速 A hv mv eV m -==2021 h 是一个与金属无关的常数,A 是一个随金属种类而不同的定值叫逸出功.遏制电压与入射光的强度无关,与入射光的频率v 成线性关系 A mv hv m +=221 爱因斯坦方程 22c hv c m ==ε光 光子的质量 λh c hv c m p ==•=光光子的动量。
大学物理公式第一篇:力学力学是物理学的一个分支,主要研究物体运动的规律和受力情况。
下面是常见的力学公式。
1. 基本运动学公式:v = v₀ + at (速度的变化量)s = s₀ + v₀t + ½at²(位移的变化量)v²– v₀² = 2as (速度和位移的关系)2. 牛顿三定律:F = ma (物体受力与加速度成正比)作用力与反作用力大小相等、方向相反、作用在不同的物体上3. 动力学公式:F = ma (力的大小与加速度成正比)F = Gm₁m₂/r²(万有引力定律)K = ½mv²(动能公式)U = mgh (重力势能公式)E = K + U (机械能公式)4. 动量定理:FΔt = Δp (作用力与动量变化的关系)p = mv (动量公式)5. 碰撞公式:完全弹性碰撞:m₁v₁ + m₂v₂ = m₁v₁’ + m₂v₂’非完全弹性碰撞:m₁v₁ + m₂v₂ = (m₁ + m₂)V’第二篇:热学热学是物理学的一个分支,主要研究热和温度的现象和规律。
下面是常见的热学公式。
1. 温度计算公式:C = (F – 32) / 1.8 (华氏温度转摄氏温度)F = C × 1.8 + 32 (摄氏度转华氏温度)K = C + 273.15 (摄氏度转开氏温度)2. 热传递公式:Q = mcΔT (热量公式)Q = hAΔT (对流换热公式)Q = kAΔT/d (传导换热公式)3. 热力学公式:Q = ΔU + W (内能变化、热量传递和功的关系)ΔS = Q/T (熵变公式)4. 热力学循环公式:ΔU = W + Q (内能变化、功和热量的关系)η = W/Q₁ = (Q₁– Q₂)/Q₁(热机效率公式)第三篇:电学电学是物理学的一个分支,主要研究电荷和电场的现象和规律。
下面是常见的电学公式。
1. 基本电磁公式:F = kq₁q₂/r²(库仑定律)E = F/q (电场强度公式)U = kq₁q₂/r (电势能公式)V = U/q = kQ/r (电势公式)2. 电流公式:I = Q/t (电流的定义)I = ΔQ/Δt (电流的计算公式)V = IR (欧姆定律)3. 阻抗公式:R = ρl/A (电阻的定义)ρ = RA/l (电阻率公式)Z = R + jX (阻抗的定义)X = 2πfL –1/2πfC (电感和电容的关系)4. 磁场公式:B = μ₀I/2r (安培环形定理)B = μ₀I/4πr²(比奥萨伐尔定律)B = μ₀nI (磁场公式)F = qvBsinθ (洛仑兹力公式)。
⼤学物理公式⼤全⼤学物理公式集基本概念(定义和相关公式)位置⽮量:r,其在直⾓坐标系中:k z j y i x r ++=;222z y x r ++=⾓位置:θ速度:dtr d V=平均速度:tr V ??= 速率:dt dsV =(τ V V =)⾓速度:dt d θω=⾓速度与速度的关系:V=rω加速度:dtV d a=或22dt r d a= 平均加速度:tV a ??=⾓加速度:dtd ωβ=在⾃然坐标系中n a a a n+=ττ其中dtdV a =τ(=rβ),rV n a 2=(=r2 ω)p d )⼒矩:F r M=(⼤⼩:M=rFcos θ⽅向:右⼿螺旋法则)2.动量:V m p=,⾓动量:V m r L=(⼤⼩:L=rmvcos θ⽅向:右⼿螺旋法则)3.冲量:?=dt F I(=FΔt);功:?=r d F A(⽓体对外做功:A=∫PdV )4.动能:mV 2/25.势能:A 保= – ΔE p 不同相互作⽤⼒势能形式不同且零点选择不同其形式不同,在默认势能零点的情况下:机械能:E=E K +E P6.热量:CRT M Q µ=其中:摩尔热容量C 与过程有关,等容热容量C v 与等压热容量C p 之间的关系为:C p = C v +R 7.压强:ωn tS ISF P 32===8.分⼦平均平动能:kT 23=ω;理想⽓体内能:RT s r t M E )2(2++=µ9.麦克斯韦速率分布函数:NdVdN V f =)((意义:在V 附近单位速度间隔内的分⼦数所占⽐率) 10.平均速率:πµdV V Vf VV80)(==∞⽅均根速率:µRTV 22=;最可⼏速率:µRTpV 3=11.熵:S=Kln Ω(Ω为热⼒学⼏率,即:⼀种宏观态包含的微观态数)12.电场强度:E =F /q 0 (对点电荷:rrq E420πε=) 13.电势:?∞=aar d E U(对点电荷rq U04πε=-kx (弹性⼒)→ kx 2/2F= rrMm G ?2- (万有引⼒) →r Mm G - =E pr r Qq ?420πε(静电⼒) →r Qq 04πεW)14.电容:C=Q/U ;电容器储能:W=CU 2/2;电场能量密度ωe =ε0E 2/2 15.磁感应强度:⼤⼩,B=F max /qv(T);⽅向,⼩磁针指向(S →N )。
第一章 质点运动学和牛顿运动定律1.1平均速度 v =t△△r1.2 瞬时速度 v=lim 0△t →△t △r =dt dr1. 3速度v=dtds==→→lim lim△t 0△t △t△r 1.6 平均加速度a =△t△v1.7瞬时加速度(加速度)a=lim 0△t →△t △v =dt dv1.8瞬时加速度a=dt dv =22dt rd1.11匀速直线运动质点坐标x=x 0+vt 1.12变速运动速度 v=v 0+at1.13变速运动质点坐标x=x 0+v 0t+21at 21.14速度随坐标变化公式:v 2-v 02=2a(x-x 0) 1.15自由落体运动 1.16竖直上抛运动 1.17 抛体运动速度分量⎩⎨⎧-==gta v v av v y x sin cos 001.18抛体运动距离分量⎪⎩⎪⎨⎧-∙=∙=20021sin cos gt t a v y t a v x1.19射程 X=g av 2sin 201.20射高Y=gav 22sin 201.21飞行时间y=xtga —ggx21.22轨迹方程y=xtga —av gx 2202cos 2 1.23向心加速度 a=Rv 21.24圆周运动加速度等于切向加速度与法向加速度矢量和a=a t +a n1.25 加速度数值 a=22nt a a + 1.26 法向加速度和匀速圆周运动的向心加速度相同a n =Rv 21.27切向加速度只改变速度的大小a t =dtdv1.28 ωΦR dtd R dt ds v===1.29角速度 dtφωd =1.30角加速度 22dt dtd d φωα== 1.31角加速度a 与线加速度a n 、a t 间的关系a n =222)(ωωR RR R v == a t =αωR dtd R dt dv == 牛顿第一定律:任何物体都保持静止或匀速直线运动状态,除非它受到作用力而被迫改变这种状态。
大学物理公式大全:物理公式与应用案例详解物理作为一门基础科学,其核心就是物理公式。
作为大学物理学习的难点,物理公式需要掌握得当才能真正理解物理学的本质。
本文将为您介绍大学物理公式大全以及它们的应用案例,帮助学生更好地掌握物理学的精髓。
电学公式1. 电场公式:E = F\/q,其中E表示电场强度,F表示电场力,q表示点电荷量。
这个公式的应用案例有静电力和电势能。
2. 电势公式:V = kq\/r,其中V表示电势能,k表示比例常数,q表示电荷量,r表示距离。
电势公式的应用案例有电势差,电势能,电容和电势。
3. 电荷公式:F = kq1q2 \/ r^2,其中F代表电荷的作用力,k代表比例常数,q1和q2代表两个点电荷的电荷量,r代表二者间的距离。
电荷公式的应用案例有库仑定律。
4. 电通量公式:Φ = E * S * cosθ,其中Φ表示电通量,E表示电场强度,S表示电场垂直于盖面积,θ表示电场线与法线的夹角。
电通量公式的应用案例有高斯定律和法拉第电磁感应定律。
机械公式1. 运动学公式:v = v0 + at,其中v表示速度,v0表示初速度,a表示加速度,t表示时间。
这个公式的应用案例有动量,动能和牛顿运动定律。
2. 动能公式:K = 1\/2 mv^2,其中K表示动能,m表示质量,v表示速度。
动能公式的应用案例有力学功和弹性势能。
3. 引力公式:F = Gm1m2 \/ r^2,其中F表示引力,G表示万有引力常数,r表示两个物体间的距离,m1和m2表示两个物体的质量。
引力公式的应用案例有行星运动。
4. 加速度公式:a = F \/ m,其中a表示加速度,F表示作用力,m表示质量。
加速度公式的应用案例有牛顿三定律和牛顿重力定律。
光学公式1. 折射公式:n1sinθ1 = n2sinθ2,其中n1和n2代表两种介质的折射率,θ1和θ2分别代表入射和折射角。
折射公式的应用案例有菲涅耳衍射和欧泊克效应。
2. 透镜公式:1\/v + 1\/u = 1\/f,其中v表示像距离,u表示物距离,f表示透镜焦距。
大学物理基本公式(二)引言概述:大学物理中,物理基本公式是学习和应用物理学概念和原理的基础。
本文将重点介绍大学物理中的一些基本公式(二),包括力学、电磁学和波动光学等领域的公式。
通过学习这些公式,能够更好地理解和应用物理学知识。
正文:1. 力学公式:1.1 牛顿第二定律: F = ma,描述物体在外力作用下的加速度。
1.2 动能公式: E_k = (1/2)mv^2,计算物体的动能。
1.3 势能公式: Ep = mgh,计算物体在重力场中的势能。
1.4 动量公式: p = mv,描述物体的动量。
1.5 万有引力定律: F = G(m1m2/r^2),计算两个物体之间的引力。
2. 电磁学公式:2.1 库仑定律: F = k(q1q2/r^2),描述两个电荷之间的作用力。
2.2 电场强度公式: E = F/q,描述电荷在电场中所受的力。
2.3 电压公式: V = IR,描述电流通过导体时的电势差。
2.4 磁场强度公式: B = µ0(I/2πr),计算在电流通过导线时的磁场强度。
2.5 磁感应强度公式: B = µ0N/lI,计算螺线管中的磁感应强度。
3. 波动光学公式:3.1 光速公式: c = λν,描述光的传播速度。
3.2 折射定律: n1sinθ1 = n2sinθ2,描述光在两种介质中的折射现象。
3.3 成像公式: 1/f = 1/v + 1/u,计算透镜成像的距离。
3.4 焦距公式: f = R/2,计算球面镜的焦距。
3.5 干涉公式: Δd = mλ,描述两束光相干干涉时的光程差。
4. 其他公式:4.1 热力学公式: Q = mcΔT,计算物体的热量变化。
4.2 波函数公式: Ψ(x,t) = A sin(kx - ωt + φ),描述波动的波函数。
4.3 相对论能量公式: E = mc^2,描述物体的能量与质量之间的关系。
4.4 等离子体频率公式: ω^2 = (e^2n)/(ε0m),计算等离子体中的电磁波频率。