变压器纵差保护及不平衡电流消除措施
- 格式:pdf
- 大小:83.23 KB
- 文档页数:2
热电厂主变压器的纵差动保护原理及整定方法浙江旺能环保股份有限公司 作者:周玉彩一、构成变压器纵差动保护的基本原则我们以双绕组变压器为例来说明实现纵差动保护的原理,如图1所示。
由于变压器高压侧和低压侧的额定电流不同,因此,为了保证纵差动保护的正确工作,就必须适当选择两侧电流互感器的变比,使得在正常运行和外部故障时,两个二次电流相等,亦即在正常运行和外部故障时,差动回路的电流等于零。
例如在图1中,应使图 '2I =''2I = 。
同的。
这个区别是由于线路的纵差动保护可以直接比较两侧电流的幅值和相位,而变压器的纵差动保护则必须考虑变压器变比的影响。
二、变压器纵差动保护的特点变压器的纵差动保护同样需要躲开流过差动回路中的不平衡电流,而且由于差动回路中不平衡电流对于变压器纵差动保护的影响很大,因此我们应该对其不平衡电流产生的原因和消除的方法进行认真的研究,现分别讨论如下: 1、由变压器励磁涌流LY I 所产生的不平衡电流变压器的励磁电流仅流经变压器的某一侧,因此,通过电流互感器反应到差动回路中不能平衡,在正常运行和外部故障的情况下,励磁电流较小,影响不是很大。
但是当变压器空载投入和外部故障切除后电压恢复时,由于电磁感应的影响,可能出现数值很大的励磁电流(又称为励磁涌流)。
励磁涌流有时可能达到额定电流的6~8倍,这就相当于变压器内部故障时的短路电流。
因此必须想办法解决。
为了消除励磁涌流的影响,首先应分析励磁涌流有哪些特点。
经分析得出,励磁涌流具有以下特点:(1) 包含有很大成分的非周期分量,往往使涌流偏向于时间轴的一侧 ; (2) 包含有大量的高次谐波,而以二次谐波为主; (3) 波形之间出现间断,在一个周期中间断角为ɑ。
根据以上特点,在变压器纵差动保护中,防止励磁涌流影响的方法有: (1) 采用具有速饱和铁心的差动继电器;İ1′′ n İ1′(2) 利用二次谐波制动;(3) 鉴别短路电流和励磁涌流波形的差别等。
分析主变纵差动保护不平衡电流原因及解决方法(2)对于由电流互感器计算变比与实际变比不同而产生的不平衡电流可采用2种方法来克服:一是采用自耦变流器进行补偿。
通常在变压器一侧电流互感器(对三绕组变压器应在两侧)装设自耦变流器,将LH输出端接到变流器的输入端,当改变自耦变流器的变比时,可以使变流器的输出电流等于未装设变流器的LH的二次电流,从而使流入差动继电器的电流为零或接近为零。
二是利用中间变流器的平衡线圈进行磁补偿。
通常在中间变流器的铁心上绕有主线圈即差动线圈,接入差动电流,另外还绕一个平衡线圈和一个二次线圈,接入二次电流较小的一侧。
适当选择平衡线圈的匝数,使平衡线圈产生的磁势能完全抵消差动线圈产生的磁势,则在二次线圈里就不会感应电势,因而差动继电器中也没有电流流过。
采用这种方法时,按公式计算出的平衡线圈的匝数一般不是整数,但实际上平衡线圈只能按整数进行选择,因此还会有一残余的不平衡电流存在,这在进行纵差保护定值整定计算时应该予以考虑。
2、由变压器两侧电流相位不同而产生的不平衡电流的克服方法对于由变压器两侧电流相位不同而产生的不平衡电流可以通过改变LH接线方式的方法(也称相位补偿法)来克服。
对于变压器Y形接线侧,其LH采用△形接线,而变压器△形接线侧,其LH采用Y形接线,则两侧LH二次侧输出电流相位刚好同相。
但当LH采用上述连接方式后,在LH接成△形侧的差动一臂中,电流又增大了3倍,此时为保证在正常运行及外部故障情况下差动回路中没有电流,就必须将该侧LH的变比扩大3倍,以减小二次电流,使之与另一侧的电流相等。
3、由变压器外部故障暂态穿越性短路电流产生的不平衡电流的克服方法在变压器外部故障的暂态过程中,使纵差保护产生不平衡电流的主要原因是一次系统的短路电流所包含的非周期分量,为消除它对变压器纵差保护的影响,广泛采用具有不同特性的差动继电器。
对于采用带速饱和变流器的差动继电器是克服暂态过程中非周期分量影响的有效方法之一。
电力变压器纵差保护常见问题分析(1)首先有必要一提的是最常见的问题便是安装过程中消失的问题;目前常见的电流互感器,出厂时都在外壳上明确标注P1、P2;抽头S1、S2;意思是当CT一次侧的电流由P1流向P2时,二次侧感应电流的方向为S1到S2。
差动装置取的是爱护区域两端的两个CT的二次侧感应电流进行计算,此时就肯定要留意差动爱护装置本身的固有特性:是180度接线还是0度接线。
所谓180度接线要求,就是对两端两个CT进入爱护装置的电流求和,和为零时不动作;0度接线要求就是对两端两个CT进入爱护装置的电流求差值,差值为零时不动作。
安装作业人员甚至一些设计人员经常由于对该原理的模糊导致对于发电机的差动爱护习惯性设置为0接线,对变压器采纳180接线;这就与很有可能与差动爱护装置本身的计算属性要求不符,继而造成差动爱护的误动作。
虽然现在的自适应接线方式的差动爱护装置很好的解决了这个问题,但这种装置电厂普及度不高,极易消失问题,这就要求现场人员在施工过程中要严格校验。
(2)差动继电器的电流回路接线问题,现在电力变压器主要分为干式变压器和油浸式变压器两类,在变压器的规格参数中有一项被称之为联接组标号。
也就是平常说的接线方式。
暂以常规的Dyn11来阐明差动继电器电流回路接线问题。
依据基础电路理论,角型接法的线电压比星型接法的相电压超前30度,所以就变压器自身来说高压侧的电流会超前低压侧30度。
那么假如两侧的CT采纳相同的接线方式的话,在高压侧CT处产生的二次电流也会比低压侧CT产生的二次电流在相位上相差30度,那么正常运行时也就可能超过爱护定值造成误动。
对此问题现在普遍采纳转变CT二次绕组接线方式的方法来解决。
以Dyn11为例来说明,高压侧采纳三角形接线,那么高压侧对应的CT的二次绕组就采纳星型接线;低压侧采纳星型接线,那么低压侧对应的二次绕组就采纳角型接线;这样一次侧虽然高压侧的感应的线电压虽然会比低压侧感应的相电压超前30度;但由于接线方式,星型接法的CT的感应电流会比角型接法的CT的感应电流滞后30度。