基于ANSYS-骨料随机分布模型
- 格式:docx
- 大小:121.71 KB
- 文档页数:1
ANSYS结构分析材料模型库1Structural:结构Linear:线性Elastic:弹性Isotropic:各向同性Orthotropic:正交各向异性Anisotropic:各向异性Nonlinear:非线性Elastic:弹性Hyperelastic:超弹性Curve Fitting:曲线拟合Mooney-Rivlin:Mooney-Rivlin模型2 parameters:2参数3 parameters:3参数5 parameters:5参数9 parameters:9参数Ogden:Ogden模型1 term:1组参数2 terms:2组参数3 terms:3组参数4 terms:4组参数5 terms:5组参数General:通用参数Neo-Hookean:Neo-Hookean模型Polynomial Form:Polynomial Form模型1 term:1组参数2 terms:2组参数3 terms:3组参数4 terms:4组参数5 terms:5组参数General:通用参数Arruda-Boyce:Arruda-Boyce模型Gent:Gent模型Yeoh:Yeoh模型1st order:1序列2nd order:2序列3rd order:3序列4th order:4序列5th order:5序列General:通用序列Blatz-Ko(Foam):Blatz-Ko(泡沫) 模型Ogden(Foam):Ogden(泡沫) 模型1st order:1序列2nd order:2序列3rd order:3序列4th order:4序列5th order:5序列General:通用序列Mooney-Rivlin(TB,MOON):Mooney-Rivlin(TB,MOON) 模型Multilinear Elastic:多线性弹性Inelastic:非弹性Rate Independent:率无关Isotropic Hardening Plasticity:各向同性硬化塑性Mises Plasticity:Mises塑性Bilinear:双线性Multilinear:多线性Nonlinear:非线性Hill Plasticity:Hill塑性Bilinear:双线性Nonlinear:非线性Generalized Anisotropic Hill Potential:广义各向异性Hill势Kinematic Hardening Plasticity:随动硬化塑性Mises Plasticity:Mises塑性Bilinear:双线性Multilinear(Fixed table):多线性(固定表格)Multilinear(General):多线性(通用)Chaboche:非线性随动强化Hill Plasticity:Hill塑性Bilinear:双线性Multilinear(Fixed table):多线性(固定表格)Multilinear(General):多线性(通用)Chaboche:非线性随动强化Combined Kinematic and Isotropic Hardening Plasticity:随动和各向同性混合硬化塑性Mises Plasticity:Mises塑性Chaboche and Bilinear Isotropic:非线性随动和双线性等向Chaboche and Multilinear Isotropic:非线性随动和多线性等向Chaboche and Nonlinear Isotropic:非线性随动和非线性等向Hill Plasticity:Hill塑性Chaboche and Bilinear Isotropic:非线性随动和双线性等向Chaboche and Multilinear Isotropic:非线性随动和多线性等向Chaboche and Nonlinear Isotropic:非线性随动和非线性等向Rate Dependent:率相关Visco- Plasticity:粘塑性Isotropic Hardening Plasticity:各向同性硬化塑性Mises Plasticity:Mises塑性Bilinear:双线性Multilinear:多线性Hill Plasticity:Hill塑性Bilinear:双线性Multilinear:多线性Nonlinear:非线性Anand’s Model:Anand模型Creep:蠕变Curve Fitting:曲线拟合Creep Only:仅有蠕变Mises Potential:Mises势Explicit:显式Implicit:隐式1:Strain Hardening(Primary)2:Time Hardening(Primary)3:Generalized Exponential(Primary)4:Generalized Graham(Primary)5:Generalized Blackburn(Primary)6:Modified Time Hardening(Primary)7:Modified Strain Hardening(Primary)8:Generalized Garofalo(Secondary)9:Exponential Form(Secondary)10:Norton(Secondary)11:Time Hardening(Primary+ Secondary) 12:Rational polynomial(Primary+ Secondary) 13:Generalized Time HardeningHill Potential:Hill势Implicit:隐式1:Strain Hardening(Primary)2:Time Hardening(Primary)3:Generalized Exponential(Primary)4:Generalized Graham(Primary)5:Generalized Blackburn(Primary)6:Modified Time Hardening(Primary)7:Modified Strain Hardening(Primary)8:Generalized Garofalo(Secondary)9:Exponential Form(Secondary)10:Norton(Secondary)11:Time Hardening(Primary+ Secondary)12:Rational polynomial(Primary+ Secondary)13:Generalized Time HardeningWith Isotropic Hardening Plasticity:各向同性硬化塑性蠕变With Mises Plasticity:Mises塑性Bilinear:双线性Explicit:显式Implicit:隐式1:Strain Hardening(Primary)2:Time Hardening(Primary)3:Generalized Exponential(Primary)4:Generalized Graham(Primary)5:Generalized Blackburn(Primary)6:Modified Time Hardening(Primary)7:Modified Strain Hardening(Primary)8:Generalized Garofalo(Secondary)9:Exponential Form(Secondary)10:Norton(Secondary)11:Time Hardening(Primary+ Secondary)12:Rational polynomial(Primary+ Secondary)13:Generalized Time Hardening Multilinear:多线性Explicit:显式Implicit:隐式1:Strain Hardening(Primary)2:Time Hardening(Primary)3:Generalized Exponential(Primary)4:Generalized Graham(Primary)5:Generalized Blackburn(Primary)6:Modified Time Hardening(Primary)7:Modified Strain Hardening(Primary)8:Generalized Garofalo(Secondary)9:Exponential Form(Secondary)10:Norton(Secondary)11:Time Hardening(Primary+ Secondary)12:Rational polynomial(Primary+ Secondary) 13:Generalized Time Hardening Nonlinear:非线性Explicit:显式Implicit:隐式1:Strain Hardening(Primary)2:Time Hardening(Primary)3:Generalized Exponential(Primary)4:Generalized Graham(Primary)5:Generalized Blackburn(Primary)6:Modified Time Hardening(Primary)7:Modified Strain Hardening(Primary)8:Generalized Garofalo(Secondary)9:Exponential Form(Secondary)10:Norton(Secondary)11:Time Hardening(Primary+ Secondary)12:Rational polynomial(Primary+ Secondary) 13:Generalized Time HardeningWith Hill Plasticity:Hill塑性Bilinear:双线性1:Strain Hardening(Primary)2:Time Hardening(Primary)3:Generalized Exponential(Primary)4:Generalized Graham(Primary)5:Generalized Blackburn(Primary)6:Modified Time Hardening(Primary)7:Modified Strain Hardening(Primary)8:Generalized Garofalo(Secondary)9:Exponential Form(Secondary)10:Norton(Secondary)11:Time Hardening(Primary+ Secondary) 12:Rational polynomial(Primary+ Secondary) 13:Generalized Time Hardening Multilinear:多线性Implicit:隐式1:Strain Hardening(Primary)2:Time Hardening(Primary)3:Generalized Exponential(Primary)4:Generalized Graham(Primary)5:Generalized Blackburn(Primary)6:Modified Time Hardening(Primary)7:Modified Strain Hardening(Primary)8:Generalized Garofalo(Secondary)9:Exponential Form(Secondary)10:Norton(Secondary)11:Time Hardening(Primary+ Secondary) 12:Rational polynomial(Primary+ Secondary) 13:Generalized Time Hardening Nonlinear:非线性1:Strain Hardening(Primary)2:Time Hardening(Primary)3:Generalized Exponential(Primary)4:Generalized Graham(Primary)5:Generalized Blackburn(Primary)6:Modified Time Hardening(Primary)7:Modified Strain Hardening(Primary)8:Generalized Garofalo(Secondary)9:Exponential Form(Secondary)10:Norton(Secondary)11:Time Hardening(Primary+ Secondary)12:Rational polynomial(Primary+ Secondary)13:Generalized Time HardeningWith Kinematic Hardening Plasticity:随动硬化塑性蠕变With Mises Plasticity:Mises塑性Bilinear:双线性Implicit:隐式1:Strain Hardening(Primary)2:Time Hardening(Primary)3:Generalized Exponential(Primary)4:Generalized Graham(Primary)5:Generalized Blackburn(Primary)6:Modified Time Hardening(Primary)7:Modified Strain Hardening(Primary)8:Generalized Garofalo(Secondary)9:Exponential Form(Secondary)10:Norton(Secondary)11:Time Hardening(Primary+ Secondary)12:Rational polynomial(Primary+ Secondary)13:Generalized Time HardeningWith Hill Plasticity:Hill塑性Bilinear:双线性Implicit:隐式1:Strain Hardening(Primary)2:Time Hardening(Primary)3:Generalized Exponential(Primary)4:Generalized Graham(Primary)5:Generalized Blackburn(Primary)6:Modified Time Hardening(Primary)7:Modified Strain Hardening(Primary)8:Generalized Garofalo(Secondary)9:Exponential Form(Secondary)10:Norton(Secondary)11:Time Hardening(Primary+ Secondary)12:Rational polynomial(Primary+ Secondary)13:Generalized Time HardeningWith Swelling:溶胀蠕变Explicit:显式Non-metal Plasticity:非金属塑性Concrete:混凝土Drucker-Prager:D-PFailure Criteria:复合材料失效准则Cast-Iron:铸铁Plastic Poisson’s Ratio:塑性泊松比Uniaxial Compression:单轴压缩Uniaxial Tension:单轴拉伸Shape Memory Alloy:形状记忆合金Viscoelastic:粘弹性Curve Fitting:曲线拟合Maxwell:Maxwell模型Prony:Prony模型Shear Response:剪切响应Volumetric Response:体积响应Shift Function:转换函数Density:密度Thermal Expansion:热膨胀Secant Coefficient:正割系数Isotropic:各向同性Orthotropic:正交各向异性Instantaneous Coefficient:瞬时系数Isotropic:各向同性Orthotropic:正交各向异性Thermal Strain:热应变Isotropic:各向同性Orthotropic:正交各向异性Damping:阻尼Constant:常数Frequency Independent:频率无关Friction Coefficient:摩擦系数Specialized Materials:特殊材料Gasket:垫圈General Parameters:通用参数Compression:压缩Linear Unloading:线性卸载Nonlinear Unloading:非线性卸载Transverse Shear:横向剪切Joint Elastic:接触弹性Linear:线性Stiffness:刚度Damping:阻尼Friction:摩擦Nonlinear:非线性Stiffness All:总刚度Stiffness ROTX:ROTX刚度Stiffness ROTZ:ROTZ刚度Damping All:总阻尼Damping ROTX:ROTX阻尼Damping ROTZ:ROTZ阻尼Friction All:总摩擦Friction ROTX:ROTX摩擦Friction ROTZ:ROTZ摩擦User Material Options:自定义材料选项User Constants:自定义常数State Variables:状态变量Creep:蠕变Creep and State Variables:蠕变和状态变量Hyperelastic:超弹性。
基于随机骨料模型细观混凝土界面过渡区力学性能研究摘要在细观层次,混凝土可以看作是由骨料、水泥砂浆及二者之间界面过渡区组成的一种非均质、多相复合的材料并被广泛的应用于工程中,其宏观性能是由各相材料的性能、界面过渡区及其细观结构所决定的。
因此在混凝土细观层次的研究中,各相材料的物理力学参数是必不可少的数据,骨料和水泥砂浆的力学参数可以通过宏观试验手段进行测量,但由于界面过渡区厚度较薄,难以制成试件和加载较为困难等原因导致对界面过渡区的力学性能测量十分困难。
近年来,随着计算机技术的不断发展,应用数值模拟对混凝土进行分析成为继理论、试验分析的另一种方法。
本文从细观角度出发,应用数值模拟方法对界面过渡区的力学性能进行研究,主要取得以下研究成果。
(1)本文基于蒙特卡罗方法,根据混凝土试件的真实配合比,计算出各级骨料粒径区间的面积含量,改进前人骨料投放算法,将随机骨料按粒径由大到小进行投放,保证了骨料含量及级配,结合AUTOCAD软件对界面过渡区的边界进行提取,成功建立了与宏观混凝土试件相同的二维凸多边形随机骨料细观模型。
(2)以ABAQUS为计算平台,基于试验得到骨料与砂浆力学性能实测值,采用计算机数值模拟对界面进行反演,研究不同骨料粒径下界面过渡区的力学性能,结果表明:随着骨料粒径的增大,界面过渡区抗压强度降低,而骨料粒径对界面过渡区弹性模量影响较小,不同骨料粒径下的界面过渡区的弹性模量基本相同。
(3)混凝土强度等级对界面过渡区的抗压强度与弹性模量有较大影响,随着混凝土强度增大,界面过渡区的抗压强度与弹性模量增大;通过公式拟合分别得到混凝土抗压强度与界面过渡区抗压强度之间的关系,得到混凝土弹性模量与界面过渡区弹性模量之间的关系,为以后继续研究不同混凝土强度下界面过渡区的抗压强度与不同混凝土弹性模量下界面过渡区的弹性模量提供参考。
关键词:细观层次;数值模拟;界面过渡区;混凝土强度等级;粗骨料粒径STUDY ON THE MECHANICAL PROPERTIESOF INTERFACIAL TRANSITION ZONEBASED ON THE MESOSCOPIC MODEL OF CONCRETE RANDOMAGGREGATEABSTRACTConcrete is consisted of aggregate, mortar and interfacial transition zone in microscopic level, which is heterogeneous and multiphase composite materials are widely used in practical engineering. The interface transition zone, aggregate and mortar play a key role in the mechanical properties of concrete. So the physical and mechanical parameters of interface transition zone, aggregate and mortar are absolutely necessary for concrete in microscopic level. The physical and mechanical parameters of aggregate and mortar can be tested, but interfacial transition zone is very slight, that is difficult to make the test pieces and load, so it is very difficult to measure. In recent years, numerical simulation becomes a way to study on concrete in microscopic along with the development of computer technology. In this paper, the numerical simulation method is used to study the mechanical properties of the interface transition zone, and the following research results are obtained.(1) The paper is based on Monte Carlo random sampling principle; the real mix proportion of concrete is calculated for aggregate content, the distribution of random convex aggregates is improved, the random aggregates are put on from big to small, that is can ensure aggregate gradation of concrete. The boundary of the interface transition zone is extracted with AUTOCAD software; the microscopic models of two-dimensional convex polygon random aggregate are established in microscopic level.(2) The mechanical properties of the interface transition zone is studied by uniaxial compression with ABAQUS. The results showed that compression strength of interface transition zone decreases with the increase of the maximum aggregate size, but the elastic modulus of interface transition zone has little change.(3) The results showed that the strength grade of concrete has significant effect on compression strength and elastic modulus of interfacial transition zone. The compression strength and elastic modulus of interface transition zone are found to increase with strength grade of concrete. The relationship between the compression strength of concrete and thecompression strength of interface transition zone is obtained, the relationship between the elastic modulus of concrete and the elastic modulus of interface transition zone is obtained by fitting the formula. For the future, we can continue to study the strength of the interface transition zone and the elastic modulus of the interface transition zone.KEY WORDS: microscopic level, numerical simulation, interfacial transition zone, concrete strength grade, maximum aggregate size目录第一章 绪论 (1)1.1 研究背景及意义 (1)1.2 国内外研究现状 (2)1.2.1 混凝土材料研究尺度 (2)1.2.2 细观力学在混凝土中的应用 (3)1.2.3 混凝土细观力学数值模拟研究 (4)1.2.4 界面过渡区研究现状 (5)1.3 存在的问题 (7)1.4 本文研究内容 (7)1.5 技术路线 (8)第二章 混凝土细观各组分力学特性试验研究 (9)2.1 引言 (9)2.2 混凝土与砂浆相单轴受压应力应变曲线测量 (9)2.2.1 试验原材料 (9)2.2.2 试验设计 (11)2.2.3 试验项目 (12)2.2.4 试验结果分析 (13)2.3 本章小结 (21)第三章 细观混凝土随机骨料模型的建立 (22)3.1 混凝土骨料级配理论 (22)3.2 蒙特卡罗方法 (23)3.3 多边形骨料模型生成 (24)3.3.1 二维平面骨料含量的计算 (24)3.3.2 骨料的投放 (26)界面过渡区的生成 (29)有限元模型的生成 (30)本章小结 ........................................................................................................................ 31 第四章 细观模型有限元分析.. (32)4.1 有限元分析原理 (32)3.43.53.64.2ABAQUS有限元软件简介 (33)4.2.1 ABAQUS有限元计算实现 (33)4.2.2 ABAQUS在细观混凝土模拟中的应用 (34)4.3细观单元的本构关系与破坏准则 (35)4.4本章小结 (36)第五章细观混凝土单轴压缩状态数值分析 (38)5.1力学参数的选取 (38)5.2界面过渡区弹性模量模拟 (39)5.2.1 本构模型及加载方式 (39)5.2.2 混凝土弹性模量的计算方法 (40)5.3界面过渡区强度模拟 (43)5.4细观混凝土界面过渡区数值模拟结果分析 (43)5.4.1 C20混凝土界面过渡区数值模拟结果 (43)5.4.2 C40混凝土界面过渡区数值模拟结果 (46)5.4.3 C60混凝土界面过渡区数值模拟结果 (48)5.4.4同一骨料粒径下界面过渡区数值模拟结果 (50)5.5模型模拟破坏过程 (53)5.6本章小结 (54)第六章结论与展望 (56)6.1结论 (56)6.2展望 (56)参考文献 (58)致谢 (62)作者简介 (63)第一章绪论 1第一章绪论1.1 研究背景及意义从1900年混凝土诞生至今,混凝土的发展已有一百多年的历史,由于其原材料丰富、力学性能与耐久性能优良、施工方便与成本经济,已成为道路与桥梁工程、工业与民用建筑工程、市政工程、土木工程等领域的重要材料之一。
(1)线弹性理论模型特点:是一种最基本和最简单的力学模型,线弹性材料本构关系服从广义虎克定律,即应力应变在加卸载时呈线性关系,卸载后材料无残余应变。
当混凝土材料的应力水平较低时,按该模型计算应力应变关系基本符合实际情况。
(2)非线性弹性模型特点:本构关系中应力和应变不再保持正比,但在满足一定要求的条件下仍有一一对应关系。
卸载后没有残余变形,应力状态唯一取决于应变状态,而与加载历史无关。
该模型可以较好地描述混凝土在单调加载条件下的应力应变关系,具有概念简单、形式简明,计算选用参数源自试验结果,计算精确度较高等优点。
(3)弹塑性模型特点:反映材料的塑性变形。
该模型可以较好地描述混凝土应力一应变下降段(软化)曲线,建立了应变空间的塑性本构关系,并构造了不同的混凝土应变松弛面(相对于应力空间的破坏包络面)和相应的势能函数,以反映混凝土卸载的残余应变、刚度退化等特性。
(4)内时理论模型特点:采用非弹性变形逐渐积累的方法,其基本思想是用所谓“内蕴时(intrinsic time)”或“变形”作为一个内变量来建立本构关系。
(5)断裂力学模型特点:是具有切口敏感性需要存在初始宏观裂纹,且裂纹尖端的应力强度因子超过断裂韧度时就会迅速失稳扩展造成破坏。
混凝土裂缝尖端呈梨型树状破碎区,并影响裂纹前缘附近区域的应力、应变分布。
(6)损伤力学模型特点:在外部荷载作用下,缺陷会不断扩展和合并,形成宏观裂纹。
裂纹继续扩展,最终可能导致构件或结构的断裂破坏。
(7)组合模型特点:根据混凝土的力学性能和破坏机理其结构特征与受力特点,其可能发生的应力应变状态,从以上六种模型中合理地选用一种或几种本构关系进行模拟计算。
ANSYS模拟仿真软件apdl语言命令流-——混凝土试件的三维随机骨料建模FINISH/clear,nostart!-----------三维混凝土150试件,单轴拉伸模拟!-------映射剖分,以最小骨料半径剖分网格,判断属性,不细分!=================================================xmin=1$xmax=149$ymin=1$ymax=149$zmin=1$zmax=149 !定义坐标范围anum=120$bnum=230$cnum=510 !定义三种组分骨料个数num=anum+bnum+cnumrmin=8$rmax=10$brmin=5$brmax=8$crmin=2.5$crmax=5 !定义骨料半径范围*dim,agv,array,num,4 !存放骨料位置及半径的数组cum=0icum=0*do,i,1,20000*if,cum,eq,num,then*exit*endif*if,icum,eq,anum,thenrmin=brmin$rmax=brmax*elseif,icum,eq,(anum+bnum),thenrmin=crmin$rmax=crmax*endifx=rand(xmin,xmax)$y=rand(ymin,ymax)$z=rand(zmin,zmax)$r=rand(rmin,rmax)*if,x-r,gt,xmin,and,x+r,lt,xmax,then*if,y-r,gt,ymin,and,y+r,lt,ymax,then*if,z-r,gt,zmin,and,z+r,lt,zmax,then*if,cum,eq,0,thencum=cum+1icum=icum+1agv(cum,1)=x$agv(cum,2)=y$agv(cum,3)=z$agv(cum,4)=r*elsesum=0*do,j,1,cumdist=sqrt((agv(j,1)-x)**2+(agv(j,2)-y)**2+(agv(j,3)-z)**2)!1.05为骨料影响范围系数*if,dist,lt,1.1*(agv(j,4)+r),then*exit*elsesum=sum+1*endif*enddo*if,sum,eq,cum,thencum=cum+1icum=icum+1agv(cum,1)=x$agv(cum,2)=y$agv(cum,3)=z$agv(cum,4)=r*endif*endif*endif*endif*endif*enddo!/TRLCY,volu,1,221!/TRLCY,area,1,221!=====================先划分网格,然后每个单元分给一个材料号==================== !=====================按weibull概率分布赋予属性==================== /prep7ET,1,SOLID45BLOCK,0,150,0,150,0,150 !生成投放区域LSEL,ALLLESIZE,ALL,,,100VSEL,ALLmshape,0,3d$mshkey,1 !自由网格,划分砂浆vmesh,allEMODIF,ALL,MAT,2,GULIAO=0JIEDIANX=0$JIEDIANY=0$JIEDIANZ=0 !判断骨料砂浆属性!和所有的骨料比较*DO,i,1,NUMALLSEL,ALLNSEL,S,LOC,X,agv(i,1)-agv(i,4),agv(i,1)+agv(i,4)NSEL,R,LOC,Y,agv(i,2)-agv(i,4),agv(i,2)+agv(i,4)NSEL,R,LOC,Z,agv(i,3)-agv(i,4),agv(i,3)+agv(i,4)ESLN,S!选择集*GET,ENUM,ELEM,0,COUNT*GET,EMIN1,ELEM,0,NUM,MIN*DIM,ELEM,ARRAY,ENUMES=EMIN1-1*DO,J,1,ENUMES=ELNEXT(ES)ELEM(J)=ES !单元的编号*ENDDO!遍历单元*DO,K,1,ENUMGULIAO=0*IF,ELMIQR(ELEM(K),-1),EQ,2,THEN !!循环比较8个节点*DO,L,1,6JIEDIANX=NX(NELEM(ELEM(K),L))JIEDIANY=NY(NELEM(ELEM(K),L))JIEDIANZ=NZ(NELEM(ELEM(K),L))distA=sqrt((agv(i,1)-JIEDIANX)**2+(agv(i,2)-JIEDIANY)**2+(agv(i,3)-JIEDIANZ)**2)*IF,distA,LT,AGV(i,4),THENGULIAO=GULIAO+1*ENDIF*ENDDO*IF,GULIAO,EQ,6,THENEMODIF,ELEM(K),MAT,1*ELSEIF,GULIAO,LT,6,AND,GULIAO,GT,0,THENEMODIF,ELEM(K),MAT,3*ENDIF*ENDIF*ENDDO*SET,ELEM(1),*ENDDO!==========================建模完成====================。
二级配骨料随机分布混凝土动态特性数值模拟刘海峰;陈巧丽【期刊名称】《科学技术与工程》【年(卷),期】2017(017)020【摘要】混凝土是民用、工业、安全防护等建筑中最常用的材料之一,具有抗压强度高、工艺简单、抗腐蚀性好、抗耐性优良等特点.在使用过程中,不仅要承受准静态荷载作用,还需考虑爆炸、冲击等动载荷的作用,因此有必要进行混凝土动态特性研究.利用ANSYS/LS-DYNA软件,对粗骨料粒径和体积含量不同二级配混凝土动态特性进行模拟,分析粗骨料粒径和体积含量对二级配混凝土动态特性影响规律.研究表明:随着粗骨料最大粒径的增加,二级配混凝土峰值应力呈下降趋势;随着粗骨料中间粒径和体积含量增大,二级配混凝土峰值应力均呈现先增大后减少趋势.%Concrete is widely used in civil, industrial and safety defense buildings, which has high compressive strength, simple preparation, better corrosion and tolerance resistance.Concrete is not only used to be sustained with quasi-static loading, but also subjected to impact and explosion loading.It is necessary to study on the dynamic mechanical properties of concrete.Finite element software ANSYS/LS-DYNA was used to simulate the dynamic failure process of two-gradation concrete with various sizes and volume content of coarse aggregate.Simulated results shows that the peak stress of two-gradation concrete subjected to impact loading declines with the maximum size of coarse aggregate.With the increase ofmiddle size and volume content of coarse aggregate, the peak stress of two-gradation concrete increase firstly, and then declines.【总页数】5页(P6-10)【作者】刘海峰;陈巧丽【作者单位】宁夏大学土木与水利工程学院,银川 750021;宁夏大学土木与水利工程学院,银川 750021【正文语种】中文【中图分类】O347.3【相关文献】1.三级配混凝土二维随机多边形骨料模型数值模拟 [J], 王菁;武亮;糜凯华;温强2.考虑再生粗骨料随机分布的混凝土氯离子扩散细观数值模拟 [J], 肖建庄;卢登;马志鸣3.三维重建技术在全级配混凝土骨料随机分布中的研究与应用 [J], 苏盛;沈德建;吕维波4.二级配凸多边形骨料随机分布混凝土动态特性 [J], 周姝航;刘海峰5.混凝土二维骨料随机分布对物质扩散的影响 [J], 赵艳林;韦克宇;吕海波因版权原因,仅展示原文概要,查看原文内容请购买。
大体积混凝土随机骨料数值模拟大体积混凝土广泛应用于各种工程结构中,其性能受到许多因素的影响,包括材料、配合比、施工工艺等。
其中,骨料作为混凝土的重要组成部分,对混凝土的性能产生重要影响。
在实际工程中,由于骨料分布的随机性,混凝土的性能也会产生相应的变化。
因此,对大体积混凝土随机骨料进行数值模拟,对于优化混凝土配合比、预测混凝土性能以及指导实际工程施工具有重要意义。
大体积混凝土是指体积较大、一次浇注完成的混凝土结构,通常具有厚实的外壳和复杂的内部结构。
随机骨料是指骨料的分布具有随机性,不同位置的骨料颗粒大小、形状、取向等均不相同。
骨料在混凝土中扮演着增强材料和填料的角色,不仅可以提高混凝土的承载能力,还可以影响混凝土的变形性能和耐久性。
大体积混凝土随机骨料的数值模拟方法主要包括以下几个步骤:建立模型:采用三维建模软件建立混凝土结构模型,并按照实际施工工艺进行分段浇筑。
骨料颗粒随机分布:在建模过程中,将骨料颗粒按照一定的概率分布随机放置在混凝土中。
材料属性设置:根据实际工程材料属性,设置混凝土和骨料的弹性模量、泊松比、密度等参数。
边界条件施加:根据实际工程情况,施加约束和载荷条件。
数值计算:采用有限元方法对模型进行求解,获得混凝土结构的应力、应变和温度场等响应。
结果后处理:将计算结果进行可视化处理,便于分析和比较。
在进行大体积混凝土随机骨料数值模拟时,需要设置以下参数:混凝土材料参数:包括弹性模量、泊松比、密度等,可根据实际工程材料实验数据确定。
骨料颗粒尺寸分布:骨料颗粒的尺寸分布对混凝土的性能影响较大,需根据实际工程中的骨料类型和级配进行设置。
徐变计算参数:徐变是指混凝土在荷载作用下的变形不可逆现象,需根据实验数据确定徐变系数等参数。
边界条件:包括约束和载荷条件,需根据实际工程情况进行设置。
通过大体积混凝土随机骨料的数值模拟,可以获得以下结果:骨料颗粒分布特征:模拟结果显示骨料颗粒在混凝土中的分布具有随机性,且不同位置的骨料颗粒大小、形状、取向等均不相同。