5 线性空间与线性变换
- 格式:ppt
- 大小:342.00 KB
- 文档页数:40
线性空间与线性变换线性空间是线性代数的一个重要概念,扮演着理解线性变换的基础角色。
本文将介绍线性空间的定义、性质以及线性变换的概念和特性。
一、线性空间的定义与性质线性空间,也被称为向量空间,是指一个集合,其中包含一些向量,满足特定的性质。
具体而言,线性空间需要满足以下几个条件:1. 封闭性:对于线性空间中的任意两个向量,它们的线性组合也属于该空间。
即,如果向量a和向量b属于线性空间V,那么对于任意标量α和β,αa + βb也属于V。
2. 加法封闭性:线性空间中的向量满足加法封闭性,即对于任意的向量a和b,它们的和a + b也属于该空间。
3. 数乘封闭性:线性空间中的向量满足数乘封闭性,即对于任意的向量a和标量α,它们的积αa也属于该空间。
4. 满足加法和数乘的运算性质:线性空间中的向量满足加法和数乘的交换律、结合律和分配律。
线性空间的性质还包括零向量、负向量和线性相关性。
零向量表示线性空间中存在一个使其与任何向量相加得到自身的向量,负向量表示线性空间中的向量存在一个加法逆元。
线性相关性指的是线性空间中存在一组向量线性组合为零向量的关系。
二、线性变换的定义和性质线性变换是指在两个线性空间之间的映射,它保持了向量空间中的线性结构。
具体而言,线性变换需要满足以下几个条件:1. 保持加法运算:对于线性变换T,对任意的向量a和b,有T(a +b) = T(a) + T(b)。
2. 保持数乘运算:对于线性变换T和标量α,有T(αa) = αT(a)。
线性变换的性质还包括零变换、恒等变换和可逆性。
零变换表示线性变换将所有向量映射为零向量。
恒等变换表示线性变换将每个向量映射为其本身。
可逆性表示存在一个逆变换,使得两个线性变换进行复合后得到恒等变换。
三、线性空间与线性变换的关系线性空间和线性变换密切相关,线性变换本质上是线性空间之间的映射,它将一个线性空间中的向量映射到另一个线性空间中。
线性变换保持了向量空间的线性结构,在线性代数中起到了重要的作用。
线性空间与线性变换线性空间和线性变换是线性代数中的重要概念,在数学和物理等领域有着广泛的应用。
本文将介绍线性空间和线性变换的概念、性质以及它们之间的关系。
一、线性空间的定义和性质线性空间是指具有加法运算和数乘运算的集合,满足以下条件:1. 加法运算闭合性:对于任意两个向量u和v,它们的和u+v仍然属于该集合。
2. 加法交换律:对于任意两个向量u和v,有u+v = v+u。
3. 加法结合律:对于任意三个向量u、v和w,有(u+v)+w =u+(v+w)。
4. 存在零向量:存在一个特殊的向量0,使得对于任意向量v,有v+0 = v。
5. 对于任意向量v,存在其负向量-u,使得v+(-u) = 0。
6. 数乘运算闭合性:对于任意标量c和向量v,它们的乘积cv仍然属于该集合。
7. 数乘结合律:对于任意标量c和d以及向量v,有(c+d)v = cv+dv。
8. 数乘分配律1:对于任意标量c以及向量u和v,有c(u+v) =cu+cv。
9. 数乘分配律2:对于任意标量c和d以及向量v,有(cd)v = c(dv)。
线性空间的例子包括n维向量空间和函数空间等。
它们满足上述定义中的所有条件。
二、线性变换的定义和性质线性变换是指将一个线性空间映射到另一个线性空间的映射,满足以下条件:1. 对于任意向量v和w以及标量c,线性变换T满足T(v+w) =T(v)+T(w)和T(cv) = cT(v)。
2. 线性变换T保持向量的线性组合关系,即对于任意向量v1、v2、...、vn和标量c1、c2、...、cn,有T(c1v1+c2v2+...+cnvn) =c1T(v1)+c2T(v2)+...+cnT(vn)。
3. 线性变换T将零向量映射为目标线性空间的零向量。
线性变换的例子包括平移、旋转和缩放等。
它们保持向量空间的线性结构和线性关系。
三、线性空间与线性变换的关系线性空间和线性变换之间存在着密切的联系。
给定一个线性空间V,定义一个线性变换T:V→W,其中W是另一个线性空间。
映射:设M 和M'是两个非空集合,如果对M 中的每个元素,按照某种法则T 都有M'中的一个确定的元素与之对应,则称T 是从M 到M'中的一个映射,记作T :M →M'称M 为T 的定义域。
如果映射T 使α∈M 与β∈M'相对应,则称β是α在映射T 下的象,而称α为β的一个原象,记作T (α)=β(α∈M )集合M 到自身的映射称为M 上的变换。
设T 和S 都是集合M 到M'的映射。
如果对任一元素α∈M 都有T (α)=S (α),则称T 和S 相等,记作T=S如果对于M'中的每一个元素β,都有α∈M 使T (α)=β,则称T 是一个满射。
如果对于任意α1,α2∈M ,当α1≠α2时,都有T (α1)≠T (α2),则称T 是单射。
如果映射T 既是满射又是单射,则称之为一一映射(或一一对应)映射T 下所有象所成的集合称为T 的值域(或象集合),记作R (T ),即R(T)={ T (α)︱α∈M}显然R(T)⊂ M',一个集合M 到M'的映射T 是满射的充分必要条件是R (T )= M';而T 是单射的充分必要条件是,对任意α1,α2∈M ,由T (α1)= T (α2)可以推出α1=α2 设M 是一个非空集合,定义E (α)=α(α∈M )则E 是M 上的变换,称为M 的单位映射(或恒等映射),记作M I 。
E 是一一映射。
对于映射,定义它的乘积如下(ST )(α)﹦S (T (α))(α∈M )所确定的从M 到M''的映射ST 称为S 与T 的乘积。
映射的乘积是复合函数的推广,但不是任意两个影射都可以求他们的乘积。
由映射T 和S 得到乘积ST 的充分必要条件是T 的值域含与S 的定义域。
例1 设M=K n ×n .定义 T 1(A )=det A (A ∈K )则T 是K n ×n 到K 的一个映射,它是满射,但不是单射。
线性空间与线性变换线性空间(也称为向量空间)是线性代数的基本概念之一。
它是指由向量集合组成的集合,满足特定的运算规则。
线性空间中的向量可以是实数域上的实向量,也可以是复数域上的复向量。
线性空间的定义涵盖了许多重要的数学概念和定理,在各个领域中都有广泛的应用。
一、线性空间的定义线性空间的定义遵循以下几个基本条件:1. 封闭性:对于线性空间V中任意向量u和v,它们的线性组合也属于V。
即对于任意的标量a和b,有a*u + b*v∈V。
2. 加法结合性:对于线性空间V中任意向量u、v和w,有(u+v)+w = u+(v+w)。
3. 加法交换性:对于线性空间V中任意向量u和v,有u+v = v+u。
4. 零向量存在性:存在一个特殊的向量0,满足对于线性空间V中任意向量u,有u+0 = u。
5. 加法逆元存在性:对于线性空间V中任意向量u,存在一个向量-v,使得u+(-v) = 0。
6. 数量乘法结合性:对于线性空间V中任意的标量a、b和向量u,有(a*b)*u = a*(b*u)。
7. 标量乘法分配律:对于线性空间V中任意的标量a和向量u、v,有a*(u+v) = a*u + a*v。
8. 向量乘法分配律:对于线性空间V中任意的标量a和b,以及向量u,有(a+b)*u = a*u + b*u。
二、线性变换的定义与性质线性变换是一种将一个线性空间映射到另一个线性空间的函数。
线性变换也被称为线性映射或线性算子。
线性变换保持线性空间的线性结构,即对于线性空间V中任意的向量u和v,以及标量a和b,有以下性质:1. 线性变换将零向量映射到零向量,即T(0) = 0,其中T表示线性变换。
2. 线性变换保持向量的线性组合,即对于线性空间V中任意的向量u和v,以及标量a和b,有T(a*u + b*v) = a*T(u) + b*T(v)。
3. 线性变换的像空间是一个线性空间,即对于线性空间V中的线性变换T,其像空间W也是一个线性空间。
线性空间与线性变换解析线性空间和线性变换是线性代数中重要的概念。
线性空间是指具备了特定性质的向量集合,而线性变换是将一个向量空间映射到另一个向量空间的映射关系。
通过分析线性空间与线性变换的特点和性质,可以深入理解线性代数的基本概念与应用。
一、线性空间的定义与性质1.1 线性空间的定义线性空间,也称为向量空间,是指一个非空集合V及其上的两种运算:加法和标量乘法,满足以下八个条件:(1)加法交换律:对于任意的u和v,u+v=v+u;(2)加法结合律:对于任意的u、v和w,(u+v)+w = u+(v+w);(3)零向量存在:存在一个向量0,使得对于任意的u,u+0=u;(4)负向量存在:对于任意的u,存在一个向量-v,使得u+(-v)=0;(5)标量乘法结合律:对于任意的标量a和b,以及向量u,(ab)u=a(bu);(6)分配律1:对于任意的标量a和向量u、v,a(u+v)=au+av;(7)分配律2:对于任意的标量a和b,以及向量u,(a+b)u=au+bu;(8)单位元存在:对于任意的向量u,1u=u。
1.2 线性空间的基本性质(1)线性空间中的向量可以进行加法和标量乘法运算;(2)线性空间中的向量满足向量加法的封闭性和标量乘法的封闭性;(3)线性空间中的向量满足加法交换律、加法结合律和分配律;(4)线性空间中存在唯一的零向量和负向量;(5)线性空间中存在多个基向量,它们可以线性组合得到任意向量;(6)线性空间中的向量存在唯一的零向量和唯一的负向量。
二、线性变换的定义与性质2.1 线性变换的定义线性变换,也称为线性映射,是指将一个向量空间V映射为另一个向量空间W的一种映射关系。
若对于任意的向量u和v,以及任意的标量a和b,满足以下两个条件,则称该映射关系为线性变换:(1)保持加法运算:T(u+v) = T(u) + T(v);(2)保持标量乘法:T(au) = aT(u)。
2.2 线性变换的基本性质(1)线性变换保持零向量:T(0) = 0;(2)线性变换保持向量的加法和标量乘法运算;(3)线性变换保持向量的线性组合关系;(4)线性变换将线性无关向量映射为线性无关向量;(5)线性变换的核和像是向量空间。
线性空间与线性变换线性空间和线性变换是线性代数中非常重要的两个概念。
它们是研究向量空间和所谓的线性方程组等问题的基础。
线性空间,是一个用于描述向量的抽象数学结构。
一个线性空间可以想象成一个由有限或无限个向量组成的集合,在该集合中,向量之间可以进行加法和数量乘法操作,同时满足若干条公理。
这些公理包括向量加法的交换律和结合律、数量乘法与向量加法的结合律以及分配律等,这些公理确保了线性空间可以执行向量的相加和数乘等操作。
线性变换,是一种将一个线性空间映射到它自身或另一个线性空间的函数。
线性变换使向量的属性得到保持,包括相对强度、方向和距离等。
例如,一个平面上的向量可以被平移、旋转、缩放或倾斜,这些操作可以表示为线性变换。
在应用线性变换时,我们可以将其表示为矩阵形式。
如果有一个线性变换L,将向量x映射到向量y,它可以表示为以下方程:Lx = y这个方程也可以表示为矩阵形式:[L]x = yL表示线性变换的矩阵,x和y分别是输入和输出向量。
矩阵[L]是一个m×n的矩阵,其中m和n分别是输入向量和输出向量的维数。
在对线性空间进行操作时,使用线性变换可以实现多种功能。
例如,在计算机图形学中,我们可以使用线性变换来实现几何变换,例如旋转、缩放和平移。
另外,在信号处理和时间序列分析领域中,我们可以使用线性变换对信号进行变换,例如傅里叶变换和小波变换等。
另一个很重要的概念是线性方程组。
线性方程组是一个关于未知量的一组线性方程。
线性方程组通常可以表示为以下形式:a1x1 + a2x2 + … + anxN = b其中,a1,a2,an是已知系数,b是已知常数,x1,x2,xn是未知变量。
线性方程组可以求解出未知变量的值,这也是线性代数的核心问题之一。
总而言之,线性空间和线性变换是线性代数中的两个基础概念,它们在计算机图形学、信号处理、机器学习等领域中都得到了广泛应用。
对线性空间和线性变换的深入理解,有助于理解向量空间与线性方程组等相关问题,进而更好地解决实际问题。
第五讲线性空间与线性变换第五讲线性空间与线性变换⼀、基本概念1. 数域K 数的集合,且1) 0,1K ∈;2) K 关于,,,+-?÷运算封闭.例如:数域,,Q R C* 任意数域都包含有理数域(有理数域是最⼩的数域). 数域有⽆穷多.2. 数域K 上的线性空间K V ⾮空集合V + 数域K + 集合V 在数域K 上关于“+”与“数乘”运算封闭 + ⼋条规律线性空间也称为向量空间,其中的元素也称为向量. * n 维实向量线性空间nR 例如,例5.1-例5.73. ⼦空间K U 1) K K U V ?;2) 且K U 是数域K 上的线性空间.⽣成⼦空间K U 1)12,,,s K V ααα? ;2){}112212,,,K s s s U L k k k k k k K ααα=+++∈ . (P84 例5.10)4. 基维数坐标基线性空间中的“极⼤线性⽆关组” P84 维数 “极⼤线性⽆关组”的秩 P84 例如,例5.11-例5.14坐标线性空间中的向量由基线性表⽰的系数 P85 例如,例5.15-例5.165. 基变换和坐标变换基变换基之间的线性变换 P87过渡矩阵构成基变换的矩阵(过渡矩阵是可逆矩阵) P88 坐标变换向量在不同的基下的坐标之间的线性变换 P88 6. 线性变换线性变换线性空间K V 到K V 的满⾜线性运算的映射 P89 例如,例5.17-例5.20线性变换的矩阵基表⽰基的像的线性变换矩阵 P90 例如,例5.21-例5.227. 欧⽒空间内积设V 是实数域R 上的⼀个线性空间,在V 上定义⼀个⼆元函数,记作[],αβ,如果它满⾜:1),,,V k R αβγ?∈∈,有 1) [][],,αββα=(对称性); 2) [][][],,,αβγαγβγ+=+, [][],,k k αββα=(线性性); 3)[],0αα≥,当且仅当αο=时,[],0αα=(正定性),则称这个⼆元函数[],αβ是V 上的内积. P93欧⽒空间定义了内积的实线性空间(实数域上的线性空间) P93 * n 维实向量线性空间nR 是欧⽒空间例如,例5.24-例5.261α=(规范性) P94向量的夹⾓[],,a r c c o sαβαβαβ=?,0,αβπ≤≤ P94 向量的正交 [],,02παβαβ==(正交性) P94 例如,标准单位向量组中的向量是相互正交的向量例1(P94 例5.27)8. 规范正交基规范向量组向量长度皆为1的向量组正交向量组向量皆⾮零且互相正交的向量组(正交向量组线性⽆关) P94规范正交向量组满⾜规范性和正交性的向量组,即若12,,,s ααα满⾜:,0,,i j i j αα=?,1,i i α=? P94正交基/规范正交基由正交向量组成的基/由规范正交向量组成的基 P95 正交矩阵 TA A E = P97⼆、基本结论1. 线性空间的基本性质 P831)线性空间的零向量是唯⼀的;2)每⼀个向量的负向量是唯⼀的; 3)0,,k k K αοοο==?∈; 4)若k αο=, 则0k αο=或=.2. ⼦空间的判定定理1(P84 定理5.1)例如,例5.8-例5.9推论(P85)如果线性空间U V ?,则()()r U r V ≤.3. 基的性质定理2(P85 定理5.2)(产⽣基的⽅法)推论(P85)含有⾮零向量的线性空间⼀定存在基. 推论(P95)⾮空的欧⽒空间⼀定存在规范正交基.4. 坐标变换与基变换的关系定理3(P88 定理5.3)例1(P88)5. 线性变换的性质线性变换的性质(P88)定理4(P91 定理5.4)(向量与向量的像在同⼀基下的坐标的关系) 定理5(P92 定理5.5)(两组基的线性变换矩阵之间的关系)例2(P92 例5.23)三、向量组的规范正交化定理1(P95 定理5.7)例1(P95 例5.28)例2(P96 例5.29)四、习题解答 1. P98 3.提⽰: 即求1234,,,αααα的极⼤线性⽆关组极其秩. 2. P98 5.提⽰: (1)1V 是1n -维线性空间. 23,,,n e e e是1V 的⼀组基.(3)3V 是1n -维线性空间. ()()()1,0,,0,1,0,1,,0,1,,0,0,,1,1TTT--- 是3V 的⼀组基.(5)5V 是1维线性空间, ()1,2,,1,Tn n - 是5V 的⼀组基.(6)6V 是2维线性空间, ()()1,0,,0,0,0,1,,1,1TT是6V 的⼀组基.3. P98 6.提⽰:(1)()1234,,,αααα11111111111111112121014101110111111002010023002301110111007400013----------- ? ? ? ?=→→→------ ? ? ? ?-()1234,,,4R αααα=, 所以1234,,,αααα是线性空间4K 的⼀组基.(2)设()1234,,,x βαααα= , 则()11234,,,x ααααβ-=.()123451513421,,,23-→-- ---32-6,, 所以β在基1234,,,αααα下的坐标为()1,2,1,3T-.4. P98 7.提⽰: 令()()()21123n n k k x a k x a k x a ο-+-+-++-= , 有120n k k k ==== , 故()()()211,,,,n x a x a x a ---- 线性⽆关, 可以成为线性空间[]n R x 的⼀组基.因为()()()()()()()()21(1)112!!n n f x f a f a x a f a x a f a x a n --'''=+-+-++- , 所以()211n f x x x x -=++++ 在基()()()211,,,,n x a x a x a ---- 下的坐标为()()()()(1)11,,,,2!(1)!Tn f a f a f a f a n -??''' ?-??, 即 ()()2121,121,,1Tn n a aa a n a --+++++++- .5. P98 8.提⽰: (1)过渡矩阵()()1123123,,,,C αααβββ-=;(2)()()()()1123123123123,,,,,,,,,TTx x x y y y ααααβββα--==.6. P99 10.提⽰: 计算基的像()()()()11122122,,,A E A E A E A E , 表⽰()()()()() 11122122,,,A E A E A E A E =()()()()()11122122,,,A E A E A E A E C , 则C 即是所求.7. P99 11. 提⽰: 同上题 8. P99 12.提⽰:(1)同上题;(2)⽤123,,εεε表⽰123,,ηηη, 并计算像()()()123,,A A A ηηη. 余下同(1).9. P99 13.提⽰:(1)()()321123001,,,,010100εεεεεε?? ?= ? ???. 余下同12.(2);(2)()()123123100,,,,00001k k εεεεεε?? ?= ? ???, 余下同上;(3)()()1223123100,,,,110001εεεεεεε?? ?+= ? ???, 余下同上.10. P100 14.提⽰: ()32214212413211110111011101021*********111011101110111000000002311011100000000r r r r r r r r r r r +-+--?------ ? ? ? ?---- ? ? ? ?---故由1234,,,αααα⽣成的⼦空间V 的⼀组基为1110,0123.正交化 11110177711066663244--???????? ? ? ? ?-- ? ? ? ?-= ? ? ? ? ? ? ? ? ? ? ? ????????? ,单位化 1117610206610224--,. 故空间V 的⼀组规范正交基为1117610206610224--,. 11. P100 16. 17.提⽰:(1)、(2)C 是正交矩阵1T T CC E CC -?=?=(3)()TT TAB AB ABB A E ==(4)TTT A O A O A O A O E O B O B O B OB ??==12. P100 3.提⽰: P64 11. 13. P100 4.12,,,n ααα是⼀组基.14. P100 5.提⽰:(1)()()()22123111,,1,1,11,,011001x x x x x ααα??=+++=;(2)()223321,,21x x x x ??++=.14. P100 6.提⽰: 同12.(2). 15. P101 7.提⽰: (1)关于y 轴对称;(2)投影到x 轴;(3)关于直线y=x 对称; (4)逆时针旋转900.16. P101 8.提⽰: ()()()(),,,x x A A B B C C D D A y y ''''?=?=?=?=??= ? ? ????? .(1)1001x x x y y y ??--==;(2)10202x x x y y y==;(3)2222 11x x y x y x y y ??+== -+-.17. P102 10.x ααα=的解即为所求.18. P102 11.提⽰:(2)设{}1U α=, 有()()()()()()1111011R U R U nU U R U R U n R U R U n αοαο=?=?=?⊥+=≠?=?=- 19. P102 12.提⽰: A 是正交矩阵12 11T TA A AA E A A -?=??=??=?=±??另⼀⽅⾯,由**1T AA A E A A A A A -=?==, 1,1ij ij ij ij A a A A a A ?===-=-??当当20. P102 13.提⽰: 由12.(1)及01A B A B +=??=-及()()TTTT T BA B A B A B A +=+=+()0TB A B A B A B A B A B A ??+?=+?-+=+?+=五、知识扩展1. 设B 是秩为2的54?矩阵,()()()1231,1,2,3,1,1,4,1,5,1,8,9TTTααα==--=--是齐次⽅程组Bx ο=的解向量, 求Bx ο=的解空间的⼀组规范正交基.提⽰: ()2R B =?基础解系含有两个解向量, 即Bx ο=的解空间的基中含有两个解向量. ⼜12,αα线性⽆关, 故12,αα是Bx ο= 的解空间的⼀组基. 将12,αα正交化规范化, 即得Bx ο=的解空间的⼀组规范正交基.。