概率数理统计Less1
- 格式:ppt
- 大小:693.50 KB
- 文档页数:31
概率论与数理统计公式大全一、概率基本公式1.事件的概率:对于事件A,在随机试验中发生的次数记为n(A),则事件A的概率为P(A)=n(A)/n,其中n为试验总次数。
2.互斥事件的概率:对于互斥事件A和B,有P(A∪B)=P(A)+P(B)。
3.事件的余事件概率:设事件A为必然事件,全集的概率为P(S)=1,事件A的余事件为A',则有P(A')=1-P(A)。
4.条件概率:对于两个事件A和B,假设事件B已经发生,事件A发生的概率记为P(A,B),则P(A,B)=P(A∩B)/P(B)。
二、随机变量及其概率分布1.离散型随机变量:设X是一个离散型随机变量,其概率函数为P(X=k),其中k为X的取值,概率函数满足P(X=k)≥0,且∑P(X=k)=12. 连续型随机变量:设X是一个连续型随机变量,其概率密度函数为f(x),概率密度函数满足f(x)≥0,且∫f(x)dx = 13. 随机变量的数学期望:对于离散型随机变量X,其数学期望为E(X) = ∑k*P(X=k);对于连续型随机变量X,其数学期望为E(X)=∫xf(x)dx。
4. 随机变量的方差:对于离散型随机变量X,其方差为Var(X) =E(X^2) - [E(X)]^2;对于连续型随机变量X,其方差为Var(X) = E(X^2) - [E(X)]^2三、常见的概率分布1.伯努利分布:表示一次实验成败的概率分布,概率函数为P(X=k)=p^k(1-p)^(1-k),其中0≤p≤12.二项分布:表示n次独立重复的伯努利试验中成功次数的概率分布,概率函数为P(X=k)=C(n,k)*p^k(1-p)^(n-k),其中C(n,k)为组合数。
3. 泊松分布:表示单位时间或单位面积内发生事件次数的概率分布,概率函数为P(X=k) = (lambda^k)/(k!)*e^(-lambda),其中lambda为平均发生率。
4.均匀分布:表示在一个区间内取值相等的概率分布,概率密度函数为f(x)=1/(b-a),其中[a,b]为区间。
概率论与数理统计公式整理在现代数学中,概率论与数理统计是两个重要的分支。
其中概率论是研究随机事件发生的可能性或概率的科学。
而数理统计则是利用概率论的方法,对已经发生的随机事件进行统计分析和推断。
本文将整理概率论与数理统计中常用的公式。
一、基本概率公式1.概率:$P(A)=\frac{n(A)}{n(S)}$其中,$P(A)$表示事件$A$发生的概率,$n(A)$表示事件$A$所包含的基本事件的个数,$n(S)$表示所有基本事件的个数。
2.加法原理:$P(A\cup B)=P(A)+P(B)-P(A\cap B)$其中,$A$和$B$是两个事件,$A\cup B$表示事件$A$和事件$B$中至少有一个发生的概率,$A\cap B$表示两个事件同时发生的概率。
3.条件概率:$P(B|A)=\frac{P(A\cap B)}{P(A)}$其中,$P(B|A)$表示在事件$A$发生的条件下,事件$B$发生的概率。
4.乘法定理:$P(A\cap B)=P(A)P(B|A)$其中,$P(A\cap B)$表示两个事件同时发生的概率,$P(B|A)$表示在事件$A$发生的条件下,事件$B$发生的概率。
二、概率分布1.离散随机变量的概率分布律:$\sum\limits_{i=1}^{+\infty}{p(x_i)}=1$其中,$p(x_i)$表示离散随机变量取值为$x_i$的概率。
2.连续随机变量的概率密度函数:$\int_{-\infty}^{+\infty}{f(x)}\mathrm{d}x=1$其中,$f(x)$表示连续随机变量在$x$处的概率密度。
3.数学期望:$E(x)=\sum\limits_{i=1}^{+\infty}{x_ip(x_i)}$或$E(x)=\int_{-\infty}^{+\infty}{xf(x)}\mathrm{d}x$其中,$E(x)$表示随机变量$x$的数学期望,$p(x_i)$表示$x_i$这一离散随机变量取到的带权概率。
0-1分布名词解释
0-1分布,也被称为伯努利分布或两点分布,是概率论和统计
学中常见的离散概率分布之一。
它的名称源自于其只有两个可能的
结果,分别是0和1。
在0-1分布中,每次试验只有两个可能的结果,通常用0和1
来表示。
其中,0表示失败或不发生事件,1表示成功或发生事件。
这种分布常用于描述一次试验的结果是否成功或失败的情况。
0-1分布的概率质量函数可以表示为,P(X=k) = p^k (1-
p)^(1-k),其中,k可以取0或1,p表示成功的概率。
此外,0-1分布还具有一些重要的性质。
例如,它的均值(期
望值)为p,方差为p(1-p)。
当成功的概率p=0.5时,0-1分布呈
现最为平衡的情况。
0-1分布在实际应用中有广泛的应用。
例如,在金融领域,可
以使用0-1分布来描述某个事件是否发生,如股票涨跌、债券违约等。
在工程领域,可以使用0-1分布来表示某个设备是否正常工作。
在生物学领域,可以使用0-1分布来描述某种基因的存在与否。
总之,0-1分布是一种简单而重要的离散概率分布,适用于描述只有两个可能结果的试验,其概率质量函数可以方便地计算和应用于各种实际问题中。
两点分布(0-1分布)教学目标:1、理解两点分布;2、了解两点分布的应用。
教学重难点:充分了解两点分布的意义基础上的应用。
一、创设情境例1 排球运动员扣球一次命中得1分,不命中得0分(不考虑其他情况). 据新华社网,里约奥运会中国女排主攻手——朱婷以0.423的扣球命中率(看作扣球一次命中的概率)高居榜首,求她扣球一次的得分的分布列.二、导入新知两点分布:其中0<p<1,q=1-p,则称离散型随机变量X 服从参数为 p的二点分布(又称伯努利分布).而称p=P(X=1)为成功概率。
注意:两点分布的几个特点:(1)两点分布的试验结果只有两个可能性,且其概率之和为1。
(2)由对立事件的概率求法可知,已知P(X=0)(或P(X=1)),便可求出P(X=1)(或P(X=0))。
三、两点分布的应用实际生活中有没有二点分布的例子?应用非常广泛.但凡随机试验只有两个结果,都常用0–1分布描述,如产品是否合格、新生婴儿是男还是女、明天是否下雨、种籽是否发芽、系统是否正常、核算检测是否为阴性、抽取的彩券是否中奖、投篮是否命中等。
练习1:在射击的随机试验中,令X= 0表示射中,X=1表示未射中,如果射中的概率为0.8,求随机变量X的分布列。
练习2:设某项试验的成功率是失败率的2倍,用随机变量X去描述1次试验的成功次数,则失败率p 等于( )A.0B. 1/2C. 1/3D.2/3思考题:我们将核酸检测对象按照10人一组进行检测,若单个样本检测结果为阳性的概率为0.0001,每个样本检测为阳性与否相互独立,用混样检测法。
那么检测结果的分布列是? 解:设化验结果为阳性记随机变量X=1,化验结果为阴性记随机变量X=0,则分布列为:再举几个例子:1. 从某一学校随机选一学生,测量他的身高.我们可以身高看作随机变量X,x 的取值范围在[1.5,1.9] .解:设[1.5-1.7]为1,(1.7-1.9]为0,则分布列为:2.食堂排队的人数是随机变量.大于十人为1,十人以内为0,是一个两点分布。
概率论与数理统计公式概率论是一门研究随机现象规律的数学学科,是现代数学的基础之一、而数理统计则是利用概率论的工具和方法,分析和处理统计数据,从而得出推断、估计、决策等信息的科学。
在概率论与数理统计的学习过程中,掌握一些重要的公式是非常关键的。
下面是一些概率论与数理统计中常用的公式:1.概率公式:-加法公式:P(A∪B)=P(A)+P(B)-P(A∩B)-乘法公式:P(A∩B)=P(A)*P(B,A)-条件概率公式:P(A,B)=P(A∩B)/P(B)2.期望与方差公式:-期望:E(X)=∑(x*P(X=x))- 方差:Var(X) = E((X-μ)^2) = ∑((x-μ)^2 * P(X=x))3.常用概率分布及其特征:-二项分布:P(X=k)=C(n,k)*p^k*(1-p)^(n-k)-泊松分布:P(X=k)=(λ^k*e^(-λ))/k!-正态分布:f(x)=(1/(σ*√(2π)))*e^(-((x-μ)^2)/(2*σ^2))4.样本与总体统计量公式:-样本均值:x̄=(∑x)/n-样本方差:s^2=(∑(x-x̄)^2)/(n-1)-样本标准差:s=√(s^2)5.参数估计公式:-点估计:-总体均值估计:μ的点估计为x̄-总体方差估计:σ^2的点估计为s^2-区间估计:-总体均值的置信区间:x̄±Z*(σ/√n)-总体比例的置信区间:p±Z*√((p*(1-p))/n)6.假设检验公式:-均值检验:-单样本均值检验:t=(x̄-μ0)/(s/√n)-双样本均值检验:t=(x̄1-x̄2)/√((s1^2/n1)+(s2^2/n2))-比例检验:-单样本比例检验:z=(p-p0)/√((p0*(1-p0))/n)-双样本比例检验:z=(p1-p2)/√((p*(1-p))*((1/n1)+(1/n2)))以上是概率论与数理统计中一些常用的公式,这些公式为解决问题提供了有力的工具和方法。
概率论与数理统计公式大全概率论和数理统计作为数学的两个重要分支,被广泛应用于各个领域。
无论是在学术研究还是实际应用中,熟悉并掌握相关的公式是非常重要的。
本文将为您提供概率论与数理统计公式的大全,帮助您更好地理解和应用这两门学科。
一、概率论公式1. 概率公式- 概率的定义:P(A) = N(A) / N(S),其中P(A)表示事件A发生的概率,N(A)代表事件A的样本点个数,N(S)表示样本空间中的样本点总数。
- 加法法则:P(A∪B) = P(A) + P(B) - P(A∩B),其中P(A∪B)表示事件A或事件B发生的概率,P(A∩B)表示事件A和事件B同时发生的概率。
- 乘法法则:P(A∩B) = P(A) × P(B|A),其中P(B|A)表示在事件A 发生的条件下,事件B发生的概率。
2. 条件概率公式- 条件概率的定义:P(A|B) = P(A∩B) / P(B),其中P(A|B)表示在事件B发生的条件下,事件A发生的概率。
- 全概率公式:P(A) = ∑[P(Bi) × P(A|Bi)],其中Bi为样本空间的一个划分,P(Bi)表示事件Bi发生的概率,P(A|Bi)表示在事件Bi发生的条件下,事件A发生的概率。
3. 事件独立性公式- 事件A和事件B独立的定义:P(A∩B) = P(A) × P(B),即事件A和事件B同时发生的概率等于事件A发生的概率乘以事件B发生的概率。
- 事件的相互独立:若对于任意的事件A1,A2,...,An,有P(A1∩A2∩...∩An) = P(A1) × P(A2) × ... × P(An),则称事件A1,A2,...,An相互独立。
4. 随机变量- 随机变量的定义:随机变量X是样本空间到实数集的映射。
- 随机变量的分布函数:F(x) = P(X≤x),表示随机变量X小于等于x的概率。
- 随机变量的概率密度函数(连续型随机变量):f(x)是非负函数,且对于任意实数区间[a, b],有P(a≤X≤b) = ∫[a, b]f(x)dx。
概率论与数理统计公式概率论与数理统计是现代科学与工程领域中应用最广泛的数学分支之一。
概率论与数理统计涉及众多的公式和理论,是数据分析、预测和决策的重要工具。
在此,我们将介绍概率论与数理统计中常用的公式。
1. 概率计算公式概率计算是概率论中的基础。
以下是概率的定义和概率计算公式。
定义:事件A在随机试验中出现的可能性称为概率P(A)。
公式1:若事件A和事件B相互独立,则P(A∩B)=P(A)×P(B)。
公式2:若事件A和事件B不相互独立,则P(A∩B)=P(A)×P(B|A)。
公式3:若事件A和事件B互为对立事件,则P(A)+P(B)=1 。
公式4:全概率公式:P(B)=∑P(Ai)×P(B|Ai) 。
2. 随机变量和概率分布随机变量是概率论中的重要概念。
以下是随机变量和概率分布函数的定义和公式。
定义1:在随机试验中,对每个样本点都有一个对应的实数值,则这个实数值称为随机变量X。
定义2:X的概率分布函数F(x)定义为:F(x)=P(X≤x)。
公式5:二项分布的概率分布函数为:P(X=k)=C(n,k)p^k*q^(n-k) (其中n表示试验次数,k表示事件A 发生的次数,p表示单次事件A发生的概率,q=1-p )。
公式6:泊松分布的概率分布函数为:P(X=k)=(λ^k/k!)×e^-λ (其中λ是一个正实数)。
公式7:正态分布的概率分布函数为:f(x)=(1/√(2π)σ)×e^-(x-μ)²/(2σ²) (其中μ是分布的均值,σ²是分布的方差)。
3. 样本描述和参数估计样本描述和参数估计是数理统计中的基础。
以下是样本描述和参数估计的公式。
公式8:样本的均值:X=(x1+x2+…+xn)/n 。
公式9:样本的方差:S²=[(x1-X)²+(x2-X)²+…+(xn-X)²]/(n-1) 。
概率论与数理统计公式以下是概率论与数理统计中常见的公式整理:1.基本概率公式:P(A) = n(A) / n(S),其中A 为事件,n(A) 为事件A 发生的基数,n(S) 为样本空间的基数。
2.条件概率公式:P(A|B) = P(A∩B) / P(B),其中A 和B 为两个事件,P(A∩B) 表示事件A 和事件B 同时发生的概率,P(B) 表示事件B 发生的概率。
3.全概率公式:P(A) = ΣP(A|Bi) * P(Bi),其中Bi 为互不相交的事件,P(Bi) 表示事件Bi 发生的概率,P(A|Bi) 表示在事件Bi 发生的条件下,事件A 发生的概率。
4.贝叶斯公式:P(Bi|A) = P(A|Bi) * P(Bi) / ΣP(A|Bj) * P(Bj),其中Bi 为互不相交的事件,P(Bi) 表示事件Bi 发生的概率,P(A|Bi) 表示在事件Bi 发生的条件下,事件A 发生的概率,P(A|Bj) 表示在事件Bj 发生的条件下,事件A 发生的概率。
5.随机变量的期望值:E(X) = Σxi * P(xi),其中X 为随机变量,xi 为随机变量X 取的第i 个值,P(xi) 表示X 取xi 的概率。
6.随机变量的方差:Var(X) = E((X - E(X))^2),其中X 为随机变量,E(X) 表示X 的期望值。
7.正态分布的概率密度函数:f(x) = (1 / (σ* √(2π))) * e^(-((x-μ)^2 / (2σ^2))),其中μ为正态分布的均值,σ为正态分布的标准差。
8.标准正态分布的概率密度函数:f(x) = (1 / √(2π)) * e^(-x^2 / 2),其中x 为标准正态分布的随机变量。
9.两个随机变量的协方差:Cov(X,Y) = E((X - E(X)) * (Y - E(Y))),其中X 和Y 为两个随机变量,E(X) 和E(Y) 分别表示X 和Y 的期望值。
概率论数理统计公式整理一、概率论公式1.定义公式:-事件概率的定义:若E为随机试验的一个事件,S为样本空间,则事件E发生的概率可以表示为P(E)=n(E)/n(S),其中n(E)表示事件E中元素的个数,n(S)表示样本空间S中元素的总数。
2.概率计算公式:-加法公式:P(A∪B)=P(A)+P(B)-P(A∩B),其中A,B为两个事件。
-条件概率公式:P(A,B)=P(A∩B)/P(B),其中A,B为两个事件,且P(B)≠0。
-乘法公式:P(A∩B)=P(A)P(B,A),其中A,B为两个事件。
3.全概率公式与贝叶斯公式:-全概率公式:设B1,B2,...,Bn为样本空间S的一组互不相容的事件,并且它们构成了对S的一个完全划分,即Bi∩Bj=∅(i≠j),且B1∪B2∪...∪Bn=S,则对于任意事件A,有P(A)=ΣP(A,Bi)P(Bi),其中i=1,2,...,n。
-贝叶斯公式:设B1,B2,...,Bn为样本空间S的一组互不相容的事件,并且它们构成了对S的一个完全划分,即Bi∩Bj=∅(i≠j),且B1∪B2∪...∪Bn=S,则对于任意事件A,有P(Bi,A)=P(A,Bi)P(Bi)/ΣP(A,Bj)P(Bj),其中i=1,2,...,n。
二、数理统计公式1.随机变量的概率分布:-离散型随机变量的概率分布:P(X=x)=p(x),其中x为随机变量X的取值,p(x)为概率质量函数。
- 连续型随机变量的概率密度函数: f(x) ≥ 0,且∫f(x)dx = 12.随机变量的数学期望:- 离散型随机变量的数学期望: E(X) = Σxip(xi),其中xi为随机变量X的取值,p(xi)为X取值为xi的概率。
- 连续型随机变量的数学期望: E(X) = ∫xf(x)dx。
3.方差和标准差:- 离散型随机变量的方差: Var(X) = E[(X - E(X))^2] = Σ(xi - E(X))^2p(xi)。
E (X )=∑∑x i p i jijxxn+∞ n n−λλkP (X = k ) = e , (k = 0,1,...)k !(a ≤ x ≤ b )1b − af (x ) =概率论与数理统计公式总结F (x ) = P (X ≤ x ) = ∑P (X = k )k ≤x分布函数 对离散型随机变量F ' (x ) = f (x )第一章P(A+B)=P(A)+P(B)- P(AB)特别地,当 A 、B 互斥时, P(A+B)=P(A)+P(B)对连续型随机变量F (x ) = P (X ≤ x ) =∫−∞f (t )dt条件概率公式分布函数与密度函数的重要关系:P (A | B ) =P (AB )P (B )F (x ) = P (X ≤ x ) =∫−∞f (t )dt概率的乘法公式P (AB ) = P (B )P (A | B )= P (A )P (B | A )二元随机变量及其边缘分布分布规律的描述方法全概率公式:从原因计算结果P (A ) = ∑ P (B k )P (A | B k )k =1联合密度函数联合分布函数f (x , y ) ≥ 0f (x , y ) F (x , y )+∞ +∞Bayes 公式:从结果找原因∫−∞ ∫−∞f (x , y )dx dy = 1 0 ≤ F (x , y ) ≤ 1P (B k| A ) = P (B i )P (A | B i ) ∑P (B )P (A | B )F (x , y ) = P {X ≤ x ,Y ≤ y }f (x ) = ∫ f (x , y )d y 联合密度与边缘密度第二章kkk =1Xf Y (y ) = −∞+∞−∞f (x , y )dx二项分布(Bernoulli 分布)——X~B(n,p)P (X =k )=C k p k (1−p)n −k,(k =0,1,...n , ) 泊松分布——X~P(λ)概率密度函数离散型随机变量的独立性P {X = i ,Y = j } = P {X = i }P {Y = j }连续型随机变量的独立性f (x , y ) = f X (x ) f Y (y ) 第三章数学期望离散型随机变量,数学期望定义怎样计算概率P (a ≤ X ≤ b )b连续型随机变量,数学期望定义� E(a)=a ,其中 a 为常数P (a ≤ X ≤ b ) = ∫af (x )d x均匀分布 X~U(a,b)指数分布 X~Exp (θ)• E(a+bX)=a+bE(X),其中 a 、b 为常数 � E(X+Y)=E(X)+E(Y),X 、Y 为任意随机变量随机变量 g(X)的数学期望常用公式+∞∫−∞ f (x )dx = 1+∞E (X ) = ∑x k ⋅P kk =−∞+∞E (X ) = ∫−∞x ⋅ f (x )dxE (g (X )) = ∑ g (x k ) p kk∫Y / nD (X +Y ) = D (X ) + D (Y ) + 2E {(X − E (X ))(Y − E (Y ))} X ~ N (µ,σ2 )i σ 12 σ E (X Y ) = ∑∑x i y j p i jij2σ22−(x −µ) e 12πσf (x ) =不相关不一定独立第四章 正态分布E (X ) = µ,D (X ) = σ2方 差 定义式常用计算式常用公式当 X 、Y 相互独立时:标准正态分布的概率计算 标准正态分布的概率计算公式P (Z ≤ a ) = P (Z < a ) = Φ(a )P (Z ≥ a ) = P (Z > a ) = 1− Φ(a )P (a ≤ Z ≤ b ) = Φ(b ) − Φ(a )P (−a ≤ Z ≤ a ) = Φ(a ) − Φ(−a ) = 2Φ(a ) −1一般正态分布的概率计算一般正态分布的概率计算公式 P (X ≤ a ) = P (X < a ) = Φ(a − µσ ) a − µ方差的性质P (X ≥ a ) = P (X > a ) = 1− Φ( σ)D(a)=0,其中 a 为常数P (a ≤ X ≤ b ) = Φ(b − µ− Φ(a − µD(a+bX)=b2D(X),其中 a 、b 为常数当 X 、Y 相互独立时,D(X+Y)=D(X)+D(Y) 协方差与相关系数E {[X − E (X )][Y − E (Y )]}= E (XY ) − E (X )E (Y )第 五 章卡方分布σ ) σ)n若X ~ N (0,1),则∑ X 2 ~ χ2(n )i =121n2 2协方差的性质若Y ~ N (µ,σ ),t 分布则 2 ∑(Y i− µ) i =1 ~ χ (n )若X ~ N (0,1), Y ~ χ2(n ),则X ~ t (n )独立与相关独立必定不相关 Cov (aX ,bY ) = abCov (X ,Y )若U ~ χ2 (n ), F 分布正态总体条件下 样本均值的分布:V ~ χ2(n ),则U / n 1 V / n 2~ F (n 1,n 2 )相关必定不独立2X ~ N (µ,)nX − µ~ N (0,1)σ/ n 2− E (X )) ⋅ f (x )dx x +∞−∞∫ D (X ) =( E (XY ) = ∫ ∫ xyf (x , y )dxdy σX ~ N (µ,σ2 ) ⇔ Z = X − µ~ N (0,1)D (X )D (Y )XY ρ =C ov (X ,Y )Cov (X +Y , Z ) = Cov (X , Z ) + Cov (Y , Z )C ov (X , X ) = E (X 2 ) − (E (X ))2 =D (X )Cov (X ,Y ) = E (XY ) − E (X )E (Y )D (X +Y ) = D (X ) + D (Y )D (X ) =E (X 2 ) − [E (X )]2当X 与Y 独立时,E (XY ) = E (X )E (Y )Φ(a ) = 1− Φ(−a ) E (X +Y ) = E (X ) + E (Y )E (X ) = ∫ ∫ xf (x , y )dxdyn ⎠ n ⎠ n ⎠σ2 1 + 2 n 1 n 2 σ2 σ / n(x 1 − x 2 )± z α/ 2 2 2 ⎜ χ χ ⎛ ⎜ ⎟12x ± z样本方差的分布:正态总体方差的区间估计 两个正态总体均值差的置信区间(n −1)S 2 ~ χ2 (n −1) X − µ~ t (n −1) 大样本或正态小样本且方差已知σ2两个正态总体的方差之比⎛⎜ ⎜ ⎝S 2 / S 2两个正态总体方差比的置信区间1 2~ F (n 1 −1,σ2 /σ2n 2 −1)2 / S 2 , 2 / S 2⎞ ⎝ F α/ 2 (n 1 −1,n 2 −1) F α/ 2 (n 1 −1,n 2 −1) ⎠第六章点估计:参数的估计值为一个常数矩估计 最大似然估计n似然函数第七章假设检验的步骤1 根据具体问题提出原假设 H0 和备择假设 H12 根据假设选择检验统计量,并计算检验统计值3 看检验统计值是否落在拒绝域,若落在拒绝域则L = Π i =1f (x i ;θ)L = Π i =1p (x i ;θ)拒绝原假设,否则就不拒绝原假设。
数理统计常用公式整理一、概率公式1. 概率的加法公式:P(A∪B) = P(A) + P(B) - P(A∩B)2. 条件概率公式:P(A|B) = P(A∩B) / P(B)3. 乘法公式:P(A∩B) = P(B) × P(A|B) = P(A) × P(B|A)4. 全概率公式:P(B) = ΣP(Ai) × P(B|Ai),其中Ai为样本空间的划分。
5. 贝叶斯公式:P(Ai|B) = P(Ai) × P(B|Ai) / ΣP(Aj) × P(B|Aj),其中Ai为样本空间的划分。
二、随机变量公式1. 期望:E(X) = Σx×P(X=x),其中x为随机变量X的取值,P(X=x)为其概率。
2. 方差:Var(X) = E((X-E(X))^2) = E(X^2) - [E(X)]^23. 协方差:Cov(X,Y) = E((X-E(X))(Y-E(Y)))4. 两个随机变量X和Y的相关系数:ρ(X,Y) = Cov(X,Y) / (σ(X) × σ(Y)),其中σ(X)和σ(Y)分别为X和Y的标准差。
三、常见分布公式1. 二项分布:P(X=k) = C(n,k) × p^k × (1-p)^(n-k),其中n为试验次数,k为成功次数,p为单次试验成功的概率。
2. 泊松分布:P(X=k) = (λ^k × e^(-λ)) / k!,其中λ为单位时间(或单位面积)内随机事件发生的平均次数。
3. 正态分布:f(x) = (1 / (σ×√(2π))) × e^(-(x-μ)^2 / (2σ^2)),其中μ为均值,σ为标准差。
4. t分布:f(t) = (Γ((v+1)/2) / (√(vπ) × Γ(v/2))) × (1 + t^2/v)^(-((v+1)/2)),其中v为自由度。
概率论与数理统计完整公式概率论与数理统计是数学的一个分支,研究随机现象和随机变量之间的关系、随机变量的分布规律、经验规律及参数估计等内容。
在概率论与数理统计的学习中,有许多重要的公式需要掌握。
以下是概率论与数理统计的完整公式。
一、概率论公式:1.全概率公式:设A1,A2,…,An为样本空间S的一个划分,则对任意事件B,有:P(B)=P(B│A1)·P(A1)+P(B│A2)·P(A2)+…+P(B│An)·P(An)2.贝叶斯公式:对于样本空间S的一划分A1,A2,…,An,其中P(Ai)>0,i=1,2,…,n,并且B是S的任一事件,有:P(Ai│B)=[P(B│Ai)·P(Ai)]/[P(B│A1)·P(A1)+P(B│A2)·P(A2)+…+P (B│An)·P(An)]3.事件的独立性:若对事件A,B有P(AB)=P(A)·P(B),则称事件A,B相互独立。
4.概率的乘法公式:对于独立事件A1,A2,…,An,有:P(A1A2…An)=P(A1)·P(A2)·…·P(An)5.概率的加法公式:对事件A,B有:P(A∪B)=P(A)+P(B)-P(AB)6.条件概率的计算:对事件A,B有:P(A,B)=P(AB)/P(B)7.古典概型的概率计算:设事件A在n次试验中发生k次的次数服从二项分布B(n,p),则其概率可表示为:P(X=k)=C(n,k)·p^k·(1-p)^(n-k),其中C(n,k)=n!/[k!(n-k)!]二、数理统计公式:1.样本均值的期望和方差:样本的均值X̄的期望和方差分别为: E(X̄) = μ,Var(X̄) = σ^2 / n,其中μ 为总体的均值,σ^2 为总体方差,n 为样本容量。
2.样本方差的期望:样本方差S^2的期望为:E(S^2)=σ^2,其中σ^2为总体方差。
概率论与数理统计最简单讲解1 简介概率论是研究随机现象和概率规律的数学分支,一般分为经典概率、几何概率和统计概率。
数理统计是一个应用概率论于实际问题的统计学分支,主要研究样本及其分布、估计和假设检验等内容。
2 概率论的基本概念概率是指某件事情发生的可能性大小,用数字表示。
0表示不可能发生,1表示肯定发生,0~1之间的数字表示可能性大小。
概率分为主观概率和客观概率。
主观概率是指根据经验、知识、直觉等主观因素来判断某件事情发生的可能性大小。
而客观概率则是通过实验、统计等客观方法来计算某件事情发生的可能性大小。
3 经典概率和几何概率经典概率适用于“随机事件有限且等可能”的情形,如掷骰子,扑克牌等。
设事件A发生的可能性为P(A),则概率公式为:P(A)=有利样本数/总样本数。
几何概率适用于具有可度量性的随机现象,如从一个圆环上随机抽取有色球的概率,可以通过求圆环表面积和有色球的面积比来计算概率。
4 统计概率和条件概率统计概率是指基于概率分布函数,用频率的稳定性代替概率来计算随机事件发生的可能性大小。
条件概率指已知事件B发生的前提下,事件A发生的概率大小。
条件概率公式为:P(A|B)=P(AB)/P(B)。
5 数理统计的基本概念数据分为总体和样本两类。
总体是指研究对象的全体。
样本是指从总体中选出的一部分观测值。
统计量是从样本数据得到的量,通常用统计量来描述总体的某些特征。
6 样本分布样本的分布会受到样本容量、总体分布和抽样方式等因素的影响。
常见的样本分布有正态分布、t分布、F分布等。
其中正态分布是最重要的一种样本分布,因为它在自然界和社会方面都普遍存在。
7 参数估计参数估计是指通过样本数据来推断总体参数的值。
根据点估计和区间估计两种方式,可以计算出总体平均数、标准差、比例等各类参数的值。
8 假设检验假设检验是指将总体分布的某个特性提出一个假设,并利用样本数据来检验该假设的正确性。
假设检验包括两类错误:一类是将假设的否定但事实上是正确的,称为第一类错误;另一类是将假设的接受但事实上是错误的,称为第二类错误。
概率论与数理统计符号表A\cup B :和事件A\cap B 或 AB :积事件\bar{A} :对立事件P(A) :事件 A 的概率P\{X\leq 1\} : X\leq1 的概率S :样本空间\binom ar : a 中取 r 个的组合数P(B\mid A) : A 的条件下 B 的概率b(n,p) :二项分布 P\{X=k\}=\binom nk p^k(1-p)^{n-k} ,k = 0,1,2,\dots,n\pi(\lambda) 或 P(\lambda) :泊松分布P\{X=k\}=\frac{\lambda^k\textrm{e}^{-\lambda}}{k!} ,k = 0,1,2,\dotsF(x) :分布函数f(x) :概率密度函数U(a,b) :均匀分布 f(x)=\begin{cases} \frac{1}{b-a} & a<x<b\\ 0 & \text{otherwise} \end{cases}参数为 \theta 的指数分布: f(x)=\begin{cases}\frac{1}{\theta}\mathrm{e}^{-x/\theta} & x>0\\ 0 &\text{otherwise} \end{cases}N(\mu,\sigma^2) :正态分布f(x)=\frac{1}{\sqrt{2\pi}\sigma}\mathrm{e}^{-\frac{(x-\mu)^2}{2\sigma^2}} , -\infty<x<\infty\varphi(x) :标准正态分布的概率密度函数\varPhi(x) :标准正态分布的分布函数z_\alpha :标准正态分布的上 \alpha 分位数f_Y(y) :随机变量 Y 的概率密度函数P\{X\leq x, Y\leq y\} :事件 (X\leq x)\cap(Y\leq y) 的概率F(x,y) :联合分布函数f(x,y) :联合概率密度N(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,\rho) :二维正态分布[1]f(x,y)=\frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}\exp\left\{\frac{-1}{2(1-\rho^2)}\left[\frac{(x-\mu_1)^2}{\sigma_1^2}-2\rho\frac{(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2}+\frac{(y-\mu_2)^2}{\sigma_2^2}\right]\right\}f_{X\mid Y}(x\mid y) :条件概率密度f_X\ast f_Y :卷积 \int_{-\infty}^\infty f_X(z-y)f_Y(y)\mathrm{d}y 或 \int_{-\infty}^\inftyf_X(x)f_Y(z-x)\mathrm{d}xE(X) :数学期望D(X) 或 \mathrm{Var}(X) :方差\sigma(X) :标准差\mathrm{Cov}(X,Y) :协方差\rho_{XY} :相关系数\bar{X} :样本均值S^2 :样本方差S :样本标准差A_k :样本 k 阶(原点)矩B_k :样本 k 阶中心矩\Gamma(x)=\int_0^\infty\mathrm{e}^{-t}t^{x-1}\mathrm{d}t\quad(x>0)\chi^2(n) :自由度为 n 的 \chi^2 分布\chi_\alpha^2(n) : \chi^2(n) 分布的上 \alpha 分位数t(n) :自由度为 n 的 t 分布F(n_1,n_2) :自由度为 (n_1,n_2) 的 F 分布F_\alpha(n_1,n_2) : F(n_1,n_2) 分布的上 \alpha 分位数\hat{\theta} : \theta 的估计量L(\theta) :似然函数1.^不考吧。
概率论与数理统计第一章思维导图概率论与数理统计第一章思维导图:
1、统计学:统计学是研究发生在实际或理论中事件的过程,用于估计实际可能发生的情况和结果的科学。
2、概率:概率是描述实际事件发生的可能性的一种计量方法,它是一种相对的度量。
3、不确定性:不确定性是模型构建中的基本要素,它反映了模型在实际应用中不能精确描述实际情况,而要做出可能与实际有所偏差的预测。
4、随机变量:随机变量是统计分析中的基本概念,它表示一类事件发生时观测到的可能结果。
5、概率分布:概率分布是描述事件发生的概率特性的方法,通过它可以掌握事件可能发生某种结果的概率大小。
6、离散型概率分布:离散型概率分布的核心思想是将随机变量的取值划分为一些互斥的概率事件,并为每个概率事件提供发生概率。
7、连续型概率分布:连续型概率分布是在随机变量的取值期间取得连续概率分布及其密度函数的方法,它提供了一种可靠的可量化的方法来描述随机事件的发生可能性。
8、期望:期望是统计学中的一种有效度量,它反映了随机变量取不同值时的期望值大小,期望也是统计分析的基础。
9、方差:方差是衡量随机变量发生结果的变异程度的重要参数,它还可以衡量偏差量与期望量之间的差异。
10、协方差:协方差是衡量两个随机变量发生结果之间的线性相关性的参数,它可以用来衡量两个变量之间发生的相关性大小。
概率论与数理统计知识点总结一、概率的基本概念1.概率的定义:概率是描述事件发生可能性的数字,表示为一个介于0和1之间的数。
2.事件与样本空间:事件是可能发生的结果的集合,样本空间是所有可能结果的集合。
3.事件的运算:事件的运算包括并、交、差等,分别表示两个事件同时发生、至少一个事件发生、一个事件发生而另一个事件不发生等。
4.概率的性质:概率具有非负性、规范性、可列可加性等性质。
二、随机变量与概率分布1.随机变量的定义:随机变量是一个变量,它的值由随机事件决定。
2.离散随机变量:离散随机变量只能取有限或可数个值,其概率表示为离散概率分布函数。
3.连续随机变量:连续随机变量可以取任意实数值,其概率表示为概率密度函数。
4.分布函数:分布函数描述随机变量的概率分布情况,包括累积分布函数和概率质量函数。
三、常见概率分布1.离散分布:包括伯努利分布、二项分布、泊松分布等。
2.连续分布:包括均匀分布、正态分布、指数分布、伽玛分布等。
正态分布在自然界和社会现象中广泛存在。
3.其他分布:包括卡方分布、指数分布、F分布、t分布等。
四、抽样与统计推断1.抽样:抽样是从总体中选择一部分个体进行实验或调查的方法,常用的抽样方法包括随机抽样、分层抽样、整群抽样等。
2.统计推断:通过从样本中获得的数据,对总体做出有关参数的推断。
包括点估计和区间估计两种方法。
3.假设检验:通过对样本数据的统计量进行计算,判断总体参数是否满足其中一种假设。
包括单样本假设检验、两样本假设检验、方差分析等。
五、回归分析与相关分析1.回归分析:研究两个或多个变量之间关系的统计方法,包括一元线性回归分析、多元线性回归分析等。
2.相关分析:研究两个变量之间相关性的统计方法,常用的相关系数包括皮尔逊相关系数和斯皮尔曼相关系数。
六、贝叶斯统计学1.贝叶斯定理:根据先验概率和条件概率,计算后验概率的统计方法。
2.贝叶斯推断:根据贝叶斯定理以及样本数据,推断参数的后验分布。
概率论与数理统计必背公式在概率论与数理统计中,掌握好一些重要的公式是非常重要的,这些公式可以帮助我们解决问题、推导证明以及计算概率和统计量。
下面将介绍一些必须掌握的概率论与数理统计的重要公式。
一、概率论公式:1.加法定理:如果事件A和B是互不相容的(即A和B不会同时发生),则它们的和事件的概率为P(A∪B)=P(A)+P(B)。
2.条件概率公式:对于两个事件A和B,A在给定B发生的条件下发生的概率定义为P(A,B)=P(A∩B)/P(B)。
3.乘法定理:对于两个事件A和B,其交事件的概率可以通过条件概率公式来计算,即P(A∩B)=P(A,B)*P(B)。
4.全概率公式:如果事件B1,B2,...,Bn是一组互不相容的且其并集为样本空间(即事件B1∪B2∪...∪Bn=S),则对于事件A,它的概率可以通过条件概率公式和全概率公式来计算,即P(A)=P(A,B1)*P(B1)+P(A,B2)*P(B2)+...+P(A,Bn)*P(Bn)。
5.贝叶斯公式:贝叶斯公式是条件概率公式的推广,对于事件A和B,其交事件的概率可以通过贝叶斯公式来计算,即P(A,B)=P(B,A)*P(A)/P(B)。
二、数理统计公式:1.期望:对于一组随机变量X,其期望(也称为均值)定义为E(X)=ΣX*P(X),即随机变量X乘以其概率的和。
2. 方差:对于一组随机变量X,其方差定义为Var(X) = E((X - μ)^2),其中μ为X的期望。
3. 协方差:对于两组随机变量X和Y,其协方差定义为Cov(X,Y) = E((X - μx)(Y - μy)),其中μx和μy分别为X和Y的期望。
4. 标准差:对于一组随机变量X,其标准差定义为σ = √Var(X),即方差的平方根。
5. 协方差矩阵:对于多组随机变量X1,X2,...,Xn,其协方差矩阵定义为Cov(X) = [Cov(Xi,Xj)],其中i和j分别表示第i组和第j组随机变量。
第一章随机事件及概率1.1随机事件1.1.1随机试验一、人在实际生活中会遇到两类现象:1.确定性现象:在一定条件下实现与之其结果。
2.随机现象(偶然现象):在一定条件下事先无法预知其结果的现象。
二、随机试验满足条件:1.实验可以在相同条件写可以重复进行;(可重复性)2.事先的所有可能结果是事先明确可知的;(可观察性)3.每次实验之前不能确定哪一个结果一定会出现。
(不确定性)1.1.2样本空间1.样本点:每次随机试验E 的每一个可能的结果,称为随机试验的一个样本点,用w 表示。
2.样本空间:随机试验E 的所有样本点组成的集合成为试验E 的样本空间。
1.1.3随机事件1.随机事件:一随机事件中可能发生也可能不发生的事件称为试验的随机事件。
2.基本事件:试验的每一可能的结果称为基本事件。
一个样本点w 组成的单点集{w}就是随机试验的基本事件。
3.必然事件:每次实验中必然发生的事件称为必然事件。
用Ω表示。
样本空间是必然事件。
4.不可能事件:每次试验中不可能发生的事件称为不可能事件,用空集符号表示。
1.1.4事件之间的关系和运算1.事件的包含及相等“如果事件A 发生必然导致事件B 发生”,则称事件B 包含事件A ,也称事件A 是B 的子事件,记作A B B A ⊃⊂或。
2.事件的和(并⋃)“事件A 与B 中至少有一个事件发生”,这样的事件称为事件A 与B 的和事件,记作B A 。
3.事件的积(交⋂)“事件A 与B 同时发生”,这样的事件称作事件A 与B 的积(或交)事件,记作AB B A 或 。
4.事件的差“事件A 发生而事件B 不发生”,这样的事件称为事件A 与B 的差事件,记作A-B 。
5.事件互不相容(互斥事件)“事件A 与事件B 不能同时发生”,也就是说,AB 是一个不可能事件,即=AB 空集,即此时称事件A 与事件B 是互不相容的(或互斥的)6.对立事件“若A 是一个事件,令A A -Ω=,称A 是A 的对立事件,或称为事件A 的逆事件”事件A 与事件A 满足关系:=A A 空集,Ω=A A 对立事件一定是互斥事件;互斥事件不一定是对立事件。