2017年中考数学专题训练实数无答案
- 格式:doc
- 大小:70.50 KB
- 文档页数:4
XX★ 启用前2017 年中考题数学试卷一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个选项中,只有一个是符合题目要求的,把正确答案的标号填在答题卡内相应的位置上)1、计算2( 1) 的结果是()1B、2C、1D、 22、若∠α的余角是30°,则 cosα的值是()A 、213C、2D、3A 、B 、23223、下列运算正确的是()A 、2a a 1 B、a a2a2C、a a a2 D 、( a)2a24、下列图形是轴对称图形,又是中心对称图形的有()A、4 个B、3 个5、如图,在平行四边形∠1=()C、2 个D、1 个ABCD 中,∠ B=80 °, AE平分∠BAD交 BC于点E, CF∥ AE交 AE于点F,则A、 40°B、 50°C、 60°D、80°6、已知二次函数y ax2的图象开口向上,则直线y ax 1 经过的象限是()A 、第一、二、三象限 B、第二、三、四象限7、如图,你能看出这个倒立的水杯的俯视图是(C、第一、二、四象限)D、第一、三、四象限A B C D8、如图,是我市 5 月份某一周的最高气温统计图,则这组数据(最高气温)的众数与中位数分别是()A 、 28℃, 29℃B 、 28℃, 29.5℃C、 28℃, 30℃D 、 29℃, 29℃9、已知拋物线 y1 x2 2,当 1 x 5 时, y 的最大值是()2 35 7 A 、 2C 、B 、3D 、3 310、小英家的圆形镜子被打碎了,她拿了如图(网格中的每个小正方形边长为 1)的一块碎片到玻璃店,配制成形状、 大小与原来一致的镜面, 则这个镜面的半径是 ( )A 、 2B 、 5C 、22D 、311、如图,是反比例函数yk 1x和 yk 2 x( k 1k 2 )在第一象限的图象,直线AB ∥ x轴,并分别交两条曲线于A 、B 两点,若S AOB2 ,则k 2k 1 的值是()A 、 1B 、 2C 、 4D 、 812、一个容器装有1 升水,按照如下要求把水倒出:第1 次倒出1升水,第2 次倒出的水量是1升的1 ,223第 3 次倒出的水量是1 升的314,第4 次倒出的水量是14升的1 ,⋯按照这种倒水的方法,倒了5 10 次后容器内剩余的水量是()A 、10 升11B 、1 升9C 、110升D 、111升二、填空题(本大题共6 小题,每小题3 分,共 18 分 .把答案填在答题卡中的横线上)13、 2011的相反数是 __________14、近似数 0.618 有__________个有效数字.15、分解因式:a 3= __________16、如图,是某校三个年级学生人数分布扇形统计图,则九年级学生人数所占扇形的圆心角的度数为 __________C 'D 17、如图,等边△ ABC 绕点 B 逆时针旋转30°时,点 C 转到 C ′的位置, 且 BC ′与 AC 交于点 D ,则CD的值为 __________16 题图17 题图18 题图18、如图, AB 是半圆 O 的直径,以 0A 为直径的半圆O ′与弦 AC 交于点 D ,O ′ E ∥ AC ,并交 OC 于点E .则下列四个结论:①点 D 为 AC 的中点;② S O 'OE1S AOC ;③ AC 2AD;④四边形 O'DEO 是菱形.其中正确的结2论是 __________.(把所有正确的结论的序号都填上)三、解答题(本大题共 8 小题,满分共 66 分,解答过程写在答题卡上,解答应写出文字说明,证明过程或演算步骤) .19、计算: (1) 1(5) 034 .220、假日,小强在广场放风筝.如图,小强为了计算风筝离地面的高度,他测得风筝的仰角为 60°,已知风筝线 BC 的长为 10 米,小强的身高 AB 为 1.55 米,请你帮小强画出测量示意图,并计算出风筝离地面的高度.(结果精确到 1 米,参考数据2 ≈ 1.41 , 3≈ 1.73 )21、如图, △ OAB 的底边经过⊙ O 上的点 C ,且 OA=OB ,CA=CB ,⊙O 与 OA 、OB 分别交于 D 、E 两点.( 1)求证: AB 是⊙ O 的切线;( 2)若 D 为 OA 的中点,阴影部分的面积为33,求⊙ O 的半径 r .22、一个不透明的纸盒中装有大小相同的黑、白两种颜色的围棋,其中白色棋子 3 个(分别用白 A 、白 B 、白 C 表示),若从中任意摸出一个棋子,是白色棋子的概率为3 .4( 1)求纸盒中黑色棋子的个数;( 2)第一次任意摸出一个棋子(不放回) ,第二次再摸出一个棋子,请用树状图或列表的方法,求两次摸到相同颜色棋子的概率.23、上个月某超市购进了两批相同品种的水果,第一批用了 2000 元,第二批用了 5500 元,第二批购进水果的重量是第一批的 2.5 倍,且进价比第一批每千克多 1 元.( 1)求两批水果共购进了多少千克?( 2)在这两批水果总重量正常损耗 10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于 26%,那么售价至少定为每千克多少元?利润(利润率 =100%)进价AG为边作一个正方形AEFG ,24、如图,点G 是正方形ABCD 对角线 CA 的延长线上任意一点,以线段线段 EB 和 GD 相交于点 H.( 1)求证: EB=GD ;( 2)判断 EB 与 GD 的位置关系,并说明理由;( 3)若AB=2 , AG=2,求EB的长.25、已知抛物线y ax22ax 3a ( a 0) 与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点 D 为抛物线的顶点.(1)求 A 、 B 的坐标;(2)过点 D 作 DH 丄 y 轴于点 H,若 DH=HC ,求 a 的值和直线 CD 的解析式;(3)在第( 2)小题的条件下,直线 CD 与 x 轴交于点 E,过线段 OB 的中点 N 作 NF 丄 x 轴,并交直线CD 于点 F,则直线 NF 上是否存在点 M ,使得点 M 到直线 CD 的距离等于点 M 到原点 O 的距离?若存在,求出点M 的坐标;若不存在,请说明理由.中考数学试题答案一、选择题题号123456789101112答案B A C C B D B A C B C D二、填空题13. 201114. 315.a(3 a)(3 a)°17.2318.①③④16. 144三、解答题19. 解:原式 =2-1-3+2 ,=0 .故答案为: 0 .20.解:∵一元二次方程 x2-4x+1=0 的两个实数根是 x1、 x2,∴ x1 +x 2=4 , x1?x2=1 ,∴( x1+x 2)2÷()=4 2÷2=4 ÷421.解:在 Rt △ CEB 中,sin60 °=,∴CE=BC?sin60°=10×≈8.65m,∴CD=CE+ED=8.65+1.55=10.≈210m,答:风筝离地面的高度为 10m .22.( 1)证明:连 OC ,如图,∵ OA=OB , CA=CB ,∴OC ⊥AB,∴AB 是⊙ O 的切线;(2)解:∵ D 为 OA 的中点, OD=OC=r ,∴ OA=2OC=2r ,∴∠ A=30°,∠ AOC=60°, AC=r,∴∠ AOB=120°, AB=2r,∴ S 阴影部分 =S △OAB -S 扇形ODE = ?OC?AB-=-,∴?r?2r- r2=-,∴ r=1 ,即⊙ O 的半径 r 为 1 .23. 解:( 1) 3÷-3=1 .答:黑色棋子有 1 个;( 2)共12 种情况,有 6 种情况两次摸到相同颜色棋子,所以概率为.24. 解:( 1)设第一批购进水果x 千克,则第二批购进水果 2.5 千克,依据题意得:,解得 x=200 ,经检验 x=200 是原方程的解,∴x+2.5x=700 ,答:这两批水果功够进 700 千克;( 2)设售价为每千克 a 元,则:,630a≥ 7500× 1.26,∴,∴a≥15,答:售价至少为每千克 15 元.25.( 1 )证明:在△ GAD 和△ EAB 中,∠ GAD=90° +∠ EAD ,∠ EAB=90° +∠ EAD ,∴∠ GAD= ∠ EAB ,又∵ AG=AE , AB=AD ,∴△ GAD ≌△ EAB ,∴EB=GD ;( 2) EB ⊥ GD ,理由如下:连接BD ,由( 1 )得:∠ ADG= ∠ ABE ,则在△ BDH 中,∠DHB=180° - (∠ HDB+ ∠ HBD )=180°-90 °=90°,∴EB⊥GD ;( 3)设BD与AC交于点O,∵ AB=AD=2在 Rt △ABD中, DB=,∴ EB=GD=.26. 解:( 1)由y=0得, ax 2-2ax-3a=0,∵ a≠0,∴ x2 -2x-3=0,解得1=-1,x2=3,∴点 A 的坐标( -1, 0),点 B 的坐标( 3,0);(2)由 y=ax 2 -2ax-3a ,令 x=0 ,得 y=-3a ,∴ C ( 0, -3a ),又∵ y=ax 2 -2ax-3a=a ( x-1 )2-4a ,得 D (1 , -4a ),∴ DH=1 , CH=-4a- ( -3a ) =-a ,∴ -a=1 ,∴ a=-1 ,∴C(0, 3),D(1,4),设直线 CD 的解析式为y=kx+b ,把 C、 D 两点的坐标代入得,,解得,∴直线 CD 的解析式为y=x+3 ;( 3)存在.由( 2)得, E(-3,0),N(-,0)∴F(,),EN= ,作 MQ⊥CD 于 Q,设存在满足条件的点M(,m),则FM=-m ,EF==,MQ=OM=由题意得: Rt △ FQM ∽ Rt △ FNE ,∴=,整理得 4m 2+36m-63=0 ,∴m2+9m=,m 2+9m+=+(m+ )2=m+ =±∴ m1=,m2=-,∴点 M 的坐标为M1(,),M2(,-).”可见,一个人的心胸和眼光,决定了他志向的短浅或高远;一个清代“红顶商人”胡雪岩说:“做生意顶要紧的是眼光,看得到一省,就能做一省的生意;看得到天下,就能做天下的生意;看得到外国,就能做外国的生意。
中考数学模拟题汇总《实数》练习题及答案一、选择题1.2021的倒数是()A.﹣2021 B.2021 C.D.﹣2.2021年5月19日,第三届阿里数学竞赛预选赛顺利结束,本届大赛在全球范围内吸引了约5万名数学爱好者参加.阿里数学竞赛旨在全球范围内引领开启关注数学、理解数学、欣赏数学、助力数学的科学风尚.5万用科学记数法表示为()A.0.5×105B.5×104C.50×104D.5×1053.化简(1)--的结果为()A.1-B.0 C.1 D.24.据《吉林日报》2022年5月14日报道,第一季度一汽集团销售整车70060辆,数据70060用科学记数法表示为()A.37.00610⨯B.47.00610⨯C.370.0610⨯D.40.700610⨯5. -5的相反数是( )A.15- B.15C. 5D. -56.﹣(﹣2)的值为()A.B.﹣C.2 D.﹣2 7.2021的相反数是()A.﹣2021 B.2021 C.D.﹣8.实数√2+1在数轴上的对应点可能是()A.A点B.B点C.C点D.D点9.16的平方根是()A.4 B.±4 C.8 D.±8 10.计算|﹣3|﹣(﹣2)的最后结果是()A.1 B.﹣1 C.5 D.﹣5 11.下表是几种液体在标准大气压下的沸点:液体名称 液态氧 液态氢 液态氮 液态氦 沸点/℃﹣183﹣253﹣196﹣268.9则沸点最高的液体是( ) A .液态氧 B .液态氢 C .液态氮D .液态氦12.已知a =﹣,b =,c =﹣,判断下列各式之值何者最大?( ) A .|a +b +c |B .|a +b ﹣c |C .|a ﹣b +c |D .|a ﹣b ﹣c |13.若a 、b 为正整数,且a ×b =25×32×5,则下列何者不可能为a 、b 的最大公因数?( ) A .1B .6C .8D .1214.下列实数是无理数的是( ) A .﹣2B .1C .D .215.设6a ,小数部分为b ,则(2a b 的值是( )A.6B .C .12D .二、填空题16.截至2020年末,达州市金融精准扶贫共计392.5亿元,居全省第2,惠及建档立卡贫困户8.96万人,将392.5亿元用科学记数法表示应为 元. 17.已知a ,b 满足等式a 2+6a +9+√b −13=0,则a 2021b 2020= .18.实数√16的算术平方根是 .19.中国杂交水稻之父、中国工程院院士、共和国勋章获得者袁隆平于2021年5月22日因病去世,享年91岁,袁隆平的去世是中国乃至全世界的重大损失.袁隆平一生致力于水稻杂交技术研究,为提高我国水稻亩产量做出了巨大贡献.截至2021年,“种三产四”丰产工程项目累计示范推广面积达2000多万亩,增产20多亿公斤.将20亿这个数据用科学记数法表示为 .20.如图,实数−√5,√15,m 在数轴上所对应的点分别为A ,B ,C ,点B 关于原点O 的对称点为D .若m 为整数,则m 的值为 .21.计算:= .22.要使二次根式在实数范围内有意义,x 的取值范围是 .23.写出一个无理数x ,使得14x <<,则x 可以是_________(只要写出一个满足条件的x 即可)24.若把第n个位置上的数记为x n,则称x1,x2,x3,…,x n有限个有序放置的数为一个数列A.定义数列A的“伴生数列”B是:y1,y2,y3,…,y n,其中y n是这个数列中第n个位置上的数,n=1,2,…,k且y n=并规定x0=x n,x n+1=x1.如果数列A只有四个数,且x1,x2,x3,x4依次为3,1,2,1,则其“伴生数列”B是.三、解答题25.(1)计算:(1)﹣2+(3.14﹣π)0+|3−√12|﹣4sin60°.226.计算:﹣12+(π﹣2021)0+2sin60°﹣|1−√3|.27.计算:√4+(1+π)0﹣2cos45°+|1−√2|.28.计算:(3.14﹣π)0−√27+|1−√3|+4sin60°.29.计算:0.30.计算:23×(﹣+1)÷(1﹣3).参考答案与解析一、选择题1.2021的倒数是()A.﹣2021 B.2021 C.D.﹣【分析】根据乘积是1的两个数互为倒数判断即可.【解答】解:2021的倒数是.故选:C.【点评】此题主要考查了倒数,正确掌握相关定义是解题关键.2.2021年5月19日,第三届阿里数学竞赛预选赛顺利结束,本届大赛在全球范围内吸引了约5万名数学爱好者参加.阿里数学竞赛旨在全球范围内引领开启关注数学、理解数学、欣赏数学、助力数学的科学风尚.5万用科学记数法表示为()A.0.5×105B.5×104C.50×104D.5×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:5万=50000=5×104,故选:B.【点评】此题考查科学记数法的表示方法,关键是确定a的值以及n的值.--的结果为()3.化简(1)A.1-B.0 C.1 D.2【分析】括号前面是减号时,去掉括号,括号内加号变减号,减号变加号.--=,【解答】解:(1)1故选:C.【点评】本题考查去括号,解题关键是掌握去括号法则.4.据《吉林日报》2022年5月14日报道,第一季度一汽集团销售整车70060辆,数据70060用科学记数法表示为()A.3⨯D.470.06100.700610⨯7.00610⨯C.37.00610⨯B.4a<,a不为分数形式,n为整数).【分析】把一个数表示成a与10的n次幂相乘的形式(1||10【解答】解:4=⨯,700607.006010故选:B.【点评】本题考查科学记数法,解题关键是熟练掌握用科学记数法表示较大的数.5. -5的相反数是( )A.15B.15C. 5D. -5【答案】C【解析】【分析】根据相反数的定义解答即可.【详解】-5的相反数是5故选C【点睛】本题考查了相反数,熟记相反数的定义:只有符号不同的两个数互为相反数是关键. 6.﹣(﹣2)的值为()A.B.﹣C.2 D.﹣2【分析】直接根据相反数的定义可得答案.【解答】解:﹣(﹣2)的值为2.故选:C.7.2021的相反数是()A.﹣2021 B.2021 C.D.﹣【分析】利用相反数的定义分析得出答案,只有符号不同的两个数叫做互为相反数.【解答】解:2021的相反数是:﹣2021.故选:A.8.实数√2+1在数轴上的对应点可能是()A.A点B.B点C.C点D.D点【考点】实数与数轴.【分析】先确定2<√2+1<3,再根据数轴上点的位置可得结论.【解答】解:∵1<2<4,∴1<√2<2,∴2<√2+1<3,则实数√2+1在数轴上的对应点可能是点D,故选:D.9.16的平方根是()A.4 B.±4 C.8 D.±8【考点】平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a 的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故选:B.10.计算|﹣3|﹣(﹣2)的最后结果是()A.1 B.﹣1 C.5 D.﹣5【考点】绝对值;有理数的减法.【分析】根据绝对值的性质以及有理数的减法法则计算即可;有理数减法法则:减去一个数,等于加上这个数的相反数.【解答】解:|﹣3|﹣(﹣2)=3+2=5.故选:C.11.下表是几种液体在标准大气压下的沸点:液体名称液态氧液态氢液态氮液态氦沸点/℃﹣183 ﹣253 ﹣196 ﹣268.9 则沸点最高的液体是()A.液态氧B.液态氢C.液态氮D.液态氦【分析】根据有理数大小的比较方法解答即可.【解答】解:因为﹣268.9<﹣253<﹣196<﹣183,所以沸点最高的液体是液态氧.故选:A.12.已知a=﹣,b=,c=﹣,判断下列各式之值何者最大?()A.|a+b+c| B.|a+b﹣c| C.|a﹣b+c| D.|a﹣b﹣c|【分析】根据有理数加减混合运算及绝对值的意义解题即可.【解答】解:∵a=﹣,b=,c=﹣,a﹣b+c是最小的,∴相应的绝对值最大.故选:C.【点评】本题主要考查绝对值的定义,有理数加减混合运算的应用是解题关键.13.若a、b为正整数,且a×b=25×32×5,则下列何者不可能为a、b的最大公因数?()A.1 B.6 C.8 D.12【分析】根据a×b=25×32×5,取a、b的不同值解题即可.【解答】解:∵最大公因数为a、b都有的因数,而8=23,a×b=25×32×5,a、b不可能都含有23,∴8不可能为a、b的最大公因数.故选:C.【点评】本题考查实数中最大公因数的概念,掌握求两个数的最大公因数是解题的关键.14.下列实数是无理数的是()A.﹣2 B.1 C.D.2【分析】根据无理数的定义逐个判断即可.【解答】解:A.﹣2是有理数,不是无理数,故本选项不符合题意;B.1是有理数,不是无理数,故本选项不符合题意;C.是无理数,故本选项符合题意;D.2是有理数,不是无理数,故本选项不符合题意;故选:C.15.设6a,小数部分为b,则(2a b的值是()A.6B.C.12D.【答案】A四、填空题16.截至2020年末,达州市金融精准扶贫共计392.5亿元,居全省第2,惠及建档立卡贫困户8.96万人,将392.5亿元用科学记数法表示应为 3.925×1010元.【考点】科学记数法—表示较大的数.【分析】用科学记数法表示较大的数时,一般形式为a ×10n ,其中1≤|a |<10,n 为整数,据此判断即可.【解答】解:392.5亿=39250000000=3.925×1010. 故答案为:3.925×1010.17.已知a ,b 满足等式a 2+6a +9+√b −13=0,则a 2021b 2020= ﹣3 .【考点】非负数的性质:偶次方;非负数的性质:算术平方根.【分析】利用非负数的性质以及二次根式的性质得出a ,b 的值,进而得出答案.【解答】解:∵a 2+6a +9+√b −13=0,∴(a +3)2+√b −13=0,∴a +3=0,b −13=0, 解得:a =﹣3,b =13,则a 2021b 2020=(﹣3)2021•(13)2020=﹣3×(﹣3×13)2020=﹣3. 故答案为:﹣3.18.实数√16的算术平方根是 2 . 【考点】算术平方根.【分析】一个正数的正的平方根叫它的算术平方根,由此即可求出结果. 【解答】解:√16=4, 4的算术平方根是2,所以实数√16的算术平方根是2. 故答案为:2.19.中国杂交水稻之父、中国工程院院士、共和国勋章获得者袁隆平于2021年5月22日因病去世,享年91岁,袁隆平的去世是中国乃至全世界的重大损失.袁隆平一生致力于水稻杂交技术研究,为提高我国水稻亩产量做出了巨大贡献.截至2021年,“种三产四”丰产工程项目累计示范推广面积达2000多万亩,增产20多亿公斤.将20亿这个数据用科学记数法表示为 2×109 .【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:20亿=2000000000=2×109.故答案为:2×109.20.如图,实数−√5,√15,m在数轴上所对应的点分别为A,B,C,点B关于原点O的对称点为D.若m为整数,则m的值为﹣3.【考点】实数与数轴.【分析】先求出点D表示的数,然后确定点C的取值范围,根据m为整数,即可得到m的值.【解答】解:∵点B表示的数是√15,点B关于原点O的对称点是点D,∴点D表示的数是−√15,∵点C在点A、D之间,∴−√15<m<−√5,∵﹣4<−√15<−3,﹣3<−√5<−2,∴−√15<−3<−√5,∵m为整数,∴m的值为﹣3.答案为:﹣3.21.计算:=.【分析】根据二次根式的基本性质进行解答即可.【解答】解:原式==5.故答案为:5.22.要使二次根式在实数范围内有意义,x的取值范围是x≥﹣1.【分析】根据二次根式的性质可求出x的取值范围.【解答】解:若二次根式在实数范围内有意义,则:x+1≥0,解得x≥﹣1.故答案为:x≥﹣1.【点评】主要考查了二次根式的意义和性质:概念:式子(a ≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.23.写出一个无理数x ,使得14x <<,则x 可以是_________(只要写出一个满足条件的x 即可)【答案】,1.010010001π⋅⋅⋅等) 【解析】【分析】从无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数, 【详解】根据无理数的定义写一个无理数,满足14x <<即可; 所以可以写:①开方开不尽的数:②无限不循环小数,1.010010001……, ③含有π的数,2π等.只要写出一个满足条件的x 即可.,1.010010001π……等)【点睛】本题考查了无理数的定义,解答本题的关键掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.24.若把第n 个位置上的数记为x n ,则称x 1,x 2,x 3,…,x n 有限个有序放置的数为一个数列A .定义数列A 的“伴生数列”B 是:y 1,y 2,y 3,…,y n ,其中y n 是这个数列中第n 个位置上的数,n =1,2,…,k 且y n =并规定x 0=x n ,x n +1=x 1.如果数列A 只有四个数,且x 1,x 2,x 3,x 4依次为3,1,2,1,则其“伴生数列”B 是 0,1,0,1 .【分析】根据“伴生数列”的定义依次取n =1,2,3,4,求出对应的y n 即可. 【解答】解:当n =1时,x 0=x 4=1=x 2, ∴y 1=0,当n =2时,x 1≠x 3, ∴y 2=1,当n =3时,x 2=x 4, ∴y 3=0,当n =4时,x 3≠x 5=x 1, ∴y 4=1,∴“伴生数列”B 是:0,1,0,1,故答案为0,1,0,1.五、解答题25.(1)计算:(1)﹣2+(3.14﹣π)0+|3−√12|﹣4sin60°.2【分析】(1)根据负整数指数幂的意义、零指数幂的意义,特殊角的锐角三角函数的值以及绝对值的性质即可求出答案;【解答】解:原式=4+1+√12−3﹣4×√32=5+2√3−3﹣2√3=2.26.计算:﹣12+(π﹣2021)0+2sin60°﹣|1−√3|.【考点】实数的运算;零指数幂;特殊角的三角函数值.【分析】直接利用零指数幂的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案.−(√3−1)【解答】解:原式=﹣1+1+2×√32=﹣1+1+√3−√3+1=1.27.(1)计算:√4+(1+π)0﹣2cos45°+|1−√2|.+√2−1【解答】解:(1)原式=2+1﹣2×√22=2+1−√2+√2−1=2;28.计算:(3.14﹣π)0−√27+|1−√3|+4sin60°.【考点】绝对值;算术平方根;实数的运算;零指数幂;特殊角的三角函数值.【分析】根据零指数幂,二次根式的运算法则,去绝对值,特殊角的三角函数值化简各项,再计算加减法.【解答】解:原式=1−3√3+√3−1+4×√32=1−3√3+√3−1+2√3=0.29.计算:0.【分析】根据乘法的定义、零指数幂以及sin60°=,然后进行乘法运算和去绝对值运算,再合并即可.【解答】解:原式=﹣1﹣2×+1=﹣1﹣+1=0.【点评】本题考查了实数的运算:先进行乘方或开方运算,再进行乘除运算,最后进行加减运算.也考查了零指数幂、以及特殊角的三角函数值.30.计算:23×(﹣+1)÷(1﹣3).【分析】原式先计算乘方运算,再计算括号内的加减运算,最后算乘除运算即可求出值.【解答】解:原式=8×÷(﹣2)=4÷(﹣2)=﹣2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.。
江苏省扬州市2017年中考试卷数学答案解析一、选择题1.【答案】D【解析】解:1|3|4AB =-=-.故选D .【提示】根据数轴上两点间的距离等于这两个数的差的绝对值列式计算即可得解.【考点】数轴2.【答案】B【解析】解:A .45a a a =g ,不符合题意;B .224()a a =,符合题意;C .3332a a a +=,不符合题意;D .43a a a ÷=,不符合题意,故选B .【提示】利用有关幂的运算性质直接运算后即可确定正确的选项.【考点】幂的运算3.【答案】A【解析】解:∵2(7)4(2)570∆=-⨯-=>-,∴方程有两个不相等的实数根.故选A .【提示】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【考点】一元二次方程的根的判别式4.【答案】D【解析】解:由于方差和标准差反映数据的波动情况.故选D .【提示】根据方差和标准差的意义:体现数据的稳定性,集中程度;方差越小,数据越稳定.【考点】数据的集中趋势和离散程度5.【答案】B【解析】解:经过圆锥顶点的截面的形状可能是B 中图形,故选:B .【提示】根据已知的特点解答【考点】立体图形的截面6.【答案】C【解析】解:设第三边的长为x ,∵三角形两边的长分别是2和4,∴4224x -<<+,即26x <<. 则三角形的周长:812C <<,C 选项11符合题意,故选C .【提示】连接CO ,根据圆周角定理可得280AOC B ∠=∠=︒,进而得出OAC ∠的度数.故答案为:50.x x164∴261016CB BB BC ''=-=-=.是O 的切线.是平行四边形,又∵都是等边三角形,∴ABF DBG =∠是O 的切线.)①由(1)可知:OCE △中,∵180是O 的切线.首先证明是等边三角形即可解决问题;211 / 11。
2017年中考数学专项复习《一元二次方程的应用(3)》练习(无答案)浙教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年中考数学专项复习《一元二次方程的应用(3)》练习(无答案)浙教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年中考数学专项复习《一元二次方程的应用(3)》练习(无答案)浙教版的全部内容。
一元二次方程的应用(03)一、选择题1.从一块正方形的木板上锯掉2m宽的长方形木条,剩下的面积是48m2,则原来这块木板的面积是()A.100m2B.64m2C.121m2D.144m22.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则参赛球队的个数是( )A.5个B.6个C.7个D.8个3.用一条长为40cm的绳子围成一个面积为acm2的长方形,a的值不可能为()A.20 B.40 C.100 D.120二、填空题4.如图,一块四周镶有宽度相等的花边的长方形十字绣,它的长为120cm,宽为80cm,如果十字绣中央长方形图案的面积为6000cm2,则花边宽为.5.一块矩形菜地的面积是120m2,如果它的长减少2m,那么菜地就变成正方形,则原菜地的长是m.6.某小区2013年绿化面积为2000平方米,计划2015年绿化面积要达到2880平方米.如果每年绿化面积的增长率相同,那么这个增长率是.7.某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为.8.如图,在Rt△ABC中,∠BAC=90°,AB=AC=16cm,AD为BC边上的高.动点P从点A出发,沿A→D方向以cm/s的速度向点D运动.设△ABP的面积为S1,矩形PDFE的面积为S2,运动时间为t秒(0<t<8),则t= 秒时,S1=2S2.三、解答题9.随着铁路客运量的不断增长,重庆火车北站越来越拥挤,为了满足铁路交通的快速发展,该火车站去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲、乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程并且甲、乙两队的工作效率与题干的不同,在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲、乙两队的施工时间按月取整数)10.小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?11.有一人患了流感,经过两轮传染后共有64人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?12.电动自动车已成为市民日常出行的首选工具.据某市某品牌电动自行车经销商1至3月份统计,该品牌电动自行车1月份销售150辆,3月份销售216辆.(1)求该品牌电动自行车销售量的月均增长率;(2)若该品牌电动自行车的进价为2300元,售价为2800元,则该经销商1至3月共盈利多少元?13.某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?14.某工厂一种产品2013年的产量是100万件,计划2015年产量达到121万件.假设2013年到2015年这种产品产量的年增长率相同.(1)求2013年到2015年这种产品产量的年增长率;(2)2014年这种产品的产量应达到多少万件?15.随着市民环保意识的增强,烟花爆竹销售量逐年下降.咸宁市2011年销售烟花爆竹20万箱,到2013年烟花爆竹销售量为9。
中考数学数与式专题知识训练50题含答案 (有理数、实数、代数、因式分解、二次根式)一、单选题1.下列运算正确的是( ) A .()328-=B .33--=C .()326-=-D .()239--=-2.下列说法正确的是( ) A .1的立方根是它本身 B .4的平方根是2 C .9的立方根是3D .0没有算术平方根3.比﹣2小的数是( ) A .﹣1B .﹣3C .0D .﹣124.下列计算正确的是( ) A .236a a a ⋅=B .22325a b 3ab 3a b -⋅=C .0(π 3.14) 3.14π-=-D .3262(a b)a b =5.长城总长约为670000米,用科学记数法表示为( ) A .56.710⨯米 B .50.6710⨯米 C .46.710⨯米D .60.6710⨯米6.下列计算正确的是( ) A .x 2+x 3=x 5B .x 2•x 3=x 6C .(x 2)3=x 5D .x 5÷x 3=x 27.一定相等的是( ) A .a 2+a 2与a 4B .(a 3)3与a 9C .a 2﹣a 2与2a 2D .a 6÷a 2与a 38.对于有理数a ,b 定义2a b a b =-,则()3x y x +化简后得( )A .2x y +B .2x y -+C .52x y +D .52x y -+9.下列运算正确的是( )A B .2=C .22=D 4=±10.N 是一个单项式,且22223N x y ax y ⋅=(-)-,则N 等于( ) A .32ayB .3ay -C .32xy -D .12axy11.下列计算正确的是( ) A .()235a a =B .()23624m m -=C .623a a a ÷=D .()222a b a b +=+ 12.( )A .2B .C .D .13.下列计算中,结果正确的是( ) A .a 3 +a =2a 4B .a 3•a 2=a 6C .2a 6÷a 2 =2a 3D .(a 2)4 =a 814.下列各组代数式中没有公因式的是 ( ) A .4a 2bc 与8abc 2 B .a 3b 2+1与a 2b 3–1 C .b (a –2b )2与a (2b –a )2 D .x +1与x 2–115.下列计算正确的是( )A 3=±B 3=-C .(23= D .23=-161m -,则m 的取值范围是( ) A .1m >B .1m <C .m 1≥D .1m17.下列运算中,计算结果正确的是( ) A .a2•a3=a6B .a2+a3=a5C .(a2)3=a6D .a12÷a6=a218.下列运算正确的是( )A .824x x x ÷=B =C .()32628aa -=-D .11(1)32-⎛⎫--=- ⎪⎝⎭19的正确结果是( )A .(m ﹣5)5m -B .(5﹣m)5m -C .m ﹣5()5m --D .5﹣m 5m -二、填空题20.已知某种感冒病毒的直径是-0.000000012米,那么这个数可用科学记数法表示为____________. 21.45--=______. 22.2018年我省夏粮总产量达到2299000吨,将数据“2299000吨”用科学记数法表示为__________.23叫做二次根式. 24.2015的相反数为____.25.把202100000用科学记数法表示为______.260,则xzy=_______.27______=______.28.写出一个..绝对值大于2且小于3的无理数____________.29.当2a =+2943a a -+的值等于___.30.将数67500用科学记数法表示为____________.31有意义,则x 的取值范围是___________________. 32.有一个数值转换器,原理如下:当输入的x 为64时,输出的y 是___________.33.213-的倒数是_____,213-的相反数是_____.34.“皮克定理”是用来计算顶点在格点(即图中虚线的交点,如图中的小黑点)上的多边形的面积公式,公式为S = a +2b-1.小明只记得公式中的表示多边形的面积,a和 b 中有一个表示多边形边上(含多边形顶点)的格点个数,另一个表示多边形内部的格点个数,但记不清楚究竟是哪一个表示多边形内部的格点个数,请你利用图 1 探究并运用探究的结果求图 2 中多边形的面积是____.35.若a +b =8,ab =15,则a 2+ab +b 2=________.36.已知甲数是719的平方根,乙数是338的立方根,则甲、乙两个数的积是__.37.分解因式:2244x y y -+-=__________.38.我国古代数学的许多创新与发展都曾居世界前列,其中“杨辉三角”(如图)就是一例,它的发现比欧洲早五百年左右.杨辉三角两腰上的数都是1,其余每个数为它的上方(左右)两数之和.事实上,这个三角形给出了()na b +(n =1,2,3,4,5,6)的展开式(按a 的次数由大到小的顺序排列)的系数规律. 例如,在三角形中第三行的三个数1,2,1,恰好对应着222()2a b a ab b +=++展开式中各项的系数;第四行的四个数1,3,3,1,恰好对应着+=+++33223()33a b a a b ab b 展开式中各项的系数,等等. (1)当n =4时,4()a b +的展开式中第3项的系数是_________;(2)人们发现,当n 是大于6的自然数时,这个规律依然成立,那么7()a b +的展开式中各项的系数的和为_________.三、解答题39.计算:20220(1)1)-+︒. 40.计算:(1)()232()nn m mn m -⋅÷(2)解不等式组: 10223x x x +>⎧⎪-⎨≤+⎪⎩41.在平面直角坐标系中,已知点P (3,-1)关于原点对称的点Q 的坐标是(),1a b b +-,求b a 的值.42.(1)计算:﹣32+(π﹣2021)0﹣|1|.(2)解不等式组:3(1)25322x xxx-≥-⎧⎪⎨+<⎪⎩①②.43.计算:(1)(﹣1)3+(π+2022)0+(12)﹣2;(2)(-a)3•a2﹣(2a4)2÷a3.44.计算下列各式:(1)(2)45.已知2a-l的算术平方根为3,3a+b-1的算术平方根为4,求a+2b的平方根.46.(1)计算:0112sin3022π-⎛⎫⎛⎫-︒⎪ ⎪⎝⎭⎝⎭;(2)化简:2(21)(1)(1)x x x--+-.47.已知a,b,c在数轴上对应点的位置如图所示,化简||||||a ab b c-+-.48.观察以下等式:第1个等式:211111=+第2个等式:211326=+第3个等式:2115315=+第4个等式:2117428=+第5个等式:2119545=+按照以上规律,解决下列问题:(1)写出第7个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.参考答案:1.D【分析】根据乘方运算、绝对值及相反数的意义,逐个运算得结论.【详解】解:(-2)3=-8,故选项A、C错误;-|-3|=-3,故选项B错误;-(-3)2=-9,故选项D正确.故选:D.【点睛】本题考查了乘方运算,绝对值、相反数的意义.题目相对简单.负数的偶次方是正,负数的奇数次方为负.2.A【分析】根据立方根与平方根的定义即可求出答案.【详解】解:A、1的立方根是它本身,故此选项符合题意;B、4的平方根是2 ,故此选项不符合题意;C、9D、0的算术平方根是0,故此选项不符合题意.故选:A.【点睛】本题考查平方根与立方根,解题的关键是正确理解立方根与平方根的定义.3.B【分析】对于正数绝对值大的数就大;对于负数绝对值大的反而小;负数小于0,0小于正数;【详解】解:A,是个负数绝对值比2小,﹣1>﹣2;B,是个负数绝对值比2大,﹣3<﹣2;C,0比负数大;D,是个负数绝对值比2小,﹣1>﹣2;2故答案选:B【点睛】本题考查有理数大小的判断,先比正负,再比绝对值.4.D【分析】直接利用同底数幂的乘除运算法则以及积的乘方运算法则、零指数幂的性质分别判断得出答案.【详解】解:A 、a 2•a 3=a 5,故此选项错误; B 、-a 2b 2•3ab 3=-3a 3b 5,故此选项错误; C 、(π-3.14)0=1,故此选项错误; D 、(a 3b 2)2=a 6b 4,正确. 故选D .【点睛】考查了同底数幂的乘除运算以及积的乘方运算等知识,正确掌握相关运算法则是解题关键. 5.A【分析】根据科学记数法的定义即可得. 【详解】解:670000米56.710=⨯米, 故选:A .【点睛】本题考查了科学记数法,熟记科学记数法的定义(将一个数表示成10n a ⨯的形式,其中110a ≤<,n 为整数,这种记数的方法叫做科学记数法)是解题关键.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 6.D【详解】试题分析:A .2x+3x 已经为最简式.B .x 2•x 3=x 5同底数幂相乘,指数相加. C .(x 2)3=x 6求幂的乘方,指数相乘.故只有D 正确 考点:整式运算点评:本题难度较低,主要考查学生对整式运算知识点的掌握.注意同底数幂相乘,指数相加.幂的乘方,指数相乘. 7.B【分析】A .根据整式的加法运算合并同类项即可; B .运用幂的乘法公式,底数不变,指数相乘,化简即可; C .根据整式的减法运算合并同类项即可;D .根据同底数幂的除法,底数不变,指数相减即可得出结论. 【详解】解:A .22242a a a a +=≠,故选项不合题意; B .()339a a =,故选项符合题意;C .22202a a a -=≠,故选项不合题意;D .624a a a ÷=,故选项不合题意; 故选:B .【点睛】本题考查整式的混合运算,熟练掌握每个计算的运算法则是解题的关键. 8.B【分析】根据新定义运算可直接进行求解. 【详解】解:∵2a b a b =-,∵()3x y x +()23x y x =+-223x y x =+-2x y =-+.故选:B .【点睛】本题主要考查整式的加减运算,熟练掌握整式的加减运算是解题的关键. 9.A【分析】根据二次根式的性质以及二次根式的混合运算逐项计算分析判断即可求解.【详解】解:A 、=B 、2C 、253=+-D 4=,故该选项不正确,不符合题意. 故选:A .【点睛】此题主要考查了二次根式的性质以及二次根式的混合运算,掌握二次根式的性质以及运算法则是解题关键. 10.A【分析】利用单项式与单项式除法,把他们的系数,相同字母分别相除,对于只在一个单项式里含有的字母,则连同它的指数作为商的一个因式,进而得出即可. 【详解】解:∵N •(-2x 2y )=-3ax 2y 2, ∵N =-3ax 2y 2÷(-2x 2y )=32ay .故选:A .【点睛】此题主要考查了单项式除以单项式,熟练掌握运算法则是解题关键. 11.B【分析】分别根据幂的乘方运算法则,积的乘方运算法则,同底数幂的除法法则以及完全平方公式逐一进行判断即可得出正确选项. 【详解】A. ()236a a =,故本选项不符合题意;B. ()23624m m -=,正确;C. 624a a a ÷=,故本选项不符合题意;D. ()2222a b a ab b +=++,故本选项不符合题意. 故选:B.【点睛】本题主要考查了同底数幂的除法,完全平方公式以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键. 12.B【详解】试题分析:10099100991009912()22222--⨯-=-⨯=-=-.故选B.考点: 1.负整数指数幂;2.积的乘方. 13.D【分析】分别计算后判断即可.【详解】解:A.不是同类项不能合并,故该选项计算错误; B. a 3•a 2=a 5,故该选项计算错误; C. 2a 6÷a 2 =2a 4,故该选项计算错误; D.(a 2)4 =a 8,故该选项计算正确. 故选:D .【点睛】本题考查合并同类项、同底数幂乘法、单项式除单项式、幂的乘方.掌握相关运算法则是解题关键. 14.B【分析】分别分析各选项中的代数式,能因式分解的先进行因式分解,再确定没有公因式的选项即可.【详解】A 、4a 2bc 与8abc 2有公因式4abc ,故该选项不满足题意;B、a3b2+1与a2b3–1,没有共公因式,故该选项满足题意;C、b(a–2b)2与a(2b–a)2有公因式()2a b-,故该选项不满足题意;2D、x+1与x2–1有公因式x+1,故该选项不满足题意;故选:B.【点睛】本题主要考查公因式的确定,熟练掌握因式分解是解决本题的关键.15.C【分析】根据二次根式的性质即可求出答案.【详解】A. 3=,故原选项错误;B. 3,故原选项错误;C. (23=,正确;D. D错误故选:C.【点睛】本题考查二次根式,解题的关键是熟练运用二次根式的性质,本题属于基础题型.16.D=进行化简,再根据绝对值的意义列出不等式,求解即可.a=-=-,m m11∵1-m≥0,∵m≤1故选:Da二者是等价的,故二者可以互化.17.C【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相减;同底数幂相除,底数不变指数相减对各选项分析判断即可得解.【详解】A、a2•a3=a2+3=a5,故本选项错误;B、a2+a3不能进行运算,故本选项错误;C、(a2)3=a2×3=a6,故本选项正确;D、a12÷a6=a12﹣6=a6,故本选项错误.故选C.【点睛】本题考查了同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算法则是解题的关键.18.C【分析】分别根据同底数幂的除法法则,二次根式的加法法则,积的乘方运算法则以及零指数幂、负整数指数幂的运算法则逐一判断即可.【详解】A、826x x x÷=原计算错误,不符合题意;B、235=+=≠C、()32628a a-=-正确,符合题意;D、11(1)1212-⎛⎫--=-=-⎪⎝⎭原计算错误,不符合题意;故选:C.【点睛】本题主要考查了同底数幂的除法,幂的乘方与积的乘方,二次根式的运算,零指数幂、负整数指数幂的运算,熟记二次根式的运算、幂的运算法则是解答本题的关键.19.B【详解】试题解析:50m∴-≥,即5m≤,∵原式(5m=-故选B.20.-1.2×10-8【详解】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.0.000000012用科学记数法表示为21.4 -5【分析】先求出有理数的绝对值,再求相反数,即可得到答案.【详解】∵45--=45-, 故答案是: 45-. 【点睛】本题主要考查有理数的绝对值法则和相反数的概念,掌握有理数的绝对值法则和相反数的概念是解题的关键.22.2.299×106吨【分析】根据科学记数法的形式为10n a ⨯,其中110a ≤<,n 是原数的整数位数减1,可得出答案.【详解】2299000吨=2.299×106吨,故答案为2.299×106吨.【点睛】本题考查科学记数法,其形式为10n a ⨯,其中110a ≤<,n 是整数,关键是确定a 和n 的值.23.0a ≥【分析】根据二次根式的非负性解题即可.【详解】解:∵0a ≥,故答案为:0a ≥.【点睛】本题主要考查二次根式的定义,能够熟记定义是解题关键.24.-2015.【详解】试题解析:2015的相反数是-2015.考点:相反数.25.82.02110⨯【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】解:202100000=2.021×108.故答案为:82.02110⨯.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要确定a 的值以及n 的值.26.52【分析】根据根式有意义的条件可知2x+3_≥0,4y-6x_≥0,x+y+z_≥0,再根据已知条件可得到2x+3=0,4y-6x=0,x+y+z=0;通过解方程组即可求出x 、y 、z 的值,即可xz y的值.0=可得2304600x y x x y z +=⎧⎪-=⎨⎪++=⎩, 解得3294154x y z ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩, 将x 、x 、z 的值代入xzy 可得3152494-⨯-=52, 所以xz y 的值为52. 故答案为52. 【点睛】此题考查二次根式有意义的条件,解题关键在于利用其性质进行解答. 27.【分析】(1)根据二次根式的性质即可求解.(2)根据最简二次根式的化简即可求解.=;=;【点睛】此题主要考查二次根式的性质,解题的关键是熟知二次根式的运算法则与性质. 28【分析】根据算术平方根的性质可以把2和3写成带根号的形式,再进一步写出一个被开方数介于两者之间的数即可.∵写出一个大于2小于3.【点睛】本题考查了无理数的估算,估算无理数大小要用逼近法.用有理数逼近无理数,求无理数的近似值.29.92【分析】由2a =2a -=241a a -=-,整体代入即可求解.【详解】解:∵2a =∵2a -=()223a -=,∵2443a a -+=,即241a a -=-, ∵299943132a a ==-+-+. 故答案为:92. 【点睛】本题考查了分式的化简求值,二次根式的性质,掌握整体代入法是解题的关键. 30.46.7510⨯【分析】科学记数法的表示形式为ax10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:67500=46.7510⨯,即答案为:46.7510⨯.【点睛】本题考查用科学记数法表示较大的数,一般形式为ax10n ,其中1≤al<10,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.31.x≤且x≠0【详解】试题分析:当x 满足条件120{0x x -≥≠时,式子有意义,解得x≤且x≠0.考点:代数式有意义的条件.32【分析】直接根据题意列式计算即可.2是有理数,即输出的y【点睛】本题考查了求算术平方根和立方根即根据图片列式计算,能够根据图片正确列出算式是解题的关键.33. ﹣3553 【详解】试题解析:根据乘积为1的两个数互为倒数,可得一个数的倒数;根据只有符号不同的两个数互为相反数,可得一个数的相反数,故:213-的倒数是-35,213-的相反数是213 34.10.【分析】分别找到图1中图形内的格点数和图形上的格点数后,再与公式比较,即可发现表示图上的格点数对应的字母和图形内的格点数对应的字母,再利用图2中的有关数据代入公式即可求得图形的面积.【详解】解:根据图1可得,∵矩形内由2个格点,边上有10个格点,面积为6, 即106=2+12-; 正方形内由1个格点,边上有8个格点,面积为4, 即84=1+12-; ∵公式中表示多边形内部整点个数的字母是a ;表示多边形边上(含多边形顶点)的格点个数为b ,由图2得:8,6,a b ==6=18110.22b S a ∴+-=+-= 故答案为:10.【点睛】本题考查了新定义型的图形的变化类问题,解题的关键是能够仔细弄懂题意,弄懂公式中代数式的含义,根据题意进行探究,找到规律,再利用规律解决问题. 35.49【分析】首先配方得出a 2+ab+b 2=(a+b )2-ab 进而得出答案.【详解】解:∵a+b=8,ab=15,则a 2+ab+b 2=(a+b )2-ab=82-15=49.故答案为49.【点睛】此题主要考查了配方法的应用,正确配方是解题关键.36.2±.【分析】分别根据平方根、立方根的定义可以求出甲数、乙数,进而即可求得题目结果. 【详解】甲数是719的平方根 ∴甲数等于43±; 乙数是338的立方根, ∴乙数等于32. ∵43=232⨯ ∴甲、乙两个数的积是2±.故答案:2±.【点睛】此题主要考查了立方根、平方根的定义,解题的关键是根据平方根和立方根的定义求出甲数和乙数.37.(2)(2)x y x y +--+##(x -y +2)(x +y -2)【分析】先分组成22(44)x y y -+-,再利用完全平方公式化为22(2)x y --,最后利用平方差公式解答.【详解】解:2244x y y -+-22(44)x y y =--+22(2)x y =--(2)(2)x y x y =+--+故答案为:(2)(2)x y x y +--+.【点睛】本题考查因式分解,涉及分组分解法、完全平方公式、平方差公式等知识,是重要考点,掌握相关知识是解题的关键.38. 6 128【分析】(1)当n=4时,4()a b +的展开式的系数恰好对应的是第五行的数,根据第五行的数即刻得出答案;(2)7()a b +的展开式的系数恰好对应第八行的数,据图写出第八行的数求和即可.【详解】解:(1)4()a b +的展开式的系数恰好对应的是第五行的数,为:1,4,6,4,1,故4()a b +的展开式中第3项的系数是6;(2)据题可知第八行的数为:1,7,21,35,35,21,7,1.故7()a b +的展开式中各项的系数的和为:1+7+21+35+35+21+7+1=128.故答案为:(1)6;(2)128.【点睛】本题考查完全平方公式,探索与表达规律.(1)能找出()n a b +的展开式的系数与杨辉三角中行数之间的关系是解题关键;(2)中能依据“杨辉三角两腰上的数都是1,其余每个数为它的上方(左右)两数之和”写出“杨辉三角”的第八行数是解题关键.39.1【分析】根据数的乘方、零指数幂、开方法则进行计算,在加上特殊角的三角函数值,即可求解.【详解】解:原式=1+1-2=1121+-+=1.【点睛】本题考查实数的混合运算,熟练掌握实数的运算法则和熟记特殊角的三角函数值是解题的关键.40.(1)53n m n +;(2)- 12x <≤【分析】(1)运用整式的乘法法则计算即可;(2)根据不等式的运算求得解后再联立求解集即可.【详解】解:(1)原式 233253n n n m n m m n +-+=÷= (2)10223x x x +>⎧⎪⎨-≤+⎪⎩①② 解∵的1x >-,解∵得x 2≤,不等式组的解集为- 12x <≤【点睛】本题主要考查整式的乘法法则以及解一元一次不等式组,解题的关键是熟练地掌握整式的乘法的乘法法则以及解一元一次不等式组的解题步骤和方法即可.41.25 【详解】解:点(3,1)P -与点(,1)Q a b b +-关于原点对称,3a b ∴+=-,11b -=,解得:2,5b a ==-,2(5)25b a ∴=-=.42.(1)﹣7;(2)﹣2≤x <1【分析】(1)根据有理数的乘方、零指数幂、绝对值的意义进行化简即可;(2)先分别解不等式,再根据不等式组解集的规律写出解集即可.【详解】(1)原式=﹣9+11)=﹣9+1=﹣7(2)3(1)25322x x x x -≥-⎧⎪⎨+<⎪⎩①②, 解不等式∵,得x ≥﹣2,解不等式∵,得x <1,∵不等式组的解集为﹣2≤x <1.【点睛】本题考查了实数的混合运算和解不等式组,掌握实数的运算法则和解不等式组的步骤是解题的关键.43.(1)4(2)-5a 5【分析】(1)根据有理数的乘方,零指数幂,负整数指数幂分别进行计算即可; (2)根据同底数幂的乘法,积的乘方,单项式除以单项式分别进行计算即可.(1)解:原式=-1+1+4=4;(2)原式=-a3•a2﹣4a8÷a3=-a5-4a5=-5a5.【点睛】本题考查有理数的乘方、零指数幂、负整数指数幂、同底数幂的乘法、积的乘方、单项式除以单项式,解题关键是掌握相关的运算法则.44.2【分析】(1)运用分配律计算即可;(2)先将二次根式化简,然后去括号计算即可.【详解】(1)解:=2(2)==【点睛】题目主要考查二次根式的运算,掌握二次根式的运算法则是解题关键.45.3±【分析】利用平方根及算术平方根的定义列出方程,得到a与b的值,确定出a+2b的值,即可求出平方根.【详解】解:由题意得2a-1=9,3a+b-1=16,解得:a=5,b=2,则a+2b=9,∵a+2b的平方根是3±.【点睛】此题考查了平方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.46.(1)4;(2)2-+.x x342【分析】(1)根据零指数幂,特殊角的三角函数值,算术平方根,负整数指数幂计算即可;(2)利用完全平方公式和平方差公式展开,化简即可.【详解】(1)原式112222=-⨯++ 1122=-++4=;(2)原式()224411x x x =-+--224411x x x =-+-+2342x x =-+.【点睛】本题考查了零指数幂,特殊角的三角函数值,算术平方根,负整数指数幂,完全平方公式和平方差公式,注意第(2)个小题平方差公式展开要加括号.47.-a +2c .【分析】根据已知判断出a +b ,c -a 及b -c 的符号,进而确定出二次根式、绝对值里边式子的符号,利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】解:∵a <b <0<c ,a +b <0,c -a >0,b -c <0.∵||||||a a b b c -+-||||||||a a b c a b c =-++-+-=-a +(a +b )+(c -a )+(c -b )=-a +a +b +c -a +c -b=-a +2c .【点睛】此题考查了二次根式的性质与化简,整式的加减,以及绝对值的性质,去括号法则,以及合并同类项法则.正确得出各项符号是解题关键.48.(1)21113791=+ (2)21121(21)n n n n =+--;证明见解析 【分析】(1)观察前几个等式即可写出第7个等式;(2)结合(1)观察数字的变化规律即可写出第n 个等式,并进行证明.【详解】解:观察以下等式:第1个等式:211111=+, 第2个等式:211326=+,答案第16页,共16页 第3个等式:2115315=+, 第4个等式:2117428=+, 第5个等式:2119545=+, ……按照以上规律, (1)第7个等式:21113791=+; 故答案为:21113791=+; (2)第n 个等式:21121(21)n n n n =+-- 证明:∵等式右边11(21)n n n =+- 21122(21)(21)(21)21n n n n n n n n n -=+==---- ∵左边=右边∵猜想得证. 故答案为:21121(21)n n n n =+-- 【点睛】本题考查了规律型:数字的变化类、列代数式,解决本题的关键是观察数字的变化寻找规律.。
中考数学专题复习《实数的运算》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列说法中正确的是()A.√25的值是±5B.两个无理数的和仍是无理数C.-3没有立方根.D.√a2−b2是最简二次根式.2.实数m,n在数轴上的对应点的位置如图所示,下列结论中正确的是()A.|m|<|n|B.m+n>0C.m−n<0D.mn>0 3.计算:|−2|+3sin30°−2−1−(2022−π)0等于()A.-2B.−12C.2D.04.观察下列各式:√1+112+122=1+11×2√1+122+132=1+12×3√1+132+142=1+13×4…请利用你所发现的规律计算√1+112+122+√1+122+132+√1+132+142+⋯⋯+√1+192+1102其结果为()A.8910B.9910C.989D.8895.估计√2(√23−√2)的值应在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间.6.秦兵马俑的发现被誉为“世界第八大奇迹” 兵马俑的眼睛到下巴的距离与头顶到下巴的距离之比为√5−12下列各数中最接近于√5−12的是()A.25B.12C.35D.347.若x为实数在“(√3+1)◯ x”的“◯”中添上一种运算符号(在“+-× ÷”中选择)后其运算的结果为有理数则不可能是()A.√3−1B.1−√3C.3√3D.1+√38.计算sin60°⋅tan30°−sin45°⋅cos30°的结果是()A.−12+√62B.√32+12C.−√32+12D.12−√649.下列运算正确的是()A .√3+√2=√5B .|3.14−π|=π−3.14C .a 2⋅a 3=a 6D .(a −1)2=a 2−2a −110.今年“十一”期间 广州部分公园举行游园活动 据统计 天河公园早晨6时30分有2人进入公园 接下来的第一个30分钟内有4人进去1人出来 第二个30分钟内有8人进去2人出来 第三个30分钟内有16人进去3人出来 第四个30分钟内有32人进去4人出来.按照这种规律进行下去 到上午11时30分公园内的人数是( )A .211−47B .212−57C .213−68D .214−80二 填空题11.(√3−1.732)0+(−14)−2= .12.【中考变形】已知a =(12)−1+(−√3)0,b =(√3+√2)(√3−√2) 则√a +b = .13.计算:|−5|+(3−π)0−6×3−1+√3−1−2sin60°= 。
第1课时:实数【课前预习】 (一)知识梳理1、实数的概念:⎪⎪⎩⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧数无理数:无限不循环小数有限小数或无限循环小分数整数有理数 ⎪⎩⎪⎨⎧负数正数实数02、相关概念:数轴、相反数、绝对值、倒数.3、实数的大小比较.⎩⎨⎧作差法利用数轴进行比较4、实数的运算:运算法则、运算律、运算顺序、零指数幂和负整数指数幂、科学计数法、近似数. (二)课前练习1、-5的绝对值是 ,相反数是 ,倒数是 ,绝对值小于3的整数有 .2、数轴上点A 表示-5,点B 表示2,则A 、B 两点之间的距离是 .3、在实数-23,0-3.14,2π-0.1010010001…(每两个1之间依次多1个0),tan60°. 这8个实数中,无理数有 . 4、下列各式正确的是( )A .33--=B .326-=-C .(3)3--=D .0(π2)0-=5、某市在一次扶贫助残活动中,共捐款25.8万元.将25.8万元用科学记数法表示为 .6、若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则100!98!的值为 . 【解题指导】例1 下列各数中:-1,0,169,2π,1.101001…,0.6.,12-, 45cos ,- 60cos ,722,2,π-722.有理数集合{ …}; 正数集合{ …}; 整数集合{ …}; 自然数集合{ …}; 分数集合{ …}; 无理数集合{ …}; 绝对值最小的数的集合{ …};例2 (1)已知a 、b 互为相反数,c 、d 互为倒数,e(a+b )+12cd -2e °的值;(2)实数a 、b 、c 在数轴上的对应点如图所示,化简c a例3 计算:(-1)2009+ 3(tan 60︒)-1-︱1-3︱+(3.14-π)0.例4 已知(x-2)2=0,求xyz 的值.例5 用“☆”定义新运算: 对于任意实数a 、b , 都有a ☆b =b 2+1. 例如7☆4=42+1=17,那么-5☆3= ;当m 为实数时,m ☆(m ☆2)=【巩固练习】1、2的相反数是_____,1的绝对值是______,-23的倒数为_______= .2、绝对值大于1不大于4的所有整数的和为 .3、已知数2a -与23a -,若这两数的绝对值相等,则a 的倒数是 .4、下列各数中:-30,2,0.31,227,2π,2.161161161,(-2 005)0是无理数的5B 关于 点A 的对称点为C ,则点C 表示的数是 .6、实数a 、b 在数轴上的位置如图所示:化简2a +∣a -b ∣= .7、计算 03π316(2)20073⎛⎫-+÷-+- ⎪⎝⎭【课后作业】 姓名 一、必做题:1、32-= ;213-的倒数是 ;0(=_________;14-的相反数是_________.2、若()2240a c --=,则=+-c b a .3、绝对值最小的数是______;若 |a |<2,则a 的整数解为_______;已知|a +3|=1 ,那么a =______.4、计算:312-=_________,22131-⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛=__________.5、定义2*a b a b =-,则(12)3**=______.6、地球上陆地面积约为149 100 000 km 2,用科学记数法可以表示为____________km 2(保留三个有效数字)7、国家体育场“鸟巢”建筑面积达25.8万平方米,将25.8万平方米用科学记数法(四舍五入保留2个有效数字)表示约为( )A .42610⨯平方米 B .42.610⨯平方米 C .52.610⨯平方米 D .62.610⨯平方米8、在数轴上表示2-的点离开原点的距离等于( )A .2B .2-C .2±D .49、如果a <0,b >0,a +b <0,那么下列关系式中正确的是( ).A .a >b >-b >-aB .a >-a >b >-bC .b >a >-b >-aD .-a >b >-b >a 10、若a,b 均为实数,下列说法正确的是( ). A .若a +b =0,则a 、b 互为相反数 B.a 的倒数是a1 C.a a =2D. b 2是一个正数 11、已知:3,2xy ==,且0xy <,则x y +的值等于( ). A.5或-5 B.1或-1 C.3或1 D.-5或-1 12、已知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值等于2,求)21()(2122m m cd b a +-÷+--的值.13、计算:①︒-+--⎪⎭⎫ ⎝⎛--45sin )32(2102②||4+⎝ ⎛⎭⎪⎫12-1-(3-1)0-8cos45°.二、选做题1、在实数范围内定义运算“⊕”,其法则为:22a b ab ⊕=-,求方程(4⊕3)⊕24x =的解.2、我们常用的数是十进制数,如32104657410610510710=⨯+⨯+⨯+⨯,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中210110121202=⨯+⨯+⨯等于十进制的数6,543210110101121202120212=⨯+⨯+⨯+⨯+⨯+⨯等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?3、将一根绳子对折1次从中间剪断,绳子变成3段;将一根绳子对折2次,从中间剪断,绳子变成5段;依此类推,将一根绳子对折n 次,从中间剪一刀全部剪断后,绳子变成 段.4、罗马数字共有7个:I (表示1),V (表示5),X (表示10),L (表示50),C (表示100),D (表示500),M (表示1000),这些数字不论位置怎样变化,所表示的数目都是不变的,其计数方法是用“累积符号”和“前减后加”的原则来计数的:如:IX=10-1=9,VI=5+1=6,CD=500-100=400,则XL= ,XI= .5、如图所示是标出长度单位和正方向的数轴,若点A 对应于实数a ,点B 对应于实数b ;a ,b 是整数,且2b a -=7,则图中数轴上的原点应是点,的算术平方根是 .6、设,a b为非零实数,则a a ).A. ±2B.±1或0C.±2或0D.±2或±1 7、计算:12345314,3110,3128,3182,31244,+=+=+=+=+=…归纳计算结果中的个位数字的规律,猜测200931+的个位数字是( )A. 0B. 2C. 4D. 8 8、已知:C 23=3×21×2=3,C 35=5×4×31×2×3=10,C 46=6×5×4×31×2×3×4=15,….观察上面的计算过程,寻找规律并计算C 610=____________.........A B C D。
实数运算1、(2013•衡阳)计算的结果为( )A .B .C . 3D . 5 考点: 二次根式的乘除法;零指数幂.专题: 计算题.分析: 原式第一项利用二次根式的乘法法则计算,第二项利用零指数幂法则计算,即可得到结果.解答: 解:原式=2+1=3.故选C点评: 此题考查了二次根式的乘除法,以及零指数幂,熟练掌握运算法则是解本题的关键.2、(2013•常德)计算+的结果为( )A . ﹣1B . 1C . 4﹣3D . 7 考点: 实数的运算.专题: 计算题.分析: 先算乘法,再算加法即可.解答: 解:原式=+=4﹣3=1.故选B .点评: 本题考查的是实数的运算,在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.3、(2013年河北)下列运算中,正确的是A.9=±3 B.3-8=2 C.(-2)0=0 D .2-1=12答案:D解析:9是9的算术平方根,9=3,故A 错;3-8=-2,B 错,(-2)0=1,C 也错,选D 。
4、(2013台湾、6)若有一正整数N 为65、104、260三个公倍数,则N 可能为下列何者?( )A .1300B .1560C .1690D .1800考点:有理数的混合运算.专题:计算题.分析:找出三个数字的最小公倍数,判断即可.解答:解:根据题意得:65、104、260三个公倍数为1560.故选B点评:此题考查了有理数的混合运算,弄清题意是解本题的关键.5、(2013•攀枝花)计算:2﹣1﹣(π﹣3)0﹣=﹣1.考点:实数的运算;零指数幂;负整数指数幂.专题:计算题分析:本题涉及0指数幂、负指数幂、立方根等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=﹣1﹣=﹣1.故答案为﹣1.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是掌握0指数幂、负指数幂、立方根考点的运算.6、(2013•衡阳)计算=2.考点:有理数的乘法.分析:根据有理数的乘法运算法则进行计算即可得解.解答:解:(﹣4)×(﹣)=4×=2.故答案为:2.点评:本题考查了有理数的乘法运算,熟记运算法则是解题的关键,要注意符号的处理.7、(2013•十堰)计算:+(﹣1)﹣1+(﹣2)0=2.考点:实数的运算;零指数幂;负整数指数幂.分析:分别进行二次根式的化简、负整数指数幂、零指数幂的运算,然后合并即可得出答案.解答:解:原式=2﹣1+1=2.故答案为:2.点评:本题考查了实数的运算,涉及了零指数幂、负整数指数幂的知识,解答本题的关键是掌握各部分的运算法则.8、(2013•黔西南州)已知,则a b=1.考点:非负数的性质:算术平方根;非负数的性质:绝对值.分析:根据非负数的性质列式求出a、b,然后代入代数式进行计算即可得解.解答:解:根据题意得,a﹣1=0,a+b+1=0,解得a=1,b=﹣2,所以,a b=1﹣2=1.故答案为:1.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.9、(2013杭州)把7的平方根和立方根按从小到大的顺序排列为 . 考点:实数大小比较.专题:计算题.分析:先分别得到7的平方根和立方根,然后比较大小.解答:解:7的平方根为﹣,;7的立方根为,所以7的平方根和立方根按从小到大的顺序排列为﹣<<. 故答案为:﹣<<.点评:本题考查了实数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.10、(2013•娄底)计算:= 2 .考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值. 分析:分别进行负整数指数幂、零指数幂、特殊角的三角函数值、二次根式的化简等运算,然后按照实数的运算法则计算即可.解答: 解:原式=3﹣1﹣4×+2=2.故答案为:2.点评:本题考查了实数的运算,涉及了负整数指数幂、零指数幂、特殊角的三角函数值、二次根式的化简等知识点,属于基础题.11、(2013•恩施州)25的平方根是 ±5 .考点:平方根. 分析:如果一个数x 的平方等于a ,那么x 是a 是平方根,根据此定义即可解题. 解答: 解:∵(±5)2=25∴25的平方根±5.故答案为:±5.点评:本题主要考查了平方根定义的运用,比较简单.12、(2013陕西)计算:=-+-03)13()2( .考点:本题经常实数的简单计算、特殊角的三角函数值及零(负)指数幂及绝对值的计算。
专题1:实数一、选择题1.(2017北京第4题)实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a4B.bd0 C. a b D.b c0【答案】C.考点:实数与数轴2.(2017天津第1题)计算(3)5的结果等于()A.2 B.2C.8 D.8【答案】A.【解析】试题分析:根据有理数的加法法则即可得原式-2,故选A.3.(2017天津第4题)据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为()A.0.1263108B.1.263107C.12.63106D.126.3105【答案】B.【解析】试题分析:学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,n的值为这个数的整数位数减1,所以12630000=1.263107.故选B.4.(2017福建第1题)3的相反数是()A.-3 B.1C.133D.3【解析】只有符号不同的两个数互为相反数,因此3的相反数是-3;故选A.5.(2017福建第3题)用科学计数法表示136 000,其结果是()A.0.136106B.1.36105C.136103D.136106【答案】B【解析】13600=1.36×105,故选B.6.(2017河南第1题)下列各数中比1大的数是()A.2 B.0 C.-1 D.-3【答案】A,【解析】试题分析:根据正数大于0,0大于负数,两个负数,绝对值大的反而小可得题目选项中的各数中比1大的数是2,故选A.考点:有理数的大小比较.7.(2017河南第2题)2016年,我国国内生产总值达到74.4万亿元.数据“74.4万亿”用科学计数法表示为()A.74.41012B.7.441013C.74.41013D.7.441014【答案】B.考点:科学记数法.8.(2017湖南长沙第1题)下列实数中,为有理数的是()A.3B.C.32D.1【答案】D【解析】试题分析:根据实数的意义,有理数为有限小数和有限循环小数,无理数为无限不循环小数,可知1是有理数.故选:D9.(2017广东广州第1题)如图1,数轴上两点A,B表示的数互为相反数,则点B表示的()A.-6 B.6 C.0 D.无法确定【答案】B【解析】试题分析:-6的相反数是6,A点表示-6,所以,B点表示6.故选答案B.考点:相反数的定义10.(2017湖南长沙第3题)据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为()A.0.826106B.8.26107C.82.6106D.8.26108【答案】B考点:科学记数法的表示较大的数111.(2017山东临沂第1题)的相反数是()2007 11A.B.C.2017 D.201720072007【答案】A【解析】试题分析:根据只有符号不同的两数互为相反数,可知的相反数为.1120072007故选:A112.(2017山东青岛第1题)的相反数是().8A.8 B.8 C.18D.18【答案】C 【解析】试题分析:根据只有符号不同的两个数是互为相反数,知:1的相反数是818.故选:C考点:相反数定义13. (2017四川泸州第1题)7的绝对值为()A.7B.7C.17D.17【答案】A.【解析】试题分析:根据绝对值的性质可得-7的绝对值为7,故选A.14. (2017四川泸州第2题) “五一”期间,某市共接待海内外游客约567000人次,将567000用科学记数法表示为()A.567103B.56.7104C.5.67105D.0.567106【答案】C.15.(2017山东滨州第1题)计算-(-1)+|-1|,结果为()A.-2 B.2 C.0 D.-1【答案】B.【解析】原式=1+1=2,故选B.16. (2017江苏宿迁第1题)5的相反数是11A.5B.C.D.555【答案】D.【解析】试题分析:根据只有符号不同的两个数互为相反数可得5的相反数是-5,故选D.17. .(2017山东日照第1题)﹣3的绝对值是()A.﹣3 B.3 C.±3 D.【答案】B.试题分析:当a是负有理数时,a的绝对值是它的相反数﹣a,所以﹣3的绝对值是3.故选B.考点:绝对值.18. (2017辽宁沈阳第1题)7的相反数是()A.-7B.C.D.74177【答案】A.【解析】试题分析:根据“只有符号不同的两个数互为相反数”可得7的相反数是-7,故选A.考点:相反数.19.(2017山东日照第3题)铁路部门消息:2017年“端午节”小长假期间,全国铁路客流量达到4640万人次.4640万用科学记数法表示为()A.4.64×105B.4.64×106C.4.64×107D.4.64×108【答案】C.考点:科学记数法—表示较大的数.20. (2017辽宁沈阳第3题) “弘扬雷锋精神,共建幸福沈阳”幸福沈阳需要830万沈阳人共同缔造。
实数一、选择题1.某年哈尔滨市一月份的平均气温为﹣18℃,三月份的平均气温为2℃,则三月份的平均气温比一月份的平均气温高()A.16℃ B.20℃ C.﹣16℃D.﹣20℃2.下列计算正确的是()A.B.(a+b)2=a2+b2C.(﹣2a)3=﹣6a3D.﹣(x﹣2)=2﹣x3.下列计算正确的是()A.(﹣1)﹣1=1 B.(﹣3)2=﹣6 C.π0=1 D.(﹣2)6÷(﹣2)3=(﹣2)24.数字,,π,,cos45°,中是无理数的个数有()个.A.1 B.2 C.3 D.45.据报道,2010年苏州市政府有关部门将在市区完成130万平方米老住宅小区综合整治工作.130万(即1300000)这个数用科学记数法可表示为()A.1.3×104B.1.3×105C.1.3×106D.1.3×1076.数轴上的点A表示的数是﹣1,点B表示的数是﹣,则点B关于点A的对称点B′点表示的数为()A.﹣2 B.﹣﹣2 C.﹣﹣1 D.07.下列计算结果正确的是()A.(﹣a3)2=a9B.a2•a3=a6C.D.(sin60°﹣)0=08.28cm接近于()A.珠穆朗玛峰的高度 B.三层楼的高度C.姚明的身高D.一张纸的厚度9.实数a、b在数轴上的位置如图所示,下列式子错误的是()A.a<b B.|a|>|b| C.﹣a<﹣b D.b﹣a>0二.填空题10.地球与太阳之间的距离约为149 600 000千米,用科学记数法表示(保留2个有效数字)约为千米.11.化简: = .12.若将三个数表示在数轴上,其中能被如图所示的墨迹覆盖的数是.13.已知a、b为两个连续的整数,且,则a+b= .14.已知互为相反数,则a:b= .15.若的值在x与x+1之间,则x= .16.,则x y= .17.计算: = .18.化简二次根式: = .19.一个自然数的算术平方根是a,则相邻的下一个自然数的算术平方根是.三.计算题20.计算:﹣+|1﹣|+()﹣1.21.计算:﹣2sin30°﹣(﹣)﹣2+(﹣π)0﹣+(﹣1)2012.22..23.计算:.24.若x是不等于1的实数,我们把称为x的差倒数,如3的差倒数为,﹣5的差倒数为.现已知x1=﹣,x1的差倒数是x2,x2的差倒数是x3,…,以此类推,x2013的值是多少?实数参考答案与试题解析一、选择题1.某年哈尔滨市一月份的平均气温为﹣18℃,三月份的平均气温为2℃,则三月份的平均气温比一月份的平均气温高()A.16℃ B.20℃ C.﹣16℃D.﹣20℃【考点】有理数的减法.【专题】应用题.【分析】根据题意用三月份的平均气温气温减去一月份的平均气温气温,再根据有理数的减法运算法则“减去一个数等于加上这个数的相反数”计算求解.【解答】解:2﹣(﹣18)=2+18=20℃.故选B.【点评】本题考查有理数的减法运算法则.2.下列计算正确的是()A.B.(a+b)2=a2+b2C.(﹣2a)3=﹣6a3D.﹣(x﹣2)=2﹣x【考点】完全平方公式;去括号与添括号;幂的乘方与积的乘方;二次根式的加减法.【分析】利用完全平方公式、去括号与添括号法则、幂的乘方与积的乘方及二次根式的加减法等性质进行计算后即可确定答案.【解答】解:A、不是同类二次根式,因此不能进行运算,故本答案错误;B、(a+b)2=a2+b2+2ab,故本答案错误;C、(﹣2a)3=﹣8a3,故本答案错误;D、﹣(x﹣2)=﹣x+2=2﹣x,故本答案正确;故选D.【点评】本题考查了完全平方公式、去括号与添括号法则、幂的乘方与积的乘方及二次根式的加减法等性质,属于基本运算,要求学生必须掌握.3.下列计算正确的是()A.(﹣1)﹣1=1 B.(﹣3)2=﹣6 C.π0=1 D.(﹣2)6÷(﹣2)3=(﹣2)2【考点】负整数指数幂;同底数幂的除法;零指数幂.【专题】计算题.【分析】根据平方根,负指数幂的意义,同底数的幂的除法的意义,分别计算出各个式子的值即可判断.【解答】解:A、(﹣1)﹣1=﹣1,故A错误;B、(﹣3)2=9,故B错误;C、任何非0实数的零次幂等于1,故C正确;D、(﹣2)6÷(﹣2)3=(﹣2)3,故D错误.故选C.【点评】解决此题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、同底数的幂的除法等考点的运算.4.数字,,π,,cos45°,中是无理数的个数有()个.A.1 B.2 C.3 D.4【考点】无理数;特殊角的三角函数值.【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合所给的数据判断即可.【解答】解: =2,cos45°=,所以数字,,π,,cos45°,中无理数的有:,π,cos45°,共3个.故选C.【点评】此题考查了无理数的定义,属于基础题,关键是掌握无理数的三种形式.5.据报道,2010年苏州市政府有关部门将在市区完成130万平方米老住宅小区综合整治工作.130万(即1300000)这个数用科学记数法可表示为()A.1.3×104B.1.3×105C.1.3×106D.1.3×107【考点】科学记数法—表示较大的数.【专题】应用题.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:130万=1 300 000=1.3×106.故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.数轴上的点A表示的数是﹣1,点B表示的数是﹣,则点B关于点A的对称点B′点表示的数为()A.﹣2 B.﹣﹣2 C.﹣﹣1 D.0【考点】实数与数轴.【分析】先求出A、B之间的距离,然后根据对称的性质得出A、B′之间的距离,再设点B′表示的数为x,列出关于x的方程,解方程即可.【解答】解:∵数轴上的点A表示的数是﹣1,点B表示的数是﹣,∴AB=﹣1,∵点B和点B′关于点A对称,∴AB′=AB=﹣1.设点B′表示的数为x,则x+1=﹣1,x=﹣2.∴B′点表示的数为﹣2.故选A.【点评】本题考查了实数与数轴上的点的对应关系,以及对称的有关性质.7.下列计算结果正确的是()A.(﹣a3)2=a9B.a2•a3=a6C.D.(sin60°﹣)0=0【考点】负整数指数幂;同底数幂的乘法;幂的乘方与积的乘方;零指数幂.【分析】根据有理数的幂的乘方和同底数幂的乘法及负指数幂的运算法则计算.【解答】解:A、平方取正值,指数相乘,应为a6,故A错误;B、a2•a3=a5,故B错误;C、,故C正确;D、(sin60°﹣)0=1≠0,故D错误.故选C.【点评】本题主要考查了有理数的有关运算法则,解答此题时要注意任何非0数的0次幂等于1.8.28cm接近于()A.珠穆朗玛峰的高度 B.三层楼的高度C.姚明的身高D.一张纸的厚度【考点】有理数的乘方.【分析】根据有理数的乘方运算法则,计算出结果,然后根据生活实际来确定答案.【解答】解:28=24×24=16×16=256(cm)=2.56(m).A、珠穆朗玛峰峰的高度约8848米,错误;B、三层楼的高度20米左右,错误;C、姚明的身高是2.23米,接近2.56米,正确;D、一张纸的厚度只有几毫米,错误.故选C.【点评】解答这样的题目有两个要点需要注意,一是有理数的乘方运算法则要记牢;二是根据生活实际情况来做出选择.9.实数a、b在数轴上的位置如图所示,下列式子错误的是()A.a<b B.|a|>|b| C.﹣a<﹣b D.b﹣a>0【考点】实数与数轴.【分析】根据数轴表示数的方法得到a<0<b,数a表示的点比数b表示点离原点远,则a<b;﹣a >﹣b;b﹣a>0,|a|>|b|.【解答】解:根据题意得,a<0<b,∴a<b;﹣a>﹣b;b﹣a>0,∵数a表示的点比数b表示点离原点远,∴|a|>|b|,∴选项A、B、D正确,选项C不正确.故选C.【点评】本题考查了实数与数轴:数轴上的点与实数一一对应;数轴上原点左边的点表示负数,右边的点表示正数;右边的点表示的数比左边的点表示的数要大.二.填空题10.地球与太阳之间的距离约为149 600 000千米,用科学记数法表示(保留2个有效数字)约为1.5×108千米.【考点】科学记数法与有效数字.【专题】计算题.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1 048 576有7位,所以可以确定n=7﹣1=6.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.【解答】解:149 600 000=1.496×108≈1.5×108.故答案为1.5×108.【点评】此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.11.化简: = .【考点】算术平方根.【分析】根据开平方的意义,可得答案.【解答】解:原式==,故答案为:.【点评】本题考查了算术平方根,先化成分数,再开方运算.12.若将三个数表示在数轴上,其中能被如图所示的墨迹覆盖的数是.【考点】实数与数轴.【专题】图表型.【分析】首先利用估算的方法分别得到﹣,,前后的整数(即它们分别在那两个整数之间),从而可判断出被覆盖的数.【解答】解:∵﹣2<﹣<﹣1,2<<3,3<<4,且墨迹覆盖的范围是1﹣3,∴能被墨迹覆盖的数是.【点评】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力.13.已知a、b为两个连续的整数,且,则a+b= 11 .【考点】估算无理数的大小.【分析】根据无理数的性质,得出接近无理数的整数,即可得出a,b的值,即可得出答案.【解答】解:∵,a、b为两个连续的整数,∴<<,∴a=5,b=6,∴a+b=11.故答案为:11.【点评】此题主要考查了无理数的大小,得出比较无理数的方法是解决问题的关键.14.已知互为相反数,则a:b= .【考点】立方根.【分析】根据立方根互为相反数,可得被开方数互为相反数,根据互为相反数的两数的和为0,可得答案.【解答】解:互为相反数,∴(3a﹣1)+(1﹣2b)=0,3a=2b,故答案为:.【点评】本题考查了立方根,先由立方根互为相反数得出被开方数互为相反数,再求出的值.15.若的值在x与x+1之间,则x= 2 .【考点】估算无理数的大小.【分析】先估算的整数部分是多少,即可求出x的取值.【解答】解:∵2<<3,∴x=2.故答案为:2.【点评】此题主要考查了估算无理数的大小,确定无理数的整数部分即可解决问题.16.,则x y= ﹣1 .【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】首先根据非负数的性质,两个非负数的和是0,这两个数都是0求得x,y的值,代入即可求解.【解答】解:根据题意得:,解得:,∴x y=(﹣1)2011=﹣1.故答案是:﹣1.【点评】本题主要考查了非负数的性质,以及负指数幂的意义,正确求得x,y的值是解题的关键.17.计算: = .【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】根据负指数幂、二次根式化简、特殊角的三角函数3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=3+0.5﹣6×=,故答案为.【点评】本题是基础题,考查了实数的有关运算,还涉及了零指数幂、负指数幂、二次根式化简、绝对值等考点.18.化简二次根式: = ﹣2 .【考点】二次根式的混合运算.【分析】首先进行各项的化简,然后合并同类项即可.【解答】解: =3﹣()﹣2=﹣2,故答案为﹣2.【点评】本题主要考查二次根式的化简、二次根式的混合运算,解题的关键在于对二次根式进行化简,然后合并同类项.19.一个自然数的算术平方根是a,则相邻的下一个自然数的算术平方根是.【考点】算术平方根.【分析】首先利用算术平方根求出这个自然数,然后即可求出相邻的下一个自然数的算术平方根.【解答】解:∵一个自然数的算术平方根是a,∴这个自然数是a2,∴相邻的下一个自然数为:a2+1,∴相邻的下一个自然数的算术平方根是:,故答案为:.【点评】此题主要考查算术平方根的定义及其应用,比较简单.三.计算题20.计算:﹣+|1﹣|+()﹣1.【考点】实数的运算;负整数指数幂.【专题】计算题.【分析】原式第一项化为最简二次根式,第二项分母有理化,第三项利用绝对值的代数意义化简,最后一项利用负指数幂法则计算即可得到结果.【解答】解:原式=3﹣+﹣1+2=3+1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.21.计算:﹣2sin30°﹣(﹣)﹣2+(﹣π)0﹣+(﹣1)2012.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】本题涉及零指数幂、乘方、特殊角的三角函数值、立方根等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=﹣2×﹣+1﹣(﹣2)+1=﹣1﹣9+1+2+1=﹣6.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是掌握零指数幂、乘方、特殊角的三角函数值、立方根等考点的运算.22..【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】根据零指数幂、负整数指数幂和特殊角的三角函数值得到原式=4+(1﹣)﹣1+2×+,再去括号和进行乘法运算,然后合并即可.【解答】解:原式=4+(1﹣)﹣1+2×+=4+1﹣﹣1++=4+.【点评】本题考查了实数的运算:先算乘方或开方,再算乘除,然后进行加减运算;有括号先算括号.也考查了零指数幂、负整数指数幂和特殊角的三角函数值.23.计算:.【考点】实数的运算;零指数幂;特殊角的三角函数值.【专题】计算题.【分析】本题涉及零指数幂、特殊角的三角函数值、二次根式化简、去绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=2+×﹣(﹣1)﹣1,=2+1﹣+1﹣1,=+1.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握特殊角的三角函数值、零指数幂、二次根式、绝对值等考点的运算.24.若x是不等于1的实数,我们把称为x的差倒数,如3的差倒数为,﹣5的差倒数为.现已知x1=﹣,x1的差倒数是x2,x2的差倒数是x3,…,以此类推,x2013的值是多少?【考点】规律型:数字的变化类.【分析】根据差倒数的定义分别计算出x1=﹣,x2=;x3=4,x4=﹣,则得到从x1开始每3个值就循环,而2013÷3=671,即可得出答案.【解答】解:∵x1=﹣,∴x2==;x3==4;x4==﹣;…,∴三个数一个循环,∵2013÷3=671,∴x2013=x3=4.【点评】此题考查了数字的变化类,是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.。
2017年上海市中考数学试卷一、选择题(本大题共6小题,每小题4分,共24分)1.(4分)下列实数中,无理数是()A.0B.C.﹣2D.2.(4分)下列方程中,没有实数根的是()A.x2﹣2x=0B.x2﹣2x﹣1=0C.x2﹣2x+1=0D.x2﹣2x+2=0 3.(4分)如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b应满足的条件是()A.k>0,且b>0B.k<0,且b>0C.k>0,且b<0D.k<0,且b<0 4.(4分)数据2、5、6、0、6、1、8的中位数和众数分别是()A.0和6B.0和8C.5和6D.5和85.(4分)下列图形中,既是轴对称又是中心对称图形的是()A.菱形B.等边三角形C.平行四边形D.等腰梯形6.(4分)已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB 二、填空题(本大题共12小题,每小题4分,共48分)7.(4分)计算:2a•a2=.8.(4分)不等式组的解集是.9.(4分)方程=1的解是.10.(4分)如果反比例函数y=(k是常数,k≠0)的图象经过点(2,3),那么在这个函数图象所在的每个象限内,y的值随x的值增大而.(填“增大”或“减小”)11.(4分)某市前年PM2.5的年均浓度为50微克/立方米,去年比前年下降了10%,如果今年PM2.5的年均浓度比去年也下降10%,那么今年PM2.5的年均浓度将是微克/立方米.12.(4分)不透明的布袋里有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,那么从布袋中任意摸出一球恰好为红球的概率是.13.(4分)已知一个二次函数的图象开口向上,顶点坐标为(0,﹣1 ),那么这个二次函数的解析式可以是.(只需写一个)14.(4分)某企业今年第一季度各月份产值占这个季度总产值的百分比如图所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是万元.15.(4分)如图,已知AB∥CD,CD=2AB,AD、BC相交于点E,设=,=,那么向量用向量、表示为.16.(4分)一副三角尺按如图的位置摆放(顶点C与F重合,边CA与边FE叠合,顶点B、C、D在一条直线上).将三角尺DEF绕着点F按顺时针方向旋转n°后(0<n<180 ),如果EF∥AB,那么n的值是.17.(4分)如图,已知Rt△ABC,∠C=90°,AC=3,BC=4.分别以点A、B为圆心画圆.如果点C在⊙A内,点B在⊙A外,且⊙B与⊙A内切,那么⊙B的半径长r的取值范围是.18.(4分)我们规定:一个正n边形(n为整数,n≥4)的最短对角线与最长对角线长度的比值叫做这个正n边形的“特征值”,记为λn,那么λ6=.三、解答题(本大题共7小题,共78分)19.(10分)计算:+(﹣1)2﹣+()﹣1.20.(10分)解方程:﹣=1.21.(10分)如图,一座钢结构桥梁的框架是△ABC,水平横梁BC长18米,中柱AD高6米,其中D是BC的中点,且AD⊥BC.(1)求sin B的值;(2)现需要加装支架DE、EF,其中点E在AB上,BE=2AE,且EF⊥BC,垂足为点F,求支架DE的长.22.(10分)甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y与x的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.23.(12分)已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.24.(12分)已知在平面直角坐标系xOy中(如图),已知抛物线y=﹣x2+bx+c经过点A(2,2),对称轴是直线x=1,顶点为B.(1)求这条抛物线的表达式和点B的坐标;(2)点M在对称轴上,且位于顶点上方,设它的纵坐标为m,联结AM,用含m的代数式表示∠AMB的余切值;(3)将该抛物线向上或向下平移,使得新抛物线的顶点C在x轴上.原抛物线上一点P 平移后的对应点为点Q,如果OP=OQ,求点Q的坐标.25.(14分)如图,已知⊙O的半径长为1,AB、AC是⊙O的两条弦,且AB=AC,BO的延长线交AC于点D,联结OA、OC.(1)求证:△OAD∽△ABD;(2)当△OCD是直角三角形时,求B、C两点的距离;(3)记△AOB、△AOD、△COD的面积分别为S1、S2、S3,如果S2是S1和S3的比例中项,求OD的长.2017年上海市中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题4分,共24分)1.(4分)下列实数中,无理数是()A.0B.C.﹣2D.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.(4分)下列方程中,没有实数根的是()A.x2﹣2x=0B.x2﹣2x﹣1=0C.x2﹣2x+1=0D.x2﹣2x+2=0【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.3.(4分)如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b应满足的条件是()A.k>0,且b>0B.k<0,且b>0C.k>0,且b<0D.k<0,且b<0【点评】本题考查了一次函数的性质和图象,能熟记一次函数的性质是解此题的关键.4.(4分)数据2、5、6、0、6、1、8的中位数和众数分别是()A.0和6B.0和8C.5和6D.5和8【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会找一组数据的众数和中位数.5.(4分)下列图形中,既是轴对称又是中心对称图形的是()A.菱形B.等边三角形C.平行四边形D.等腰梯形【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.(4分)已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB【点评】本题考查了矩形的判定、平行四边形的性质、菱形的判定;熟练掌握矩形的判定是解决问题的关键.二、填空题(本大题共12小题,每小题4分,共48分)7.(4分)计算:2a•a2=2a3.【点评】本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.8.(4分)不等式组的解集是x>3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.(4分)方程=1的解是x=2.【点评】本题考查了无理方程的解法,解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法,解无理方程,往往会产生增根,应注意验根.10.(4分)如果反比例函数y=(k是常数,k≠0)的图象经过点(2,3),那么在这个函数图象所在的每个象限内,y的值随x的值增大而减小.(填“增大”或“减小”)【点评】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.11.(4分)某市前年PM2.5的年均浓度为50微克/立方米,去年比前年下降了10%,如果今年PM2.5的年均浓度比去年也下降10%,那么今年PM2.5的年均浓度将是40.5微克/立方米.【点评】考查了有理数的混合运算,关键是熟练掌握增长率问题的关系式.12.(4分)不透明的布袋里有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,那么从布袋中任意摸出一球恰好为红球的概率是.【点评】此题考查了概率公式的应用.解题时注意:概率=所求情况数与总情况数之比.13.(4分)已知一个二次函数的图象开口向上,顶点坐标为(0,﹣1 ),那么这个二次函数的解析式可以是y=2x2﹣1.(只需写一个)【点评】本题主要考查待定系数法求函数解析式,熟练掌握抛物线的顶点式是解题的关键.14.(4分)某企业今年第一季度各月份产值占这个季度总产值的百分比如图所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是80万元.【点评】本题考查了扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.15.(4分)如图,已知AB∥CD,CD=2AB,AD、BC相交于点E,设=,=,那么向量用向量、表示为+2.【点评】本题考查平面向量、平行线的性质等知识,解题的关键是熟练掌握三角形法则求向量,属于基础题.16.(4分)一副三角尺按如图的位置摆放(顶点C与F重合,边CA与边FE叠合,顶点B、C、D在一条直线上).将三角尺DEF绕着点F按顺时针方向旋转n°后(0<n<180 ),如果EF∥AB,那么n的值是45.【点评】本题考查旋转变换、平行线的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.17.(4分)如图,已知Rt△ABC,∠C=90°,AC=3,BC=4.分别以点A、B为圆心画圆.如果点C在⊙A内,点B在⊙A外,且⊙B与⊙A内切,那么⊙B的半径长r的取值范围是8<r<10.【点评】本题考查了圆与圆的位置关系和点与圆的位置关系和勾股定理,明确两圆内切时,两圆的圆心连线过切点,注意当C在⊙A上时,半径为3,所以当⊙A半径大于3时,C在⊙A内;当B在⊙A上时,半径为5,所以当⊙A半径小于5时,B在⊙A外.18.(4分)我们规定:一个正n边形(n为整数,n≥4)的最短对角线与最长对角线长度的比值叫做这个正n边形的“特征值”,记为λn,那么λ6=.【点评】本题考查正多边形与圆、等边三角形的性质、锐角三角函数等知识,解题的关键是理解题意,学会添加常用辅助线,构造特殊三角形解决问题.三、解答题(本大题共7小题,共78分)19.(10分)计算:+(﹣1)2﹣+()﹣1.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.(10分)解方程:﹣=1.【点评】本题考查解分式方程,解题的关键是熟练掌握解分式方程的步骤,注意解分式方程必须检验.21.(10分)如图,一座钢结构桥梁的框架是△ABC,水平横梁BC长18米,中柱AD高6米,其中D是BC的中点,且AD⊥BC.(1)求sin B的值;(2)现需要加装支架DE、EF,其中点E在AB上,BE=2AE,且EF⊥BC,垂足为点F,求支架DE的长.【点评】本题考查解直角三角形的应用,平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.(10分)甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y与x的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.【点评】本题主要考查一次函数的应用.此题属于图象信息识别和方案选择问题.正确识图是解好题目的关键.23.(12分)已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.【点评】本题主要考查了正方形与菱形的判定及性质定理,熟练掌握定理是解答此题的关键.24.(12分)已知在平面直角坐标系xOy中(如图),已知抛物线y=﹣x2+bx+c经过点A(2,2),对称轴是直线x=1,顶点为B.(1)求这条抛物线的表达式和点B的坐标;(2)点M在对称轴上,且位于顶点上方,设它的纵坐标为m,联结AM,用含m的代数式表示∠AMB的余切值;(3)将该抛物线向上或向下平移,使得新抛物线的顶点C在x轴上.原抛物线上一点P 平移后的对应点为点Q,如果OP=OQ,求点Q的坐标.【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、锐角三角函数的定义、二次函数的平移规律、线段垂直平分线的性质,发现点Q与点P关于x轴对称,从而得到点Q的纵坐标是解题的关键.25.(14分)如图,已知⊙O的半径长为1,AB、AC是⊙O的两条弦,且AB=AC,BO的延长线交AC于点D,联结OA、OC.(1)求证:△OAD∽△ABD;(2)当△OCD是直角三角形时,求B、C两点的距离;(3)记△AOB、△AOD、△COD的面积分别为S1、S2、S3,如果S2是S1和S3的比例中项,求OD的长.【点评】本题考查圆的综合题、全等三角形的判定和性质、相似三角形的判定和性质、比例中项等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题,属于中考压轴题.。
专题01 实数问题一、选择题目1.(2017浙江衢州市第1题)-2的倒数是A.B. C. -2 D. 2【答案】A 【解析】试题解析:根据倒数的定义得:﹣2的倒数是﹣. 故选A . 考点:倒数.2.(2017山东德州市第1题)-2的倒数是( )A .B .C .-2D .2【答案】A 【解析】试题分析:性质符号相同,分子分母位置颠倒的两个数称为互为倒数,所以-2的倒数是考点:互为倒数的定义.3.(2017山东德州市第2题)2016年,我市“全面改薄”和改变大班额工程成绩突出,两项工程累计开工面积达477万平方米,各项指标均居全省前列。
477万用科学记数法表示正确的是( )学*科网 A .4.77×105B . 47.7×105C .4.77×106D .0.477×105【答案】C 【解析】21211-2121-2试题分析:选项B 和D 中,乘号前面的a 都不对,应该1≤a<10;选项A 中指数错误,当原数当绝对值>1时,应该为原数的整数位数减去1。
考点:科学记数法的表示方法4.(2017浙江宁波市第112,0,2这四个数中,为无理数的是( )B.12 C.0 D.2-【答案】A. 【解析】12,0,2故选A. 考点:无理数.5.(2017浙江宁波市第3题) 2017年2月13日,宁波舟山港45万吨原油码头首次挂靠全球最大油轮——“泰欧”轮,其中45万吨用科学记数法表示为( )A.60.4510吨B.54.510吨C.44510吨D.44.510吨【答案】B.考点:科学记数法----表示较大的数.6.(2017浙江宁波市第4x 的取值范围是( ) A.3xB.3xC.3xD.3x【答案】D 【解析】试题解析:根据二次根式有意义的条件得:x-3≥0 解得:x≥3. 故选D.考点:二次根式有意义的条件.7.(2017重庆市A 卷第1题)在实数﹣3,2,0,﹣4中,最大的数是( )A .﹣3B .2C .0D .﹣4【答案】B. 【解析】试题解析:∵﹣4<﹣3<0<2, ∴四个实数中,最大的实数是2. 故选B .考点:有理数的大小比较.8.(2017重庆市A 卷第5+1的值应在( ) A .3和4之间 B .4和5之间C .5和6之间D .6和7之间【答案】B . 【解析】<4,+1<5. 故选B .考点:无理数的估算.9.(2017江苏徐州市第1题)的倒数是( )A .B .C .D .【答案】D . 【解析】试题解析:-5的倒数是-15;故选D . 考点:倒数10.(2017江苏徐州市第3题) 肥皂泡的泡壁厚度大约是米,数字用科学记数法表示为( )A .B .C .D .5-5-51515-0.000000710.0000007177.110⨯60.7110-⨯77.110-⨯87110-⨯【答案】C.【解析】试题解析:数字0.00000071用科学记数法表示为7.1×10-7,故选C.考点:科学记数法—表示较小的数.11.(2017甘肃平凉市第2题)据报道,2016年10月17日7时30分28秒,神舟十一号载人飞船在甘肃酒泉发射升空,与天宫二号在距离地面393000米的太空轨道进行交会对接,而这也是未来我国空间站运行的轨道高度.393000用科学记数法表示为()A.39.3×104 B.3.93×105 C.3.93×106 D.0.393×106【答案】B.考点:科学记数法—表示较大的数.12.(2017甘肃平凉市第3题)4的平方根是()A.16 B.2 C【答案】C【解析】试题解析:∵(±2)2=4,∴4的平方根是±2,故选C.考点:平方根.13.(2017广西贵港市第1题)7的相反数是()A.7 B.7- C.17 D.17-【答案】B 【解析】试题解析:7的相反数是﹣7, 故选:B . 考点:相反数.14.(2017广西贵港市第4题)下列二次根式中,最简二次根式是( )A. BD【答案】A考点:最简二次根式.15.(2017贵州安顺市第1题)﹣2017的绝对值是( )A .2017B .﹣2017C .±2017 D.﹣【答案】A .学科网 【解析】试题解析:﹣2017的绝对值是2017. 故选A . 考点:绝对值.16.(2017贵州安顺市第2题)我国是世界上严重缺水的国家之一,目前我国每年可利用的淡水资源总量为27500亿米3,人均占有淡水量居全世界第110位,因此我们要节约用水,27500亿用科学记数法表示为( ) A .275×104B .2.75×104C .2.75×1012D .27.5×1011【答案】C . 【解析】试题解析:将27500亿用科学记数法表示为:2.75×1012.12017故选C .考点:科学记数法—表示较大的数.17.(2017湖北武汉市第1) A .6 B .-6 C .18 D .-18 【答案】A. 【解析】故选A.考点:算术平方根.18.(2017湖南怀化市第1题)2的倒数是( ) A.2B.2C.12D.12【答案】C 【解析】试题解析:﹣2得到数是12,故选C . 考点:倒数.19.(2017湖南怀化市第3题)为了贯彻习近平总书记提出的“精准扶贫”战略构想,怀化市2016年共扶贫149700人,将149700用科学记数法表示为( )A.51.49710B.414.9710C.60.149710D.61.49710【答案】A. 【解析】试题解析:将149700用科学记数法表示为1.497×105, 故选A .考点:科学记数法—表示较大的数.20.(2017江苏无锡市第1题)﹣5的倒数是( )A .B .±5C .5D .﹣1515【解析】试题解析:∵﹣5×(﹣)=1,∴﹣5的倒数是﹣.故选D.考点:倒数21.(2017江苏盐城市第1题)-2的绝对值是()A.2 B.-2 C.D.−【答案】A.【解析】试题解析:-2的绝对值是2,即|-2|=2.故选A.考点:绝对值.22.(2017贵州黔东南州第1题)|﹣2|的值是()A.﹣2 B.2 C.﹣12D.12【答案】B.【解析】试题解析:∵﹣2<0,∴|﹣2|=2.故选B.考点:绝对值.23.(2017四川泸州市第1题)-7的绝对值是()A.7 B.-7 C.17 D.-1715151 21 2【解析】试题解析:|-7|=7.故选A.考点:绝对值.24.(2017四川泸州市第2题)“五一”期间,某市共接待海内外游客约567000人次,将567000用科学记数法表示为()A.567×103 B.56.7×104 C.5.67×105 D.0.567×106【答案】C.【解析】试题解析:567000=5.67×105,故选C.考点:科学记数法—表示较大的数.25.(2017四川省宜宾市第1题)9的算术平方根是()A.3 B.﹣3 C.±3【答案】A.【解析】试题解析:∵32=9,∴9的算术平方根是3.故选A.考点:算术平方根.26.(2017四川省宜宾市第2题)据相关报道,开展精准扶贫工作五年以来,我国约有55000000人摆脱贫困,将55000000用科学记数法表示是()A.55×106B.0.55×108C.5.5×106D.5.5×107【答案】D.【解析】试题解析:55000000=5.5×107,故选D.考点:科学记数法—表示较大的数27.(2017四川省自贡市第1题)计算(﹣1)2017的结果是()A.﹣1 B.1 C.﹣2017 D.2017【答案】A【解析】试题解析:(﹣1)2017=﹣1,故选A.考点:有理数的乘方.28.(2017四川省自贡市第3题)380亿用科学记数法表示为()A.38×109B.0.38×1013C.3.8×1011 D.3.8×1010【答案】D【解析】试题解析:380亿=38 000 000 000=3.8×1010.故选D.考点:科学计数法----表示较大的数.29.(2017新疆建设兵团第1题)下列四个数中,最小的数是()A.﹣1 B.0 C. D.3【答案】A.【解析】试题解析:∵﹣1<0<<3,∴四个数中最小的数是﹣1.故选A.考点:有理数大小比较30.(2017浙江省嘉兴市第1题)2-的绝对值为()A.2B.2-C.12D.12-【答案】A. 【解析】1 21 2试题解析:-2的绝对值是2, 即|-2|=2. 故选A . 考点:绝对值.31.(2017山东烟台市第1题)下列实数中的无理数是( )A. B . C .0 D .【答案】B . 【解析】0,13是有理数,π是无理数,故选:B . 考点:无理数.32.(2017山东烟台市第3题)我国推行“一带一路”政策以来,已确定沿线有65个国家加入,共涉及总人口约达46亿人,用科学记数法表示该总人口为( )A .B .C .D .【答案】A . 【解析】试题解析:46亿=4600 000 000=4.6×109, 故选A .考点:科学记数法—表示较大的数.33.(2017山东烟台市第6题)如图,若用我们数学课本上采用的科学计算器进行计算,其按键顺序如下:9π319106.4⨯81046⨯101046.0⨯10106.4⨯则输出结果为( )A. B . C. D .【答案】C . 【解析】17=2.故选:C .考点:计算器—数的开方.二、填空题目1.(2017浙江衢州市第11题)二次根式中字母的取值范围是__________ 【答案】a≥2.考点:二次根式有意义的条件. 2.(2017山东德州市第2题) 计算:【答案】【解析】. 考点:无理数运算3.(2017浙江宁波市第4题)实数8的立方根是 . 【答案】-2 【解析】试题分析:∵(-2)3=-8212132172252 a a∴-8的立方根是-2.考点:立方根4.(2017重庆市A卷第13题)“渝新欧”国际铁路联运大通道全长11000千米,成为服务“一带一路”的大动脉之一,将数11000用科学记数法表示为.【答案】【解析】试题解析:11000=1.1×104.考点:科学记数法---表示较大的数.5.(2017重庆市A卷第14题)计算:|﹣3|+(﹣1)2= .【答案】4.【解析】试题解析:|﹣3|+(﹣1)2=4考点:有理数的混合运算.6.(2017江苏徐州市第9题)的算术平方根是.【答案】2【解析】试题解析:∵22=4,∴4的算术平方根是2.考点:算术平方根.7.(2017江苏徐州市第11的取值范围是.【答案】x≥6.考点:二次根式有意义的条件.8.(2017甘肃平凉市第12与0.50.5.(填“>”、“=”、“<”)4x【答案】> 【解析】1-2, >0,>0. 考点:实数大小比较.9.(2017广西贵港第13题)计算:35--= . 【答案】-8 【解析】试题解析:﹣3﹣5=﹣8. 考点:有理数的减法.10.(2017广西贵港第14题)中国的领水面积为2370000km ,把370000用科学记数法表示为 . 【答案】3.7×105. 【解析】试题解析:370 000=3.7×105. 考点:科学记数法—表示较大的数.11.(2017湖北武汉市第11题)计算23(4)⨯+-的结果为 . 【答案】2. 【解析】试题解析:23(4)⨯+-=6-4=2. 考点:有理数的混合运算.12.(2017江苏无锡市第11的值是 .【答案】6. 【解析】⨯=6.考点:二次根式的乘除法.13.(2017江苏无锡市第13题)贵州FAST 望远镜是目前世界第一大单口径射电望远镜,反射面总面积约250000m 2,这个数据用科学记数法可表示为 . 【答案】2.5×105. 【解析】试题解析:将250000用科学记数法表示为:2.5×105. 考点:科学记数法—表示较大的数.14.(2017江苏无锡市第14题)如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是 ℃.【答案】11.考点:1.有理数大小比较;2.有理数的减法.15.(2017江苏盐城市第7题)请写出一个无理数 【解析】考点:无理数.⨯=16.(2017江苏盐城市第9题)2016年12月30日,盐城市区内环高架快速路网二期工程全程全线通车,至此,已通车的内环高架快速路里程达57000米,用科学记数法表示数57000为 【答案】5.7×104. 【解析】试题解析:将57000用科学记数法表示为:5.7×104. 考点:科学记数法—表示较大的数.17.(2017江苏盐城市第10在实数范围内有意义,则x的取值范围是 【答案】x≥3. 【解析】试题解析:根据题意得x-3≥0, 解得x≥3.考点:二次根式有意义的条件.18.(2017四川泸州市第17题)计算:(-3)2+20170 【答案】7. 【解析】考点:1.实数的运算;2.零指数幂;3.特殊角的三角函数值.19.(2017四川省自贡市第13题)计算(﹣12)﹣1= .【答案】-2 【解析】试题解析:原式=11-2=﹣2.考点:负整数指数幂.20.(2017山东省烟台市第13题) .【答案】6. 【解析】试题解析:原式=1×4+2 =4+2 =6.考点:实数的运算;零指数幂;负整数指数幂.三、解答题1.(2017浙江衢州市第17题)计算:【答案】 【解析】试题分析:按照实数的运算法则依次进行计算即可得解. 试题解析:原式.考点:1.实数的运算;2.零指数幂;3.特殊角的三角函数值.2.(2017江苏徐州市第19(1)题)计算:;【答案】3.考点:1..实数的运算;2.零指数幂;3.负整数指数幂.3.(2017甘肃平凉市第193tan30°+(π-4)0-()-1.=-+⨯-|2|)21(320︒--⨯-+60tan 2)1(120π1201(2)20172-⎛⎫--+ ⎪⎝⎭121-.【解析】试题分析:本题涉及零指数幂、负整数指数幂、特殊角的三角函数值、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则计算.试题解析:原式=312+-=12+-1-.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.二次根式的性质与化简;5.特殊角的三角函数值.4.(2017广西贵港市第19(1))计算:)20132cos602π-⎛⎫-+---⎪⎝⎭;【答案】-1.【解析】试题分析:根据零指数幂的意义、特殊角的锐角三角函数以及负整数指数幂的意义即可求出答案;试题解析:原式=3+1-(-2)2-2×12=4-4-1=-1考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.5.(2017贵州安顺市第19题)|+(13)﹣1﹣(3﹣π)0﹣(﹣1)2017.【答案】3.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.6.(2017湖南怀化市第171031120173tan3084°.【答案】-2【解析】1是正数,所以它的绝对值是本身,任何不为0的零次幂都是1,11()4=4,tan30°=8的立方根,是2,分别代入计算可得结果.试题解析:原式1+1﹣4+2,4+2,=﹣2.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.7.(2017江苏无锡市第19(1)题)计算:|﹣6|+(﹣2)3+)0;【答案】-1.【解析】试题分析:(1)根据零指数幂的意义以及绝对值的意义即可求出答案;(2)根据平方差公式以及单项式乘以多项式法则即可求出答案.试题解析:原式=6﹣8+1=﹣1学*科网考点:实数的运算;单项式乘多项式;零指数幂.8.(江苏盐城市第17+()-1-20170.【答案】3.【解析】试题分析:首先计算开方,乘方、然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.试题解析:原式=2+2-1=3.考点:实数的运算;零指数幂;负整数指数幂.9.(2017贵州黔东南州第17题)计算:﹣1﹣2(π﹣3.14)012【答案】【解析】试题分析:原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,以及绝对值的代数意义化简,计算即可得到结果.试题解析:原式=1++1考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.10.(2017四川省宜宾市第17题(1))计算(2017﹣π)0﹣()﹣1+|﹣2|【答案】-1.【解析】试题分析:根据零指数幂、负整数指数幂、绝对值分别求出每个部分的值,再代入求出即可. 试题解析:原式=1﹣4+2=﹣1;考点:实数的运算;零指数幂;负整数指数幂.11.(2017四川省自贡市第19题)计算:4sin45°+|﹣2|+(13)0.【答案】3.【解析】考点:1.实数的运算;2.特殊角三角函数值;3.零指数幂.12.(2017新疆建设兵团第16题)计算:(12)﹣1﹣||(1﹣π)0.14【答案】【解析】试题分析:根据负整数指数幂,去绝对值,二次根式的化简以及零指数幂的计算法则计算.试题解析:原式=2考点:实数的运算;零指数幂;负整数指数幂.13.(2017浙江省嘉兴市第17题(1))计算:212(4)--⨯-.【答案】5.【解析】试题分析:首先计算乘方和负指数次幂,计算乘法,然后进行加减即可.试题解析:原式=3-12×(-4)=3+2=5.考点:实数的运算;负整数指数幂.祝你考试成功!祝你考试成功!。
2017年上海市中考数学真题一、选择题(本大题共6小题,每小题4分,共24分) 1.下列实数中,无理数是( ) A .0B2. C .﹣2 D 27.2.下列方程中,没有实数根的是( )A .x 2﹣2x=0B .x 2﹣2x ﹣1=0C .x 2﹣2x+1=0D .x 2﹣2x+2=03.如果一次函数y=kx+b (k 、b 是常数,k≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( ) A .k >0,且b >0 B .k <0,且b >0 C .k >0,且b <0 D .k <0,且b <0 4.数据2、5、6、0、6、1、8的中位数和众数分别是( ) A .0和6B .0和8C .5和6D .5和85.下列图形中,既是轴对称又是中心对称图形的是( ) A .菱形 B .等边三角形C .平行四边形D .等腰梯形6.已知平行四边形ABCD ,AC 、BD 是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是( )A .∠BAC=∠DCAB .∠BAC=∠DAC C .∠BAC=∠ABD D .∠BAC=∠ADB二、填空题(本大题共12小题,每小题4分,共48分) 7.计算:2a ﹒a 2= .82620x x >⎧⎨->⎩.不等式组 的解集是 .923x -.方程=1的解是 . 10.如果反比例函数kxy=(k 是常数,k≠0)的图象经过点(2,3),那么在这个函数图象所在的每个象限内,y 的值随x 的值增大而 .(填“增大”或“减小”)11.某市前年PM2.5的年均浓度为50微克/立方米,去年比前年下降了10%,如果今年PM2.5的年均浓度比去年也下降10%,那么今年PM2.5的年均浓度将是 微克/立方米.12.不透明的布袋里有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,那么从布袋中任意摸出一球恰好为红球的概率是 .13.已知一个二次函数的图象开口向上,顶点坐标为(0,﹣1 ),那么这个二次函数的解析式可以是 .14.某企业今年第一季度各月份产值占这个季度总产值的百分比如图所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是 万元.15.如图,已知AB ∥CD ,CD=2AB ,AD 、BC 相交于点E AE a =,设 BE b =CD ,,那么向量 a 用向量 、b 表示为 .16.一副三角尺按如图的位置摆放(顶点C 与F 重合,边CA 与边FE 叠合,顶点B 、C 、D 在一条直线上).将三角尺DEF 绕着点F 按顺时针方向旋转n°后(0<n <180 ),如果EF ∥AB ,那么n 的值是 .17.如图,已知Rt △ABC ,∠C=90°,AC=3,BC=4.分别以点A 、B 为圆心画圆.如果点C 在⊙A 内,点B 在⊙A 外,且⊙B 与⊙A 内切,那么⊙B 的半径长r 的取值范围是 .18.我们规定:一个正n 边形(n 为整数,n≥4)的最短对角线与最长对角线长度的比值叫做这个正n 边形的“特征值”,记为λn ,那么λ6= .三、解答题(本大题共7小题,共78分)1918.计算:+2( ﹣1)2129﹣ +12()﹣1.20231133x x x -=--.解方程:.21.如图,一座钢结构桥梁的框架是△ABC ,水平横梁BC 长18米,中柱AD 高6米,其中D 是BC 的中点,且AD ⊥BC .(1)求sinB 的值;(2)现需要加装支架DE 、EF ,其中点E 在AB 上,BE=2AE ,且EF ⊥BC ,垂足为点F ,求支架DE 的长.22.甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y (元)与绿化面积x (平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y 与x 的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.23.已知:如图,四边形ABCD 中,AD ∥BC ,AD=CD ,E 是对角线BD 上一点,且EA=EC . (1)求证:四边形ABCD 是菱形;(2)如果BE=BC ,且∠CBE :∠BCE=2:3,求证:四边形ABCD 是正方形.24.已知在平面直角坐标系xOy 中(如图),已知抛物线y=﹣x 2+bx+c 经过点A (2,2),对称轴是直线x=1,顶点为B .(1)求这条抛物线的表达式和点B 的坐标;(2)点M在对称轴上,且位于顶点上方,设它的纵坐标为m,联结AM,用含m的代数式表示∠AMB的余切值;(3)将该抛物线向上或向下平移,使得新抛物线的顶点C在x轴上.原抛物线上一点P平移后的对应点为点Q,如果OP=OQ,求点Q的坐标.25.如图,已知⊙O的半径长为1,AB、AC是⊙O的两条弦,且AB=AC,BO的延长线交AC于点D,联结OA、OC.(1)求证:△OAD∽△ABD;(2)当△OCD是直角三角形时,求B、C两点的距离;(3)记△AOB、△AOD、△COD 的面积分别为S1、S2、S3,如果S2是S1和S3的比例中项,求OD的长.参考答案一、选择题(本大题共6小题,每小题4分,共24分)1.【答案】B 【解析】试题分析:0,﹣227,是无理数,故选B.考点:无理数的定.2.【答案】D【解析】考点:根的判别式3.【答案】B【解析】试题分析:∵一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,∴k<0,b>0,故选B.考点:一次函数的性质和图象4.【答案】C【解析】试题分析:将2、5、6、0、6、1、8按照从小到大排列是:0,1,2,5,6,6,8,位于中间位置的数为5,故中位数为5,数据6出现了2次,最多,故这组数据的众数是6,中位数是5,故选C.考点:1.众数;2.中位数.5.【答案】A考点:中心对称图形与轴对称图形. 6.【答案】C【解析】试题分析:A、∠BAC=∠DCA,不能判断四边形ABCD是矩形;B、∠BAC=∠DAC,能判定四边形ABCD是菱形;不能判断四边形ABCD是矩形;C、∠BAC=∠ABD,能得出对角线相等,能判断四边形ABCD是矩形;D、∠BAC=∠ADB,不能判断四边形ABCD是矩形;故选C.考点:1.矩形的判定;2.平行四边形的性质;3.菱形的判定.二、填空题(本大题共12小题,每小题4分,共48分)7.【答案】2a3【解析】试题分析:2a﹒a2=2a3.考点:单项式的乘法.8.【答案】x>3考点:解一元一次不等式组.9.【答案】x=2【解析】,两边平方得,2x﹣3=1,解得,x=2;经检验,x=2是方程的根;故答案为x=2.考点:解无理方程.10.【答案】减小【解析】试题分析:∵反比例函数kxy=(k是常数,k≠0)的图象经过点(2,3),∴k=2×3=6>0,∴这个函数图象所在的每个象限内,y 的值随x 的值增大而减小. 考点:反比例函数的性质.11.【答案】40.5 考点:有理数的混合运算. 12310.【答案】 【解析】试题分析:∵在不透明的袋中装有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,3235++∴从这不透明的袋里随机摸出一个球,所摸到的球恰好为红球的概率是:310= 考点:概率公式. 13.【答案】y=2x 2﹣1 【解析】试题分析:由题意设该抛武线的解析式为y=ax 2﹣1, 又∵二次函数的图象开口向上, ∴a >0,∴这个二次函数的解析式可以是y=2x 2﹣1, 故答案为:y=2x 2﹣1. 考点:待定系数法求函数解析式 14. 【答案】120 考点:扇形统计图 15.2b a +【答案】 【解析】试题分析:∵AB ∥CD 12AB AE CD ED ==,∴∴ED=2AE , AE a =2ED a =CD ∵,∴,∴CE ED +2b a += =.考点:1.平面向量;2.平行线的性质16. 【答案】45 【解析】试题分析:①如图1中,EF ∥AB 时,∠ACE=∠A=45°,∴旋转角n=45时,EF ∥AB . ②如图2中,EF ∥AB 时,∠ACE+∠A=180°,∴∠ACE=135°∴旋转角n=360°﹣135°=225°, ∵0<n°<180,∴此种情形不合题意, 故答案为45考点:1.旋转变换;2.平行线的性质 17.【答案】8<r <10 【解析】试题分析:如图1,当C 在⊙A 上,⊙B 与⊙A 内切时, ⊙A 的半径为:AC=AD=4,⊙B 的半径为:r=AB+AD=5+3=8;考点:1.圆与圆的位置关系;2.点与圆的位置关系;3.勾股定理. 1832.【答案】 【解析】试题分析:如图,正六边形ABCDEF 中,对角线BE 、CF 交于点O ,连接EC .易知BE 是正六边形最长的对角线,EC 的正六边形的最短的对角线, ∵△OBC 是等边三角形,∴∠OBC=∠OCB=∠BOC=60°,∵OE=OC ,∴∠OEC=∠OCE ,∵∠BOC=∠OEC+∠OCE ,∴∠OEC=∠OCE=30°,∴∠BCE=90°, ∴△BEC EC BE 是直角三角形,∴32=cos30°=, ∴λ63=. 考点: 1.正多边形与圆;2.等边三角形的性质;3.锐角三角函数三、解答题(本大题共7小题,共78分) 192.【答案】+2 【解析】试题分析:根据负整数指数幂和分数指数幂的意义计算. 试题解析:原式2=3+2﹣22+1﹣23+2=+2.考点:二次根式的混合运算 20.【答案】x=﹣1 【解析】∴原方程的解为x=﹣1. 考点:解分式方程21.【答案】(1)21313sinB=;(2)DE =5. 【解析】考点:1.解直角三角形的应用;2.平行线分线段成比例定理.22.【答案】(1)y=5x+400;(2)选择乙公司的服务,每月的绿化养护费用较少.【解析】∴选择乙公司的服务,每月的绿化养护费用较少.考点:一次函数的应用.23.【答案】(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)首先证得△ADE≌△CDE,由全等三角形的性质可得∠ADE=∠CDE,由AD∥BC可得∠ADE=∠CBD,易得∠CDB=∠CBD,可得BC=CD,易得AD=BC,利用平行线的判定定理可得四边形ABCD为平行四边形,由AD=CD可得四边形ABCD是菱形;(2)由BE=BC可得△BEC为等腰三角形,可得∠BCE=∠BEC,利用三角形的内角和定理可得∠14CBE=180×=45°,易得∠ABE=45°,可得∠ABC=90°,由正方形的判定定理可得四边形ABCD是正方形.考点:1.正方形的判定与性质;2.菱形的判定及性质.24.【答案】(1)抛物线的解析式为y=﹣x2+2x+2.顶点B坐标为(1,3).(2)cot∠AMB=m﹣2.(3)点Q262+32262-32的坐标为(,﹣)或(,﹣).【解析】∴抛物线的解析式为y=﹣x 2+2x+2.配方得:y=﹣(x ﹣1)2+3.∴抛物线的顶点坐标为(1,3).(2)如图所示:过点A 作AC ⊥BM ,垂足为C ,则AC=1,C (1,2).∵M (1,m ),C (1,2),∴MC=m ﹣2.∴cot ∠CMACAMB==m ﹣2. (3)∵抛物线的顶点坐标为(1,3),平移后抛物线的顶点坐标在x 轴上, ∴抛物线向下平移了3个单位.∴平移后抛物线的解析式为y=﹣x 2+2x ﹣1,PQ=3. ∵OP=OQ ,∴点O 在PQ 的垂直平分线上. 又∵QP ∥y 轴,∴点Q 与点P 关于x 轴对称. ∴点Q 32的纵坐标为﹣. 将y=32﹣代入y=﹣x 2+2x ﹣1得:﹣x 2+2x ﹣1=32﹣,解得:26+x= 或26-x=.∴点Q 26+3226-32的坐标为(,﹣)或(,﹣).考点:二次函数的综合应用. 25.【答案】(1)证明见解析;(2)3BC= .(3)5-12OD=. 【解析】试题解析:(1)如图1中,在△AOB 和△AOC OA OA AB AC OB OC =⎧⎪=⎨⎪=⎩中, ,∴△AOB ≌△AOC ,∴∠C=∠B ,(3)如图3中,作OH ⊥AC 于H ,设OD=x .∵△DAO ∽△DBAAD OD OA DB AD AB ==,∴,11AD x x AD AB==+∴,∴()1x x +AD= , ()1x x +AB=,∵S 2是S 1和S 3的比例中项,∴S 22=S 1S 3, ∵S 212=ADOH ,S 1=S △OAC 12=AC ﹒OH ,S 312=CD ﹒OH 12,∴(AD ﹒OH )212=AC ﹒OH 12﹒CD ﹒OH , ∴AD 2=ACCD ,考点:1.圆综合题;2.全等三角形的判定和性质;3.相似三角形的判定和性质;4.比例中项.。
中考专题复习实 数1、有理数:像3、53-、119……这样的 或 。
2、数轴:规定了 、 和 的直线叫做数轴(画数轴时,要注意上述规定的 三要素缺一不可)。
3、相反数:只有 不同的两个数,如a 的相反数是 ,0的相反数仍是 。
若a 与b 互为相反数,则 .4、绝对值:正数的绝对值是它 ,负数的绝对值是它的 ,0的绝对值是0.任何实数的绝对值都是 ,a ≧0.互为相反数的两个数的绝对值相等,a =a -。
5、倒数: 没有倒数。
正数的倒数是正数,负数的倒数是负数。
若a 与b 互为倒数,则 .6、有理数的四则混合运算:(1)先乘方,再乘除,最后加减; (2)同级运算,从左到右进行;(4)如有括号,先做括号内的运算,按 ,中括号, 依次进行。
7、乘方:求n 个 的积的运算,叫做乘方,乘方的结果叫做 。
在a n中,a 叫做 ,n 叫做 。
8、科学记数法:把一个数写做 的形式,其中101<≤a ,n 是整数,这种记数法叫做科学记数法。
9、平方根:如果一个数的平方等a ,那么这个数叫做a 的 或 ,0的平方根是0,负数 平方根。
a 的平方根记为a ±(a ≧0),读作“正负根号a ”,a 叫做被开方数。
10、算术平方根:如果一个正数的平方等于a ,那么这个正数叫做a 的 ,0的算术平方根为0。
a 的算术平方根记为a (a ≧0),读作“根号a ”,a 叫做被开方数。
11、立方根:如果一个数的立方等于a ,那么这个数叫做a 的 或 ,0的立方 根是0,正数的立方根是正数,负数的立方根是负数。
3a -=3a ,a 的立方根记为3a ,读作“三次根号a ”,a 叫做 ,3是 。
知识回顾12、无理数:像2、33、……这样的 。
13、实数: 和 统称为实数。
实数与数轴上的点 。
1.(2017湖南长沙,1)下列实数中,为有理数的是( ) A .B .C .D .12.(2017广东广州,1)如图1,数轴上两点表示的数互为相反数,则点表示的( )A . -6B .6C . 0D .无法确定3.(2017湖南长沙,3)据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为( ) A .B .C .D .4.(2017山东临沂,1)的相反数是( ) A .B .C .2017D .5.(2017浙江宁波,4)实数的立方根是 .6.(2017重庆A 卷,13)“渝新欧”国际铁路联运大通道全长11000千米,成为服务“一带一路”的大动脉之一,将数11000用科学记数法表示为 . 7.(2017重庆A 卷,14)计算:|﹣3|+(﹣1)2= . 8.(2017江苏徐州,9)的算术平方根是 . 9.(2017浙江嘉兴,17(1))计算:.10.(2017浙江台州,17)计算:.基础检测考点精讲1.有理数概念【例题1】(2017河南,1)下列各数中比1大的数是()A.2 B.0 C.-1 D.-3【答案】A,【解析】根据正数大于0,0大于负数,两个负数,绝对值大的反而小可得题目选项中的各数中比1大的数是2,故选A.【考点】有理数的大小比较.【变式】(2017重庆A卷,14)计算:|﹣3|+(﹣1)2= .【答案】4.【解析】|﹣3|+(﹣1)2=4【考点】有理数的混合运算.【例题2】(2017天津,1)计算的结果等于()A.2 B. C.8 D.【答案】A.【解析】根据有理数的加法法则即可得原式-2,故选A.【变式】(2017山东滨州,1)计算-(-1)+|-1|,结果为()A.-2 B.2 C.0 D.-1【答案】B.【解析】原式=1+1=2,故选B.【例题3】(2017山东日照,3)铁路部门消息:2017年“端午节”小长假期间,全国铁路客流量达到4640万人次.4640万用科学记数法表示为()A.4.64×105B.4.64×106C.4.64×107D.4.64×108【答案】C.【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于4640万有8位,所以可以确定n=8﹣1=7.4640万=4.64×107.故选:C.【考点】科学记数法—表示较大的数.【变式】(2017辽宁沈阳,3)“弘扬雷锋精神,共建幸福沈阳”幸福沈阳需要830万沈阳人共同缔造。
中考数学数与式专题知识训练50题含答案(有理数、实数、代数、因式分解、二次根式)__一、单选题1.下列说法正确的是( )A .最小的有理数是0B .任何有理数都可以用数轴上的点表示C .绝对值等于它的相反数的数都是负数D .整数是正整数和负整数的统称 2.5的相反数是( )A .5-B .5C .15D .|5| 3.单项式22xy -的系数和次数分别为( )A .2,2B .2,3C .-2,2D .-2,3 4.下列计算正确的是( )A .3a 2﹣6a 2=﹣3B .(﹣2a )•(﹣a )=2a 2C .10a 10÷2a 2=5a 5D .﹣(a 3)2=a 65.火星具有和地球相近的环境,与地球最近时候的距离约55000000km ,将数字55000000用科学记数法表示为( )A .555010⨯B .65510⨯C .75.510⨯D .80.5510⨯ 6.2019年3月25日,为加强中法两国友好关系,两国签署价值300亿美元的“空中客车”飞机大单,其中300亿用科学记数法表示为( )A .3×108B .300×108C .0.3×1011D .3×1010 7.下列各式计算正确的是( )A 2=-B =C =D .2=8.下列各式的值最小的是( )A .13-B .22-C .40-⨯D .|5|-9.5的相反数是( )A .-5B .5C .±5D .1510.下列二次根式是最简二次根式的是( )AB C D 11.高州市投入环保资金3730000万元,3730000万元用科学记数法表示为( )万元A .537.310⨯B .63.7310⨯C .70.37310⨯D .437310⨯ 12.下列说法中错误的是( )①0既不是正数,也不是负数; ①0是自然数,也是整数,也是有理数;①数轴上原点两侧的数互为相反数; ①两个数比较,绝对值大的反而小.A .①①B .①①C .①①D .①①①13.下列运算正确的是( )A .a ab --b b a -=1 B .m n m n a b a b --=- C .11b b a a a +-= D .2221a b a b a b a b+-=--- 14.下列计算正确的是( )A .4a 3·2a 2=8a 6B .2x 4·3x 4=6x 8C .3x 2·4x 2=12x 2D .(2ab 2)·(-3abc)=-6a 2b 315.函数y =) A .2x ≥- B .21x C .1x > D .2x ≥-且1x ≠ 16.6-的相反数是( )A .16-B .6--C .6D .1617.下列各数中比-1小1的数是( )A .-1B .-2C .1D .-318.已知b>0,化简-1]∞(,的结果是( )A .-B .C .-D .19 )A .3与4之间B .5与6之间C .6与7之间D .28与30之间 20.如果a 是负数,那么2a 的算术平方根是( ).A .aB .a -C .a ±D .二、填空题21x 的取值范围是__________.22.当x =__________________.23.若|x|=5,则x ﹣3的值为_____.24.上海世博会预计约有69 000 000人次参观,69 000 000用科学记数法表示为_________.25.计算:222a b a b b a+=--____________. 26.用科学记数法表示:0.000832-=________.27.计算:a2•a3=_____.2823x =-,则x 的范围是_____________.29.对于任意不相等的两个数a ,b ,定义一种运算①如下:a ①b 3①2==4①8=________. 30.若4a b =+,则222a ab b -+的值是______________.31.“KN95”口罩能过滤空气中95%的直径约为0.0000003m 的非油性颗粒,数据0.0000003用科学记数法表示为____________.32.已知x 、y 均为实数,且5x y +=,2211x y +=,则xy =______. 33.若分式22x 有意义,则x 的取值范围是________.34.计算:02(3)π-+-=______________.35=b+2,那么a b =_____.36______________________=____________37_______,π=_______38.计算:(2a b -)3·(2b a -)2=____________(结果用幂的形式表示)39100,...,==根据其变化规律,解答问题:若1.02102,则x =____________.三、解答题40.计算:x 2•x 3+(﹣x )5+(x 2)3.41.张师傅承揽了某栋公寓楼的装修任务,他准备铺地时,发现这栋公寓楼户型结构相同,但地面卫生间和客厅的宽分别有几个类型,他将房子地面结构图按下图进行表示(单位:米).(1)请你用含x ,y 的式子,帮张师傅把地面的总面积表示出来;(单位:平方米) (2)已知 4.5x =,2y =这类型的房子有五户,铺地砖的费用为80元/平方米,请求出这个类型的房子铺地砖的总费用.42.已知2a +2的立方根是-2,a +b +4的算术平方根是3,c(1)求a ,b ,c 的值.(2)求22a ab c -+的平方根.43.计算:(1)(22 44.计算:032243.45.在等式2y ax bx c =++中,当1x =时,0y =;当=1x -时,=2y -:当2x =时,7y =.(1)求a ,b ,c 的值;(2)求当3x =-时,y 的值.46.计算:()()2242x y y x y x x ⎡⎤-+--÷⎣⎦.47.在ABCD 中,120BAD ∠=︒,DE 平分ADC ∠交射线AB 于点E ,线段BE 绕点E 顺针旋转60°得到线段EP ,连接AC ,PC .(1)如图1,当点E 在线段AB 上时,①PBC ∠的大小为______;①判断APC △的形状并说明理由;(2)当4BC =,2BE =时,直接写出AC 的长.48.已知:243M a ab =+-,269N a ab =-+.(1)化简:M N +;(2)若()2210a b ++-=,求M N +的值.49.操作题(1)如图①所示是一个长为2a ,宽为2b 的矩形,若把此图沿图中虚线用剪刀均分为四块小长方形,然后按图①的形状拼成一个正方形,请问:这两个图形的 不变.图①中阴影部分的面积用含a 、b 的代数式表示为_________________;(2)由(1)的探索中,可得到的结论是:在周长一定的矩形中,___________时,面积最大;(3)若一矩形的周长为36 cm ,则当边长为多少时,该图形的面积最大?最大面积是多少?参考答案:1.B【详解】分析:利用有理数的概念、数轴上点与有理数的关系、相反数的求法、整数等知识对各选项进行判断;解:A 选项有理数包括了正数、0、负数,所以没有最小的有理数,故是错误的; B 选项数轴上的点与有理数是一一对应的关系,故是正确的;C 选项绝对值等于它的相反数的数有0和负数,故是错误的;D 选项整数包括了正整数、0和负整数,故是错误的;故选B .2.A【分析】直接利用互为相反数的定义得出答案.【详解】解:5的相反数是:-5.故选:A .【点睛】此题主要考查了相反数,正确掌握相反数的定义是解题关键.3.D【分析】单项式的系数包括系数前面的符号,次数指所有未知数的次数之和.根据以上规律直接可以读出结果.【详解】单项式22xy -的系数为-2,次数包括x 和y 的次数之和,总共为3,所以单项式22xy -的系数和次数分别为-2,3,故选D【点睛】此题重点考察学生对单项式系数和次数的把握,抓住次数包括所有未知数的次数是解题的关键.4.B【分析】根据整式的运算法则分别计算可得出结论.【详解】选项A ,由合并同类项法则可得3a 2﹣6a 2=﹣3a 2,不正确;选项B ,单项式乘单项式的运算可得(﹣2a )•(﹣a )=2a 2,正确;选项C ,根据整式的除法可得10a 10÷2a 2=5a 8,不正确;选项D ,根据幂的乘方可得﹣(a 3)2=﹣a 6,不正确.故答案选B .考点:合并同类项;幂的乘方与积的乘方;单项式乘单项式.5.C【分析】直接根据科学记数法表示即可.【详解】755000000 5.510=⨯,故选C【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.D【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:300亿=3000000000=3×1010.故选D .【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.7.C【分析】先对各选项进行计算后再进行判断.【详解】A 22=-=||,故计算错误;BC =D选项:2故选C.【点睛】考查了二次根式的加法、化简,解题关键是熟记加法法则和二次根式的性质. 8.B【分析】原式各项计算得到结果,比较即可.【详解】A 、原式=-2,B 、原式=-4,C 、原式=0,D 、原式=5,①-4<-2<0<5,则各式的值最小为-4,故选B .【点睛】此题考查了有理数的大小比较,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.9.A【分析】根据相反数的定义即可求解.【详解】解:5的相反数是-5,故选A .【点睛】本题考查了相反数的定义(只有符号不同的两个数叫做互为相反数),是一个基础的题目.10.B【分析】根据最简二次根式的定义:被开方数不含能开方开的尽的因数或因式,被开方数不含分母,进行判断即可.【详解】A ==不符合题意;BC =,被开方数含分母,不是最简二次根式,不符合题意;D a ,被开方数中含能开得尽方的因式,不是最简二次根式,不符合题意; 故选:B .【点睛】本题考查最简二次根式的定义,熟练掌握概念是解题的关键.11.B【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,看小数点移动了多少位,n 的绝对值与小数点移动的位数相同.小数点向左移动时,n 是正整数;小数点向右移动时,n 是负整数.【详解】解:63730000 3.7310=⨯,故选:B .【点睛】本题主要考查科学记数法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.解题关键是正确确定a 的值以及n 的值.12.B【分析】根据相反数,绝对值的定义进行判断.【详解】解:①0既不是正数,也不是负数正确,不符合题意.①0是自然数,也是整数,也是有理数正确,不符合题意.①数轴上原点两侧的数互为相反数,说法不正确,符合题意.①两个数比较,绝对值大的反而小,说法不正确,符合题意.①说法不正确的是①①,故选B .【点睛】主要考查相反数,绝对值的定义,只有符号不同的两个数互为相反数,0的相反数是0;一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 13.D【分析】根据分式的加减运算法则逐项判断即可的解. 【详解】根据分式的减法法则,可知:a b a b a b a b b a a b a b a b +-=+=-----,A 错误; 由异分母的分式相加减,可知m n bm an bm an a b ab ab ab --=-=,B 错误; 由同分母分式的加减,可知11b b a a a+-=-,C 错误; 由分式的加减法法则,先因式分解再通分,可得:2222()1()()()()()()a b a b a b a b a b a b a b a b a b a b a b a b a b++++-=-==--+-+-+--,D 正确. 故选D .【点睛】本题考查分式的加减运算,熟知分式的加减运算法则是解题的关键.14.B【详解】A. ① 4a 3·2a 2=8a 5 ,故不正确;B. ① 2x 4·3x 4=6x 8 ,故正确;C. ① 3x 2·4x 2=12x 4 ,故不正确;D. ① (2ab 2)·(-3abc)=-6a 2b 3c ,故不正确;故选B.15.D【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【详解】解:根据题意得:2010xx+≥⎧⎨-≠⎩,解得:x≥-2且1x≠.故选D.【点睛】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.16.C【分析】只有符号不同的两个数是互为相反数,根据定义解答.【详解】6-的相反数是6,故选择:C.【点睛】本题考查相反数的定义及求一个数的相反数,熟记定义是解题的关键.17.B【分析】根据有理数的减法,即可解答.【详解】−1−1=−2,故选B.【点睛】此题考查有理数的减法,解题关键在于结合题意列式计算.18.C【分析】首先根据二次根式有意义的条件,判断a≤0,再根据二次根式的性质进行化简.【详解】①b>0,30a b-≥,①0.a≤①原式==-故选C.【点睛】考查二次根式有意义的条件以及二次根式的化简,得到a≤0是解题的关键. 19.B【分析】直接利用估算无理数的方法得出接近无理数的整数进而得出答案.【详解】25<①56<<,5与6之间.故选:B .【点睛】此题主要考查了估算无理数的大小,正确掌握二次根式的性质是解题关键. 20.B【详解】当a a a ==-.故选B.21.x≥-5【分析】根据二次根式的定义可知被开方数必须为非负数,列不等式求解.【详解】解:根据题意得:x+5≥0,解得x≥-5.【点睛】主要考查了二次根式的意义和性质.a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.22. 6 0【分析】根据被开方数为非负数可得.【详解】①当0a =0)a ≥的最小值为0,①当60x -=,即6x =0.故答案为:6, 0.【点睛】本题考查了二次根式的定义,解题的关键是利用二次根式的被开方数是非负数解题.23.﹣8或2【分析】由|x|=5可求出x 的值,再代入x ﹣3计算即可.【详解】解:①|x|=5,①x =5或﹣5,当x =5时,x ﹣3=2,当x =﹣5时,x ﹣3=﹣8,综上,x﹣3的值为﹣8或2.故答案为:﹣8或2.【点睛】本题考查了绝对值的意义,正确求出x的值是解题的关键.24.76.910⨯【详解】解:69000000=6.9×107.故答案为:76.910⨯25.1【分析】变异分母为同分母【详解】解:222a ba b b a+=--221222a b a ba b a b a b--==---故答案为:126.48.3210--⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:40.0008328.3210--=-⨯故答案为:48.3210--⨯【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.27.a5.【详解】【分析】根据同底数的幂的乘法,底数不变,指数相加,计算即可.【详解】a2•a3=a2+3=a5,故答案为a5.【点睛】本题考查了同底数幂的乘法,熟练掌握同底数的幂的乘法的运算法则是解题的关键.28.32 x≥【分析】根据二次根式的性质可得230x-≥,解不等式即可求解.【详解】根据题意,得2x-3≥0,解得:x 32≥. 【点睛】本题考查了二次根式的性质,掌握二次根式的性质是解题的关键.29. 【分析】根据定义新运算公式和二次根式的乘法公式计算即可.【详解】解:根据题意可得===故答案为: 【点睛】此题考查的是定义新运算和二次根式的化简,掌握定义新运算公式和二次根式的乘法公式是解决此题的关键.30.16【分析】根据已知条件可得出a b -的值;因为2222a ab b a b ,带入即可得出答案.【详解】解:由4a b =+,可得:4a b -=;①2222a ab b a b , 将4a b -=可得:()22224162=-==-+a b a ab b ;故答案为:16.【点睛】本题考查代数式求值,结合利用完全平方公式因式分解,观察已知条件与要求的式子之间的联系是此类题目解题关键,平时也要多积累经验.31.7310-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:70.0000003310,故答案是:7310-⨯.【点睛】本题考查了用科学记数法表示较小的数,一般形式为10n a -⨯,其中110a ≤<, n 为由原数左边起第一个不为零的数字前面的0的个数所决定.32.7【分析】根据5x y +=可得出2()25x y +=,再展开,将2211x y +=代入,即可求出xy 的值.【详解】解:①5x y +=①2()25x y +=,①22225x y xy ++=,将2211x y +=代入上式,得:11225xy +=①7xy =.故答案为:7.【点睛】本题考查完全平方公式和代数式求值.利用整体代入的思想是解题的关键. 33.2x ≠-【分析】根据分母不等于0,即可求出答案.【详解】解:①分式22x 有意义,①20x +≠,①2x ≠-;故答案为:2x ≠-.【点睛】本题考查了分式有意义的条件,解题的关键是掌握分式有意义的条件是分母不等于0.34.3【详解】【分析】先分别进行绝对值化简、0次幂的计算,然后再进行加法计算即可得.【详解】()02π3-+-=2+1=3,故答案为3.【点睛】本题考查了实数的运算,熟知任何非0数的0次幂为1是解题的关键.35.19 【分析】根据二次根式中的被开方数必须是非负数可得关于a 的不等式组,进一步即可求出a 的值,进而可得b 的值,然后代入所求式子计算即可.【详解】解:由题意,得:3030a a -≥⎧⎨-≥⎩,解得a =3,则b +2=0,解得:b =﹣2. 所以ab =3-2=19. 故答案为:19. 【点睛】本题考查了二次根式有意义的条件、一元一次不等式组的解法和负整数指数幂的运算,属于基本题型,熟练掌握二次根式的被开方数非负和负整数指数幂的运算法则是解题关键.36. 0 15 6-【分析】根据算术平方根的定义及性质和立方根的定义及性质直接求解即可得到答案.【详解】解:①200=,0=;①()215225±=,算术平方根非负,15;①()36216-=-,6-;故答案为:0;15;6-.【点睛】本题考查算术平方根和立方根,熟练掌握算术平方根的定义及性质,立方根的定义及性质是解决问题的关键.37. 2± 4π-4=,进而求得4的平方根,根据4π<,化简绝对值即可.【详解】解:4=,①4的平方根是2±,①4π<①4ππ=-故答案为:2±,4π-【点睛】本题考查了求一个数的算术平方根,平方根,化简绝对值,掌握算术平方根和平方根的定义是解题的关键.平方根:如果一个数的平方等于a ,那么这个数就叫a 的平方根,其中属于非负数的平方根称之为算术平方根.38.()52a b -【分析】把2a b -看成底数, ()()222=2b a a b --,再根据同底数幂乘法法则计算即可.【详解】(2a b -)3·(2b a -)2=()52a b -,故答案为: ()52a b -.【点睛】本题主要考查同底数幂乘法法则,解决本题的关键是要熟练掌握同底数幂乘法法则. 39.10404【分析】根据已知运算规律计算即可;【详解】 1.02=102=,100 1.02=⨯==①10404x =;故答案是:10404.【点睛】本题主要考查了二次根式计算和数字规律,准确计算是解题的关键.40.6x【分析】直接利用同底数幂的乘法法则和幂的乘方运算法则计算得出答案.【详解】解:x 2•x 3+(﹣x )5+(x 2)3=x 5﹣x 5+x 6=x 6.【点睛】本题考查了整式的运算,掌握乘方、同底数幂的乘法、幂的乘方是解题的关键. 41.(1)18+2y +6x ;(2)这个类型的房子铺地砖的总费用为18000元.【分析】(1)将四个长方形的面积相加即可得到答案;(2)将x =4.5,y =2代入(1),再乘以80即可得到总费用.【详解】解:(1)地面总面积=3×(2+2)+2y +(6-3)×2+6x=(18+2y +6x )平方米;(2)铺21m 地砖的平均费用为80元,当x =4.5,y =2,(18+2×2+6×4.5)×80=(18+4+27)×80=3920(元)①这个类型的房子铺地砖的总费用为3920元.【点睛】此题考查了列代数式,已知字母的值求代数式的值,正确掌握求几何图形的面积是解题的关键.42.(1)a=-5,b=10,c=3;(2)a2-ab+2c的平方根为±9.【分析】(1)直接利用立方根以及算术平方根的定义得出a,b,c的值;(2)利用(1)中所求,代入求出答案.(1)解:①2a+2的立方根是-2,①2a+2=-8,①2a=-10,①a=-5,①a+b+4的算术平方根是3,①a+b+4=9,-5+b+4=9,b=10,①c,①c=3;(2)22-+a ab c解:①a=-5,b=10,c=3,①a2-ab+2c= (-5)2- (-5)×10+2×3=81,①a2-ab+2c的平方根为.【点睛】此题主要考查了估算无理数的大小以及平方根、算术平方根和立方根,正确把握相关定义是解题关键.43.(1)(2)1122【详解】试题分析:(1)先把二次根式化为最简二次根式,然后合并即可;(2)先利用完全平方式和二次根式的乘法计算,再合并即可.试题解析:(1)原式=(2)原式=8+2+1-11-44.7【分析】根据乘方,二次根式和零指数幂的运算法则化简,然后再计算即可.【详解】解:原式821=-+7=.【点睛】本题主要考查了乘方,二次根式和零指数幂的运算法则,熟练掌握运算法则是解题的关键.45.(1)213a b c =⎧⎪=⎨⎪=-⎩(2)12【分析】(1)根据题设条件,得到关于a ,b ,c 的三元一次方程组,利用加减消元法解之即可,(2)结合(1)的结果,得到关于x 和y 的等式,把3x =-代入,计算求值即可.【详解】(1)根据题意得:02427a b c a b c a b c ++=⎧⎪-+=-⎨⎪++=⎩①②③,①+①得:1a c +=-①①+①×2得:21a c +=①,①-①得:2a =,把2a =代入①得:21c +=-,解得:3c =-,把2a =,3c =-代入①得:230b +-=,解得:1b =,方程组的解为:213a b c =⎧⎪=⎨⎪=-⎩;(2)根据题意得:223y x x =+-,把3x =-代入得:22(3)3312y =⨯---=,即y 的值为12.【点睛】本题考查了解三元一次方程组,解题的关键:(1)正确掌握加减消元法,(2)正确掌握代入法.46.122x - 【分析】先根据完全平方公式和单项式乘以多项式进行运算,合并同类项,再利用多项式除以单项式即可.【详解】()()2242x y y x y x x ⎡⎤-+--÷⎣⎦()2222242x xy y xy y x x =-++--÷ ()242x x x =-÷122x =-. 【点睛】本题考查了整式的混合运算以及完全平方公式的应用,能灵活运用运算法则进行化简是解此题的关键.47.(1)①120︒;①APC △为等边三角形;理由见解析(2)【分析】(1)①利用平行四边形的性质证明60,ABC ∠=︒再利用旋转的性质证明BEP △是等边三角形,可得60,PBE 从而可得答案;①先证明18060120,AEP 再证明,AE AD =可得,AE BC 证明,PBC PEA ≌ 可得,,PC PA BPC EPA 证明60,APC BPE 从而可得结论;(2)需要分①当点E 在线段AB 上时,过A 作AF BC ⊥于F ,和①当点E 在线段AB 的延长线上时,两种情况讨论.同样的思路和方法,根据平行四边形对边相等可得4BC AD ==,邻角互补得60,ABC ∠=︒所以30BAF ∠=︒,132BFAB 或1,再两次应用勾股定理即可解答.(1)①①ABCD ,①,AD BC ∥ 而120BAD ∠=︒,18012060,ABC ADC由旋转的性质可得:,60,EB EP BEP①BEP △是等边三角形,①60,PBE①6060120.PBC PBE ABC①APC △为等边三角形.理由如下:①60,BEP①18060120,AEP①60,ADC DE 平分,ADC ∠①30,ADE CDE①18030,AED BAD ADE ADE ①,AE AD = 而,AD BC =①,AE BC①PBE △为等边三角形,①,60PE PB BPE①120,AEP PBC①,PBC PEA ≌①,,PC PA BPC EPA①60,APC EPA EPC BPC EPC BPE ①APC △为等边三角形.(2)①当点E 在线段AB 上时,如图,过A 作AF BC ⊥于F , ①4,2,AE AD BC BE ====①6,AB =①60,ABC ∠=︒①30,BAF①13,2BFAB 22226333,AF AB BF ①431,CF①222827AC AF CF .①当点E 在线段AB 的延长线上时,如图,过A 作AF BC ⊥于F ,方法同①得4AEBC AD ,60ABF ∠=︒, ①422AB AE EB ,30BAF ∠=︒, ①112BF AB ==,413FC BC BF , ①2223AF AB BF , ①2223323AC AF FC .综上所述:AC 的长是【点睛】本题考查的是旋转的性质,等边三角形的判定与性质,全等三角形的判定与性质,平行四边形的判定与性质,勾股定理的应用,含30︒的直角三角形的性质,二次根式的化简,熟悉基本几何图形的性质是解本题的关键.48.(1)2226a ab -+(2)18【分析】(1)根据整式的加减混合运算法则进行计算即可;(2)根据非负数相加和为0,则这几个非负数分别为0,先求出a 和b 的值,再代入求解即可.【详解】(1)解:①243M a ab =+-,269N a ab =-+,①()()224369M a N a ab a b =++-+-+224369a ab a ab =+-+-+2226a ab =-+.(2)①()2210a b ++-=,①20,10a b +=-=,解得:2,1a b =-=,把2,1a b =-=代入得: 2226M a N ab +=-+()()2222216=⨯--⨯-⨯+846=++ 18=.【点睛】本题考查了非负数的性质,整式加减中的化简求值,掌握合并同类项法则是解题的关键.49.(1)周长,2()a b -;(2)长等于宽;(3)当边长为9cm 时,最大面积为81cm 2.【分析】(1)根据长方形、正方形的周长公式和面积公式进行解答;(2)由完全平方公式进行计算分析;(3)根据第(2)的结论解答.【详解】(1)①图①长方形的周长=2a +2b ,图①正方形的周长=2(a +b )=2a +2b , ①周长相等;阴影部分的面积=正方形的面积-长方形的面积,=(a +b )2-4ab =a 2-2ab +b 2=(a -b )2,故填:周长,(a -b )2 ;(2)正方形面积为(a +b )2、长方形的面积为4ab ,①(a +b )2-4ab =(a -b )2≥0,①(a+b)2≥4ab,即:在周长一定的长方形中,当长和宽相等时,面积最大;(3)①在周长一定的长方形中,当长和宽相等时,面积最大,①当周长为36cm时,长和宽为9cm时,该图形的面积最大,最大面积为:9×9=81(cm2).【点睛】掌握乘法公式与几何图形的面积结合.。
2017年陕西省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)计算:(﹣12)2﹣1=( ) A .﹣54 B .﹣14 C .﹣34 D .0【考点】 有理数的混合运算.【专题】 计算题;实数.【分析】 原式先计算乘方运算,再计算加减运算即可得到结果.【解答】 解:原式=14﹣1=﹣34, 故选C 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.(3分)如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是( )A .B .C .D .【考点】 简单组合体的三视图.【分析】 根据从正面看得到的图形是主视图,可得答案.【解答】 解:从正面看下边是一个较大的矩形,上便是一个角的矩形,故选:B .【点评】 本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3.(3分)若一个正比例函数的图象经过A (3,﹣6),B (m ,﹣4)两点,则m 的值为( )A .2B .8C .﹣2D .﹣8【考点】 一次函数图象上点的坐标特征.【分析】 运用待定系数法求得正比例函数解析式,把点B 的坐标代入所得的函数解析式,即可求出m的值.【解答】解:设正比例函数解析式为:y=kx,将点A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x,将B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选:A.【点评】本题考查了一次函数图象上点的坐标特征.解题时需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.4.(3分)如图,直线a∥b,Rt△ABC的直角顶点B落在直线a上,若∠1=25°,则∠2的大小为()A.55°B.75°C.65°D.85°【考点】平行线的性质.【分析】由余角的定义求出∠3的度数,再根据平行线的性质求出∠2的度数,即可得出结论.【解答】解:∵∠1=25°,∴∠3=90°﹣∠1=90°﹣25°=65°.∵a∥b,∴∠2=∠3=65°.故选:C.【点评】本题考查的是平行线的性质,解题时注意:两直线平行,同位角相等.5.(3分)化简:xx−y ﹣yx+y,结果正确的是()A.1 B.x2+y2x2−y2C.x−yx+yD.x2+y2【考点】分式的加减法.【专题】计算题;分式.【分析】原式通分并利用同分母分式的减法法则计算即可得到结果.【解答】解:原式=x2+xy−xy+y2x2−y2=x2+y2x2−y2.故选B【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.6.(3分)如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为()A.3√3B.6 C.3√2D.√21【考点】勾股定理.【分析】根据勾股定理求出AB,根据等腰直角三角形的性质得到∠CAB′=90°,根据勾股定理计算.【解答】解:∵∠ACB=∠AC′B′=90°,AC=BC=3,∴AB=√AC 2+BC 2=3√2,∠CAB=45°,∵△ABC 和△A′B′C′大小、形状完全相同,∴∠C′AB′=∠CAB=45°,AB′=AB=3√2,∴∠CAB′=90°,∴B′C=√CA 2+B′A 2=3√3,故选:A .【点评】本题考查的是勾股定理的应用、等腰直角三角形的性质,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.7.(3分)如图,已知直线l 1:y=﹣2x +4与直线l 2:y=kx +b (k ≠0)在第一象限交于点M .若直线l 2与x 轴的交点为A (﹣2,0),则k 的取值范围是( )A .﹣2<k <2B .﹣2<k <0C .0<k <4D .0<k <2【考点】 两条直线相交或平行问题;F8:一次函数图象上点的坐标特征.【专题】 推理填空题.【分析】 首先根据直线l 2与x 轴的交点为A (﹣2,0),求出k 、b 的关系;然后求出直线l 1、直线l 2的交点坐标,根据直线l 1、直线l 2的交点横坐标、纵坐标都大于0,求出k 的取值范围即可.【解答】 解:∵直线l 2与x 轴的交点为A (﹣2,0),∴﹣2k +b=0,∴{y =−2x +4y =kx +2k 解得{x =4−2k k+2y =8k k+2∵直线l 1:y=﹣2x +4与直线l 2:y=kx +b (k ≠0)的交点在第一象限,∴{4−2k k+2>08k k+2>0 解得0<k <2. 故选:D .【点评】此题主要考查了两条直线的相交问题,以及一次函数图象的点的特征,要熟练掌握.8.(3分)如图,在矩形ABCD 中,AB=2,BC=3.若点E 是边CD 的中点,连接AE ,过点B 作BF ⊥AE 交AE 于点F ,则BF 的长为( )A .3√102 B .3√105 C .√105 D .3√55【考点】 相似三角形的判定与性质;LB :矩形的性质. 【分析】 根据S △ABE =12S 矩形ABCD =3=12•AE•BF ,先求出AE ,再求出BF 即可. 【解答】 解:如图,连接BE .∵四边形ABCD 是矩形,∴AB=CD=2,BC=AD=3,∠D=90°,在Rt △ADE 中,AE=√AD 2+DE 2=√32+12=√10,∵S △ABE =12S 矩形ABCD =3=12•AE•BF , ∴BF=3√105. 故选B .【点评】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.9.(3分)如图,△ABC 是⊙O 的内接三角形,∠C=30°,⊙O 的半径为5,若点P 是⊙O 上的一点,在△ABP 中,PB=AB ,则PA 的长为( )A .5B .5√32C .5√2D .5√3 【考点】 三角形的外接圆与外心;KH :等腰三角形的性质.【分析】 连接OA 、OB 、OP ,根据圆周角定理求得∠APB=∠C=30°,进而求得∠PAB=∠APB=30°,∠ABP=120°,根据垂径定理得到OB ⊥AP ,AD=PD ,∠OBP=∠OBA=60°,即可求得△AOB 是等边三角形,从而求得PB=OA=5,解直角三角形求得PD ,即可求得PA .【解答】 解:连接OA 、OB 、OP ,∵∠C=30°,∴∠APB=∠C=30°,∵PB=AB ,∴∠PAB=∠APB=30°∴∠ABP=120°,∵PB=AB ,∴OB ⊥AP ,AD=PD ,∴∠OBP=∠OBA=60°,∵OB=OA ,∴△AOB 是等边三角形,∴AB=OA=5,则Rt △PBD 中,PD=cos30°•PB=√32×5=5√32, ∴AP=2PD=5√3,故选D .【点评】本题考查了圆周角定理、垂径定理、等边三角形的判定和性质以及解直角三角形等,作出辅助性构建等边三角形是解题的关键.10.(3分)已知抛物线y=x2﹣2mx﹣4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为()A.(1,﹣5)B.(3,﹣13)C.(2,﹣8)D.(4,﹣20)【考点】二次函数的性质.【分析】先利用配方法求得点M的坐标,然后利用关于原点对称点的特点得到点M′的坐标,然后将点M′的坐标代入抛物线的解析式求解即可.【解答】解:y=x2﹣2mx﹣4=x2﹣2mx+m2﹣m2﹣4=(x﹣m)2﹣m2﹣4.∴点M(m,﹣m2﹣4).∴点M′(﹣m,m2+4).∴m2+2m2﹣4=m2+4.解得m=±2.∵m>0,∴m=2.∴M(2,﹣8).故选C.【点评】本题主要考查的是二次函数的性质、关于原点对称的点的坐标特点,求得点M′的坐标是解题的关键.二、填空题(本大题共4小题,每小题3分,共12分)11.(3分)在实数﹣5,﹣√3,0,π,√6中,最大的一个数是.【考点】实数大小比较.【分析】根据正数大于0,0大于负数,正数大于负数,比较即可.【解答】解:根据实数比较大小的方法,可得π>√6>0>−√3>﹣5,故实数﹣5,−√3,0,π,√6其中最大的数是π.故答案为:π.【点评】 此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.12.(3分)请从以下两个小题中任选一个作答,若多选,则按第一题计分.A .如图,在△ABC 中,BD 和CE 是△ABC 的两条角平分线.若∠A=52°,则∠1+∠2的度数为 .B.√173tan38°15′≈ .(结果精确到0.01)【考点】 计算器—三角函数;25:计算器—数的开方;K7:三角形内角和定理.【分析】 A :由三角形内角和得∠ABC +∠ACB=180°﹣∠A=128°,根据角平分线定义得∠1+∠2=12∠ABC +12∠ACB=12(∠ABC +∠ACB ); B :利用科学计算器计算可得.【解答】 解:A 、∵∠A=52°,∴∠ABC +∠ACB=180°﹣∠A=128°,∵BD 平分∠ABC 、CE 平分∠ACB ,∴∠1=12∠ABC 、∠2=12∠ACB , 则∠1+∠2=12∠ABC +12∠ACB=12(∠ABC +∠ACB )=64°, 故答案为:64°;B 、√173tan38°15′≈2.5713×0.7883≈2.03,故答案为:2.03.【点评】本题主要考查三角形内角和定理、角平分线的定义及科学计算器的运用,熟练掌握三角形内角和定理、角平分线的定义是解题的关键.13.(3分)已知A ,B 两点分别在反比例函数y=3m x (m ≠0)和y=2m−5x (m≠52)的图象上,若点A 与点B 关于x 轴对称,则m 的值为 . 【考点】 反比例函数图象上点的坐标特征;关于x 轴、y 轴对称的点的坐标.【分析】 设A (a ,b ),则B (a ,﹣b ),将它们的坐标分别代入各自所在的函数解析式,通过方程来求m 的值.【解答】 解:设A (a ,b ),则B (a ,﹣b ),依题意得:{b =3m a −b =2m−5a , 所以3m+2m−5a=0,即5m ﹣5=0, 解得m=1.故答案是:1.【点评】本题考查了反比例函数图象上点的坐标特征,关于x 轴,y 轴对称的点的坐标.根据题意得3m+2m−5a=0,即5m ﹣5=0是解题的难点.14.(3分)如图,在四边形ABCD 中,AB=AD ,∠BAD=∠BCD=90°,连接AC .若AC=6,则四边形ABCD 的面积为 .【考点】 全等三角形的判定与性质.【分析】 作辅助线;证明△ABM ≌△ADN ,得到AM=AN ,△ABM 与△ADN 的面积相等;求出正方形AMCN 的面积即可解决问题.【解答】 解:如图,作AM ⊥BC 、AN ⊥CD ,交CD 的延长线于点N ;∵∠BAD=∠BCD=90°∴四边形AMCN 为矩形,∠MAN=90°;∵∠BAD=90°,∴∠BAM=∠DAN ;在△ABM 与△ADN 中,{∠BAM =∠DAN ∠AMB =∠AND AB =AD,∴△ABM ≌△ADN (AAS ),∴AM=AN (设为λ);△ABM 与△ADN 的面积相等;∴四边形ABCD 的面积=正方形AMCN 的面积;由勾股定理得:AC 2=AM 2+MC 2,而AC=6;∴2λ2=36,λ2=18,故答案为:18.【点评】本题主要考查了全等三角形的判定及其性质、正方形的判定及其性质等几何知识点的应用问题;解题的关键是作辅助线,构造全等三角形和正方形.三、解答题(本大题共11小题,共78分)15.(5分)计算:(﹣√2)×√6+|√3﹣2|﹣(12)﹣1. 【考点】 二次根式的混合运算;负整数指数幂.【分析】 根据二次根式的性质以及负整数指数幂的意义即可求出答案.【解答】 解: 原式=﹣√12+2﹣√3﹣2=﹣2√3﹣√3=﹣3√3【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.16.(5分)解方程:x+3x−3﹣2x+3=1.【考点】解分式方程.【分析】利用解分式方程的步骤和完全平方公式,平方差公式即可得出结论.【解答】解:去分母得,(x+3)2﹣2(x﹣3)=(x﹣3)(x+3),去括号得,x2+6x+9﹣2x+6=x2﹣9,移项,系数化为1,得x=﹣6,经检验,x=﹣6是原方程的解.【点评】此题是解分式方程,主要考查了解分式方程的方法和完全平方公式,平方差公式,解本题的关键是将分式方程转化为整式方程.17.(5分)如图,在钝角△ABC中,过钝角顶点B作BD⊥BC交AC于点D.请用尺规作图法在BC边上求作一点P,使得点P到AC的距离等于BP的长.(保留作图痕迹,不写作法)【考点】作图—基本作图.【分析】根据题意可知,作∠BDC的平分线交BC于点P即可.【解答】解:如图,点P即为所求.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法和性质是解答此题的关键.18.(5分)养成良好的早锻炼习惯,对学生的学习和生活都非常有益,某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间x(分钟)进行了调查.现把调查结果分成A、B、C、D四组,如下表所示,同时,将调查结果绘制成下面两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在区间内;(3)已知该校七年级共有1200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟.(早锻炼:指学生在早晨7:00~7:40之间的锻炼)【考点】频数(率)分布直方图;V5:用样本估计总体;VB:扇形统计图;W4:中位数.【分析】(1)先根据A区间人数及其百分比求得总人数,再根据各区间人数之和等于总人数、百分比之和为1求得C区间人数及D区间百分比可得答案;(2)根据中位数的定义求解可得;(3)利用样本估计总体思想求解可得.【解答】解:(1)本次调查的总人数为10÷5%=200,则20~30分钟的人数为200×65%=130(人),D项目的百分比为1﹣(5%+10%+65%)=20%,补全图形如下:(2)由于共有200个数据,其中位数是第100、101个数据的平均数,则其中位数位于C 区间内,故答案为:C ;(3)1200×(65%+20%)=1020(人),答:估计这个年级学生中约有1020人一天早锻炼的时间不少于20分钟.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.(7分)如图,在正方形ABCD 中,E 、F 分别为边AD 和CD 上的点,且AE=CF ,连接AF 、CE 交于点G .求证:AG=CG .【考点】 正方形的性质;KD :全等三角形的判定与性质.【分析】 根据正方向的性质,可得∠ADF=CDE=90°,AD=CD ,根据全等三角形的判定与性质,可得答案.【解答】 证明: ∵四边形ABCD 是正方形,∴∠ADF=CDE=90°,AD=CD .∵AE=CF ,∴DE=DF ,在△ADF 和△CDE 中{AD =CD ∠ADF =∠CDE DF =DE,∴△ADF ≌△CDE (SAS ),∴∠DAF=∠DCE ,在△AGE 和△CGF 中,{∠GAE =∠GCF ∠AGE =∠CGF AE =CF,∴△AGE≌△CGF(AAS),∴AG=CG.【点评】本题考查了正方形的性质,利用全等三角形的判定与性质是解题关键,又利用了正方形的性质.20.(7分)某市一湖的湖心岛有一颗百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他们俩带着侧倾器和皮尺来测量这个距离.测量方法如下:如图,首先,小军站在“聚贤亭”的A处,用侧倾器测得“乡思柳”顶端M点的仰角为23°,此时测得小军的眼睛距地面的高度AB为1.7米,然后,小军在A处蹲下,用侧倾器测得“乡思柳”顶端M点的仰角为24°,这时测得小军的眼睛距地面的高度AC为1米.请你利用以上测得的数据,计算“聚贤亭”与“乡思柳”之间的距离AN的长(结果精确到1米).(参考数据:sin23°≈0.3907,cos23°≈0.9205,tan23°≈0.4245,sin24°≈0.4067,cos24°≈0.9135,tan24°≈0.4452.)【考点】解直角三角形的应用﹣仰角俯角问题.【分析】作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x米,则BD=CE=x 米,再由锐角三角函数的定义即可得出结论.【解答】解:如图,作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x米,则BD=CE=x米,在Rt△MBD中,MD=x•tan23°,在Rt△MCE中,ME=x•tan24°,∵ME﹣MD=DE=BC,∴x•tan24°﹣x•tan23°=1.7﹣1,∴x=0.7tan24°−tan23°,解得x≈34(米).答:“聚贤亭”与“乡思柳”之间的距离AN的长约为34米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,熟记锐角三角函数的定义是解答此题的关键.21.(7分)在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的3个温室大棚进行修整改造,然后,1个大棚种植香瓜,另外2个大棚种植甜瓜,今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了”.最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包5个大棚,以后就用8个大棚继续种植香瓜和甜瓜,他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:品种项目产量(斤/每棚)销售价(元/每斤)成本(元/每棚)香瓜2000128000甜瓜450035000现假设李师傅今年下半年香瓜种植的大棚数为x个,明年上半年8个大棚中所产的瓜全部售完后,获得的利润为y元.根据以上提供的信息,请你解答下列问题:(1)求出y与x之间的函数关系式;(2)求出李师傅种植的8个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于10万元.【考点】一次函数的应用.【分析】(1)利用总利润=种植香瓜的利润+种植甜瓜的利润即可得出结论;(2)利用(1)得出的结论大于等于100000建立不等式,即可确定出结论.【解答】解:(1)由题意得,y=(2000×12﹣8000)x+(4500×3﹣5000)(8﹣x)=7500x+68000,(2)由题意得,7500x+6800≥100000,∴x≥44 15,∵x为整数,∴李师傅种植的8个大棚中,香瓜至少种植5个大棚.【点评】此题是一次函数的应用,主要考查了一次函数的应用以及解一元一次不等式,解题的关键是:(1)根据数量关系,列出函数关系式;(2)根据题意建立不等式,是一道基础题目.22.(7分)端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.【考点】列表法与树状图法;X4:概率公式.【分析】(1)根据题意可以得到小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率;(2)根据题意可以写出所有的可能性,从而可以解答本题.【解答】解:(1)由题意可得,小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是:24=1 2,即小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是1 2;(2)由题意可得,出现的所有可能性是:(A,A)、(A,B)、(A,C)、(A,C)、(A,A)、(A,B)、(A,C)、(A,C)、(B,A)、(B,B)、(B,C)、(B,C)、(C,A)、(C,B)、(C,C)、(C,C),∴小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率是:316.【点评】本题考查列表法与树状图法、概率公式,解答本题的关键是明确题意,写出所有的可能性,利用概率的知识解答.23.(8分)如图,已知⊙O的半径为5,PA是⊙O的一条切线,切点为A,连接PO并延长,交⊙O于点B,过点A作AC⊥PB交⊙O于点C、交PB于点D,连接BC,当∠P=30°时,(1)求弦AC的长;(2)求证:BC∥PA.【考点】切线的性质.【分析】(1)连接OA,由于PA是⊙O的切线,从而可求出∠AOD=60°,由垂径定理可知:AD=DC,由锐角三角函数即可求出AC的长度.(2)由于∠AOP=60°,所以∠BOA=120°,从而由圆周角定理即可求出∠BCA=60°,从而可证明BC∥PA【解答】解:(1)连接OA,∵PA 是⊙O 的切线,∴∠PAO=90°∵∠P=30°,∴∠AOD=60°,∵AC ⊥PB ,PB 过圆心O ,∴AD=DC在Rt △ODA 中,AD=OA•sin60°=5√32∴AC=2AD=5√3(2)∵AC ⊥PB ,∠P=30°,∴∠PAC=60°,∵∠AOP=60°∴∠BOA=120°,∴∠BCA=60°,∴∠PAC=∠BCA∴BC ∥PA【点评】 本题考查圆的综合问题,涉及切线的性质,解直角三角形,平行线的判定等知识,综合程度较高,属于中等题型.24.(10分)在同一直角坐标系中,抛物线C 1:y=ax 2﹣2x ﹣3与抛物线C 2:y=x 2+mx +n 关于y 轴对称,C 2与x 轴交于A 、B 两点,其中点A 在点B 的左侧.(1)求抛物线C 1,C 2的函数表达式;(2)求A 、B 两点的坐标;(3)在抛物线C 1上是否存在一点P ,在抛物线C 2上是否存在一点Q ,使得以AB 为边,且以A 、B 、P 、Q 四点为顶点的四边形是平行四边形?若存在,求出P 、Q 两点的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)由对称可求得a、n的值,则可求得两函数的对称轴,可求得m 的值,则可求得两抛物线的函数表达式;(2)由C2的函数表达式可求得A、B的坐标;(3)由题意可知AB只能为平行四边形的边,利用平行四边形的性质,可设出P点坐标,表示出Q点坐标,代入C2的函数表达式可求得P、Q的坐标.【解答】解:(1)∵C1、C2关于y轴对称,∴C1与C2的交点一定在y轴上,且C1与C2的形状、大小均相同,∴a=1,n=﹣3,∴C1的对称轴为x=1,∴C2的对称轴为x=﹣1,∴m=2,∴C1的函数表示式为y=x2﹣2x﹣3,C2的函数表达式为y=x2+2x﹣3;(2)在C2的函数表达式为y=x2+2x﹣3中,令y=0可得x2+2x﹣3=0,解得x=﹣3或x=1,∴A(﹣3,0),B(1,0);(3)存在.∵AB的中点为(﹣1,0),且点P在抛物线C1上,点Q在抛物线C2上,∴AB只能为平行四边形的一边,∴PQ∥AB且PQ=AB,由(2)可知AB=1﹣(﹣3)=4,∴PQ=4,设P(t,t2﹣2t﹣3),则Q(t+4,t2﹣2t﹣3)或(t﹣4,t2﹣2t﹣3),①当Q(t+4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t+4)2+2(t+4)﹣3,解得t=﹣2,∴t2﹣2t﹣3=4+4﹣3=5,∴P(﹣2,5),Q(2,5);②当Q(t﹣4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t﹣4)2+2(t﹣4)﹣3,解得t=2,∴t2﹣2t﹣3=4﹣4﹣3=﹣3,∴P(﹣2,﹣3),Q(2,﹣3),综上可知存在满足条件的点P、Q,其坐标为P(﹣2,5),Q(2,5)或P(﹣2,﹣3),Q(2,﹣3).【点评】本题为二次函数的综合应用,涉及待定系数法、对称的性质、函数图象与坐标轴的交点、平行四边形的性质、方程思想及分类讨论思想等知识.在(1)中由对称性质求得a、n的值是解题的关键,在(2)中注意函数图象与坐标轴的交点的求法即可,在(3)中确定出PQ的长度,设P点坐标表示出Q点的坐标是解题的关键.本题考查知识点较多,综合性较强,难度适中.25.(12分)问题提出(1)如图①,△ABC是等边三角形,AB=12,若点O是△ABC的内心,则OA的长为;问题探究(2)如图②,在矩形ABCD中,AB=12,AD=18,如果点P是AD边上一点,且AP=3,那么BC边上是否存在一点Q,使得线段PQ将矩形ABCD的面积平分?若存在,求出PQ的长;若不存在,请说明理由.问题解决(3)某城市街角有一草坪,草坪是由△ABM草地和弦AB与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在M处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于∠AMB(即每次喷灌时喷灌龙头由MA转到MB,然后再转回,这样往复喷灌.)同时,再合理设计好喷灌龙头喷水的射程就可以了.如图③,已测出AB=24m ,MB=10m ,△AMB 的面积为96m 2;过弦AB 的中点D作DE ⊥AB 交AB̂于点E ,又测得DE=8m . 请你根据以上信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到0.01米)【考点】 圆的综合题.【分析】 (1)构建Rt △AOD 中,利用cos ∠OAD=cos30°=AD OA,可得OA 的长; (2)经过矩形对角线交点的直线将矩形面积平分,根据此结论作出PQ ,利用勾股定理进行计算即可;(3)如图3,作辅助线,先确定圆心和半径,根据勾股定理计算半径:在Rt △AOD 中,r 2=122+(r ﹣8)2,解得:r=13根据三角形面积计算高MN 的长,证明△ADC ∽△ANM ,列比例式求DC 的长,确定点O 在△AMB 内部,利用勾股定理计算OM ,则最大距离FM 的长可利用相加得出结论.【解答】解:(1)如图1,过O 作OD ⊥AC 于D ,则AD=12AC=12×12=6, ∵O 是内心,△ABC 是等边三角形,∴∠OAD=12∠BAC=12×60°=30°, 在Rt △AOD 中,cos ∠OAD=cos30°=AD OA, ∴OA=6÷√32=4√3, 故答案为:4√3;(2)存在,如图2,连接AC 、BD 交于点O ,连接PO 并延长交BC 于Q ,则线段PQ 将矩形ABCD 的面积平分,∵点O 为矩形ABCD 的对称中心,∴CQ=AP=3,过P 作PM ⊥BC 于点,则PM=AB=12,MQ=18﹣3﹣3=12,由勾股定理得:PQ=√PM 2+MQ 2=√122+122=12√2;(3)如图3,作射线ED 交AM 于点C∵AD=DB ,ED ⊥AB ,AB̂是劣弧, ∴AB̂所在圆的圆心在射线DC 上, 假设圆心为O ,半径为r ,连接OA ,则OA=r ,OD=r ﹣8,AD=12AB=12, 在Rt △AOD 中,r 2=122+(r ﹣8)2,解得:r=13,∴OD=5,过点M 作MN ⊥AB ,垂足为N ,∵S △ABM =96,AB=24,∴12AB•MN=96, 12×24×MN=96, ∴MN=8,NB=6,AN=18,∵CD ∥MN ,∴△ADC ∽△ANM ,∴DC MN =AD AN, ∴DC 8=1218, ∴DC=163, ∴OD <CD ,∴点O 在△AMB 内部,∴连接MO 并延长交AB̂于点F ,则MF 为草坪上的点到M 点的最大距离, ∵在AB̂上任取一点异于点F 的点G ,连接GO ,GM , ∴MF=OM +OF=OM +OG >MG ,即MF >MG ,过O 作OH ⊥MN ,垂足为H ,则OH=DN=6,MH=3,∴OM=√MH2+OH2=√32+62=3√5,∴MF=OM+r=3√5+13≈19.71(米),答:喷灌龙头的射程至少为19.71米.【点评】本题是圆的综合题,考查了三角形相似的性质和判定、勾股定理、等边三角形的性质及内心的定义、特殊的三角函数值、矩形的性质等知识,明确在特殊的四边形中将面积平分的直线一定过对角线的交点,本题的第三问比较复杂,辅助线的作出是关键,根据三角形的三角关系确定其最大射程为MF.。
鄂州市2017年中考数学试卷数学试题注意事项:1.本试题卷共6页,满分120分,考试时间120分钟。
2.答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
3.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试题卷上无效。
4.非选择题用0.5毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内。
答在试题卷上无效。
5.考生必须保持答题卡的整洁。
考试结束后,请将本试题卷和答题卡一并上交。
6.考生不准使用计算器。
一、选择题(每小题3分,共30分)1.下列实数是无理数的是()A. 23B. 3C.0 D.-错误!未找到引用源。
1.0101012.鄂州市凤凰大桥,坐落于鄂州鄂城区洋澜湖上,是洋澜湖上在建的第5座桥梁. 大桥长1100m,宽27m. 鄂州有关部门公布了该桥新的设计方案,并计划投资人民币2.3亿元. 2015年开工,预计2017年完工.请将2.3亿用科学记数法表示为()A.2.3⨯108B.0.23⨯109错误!未找到引用源。
C.23⨯107错误!未找到引用源。
D.2.3⨯109错误!未找到引用源。
3.下列运算正确的是()A. 5x -3x =2B. 错误!未找到引用源。
(x -1)2= x2 -1C. 错误!未找到引用源。
(-2x2)3= -6x6D. x6÷x2= x4错误!未找到引用源。
4.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是()(第4题图) A. B. C. D.5.对于不等式组1561,333(1)5 1.x x x x ⎧--⎪⎨⎪-<-⎩≤下列说法正确的是( )A. 此不等式组的正整数解为1,2,3B. 此不等式组的解集为-1<x ≤76C. 此不等式组有5个整数解D. 此不等式组无解6.如图AB ∥CD ,E 为CD 上一点,射线EF 经过点A ,EC =EA , 若∠CAE =30°,则∠BAF =( ) A. 30° B. 40°C. 50°D. 60°7.已知二次函数y = (x +m )2 - n 的图象如图所示,则一次函数y = mx + n 与反比例函数mny x=的图象可能是( )(第7题图) A. B. C. D.8.小东家与学校之间是一条笔直的公路,早饭后,小东步行前往学校,途中发现忘带画板,停下给妈妈打电话,妈妈接到电话后,带上画板马上赶往学校,同时小东沿原路返回,两人相遇后,小东立即赶往学校,妈妈沿原路返回16min 到家,再过5min 小东到达学校.小东始终以100m/min 的速度步行,小东和妈妈的距离y (单位:m )与小东打完电话后的步行时间t (单位:min )之间的函数关系如图所示,下列四种说法:(1)打电话时,小东和妈妈距离是1400m ; (2)小东与妈妈相遇后,妈妈回家速度是50m/min ; (3)小东打完电话后,经过27min 到达学校; (4)小东家离学校的距离为2900m. 其中正确的个数是( ) A .1个B .2个C .3个D .4个9.如图抛物线2y ax bx c =++错误!未找到引用源。
2017全国中考数学真题分类知识点06数的开方和二次根式(选择题+填空题+解答题)解析版一、选择题1. (2017山东滨州,4,3分)下列计算:(1)()2=2,(2)=2,(3)(-)2=12,(4)1=-,其中结果正确的个数为A .1B .2C .3D .4答案:D ,解析:(1)根据“2a =”可知2=2成立;(2a =2成立;(3)根据“(ab )2=a 2b 2”可知,计算(-2,可将-2(4)根据“(a +b )(a -b )=a 2-b 2”,=22-=2-3=-1.2. (2017四川广安,5,3分)要使二次根式2x -4 在实数范围内有意义,则x 的取值范围是( )A .x >2B .x ≥2C .x <2D .x =2答案:B ,解析:∵二次根式42-x 有意义,∴2x -4≥0,解得x ≥2.故选B .3. (2017山东枣庄4,3分)实数a ,b 在数轴上对应的点的位置如图所示,化简a 的结果是A .-2a +bB .2a -bC .-bD .b答案:A ,解析:如图所示: a <0,a -b <0,则|a |a -(a -b )=-2a +b .故选A .4. (2017四川泸州,9,3分)已知三角形的三边长分别为a ,b ,c ,求其面积问题,中外数学家曾进行过深入研究.古希腊的几何学家海伦(Heron ,约公元50年)给出求其面积的海伦公式S p =2a b c ++;我国南宋时期数学家秦九韶(约1202—1261)曾利用三角形的三边求其面积的秦九韶公式S =12.若一个三角形的三边长分别为2,3,4,则其面积是( )A .8B .4C .2D .2答案:B ,解析:∵a =2,b =3,c =4,∴p =2a b c ++=2342++=92,得4.5. (2017四川成都,3x 的取值范围是A .x ≥1B .x >1C .x ≤1D .x <1答案:A ,解析:由x -1≥0得.x ≥1. 6. (2017重庆,5,4分)估计110+的值应在( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间 答案:B 解析:先找出与10相邻的两个完全平方数,然后开方,可以确定10在被夹的这两个数之间,之后再利用不等式性质①确定出110+的取值范围.∵9<9<10,∴16109<<,则3<10<4 ,∴3+1<110+<4+1,即4<110+<5,故110+在4与5之间,故选择B .7. (2017山东济宁,6,31在实数范围内有意义,则x 满足的条件是A .12x ≥B .12x ≤C .12x =D .12x ≠答案:C ,解析:根据“a ≥0”,所以2x -1≥0,1-2x ≥0,由此可得12x =. 8. (2017重庆B ,5,4分)估计113+的值在A .2到3之间B .3到4之间C .4到5之间D .5到6之间 答案:C ,解析:∵3<13<4,∴4<13+1<5,故答案为C .9. 6.(2017江苏连云港,6,3A B 26C .228±=D 3答案:D ,解析:根据“实数与数轴上的点是一一对应”,A 错误;8表示8的算术平方根,化简结果为228=故B 、 C 选项错误;∵2.8<8<2.93,因此D 选项正确.10. 5.(2017江苏淮安,5,3分)下列式子为最简二次根式的是( )AB C D答案:A ,解析:根据最简二次根式的定义可知,5是最简二次根式;12的被开方数12中含有开得尽方的因数4,不是最简二次根式;2a 的被开方数2a 中含有开得尽方的因式2a ,不是最简二次根式;1a 的被开方数1a 中含有分母a ,不是最简二次根式.11. (2017山东潍坊,9,3分)若代数式12--x x 有意义,则实数x 的取值范围是( ) A .x ≥1 B .x ≥2 C .x >1 D .x >2答案:B ,解析:由题意,得⎩⎨⎧>-≥-,01,02x x 解得x ≥2.12. 4.(2017浙江温州,4,4分)下列选项中的整数,与最接近的是A .3B .4C .5D .6答案:B ,解析: ∵4.1<<4.2, ∴ 最接近的是4.13. 3.(2017甘肃酒泉,3,3分)4的平方根是( )A.16B.2C.2D.2 答案:C ,解析:根据平方根的定义,求数a 的平方根,也就是求一个数x ,使得2x =a ,则x 就是a 的平方根.此题中,∵(±2)2=4,∴4的平方根是±2.故选C .14. 7.(2017湖北黄冈,7,3分)16的算术平方根是 .答案:4,解析:16164=.15. 2.(2017湖北荆门,2,3分)在函数y 25x -中,自变量x 的取值范围是( ) A .x >5 B .x ≥5 C .x ≠5 D .x <5答案:A ,解析:这里自变量的取值范围应满足:(1)分母不为0;(2)被开方数不能是负数.所以x -5>.解得x >5.故选A .16.1.(2017江苏泰州,1,3分)2的算术平方根是( )A.2 2 C.2 D.2答案:B ,解析:根据算术平方根的定义可知,2的算术平方根是2.17. 6.(2017山东烟台,6,3分)如图,若用我们数学课本上采用的科学计算器进行计算,其按键顺序如下:则输出结果应为( )A. 12B. 132C. 172D. 252答案:C 23(3)642-=172. 18. 6.(2017天津,3分)38A .4和5之间B .5和6之间C .6和7之间D .7和8之间答案:C ,解析:由36<38<49,可得6387,故选C .19. (2017湖南邵阳,1,3分)25 的算术平方根是( )A . 5B . ±5C .-5D .25答案:A ,解析:根据算术平方根的概念做出判断. 如果正数x 的平方等于a (a >0),则正数x 就是a 的算术平方根,由此即可解决问题.20. (2017湖南邵阳,5,3分)函数 y =5-x 中,自变量 x 的取值范围在数轴上表示正确的是( )A .B .C .D .答案:B ,解析:二次根式的被开方数必须为非负数,所以x -5≥0;解不等式x -5≥0,得x ≥5,所以,在数轴上从5向右画,并且用实心点,故选B .21. 11.(2017呼和浩特,31-2xx 的取值范围为_______________. 答案:x <12,解析:根据1-2x >0,解得,x <12。
专题01实数(共43题)--2023年中考数学专题训练一、单选题1.(2022年云南省中考数学真题)中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若零上10℃记作+10℃,则零下10℃可记作()A.10℃B.0℃C.-10℃D.-20℃【答案】C【解析】【分析】零上温度记为正,则零下温度就记为负,则可得出结论.【详解】解:若零上10°C记作+10°C,则零下10°C可记作:−10°C.故选:C.【点睛】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.2.(2022年四川省凉山州中考数学真题)−2022的相反数是()A.2022B.−2022C.−12022D.12022【答案】A【解析】【分析】根据相反数的意义即只有符号不同的两个数互为相反数,即可解答.【详解】解:﹣2022的相反数是2022,故选:A.【点睛】本题考查了相反数,熟练掌握相反数的意义是解题的关键.3.(2022年浙江省舟山市中考数学真题)若收入3元记为+3,则支出2元记为()A.1B.-1C.2D.-2【答案】D【解析】【分析】根据正负数的意义可得收入为正,收入多少就记多少即可.【详解】解:∵收入3元记为+3,∴支出2元记为-2.故选:D【点睛】本题考查正、负数的意义;在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.4.(2022年安徽省中考数学真题)下列为负数的是()A.−2B.3C.0D.−5【答案】D【解析】【分析】根据正负数的意义分析即可;【详解】解:A、−2=2B、3是正数,故该选项不符合题意;C、0不是负数,故该选项不符合题意;D、-5<0是负数,故该选项符合题意.故选D.【点睛】本题考查正负数的概念和意义,熟练掌握绝对值、算术平方根和正负数的意义是解决本题的关键.5.(2022年四川省南充市中考数学试卷)下列计算结果为5的是()A.−(+5)B.+(−5)C.−(−5)D.−|−5|【答案】C【解析】【分析】根据去括号法则及绝对值化简依次计算判断即可.【详解】解:A、-(+5)=-5,不符合题意;B、+(-5)=-5,不符合题意;C、-(-5)=5,符合题意;D、−−5=−5,不符合题意;故选:C.【点睛】题目主要考查去括号法则及化简绝对值,熟练掌握去括号法则是解题关键.6.(2022年甘肃省中考第三次数学模拟测试题)2的相反数是()A.−12B.12C.2D.−2【答案】D【解析】【分析】直接根据相反数的定义解答即可.【详解】解:2的相反数是﹣2.故选:D【点睛】此题考查的是相反数,熟练掌握相反数的定义是解题的关键.7.(2022年云南省中考数学真题)赤道长约为40000000m,用科学记数法可以把数字40000000表示为()A.4×107B.40×106C.400×105D.4000×103【答案】A【解析】【分析】根据科学记数法“把一个大于10的数表示成×10的形式(其中a是整数数位只有一位的数,即a大于或等于1且小于10,n是正整数)”进行解答即可得.【详解】解:40000000=4×107,【点睛】本题考查了科学记数法,解题的关键是掌握科学记数法表示形式中a与n的确定.8.(2022年浙江省舟山市中考数学真题)根据有关部门测算,2022年春节假期7天,全国国内旅游出游251000000人次.数据251000000用科学记数法表示为()A.2.51×108B.2.51×107C.25.1×107D.0.251×109【答案】A【解析】【分析】绝对值大于1的数可以用科学记数法表示,一般形式为a×10n,为正整数,且比原数的整数位数少1,据此可以解答.【详解】解:251000000=2.51×108.故选:A【点睛】本题考查用科学记数法表示较大的数,熟练掌握科学记数法表示较大的数一般形式为×10,其中1≤<10,是正整数,正确确定的值和的值是解题的关键.9.(2022年江苏省连云港市中考数学真题)2021年12月9日,“天宫课堂”正式开课,我国航天员在中国空间站首次进行太空授课,本次授课结束时,网络在线观看人数累计超过14600000人次.把“14600000”用科学记数法表示为()A.0.146×108B.1.46×107C.14.6×106D.146×105【答案】B【解析】【分析】科学记数法的表现形式为×10的形式,其中1≤<10,n为整数,确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n是正数,当原数绝对值小于1时n是负数;由此进行求解即可得到答案.【详解】解:14600000=1.46×107.【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的具体要求.10.(2022年四川省达州市中考数学真题)2022年5月19日,达州金垭机场正式通航.金亚机场位于达州高新区,占地总面积2940亩,概算投资约为26.62亿元.数据26.62亿元用科学记数法表示为()A.2.662×108元B.0.2662×109元C.2.662×109元D.26.62×1010元【答案】C【解析】【分析】用科学记数法表示较大的数时,一般形式为×10,其中1≤|U<10,为整数.【详解】解:26.62亿=2662000000=2.662×109.故选C.【点睛】本题考查了科学记数法,科学记数法的表示形式为×10的形式,其中1≤|U<10,为整数.确定的值时,要看把原来的数,变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值≥10时,是正数;当原数的绝对值<1时,是负数,确定与的值是解题的关键.11.(2022年浙江省金华市中考数学真题)体现我国先进核电技术的“华龙一号”,年发电能力相当于减少二氧化碳排放16320000吨,数16320000用科学记数法表示为()A.1632×104B.1.632×107C.1.632×106D.16.32×105【答案】B【解析】【分析】在用科学记数法表示的大于10的数时,×10的形式中a的取值范围必须是1≤<10,10的指数比原来的整数位数少1.【详解】解:数16320000用科学记数法表示为1.632×107.故选:B.【点睛】本题考查科学记数法,对于一个写成用科学记数法写出的数,则看数的最末一位在原数中所在数位,其中a 是整数数位只有一位的数,10的指数比原来的整数位数少1.12.(2022年安徽省中考数学真题)据统计,2021年我省出版期刊杂志总印数3400万册,其中3400万用科学记数法表示为()A.3.4×108B.0.34×108C.3.4×107D.34×106【答案】C【解析】【分析】将3400万写成34000000,保留1位整数,写成×10(1≤<10)的形式即可,n为正整数.【详解】解:3400万=34000000,保留1位整数为3.4,小数点向左移动7位,因此34000000=3.4×107,故选:C.【点睛】本题考查科学记数法的表示方法,熟练掌握×10(1≤|U<10)中a的取值范围和n的取值方法是解题的关键.13.(2022年四川省凉山州中考数学真题)我州今年报名参加初中学业水平暨高中阶段学校招生考试的总人数为80917)A.8.0917×106B.8.0917×105C.8.0917×104D.8.0917×103【答案】C【解析】【分析】根据科学记数法的定义即可得.【详解】解:科学记数法:将一个数表示成×10的形式,其中1≤<10,为整数,这种记数的方法叫做科学记数法,则80917=8.0917×104,故选:C.【点睛】本题考查了科学记数法,熟记科学记数法的定义(将一个数表示成×10的形式,其中1≤<10,为整数,这种记数的方法叫做科学记数法)是解题关键.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.14.(2022年四川省成都市中考数学真题)2022年5月17日,工业和信息化部负责人在“2022世界电信和信息社会日”大会上宣布,我国目前已建成5G基站近160万个,成为全球首个基于独立组网模式规模建设5G网络的国家.将数据160万用科学记数法表示为()A.1.6×102B.1.6×105C.1.6×106D.1.6×107【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是非负数;当原数的绝对值<1时,n是负数.【详解】解答:解:160万=1600000=1.6×106,故选:C.【点睛】a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.(2022年四川省泸州市中考数学真题)2022年5月,四川省发展和改革委员会下达了保障性安居工程2022年第一批中央预算内投资计划,泸州市获得75500000元中央预算内资金支持,将75500000用科学记数法表示为()A.7.55×106B.75.5×106C.7.55×107D.75.5×107【答案】C【解析】【分析】科学记数法表示较大的数形式为a×10n的形式,其中1≤|a|<10,n为整数,10的指数n比原来的整数位数少1.75500000=7.55×107故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.16.(2022年山东省滨州市中考数学真题)某市冬季中的一天,中午12时的气温是−3℃,经过6小时气温下降了7℃,那么当天18时的气温是()A.10℃B.−10℃C.4℃D.−4℃【答案】B【解析】【分析】根据有理数减法计算−3−7=−10℃即可.【详解】解:∵中午12时的气温是−3℃,经过6小时气温下降了7℃,∴当天18时的气温是−3−7=−10℃.故选B.【点睛】本题考查有理数的减法,掌握有理数的减法法则是解题关键.17.(2022年四川省遂宁市中考数学真题)2022年4月16日,神舟十三号飞船脱离天宫空间站后成功返回地面,总共飞行里程约198000公里.数据198000用科学计数法表示为()A.198×103B.1.98×104C.1.98×105D.1.98×106【答案】C【解析】【分析】用科学记数法表示较大的数时,一般形式为×10,其中1≤|U<10,为整数.【详解】解:198000=1.98×105.故选:C.本题考查了科学记数法,科学记数法的表示形式为×10的形式,其中1≤|U<10,为整数.确定的值时,要看把原来的数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值≥10时,是正数;当原数的绝对值<1时,是负数,确定与的值是解题的关键.18.(2022年浙江省衢州市柯城区九年级第二次模拟考试数学试题)-3的倒数是()A.3B.-3C.13D.−13【答案】D【解析】【分析】根据倒数的定义,即可计算出结果.【详解】解:-3的倒数是−13;故选:D【点睛】本题考查了倒数的定义:乘积是1的两数互为倒数.19.(2022年四川省自贡市中考数学试题)自贡市江姐故里红色教育基地自去年底开放以来,截止今年5月,共接待游客180000余人;人数180000用科学记数法表示为()A.1.8×104B.18×104C.1.8×105D.1.8×106【答案】C【解析】【分析】用移动小数点的方法确定a值,根据整数位数减一原则确定n值,最后写成×10的形式即可.【详解】∵180000=1.8×105,故选C.【点睛】本题考查了科学记数法表示大数,熟练掌握把小数点在左边第一个非零数字的后面确定a,运用整数位数减去1确定n值是解题的关键.20.(2022年四川省自贡市中考数学试题)下列运算正确的是()A.−12=−2B.323−2=1C.6÷3=2D.−=0【答案】B【解析】【分析】根据乘方运算,平方差公式,同底数幂的除法法则,零指数幂的运算法则进行运算即可.【详解】A.−12=1,故A错误;B.3+23−2=32−22=1,故B正确;C.633,故C错误;D.−=1,故D错误.故选:B.【点睛】本题主要考查了整式的运算和实数的运算,熟练掌握平方差公式,同底数幂的除法法则,零指数幂的运算法则,是解题的关键.21.(2022年山东省淄博市高青县中考二模数学试题)−2的倒数是()A.2B.12C.−2D.−12【答案】D【解析】【分析】根据倒数的定义求解即可.【详解】解:-2的倒数是−12,故D正确.故选:D.【点睛】本题主要考查了倒数的定义,熟练掌握乘积为1的两个数互为倒数,是解题的关键.22.(2022年四川省达州市中考数学真题)下列四个数中,最小的数是()A.0B.-2C.1D.2【答案】B【解析】【分析】根据实数的大小比较即可求解.【详解】解:∵−2<0<1<2,∴最小的数是−2,故选B.【点睛】本题考查了实数的大小比较,掌握实数的大小比较是解题的关键.23.(2022年浙江省舟山市中考数学真题)估计6的值在()A.4和5之间B.3和4之间C.2和3之间D.1和2之间【答案】C【解析】【分析】【详解】∵4<6<9∴2<6<3故选:C.【点睛】本题主要考查了无理数的估算能力,要求掌握无理数的基本估算技能,灵活应用.“夹逼法”是估算的一般方法,也是常用方法.24.(2022年浙江省金华市中考数学真题)在−2,12,3,2中,是无理数的是()A.−2B.12C.3D.2【答案】C【解析】【分析】根据无理数的定义判断即可;【详解】解:∵-2,12,2是有理数,3是无理数,故选:C.【点睛】本题考查了无理数的定义:无限不循环小数叫做无理数,如开方开不尽的数的方根、π.25.(2022年四川省凉山州中考数学真题)化简:(−2)2=()A.±2B.-2C.4D.2【答案】D【解析】【分析】先计算(-2)2=4,再求算术平方根即可.【详解】解:−22=4=2,故选:D.【点睛】本题考查算术平方根,熟练掌握算术平方根的定义是解题的关键.26.(2022年山东省滨州市中考数学真题)下列计算结果,正确的是()A.(2)3=5B.8=32C.38=2D.cos30°=12【答案】C【解析】【分析】根据幂的乘方、算术平方根的计算、立方根的化简和特殊角的三角函数值逐一进行计算即可.【详解】解:A、(2)3=2×3=6,该选项错误;B、8=2×2×2=22,该选项错误;C、38=32×2×2=2,该选项正确;D、cos30°=故选:C.【点睛】本题考查了幂的乘方、算术平方根的计算、立方根的化简和特殊角的三角函数值,熟练掌握运算法则是解题的关键.27.(2022年四川省泸州市中考数学真题)与2+15最接近的整数是()A.4B.5C.6D.7【答案】C【解析】【分析】估算无理数的大小即可得出答案.【详解】解:∵12.25<15<16,∴3.5<15<4,∴5.5<2+15<6,∴最接近的整数是6,故选:C.【点睛】本题考查了估算无理数的大小,无理数的估算常用夹逼法,用有理数夹逼无理数是解题的关键.28.(2022年四川省泸州市中考数学真题)−4=()A.−2B.−12C.12D.2【答案】A【解析】【分析】根据算术平方根的定义可求.【详解】解:−4=-2,【点睛】本题考查了算术平方根的定义,要注意正确区分平方根与算术平方根,解题的关键是掌握算术平方根的定义.29.(2022年重庆市中考数学试卷A卷)估计3×(23+5)的值应在()A.10和11之间B.9和10之间C.8和9之间D.7和8之间【答案】B【解析】【分析】先化简3×(23+5)=6+15,利用9<15<16,从而判定即可.【详解】3×(23+5)=6+15,∵9<15<16,∴3<15<4,∴9<6+15<10,故选:B.【点睛】30.(2022年重庆市中考数学真题(B卷))估计54−4的值在()A.6到7之间B.5到6之间C.4到5之间D.3到4之间【答案】D【解析】【分析】根据49<54<64,得到7<54<8,进而得到3<54−4<4,即可得到答案.【详解】解:∵49<54<64,∴7<54<8,∴3<54−4<4,即54−4的值在3到4之间,故选:D.此题考查了无理数的估算,正确掌握无理数的估算方法是解题的关键.二、填空题31.(2022年重庆市中考数学试卷A卷)计算:−4+3−0=_________.【答案】5【解析】【分析】根据绝对值和零指数幂进行计算即可.【详解】解:−4+3−0=4+1=5,故答案为:5.【点睛】本题考查了绝对值和零指数幂的计算,熟练掌握定义是解题的关键.32.(2022年四川省南充市中考数学试卷)比较大小:2−2_______________30.(选填>,=,<)【答案】<【解析】【分析】先计算2−2=14,30=1,然后比较大小即可.【详解】解:2−2=14,30=1,∵14<1,∴2−2<30,故答案为:<.【点睛】本题主要考查有理数的大小比较,负整数指数幂的运算,零次幂的运算,熟练掌握运算法则是解题关键.33.(2022年重庆市中考数学真题(B卷))|−2|+(3−5)0=_________.【答案】3【解析】先计算绝对值和零指数幂,再进行计算即可求解.【详解】解:|−2|+(3−5)0=2+1=3故答案为:3.【点睛】本题考查了实数的运算,解答此题的关键是要掌握负数的绝对值等于它的相反数,任何不为0的数的0次幂都等于1.34.(2022年四川省凉山州中考数学真题)计算:-12+|-2023|=_______.【答案】2022【解析】【分析】先计算有理数的乘方、化简绝对值,再计算加法即可得.【详解】解:原式=−1+2023=2022,故答案为:2022.【点睛】本题考查了含乘方的有理数混合运算,熟练掌握有理数的运算法则是解题关键.三、解答题35.(2022年四川省泸州市中考数学真题)计算:30+2−1+2cos45°−−【答案】2【解析】【分析】根据零指数幂、负整数指数幂、特殊角三角函数、绝对值的性质化简即可.【详解】原式=1+12+2−12=2.本题考查了实数的运算,熟练掌握运算法则是解题的关键.36.(2022年浙江省丽水市中考数学真题)计算:9−(−2022)0+2−1.【答案】52【解析】【分析】根据求一个数的算术平方根、零指数和负整数指数幂的运算法则进行运算,即可求得.【详解】解:9−(−2022)0+2−1=3−1+12=52.【点睛】本题考查了求一个数的算术平方根、零指数和负整数指数幂的运算法则,熟练掌握和运用各运算法则是解决本题的关键.37.(2022年江苏省连云港市中考数学真题)计算:(−10)×−−16+20220.【答案】2【解析】【分析】根据有理数的乘法,二次根式的性质,零指数的计算法则求解即可.【详解】解:原式=5−4+1=2.【点睛】本题主要考查了有理数的乘法,二次根式的性质,零指数,熟知相关计算法则是解题的关键.38.(2022年四川省达州市中考数学真题)计算:(−1)2022+|−2|−−2tan45°.【答案】0【解析】先计算乘方和去绝对值符号,并把特殊角三角函数值代入,再计算乘法,最后计算加减即可求解.【详解】解:原式=1+2-1-2×1=1+2-1-2=0.【点睛】本题考查实数的混合运算,熟练掌握零指数幂的运算、熟记特殊角的三角函数值是解题的关键.39.(2022年浙江省金华市中考数学真题)计算:(−2022)0−2tan45°+|−2|+9.【答案】4【解析】【分析】根据零指数幂,正切三角函数值,绝对值的化简,算术平方根的定义计算求值即可;【详解】解:原式=1−2×1+2+3=1−2+2+3=4;【点睛】本题考查了实数的混合运算,掌握特殊角的三角函数值是解题关键.40.(2022−16+−22.【答案】1【解析】【分析】原式运用零指数幂,二次根式的化简,乘方的意义分别计算即可得到结果.【详解】−16+−22=1−4+4=1故答案为:1【点睛】本题主要考查了实数的运算,熟练掌握零指数幂,二次根式的化简和乘方的意义是解本题的关键.41.(2022−9+3tan30°+2.(2)解不等式组:3(+2)≥2+5 ①2−1<K23 ②.【答案】(1)1;(2)−1≤<2【解析】【分析】(1)本题涉及负整数指数幂、特殊角的三角函数值、绝对值、二次根式化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)分别解出两个不等式的解集再求其公共解.【详解】解:(19+3tan30°+2=2−3+3+2−3=−1+3+2−3=1.(2)3(+2)≥2+5 ①2−1<K23 ②不等式①的解集是x≥-1;不等式②的解集是x<2;所以原不等式组的解集是-1≤x<2.【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型,解决此类题目的关键是熟练掌握负整数指数幂、特殊角的三角函数值、绝对值、二次根式等考点的运算.求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.42.(2022年四川省德阳市中考数学真题)计算:12+3.14−0−3tan60°+1−+−2−2.【答案】14【解析】【分析】根据二次根式的化简,零指数幂的定义,特殊角的三角函数值,绝对值的性质以及负整数指数幂的运算法则分别化简后再进行实数的加减法运算.【详解】解:12+(3.14−p0−3tan60°+1−+(−2)−2=23+1−33+3−1+14=14.【点睛】此题考查实数的运算法则,正确掌握二次根式的化简,零指数幂的定义,特殊角的三角函数值,绝对值的性质以及负整数指数幂的运算法则是解题的关键.43.(2022年重庆市中考数学真题(B卷))对于一个各数位上的数字均不为0的三位自然数N,若N能被它的各数位上的数字之和m整除,则称N是m的“和倍数”.例如:∵247÷(2+4+7)=247÷13=19,∴247是13的“和倍数”.又如:∵214÷(2+1+4)=2147=30⋯⋯4,∴214不是“和倍数”.(1)判断357,441是否是“和倍数”?说明理由;(2)三位数A是12的“和倍数”,a,b,c分别是数A其中一个数位上的数字,且>>.在a,b,c中任选两个组成两位数,其中最大的两位数记为op,最小的两位数记为op,若op+op16为整数,求出满足条件的所有数A.【答案】(1)357不是15“和倍数”,441是9的“和倍数”;理由见解析(2)数A可能为732或372或516或156【解析】【分析】(1)根据题目中给出的“和倍数”定义进行判断即可;(2)先根据三位数A是12的“和倍数”得出++=12,根据>>,是最大的两位数,是最小的两位数,得出+=10+2+10,op+op16=(k为整数),结合++=12得出=15−2,根据已知条件得出1<<6,从而得出=3或=5,然后进行分类讨论即可得出答案.(1)解:∵357÷3+5+7=357÷15=23⋅⋅⋅⋅⋅⋅12,∴357不是15“和倍数”;∵441÷4+4+1=441÷9=49,∴441是9的“和倍数”.(2)∵三位数A是12的“和倍数”,∴++=12,∵>>,∴在a,b,c中任选两个组成两位数,其中最大的两位数=10+,最小的两位数=10+,∴+=10++10+=10+2+10,∵op+op16为整数,设op+op16=(k为整数),则10r2r1016=,整理得:5+5+=8,根据++=12得:+=12−,∵>>,∴12−>,解得<6,∵“和倍数”是各数位上的数字均不为0的三位自然数,∴>>>0,∴>1,∴1<<6,把+=12−代入5+5+=8得:512−+=8,整理得:=15−2,∵1<<6,k为整数,∴=3或=5,当=3时,+=12−3=9,∵>>>0,∴>3,0<<3,∴=7,=3,=2,或=8,=3,=1,要使三位数A是12的“和倍数”,数A必须是一个偶数,当=7,=3,=2时,组成的三位数为732或372,∵732÷12=61,∴732是12的“和倍数”,∵372÷12=31,∴372是12的“和倍数”;当=8,=3,=1时,组成的三位数为318或138,∵318÷12=26⋅⋅⋅⋅⋅⋅6,∴318不是12的“和倍数”,∵138÷12=11⋅⋅⋅⋅⋅⋅6,∴138不是12的“和倍数”;当=5时,+=12−5=7,∵>>>0,∴5<<7,∴=6,=5,=1,组成的三位数为516或156,∵516÷12=43,∴516是12的“和倍数”,∵156÷12=13,∴156是12的“和倍数”;综上分析可知,数A可能为732或372或516或156.【点睛】本题主要考查了新定义类问题,数的整除性,列代数式,利用数位上的数字特征和数据的整除性,是解题的关键,分类讨论是解答本题的重要方法,本题有一定的难度.。
《实数》
一.填空题
1.的算术平方根是。
2.已知一块长方形的地长与宽的比为3:2,面积为3174平方米,则这块地的长为米。
3.把下列各数填入相应的集合内:
3.14,л, , ,,0.12,,1.1515515551…, , 。
正整数集合{ } 整数集合{ }
无理数集合{ } 有理数集合{ } 正无理数集合{ } 非负有理数集合{ }
4.将-π,0,2,-3.15,3.5用“>”连接:;
5.如图,则 | a |--=。
6.绝对值等于的数有,绝对值等于
的数有。
7.设对应数轴上的点是A ,-对应数轴上的点是B ,则A 、B 两点的距离为。
8.△ABC 的三边长为a 、b 、c ,且a 、b 满足
,则△ABC 的周长x 的取值范围是; 9.若,则代数式=;
10.已知x 为实数,且|x-1|=,则x=。
当x=时,有最大值是.
11.若0≤a ≤4,则的取值范围是. 若,则的取值范围是;
12.已知x 、y 是有理数,且x 、y 满足
,则x+y=。
二.选择题
1.和数轴上的点一一对应的数是( ).
A.整数
B.有理数
C.无理数
D.实数
2.下列说法正确的是( ).
A.整数和分数、零统称为有理数
B.正数和负数统称为实数
C.整数、有限小数和无限小数统称为实数
D.无限小数就是无理数
3.是无理数,则a 是一个( ).
A.非负数
B.正实数
C.正有理数
D.非完全平方数
4.下列计算正确的是( );
A .=×
B .==2+
C .=|-a|
D . =
5.下列说法正确的是( );
A 、任何有理数均可用分数形式表示 ;
B 、数轴上的点与有理数一一对应 ;
C 、1和2之间的无理数只有 ;
D 、无理数与无理数间的运算结果是无理数。
6.下列说法正确的是( )
A 、3.14是无理数
B 、是无理数
C 、是无理数
D 、-是无理数
7
.下列说法:①无理数是无限小数,②带根号的数不一定是无理数,③任何实数都可以开方,④有理数 a 0 b
是实数。
其中,正确的个数有( )个
A 、1
B 、2
C 、3
D 、4
8.若是一个实数,则满足这个条件的a 有( )个。
A 、0
B 、1
C 、4
D 、无数
9.下列各组数中互为相反数的是( )
A 、-2与
B 、-2与
C 、-2与
D 、| -2 |与2
10.若x 为实数,则| x |-x 表示的数一定是( )
A 、负数
B 、非负数
C 、正数
D 、非正数
11.若表示a 、b 两个实数的点在数轴上的位置如图,则化简
的结果为( ) A 、2a B 、2b C 、-2a D 、-2b
12.当a 为实数时,a2 =-a 在数轴上对应的点在( )
A 、原点右侧
B 、原点左侧
C 、原点或原点的右侧
D 、原点或原点左侧
13.代数式 的所有可能的值有( )
A 、2个
B 、3个
C 、4个
D 、无数个 14.若、为实数,且 ,则的值为 ( ) (A) (B) (C)或 (D)
三.解答题
1.计算
(1)
(2)
(3)
(4) (5)
2. 求下列各式中的x:
(1)
(2).
3.(1)已知:有意义,化简。
(2)比较大小:和。
3.已知:a 、b 为等腰三角形的两边之长,且满足等式,求此等腰三角b a 0。