钢箱梁顶推计算书
- 格式:doc
- 大小:2.18 MB
- 文档页数:13
42m钢箱梁计算书(总16页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--ES匝道钢箱梁上部结构计算书目录一、概述.................................................................. 错误!未定义书签。
桥梁简介............................................................. 错误!未定义书签。
模型概况............................................................ 错误!未定义书签。
1 设计规范...................................................... 错误!未定义书签。
2 参考规范...................................................... 错误!未定义书签。
3 主要材料及性能指标............................................ 错误!未定义书签。
4 荷载.......................................................... 错误!未定义书签。
二、模型概述.............................................................. 错误!未定义书签。
第一体系建模........................................................ 错误!未定义书签。
第二体系建模........................................................ 错误!未定义书签。
三、结果验算.............................................................. 错误!未定义书签。
1 设计要点1.1 总体设计达连坝大桥主桥为钢箱连续梁桥,跨径组合为(40+60+40)m,全长140m。
1.2 主桥上部结构设计概况(1)结构布置主桥为(40+60+40)m三跨钢箱连续梁桥,全长140m。
边中跨比为0.667。
桥梁横断面布置为:(0.5m防撞墙)+(14.75m车行道)+(0.5m防撞墙)=单幅桥总宽15.75m (2)钢箱梁主梁方案主梁采用等截面钢箱梁,单箱五室断面,桥面宽15.75m,箱宽12.0m,悬臂长1.925m。
主梁中心高度2.4m,高跨比1/25。
1.3 主桥下部结构设计概况见施工图纸。
1.4 主要材料(1)混凝土C15:承台基础垫层C30:过渡墩承台、防撞栏、桩基、主墩墩身、过渡墩墩身及盖梁C40:支座垫石(2)钢材主体结构采用Q345qD;附属结构采用Q235B;(3)支座主墩:LQZ3000GD、LQZ3000DX、LQZ3000SX;过渡墩:LQZ1500DX、LQZ1500SX;(4)伸缩缝伸缩缝:D160型伸缩缝。
2 计算依据2.1设计规范及参考资料(1)执行规范:《公路桥涵钢结构及木结构设计规范》(JTJ 025-86)《铁路桥梁钢结构设计规范》(TB 10002.2-2005)《钢结构设计规范》(GB 50017-2003)《公路桥涵设计通用规范》(JTG D60-2004)《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)《公路桥梁抗风设计规范》(JTG/T D60-01-2004)(2)参考规范及文献资料:《日本道路桥示方书·同解说》《钢桥、混凝土桥及结合桥》BS5400 (1978~1982)《公路钢结构桥梁设计规范—征求意见稿》《现代钢桥》(上册)(吴冲主编 2006年4月)《公路钢结构桥梁设计规范》( 征求意见稿)《公路钢箱梁桥面铺装设计与施工技术指南》2.2技术标准(1)公路等级:双向6车道,一级公路。
佛山平胜大桥顶推导梁计算一、概述佛山平胜大桥为独塔单跨四索面自锚式悬索桥,跨径布置为(由北往南):29.6+30m+350m+30m+5×40m+39.6m,主桥长680.2m。
南岸主塔墩置于南岸河堤坡脚外侧边缘,北岸边墩跨越北河堤和沿江大道后布置在沿江大道路基边坡上。
主跨350m的加劲梁为单箱三室的钢箱梁,其余为预应力钢筋砼箱梁。
主桥横桥向为分离式两幅主梁,单幅主梁宽26.10m,纵隔板间距为7.8m;主梁沿横桥向外侧有2%的横坡,中心线梁高3.5m。
在顺桥向由跨径中线向两侧有2%的纵坡,并设置了半径为11500m的竖曲线(成桥线形)。
单幅桥钢箱梁共分31个节段制作,其中标准梁段长12m,共23段,标准梁段顶、底板加厚4段,特殊制作梁段2段,钢混结合段2段。
为保证成桥线形,制造梁段时按照半径为14843.91m的竖曲线进行放样。
钢箱梁分段数量统计表全桥钢箱梁除南岸侧钢砼结合段和1号段钢梁需从已顶推成型的桥上布置滑道滑移到位,从2#梁以后各节段均需在北岸组拼支架上拼装,采用顶推法顶推到位。
为使钢箱梁顺利顶推到位,在主跨中间设置了顶推用的临时墩,临时墩的布置跨径为2×78m+45m+39m。
顶推用的钢导梁采用工字形变截面实腹式钢板梁(图1),钢材采用Q345B。
导梁长度拟定为48m,为临时墩最大跨径的0.615倍。
导梁根部与钢箱梁同高,用高强螺栓和钢箱梁顶、底板以及纵隔板连接;半幅主桥钢箱梁的两个导梁之间用横向联结系连接,以增大整体稳定性。
二、计算荷载钢箱梁在顶推过程中,钢导梁所承受的荷载主要为结构自重。
导梁内力将随边界条件的变化而变化。
因此,整个体系的荷载由钢箱梁自重、导梁自重、联结系自重三部分组成,如下表所示:导梁荷载表在计算中,钢箱梁自重按均布荷载布置,导梁自重由系统根据截面自动计算,联结系自重按集中荷载作用于导梁上,对于其他的不确定荷载按导梁自重的1.4倍考虑。
三、导梁计算1、总体结构计算:导梁结构的计算采用Sap2000有限元计算分析程序进行,起始计算工况为钢箱梁顶推到达B临时墩后,导梁悬臂长度为0m;以后依次为导梁悬臂长度从0m~48m,每三米为一个计算工况;当导梁到达B临时墩前,整个系统悬臂最长,导梁前端挠度最大,因此单独设置一个工况。
2 -60m 钢箱梁桥顶推施工设计与计算某国道上跨高速,采用2-60m钢箱梁跨越,施工方案为顶推施工。
桥梁全宽32.5m,半幅宽度16m,中分带宽0.5m,角度0度。
一、结构设计上部结构采用等高度直腹板钢箱梁,16.0m等宽箱梁。
钢箱梁标准段梁高为3.0m。
两侧悬臂为2.3m。
箱梁设4道腹板,主体结构为单箱三室截面。
钢箱梁采用顶面设置单向2%的横坡,底面与顶面平行设置。
顶板、底板及腹板使用了标准U型加劲肋与板式加劲肋。
U型加劲肋上口宽为300mm,高280mm,厚度为8mm。
板式加劲肋的高为160mm,厚度为14mm。
T式加劲肋板厚12mm。
横隔板为实腹板式横隔板与框架式横隔板间隔布置。
标准间距为2m,以保证钢箱梁具有足够的横向刚度与抗扭刚度。
在钢箱梁腹板处,横隔板断开,与腹板焊接。
下部结构采用两柱式桥墩,墩柱直径为2.0m,桩基直径为2.2m。
二、计算参数选取(主桥结构采用MIDAS CIVIL2020进行结构计算)1)计算荷载a.恒载:恒载包括主梁的自重以及铺装和护栏的自重。
b.活载:按《公路桥涵设计通用规范》第4.3条取值。
c.温度荷载:整体升降温:±25°C;主梁内温差效应考虑了由于太阳辐射引起上部结构顶层温度增加时产生的正温差及由于在辐射由上部结构顶层散失时产生的负温差,其取值按《公路桥涵设计通用规范》(JTG D06-2015)第4.3.12条取用。
d.基础变位边墩基础沉降1cm,中墩基础沉降1.5cm。
2)荷载组合根据《公路桥涵设计通用规范》(JTG D06-2015)的规定,主要考虑以下组合:a.恒载+活载+温度+基础变位b.恒载+活载c.恒载+0.5活载三、钢箱梁计算钢箱梁主体结构的强度验算:计算在竖向荷载、横向荷载和温度荷载的单项和组合作用下,按照《公路钢结构桥梁设计规范》(JTG D64-2015)的要求,对结构可能产生的弯矩作用正应力、剪力作用剪应力、扭矩作用剪应力和畸变正应力以及换算应力验算。
一、工程概况宁波市福明路(环城南路-兴宁路)跨越铁路宁波东站主桥上部结构采用55+45+220+45+55m 一联双塔双索面斜拉桥,采用半漂浮体系,主梁采用混合主梁,两侧边跨预应力混凝土箱梁长109.4m ,中跨钢箱梁长201.2m (含钢混结合段长度),在钢箱梁与预应力混凝土箱梁相交位置放置2m 长的钢混结合段。
根据构造、运输及施工架设的需要,中跨钢箱梁划分为A 、B 和钢-混结合段共3种梁段。
跨铁路宁波东站主桥中跨上跨宁波东站多条股道,其中4、5、II 、I 、3线路已运营,8、6线路于近期开始停运改造成站台,图中D3~D15和新建线路将于近期实施。
为了减少上部结构施工对桥下铁路运营的影响,保证施工及行车安全,福明路跨铁路宁波东站立交桥主桥中跨钢箱梁采用顶推法施工。
二、顶推施工总体方案和主要步骤1、总体方案和原理钢箱梁采用柔性墩多点顶推法施工,在主跨布置安装顶推平台和临时墩,并在其上布置滑道。
在平台上逐段焊接,用多点多台连续千斤顶同步张拉钢绞线使钢箱梁逐段向前滑移,循环作业使钢箱梁到达设计位置。
钢箱梁顶推重量约为13.05t/m 。
钢箱梁在工厂生产,经公路运输至施工现场,全部节段均在支架平台上拼装、顶推,逐步顶推到位。
工艺流程图如下:施工准备顶推安装平台施工临时墩施工钢箱梁、导梁制造运输安装顶推装置铺设墩顶滑道装导向纠偏装置箱梁横移至桥轴线拼装钢梁于台座上,检查焊接质量前端拼接导梁安装梁底锚具、钢绞线和侧限预紧拉索启动泵站、调压顶推测量、调整,落梁于临时墩测量同步监控继续拼装、顶推余下段各梁段顶推到位拆除2#临时墩顶推施工工艺流程图顶推施工过程采用多点多台ZLD100型自动连续千斤顶。
2、主要步骤钢箱梁顶推施工过程主要分为以下几个步骤: a 、施工临时墩和顶推安装平台基础 b 、钢箱梁和导梁工厂加工后运到施工现场 c 、现场拼装导梁d 、现场组拼1-10#节段钢箱梁,连接钢导梁与1-10#节段钢箱梁;钢箱梁前行30m ,导梁跨越1#临时墩。
钢箱梁计算书(2)1.结构特点上部结构采用5孔一联钢箱梁结构,桥跨布置为(35+35+45+35+35)=185m,桥面宽度为25m,单箱多室截面,道路中心线处梁高2000mm,箱宽25m。
横隔梁的布置间距为2.0m。
钢材材质为Q345C。
钢箱梁顶面设%双向横坡。
桥面铺装采用4cm细粒式沥青混凝土面层和4cm中粒式沥青混凝土底层,桥面铺装层总厚度为8cm。
另设8cm钢筋砼层。
采用混凝土防撞护栏。
2.设计荷载汽车荷载:城-A级。
3.箱梁顶板板厚的确定钢箱梁的顶板板厚对全桥的经济指标影响较大,根据目前钢箱梁的设计经验和实际汽车荷载超重的影响,箱梁顶板板厚宜取14mm。
4.箱梁标准段截面5.纵肋设计横肋布置间距a=2000mm顶板纵肋布置间距b=300mm城-A车辆前轮着地宽度2g=0.25m,分布宽度:+*2=0.41 m城-A车辆后轮着地宽度2g=0.6m,分布宽度:+*2=0.76 m5.1纵肋截面几何特性1)桥面板有效宽度的确定关于桥面板的有效计算宽度,参考日本道路桥示方书的规定进行计算。
纵肋等效跨度L=0.6a=1200mm, b/2L=λ=2L2L219.1mm 取有效宽度为210mm。
2)截面几何特性计算纵肋板件组成:1-210x14(桥面板),1-90x10(下翼缘),1-156x8(腹板)A=50.88 cm2I= 2399.5 cm4Yc=12.2 cm (距下翼缘)Wt=413.7 cm3;Wb=196.7 cm35.2纵肋内力计算1)作用于纵肋上的恒载a)纵肋自重q1=*1e-4**= kg/mb)钢桥面板自重q2=*b*=38.5 kg/mc)桥面铺装(厚8cm)q3=*b*=67.2 kg/md)砼桥面板(厚8cm)q4=*b*=72.8 kg/me)恒载合计∑q=197.0 kg/m2)汽车冲击系数(1+μ)=1+=3)作用于纵肋上的活载纵肋反力计算图式(尺寸单位:mm)采用Midas/Civil程序计算纵肋荷载横向分配值,后轮:在0.76m宽度内布t/m的均布力时,计算得到纵肋的最大反力为t。
米钢箱梁计算书公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]目录1.工程概况本项目跨径组合为35+50+35 米。
上部结构箱梁梁高米(箱梁内轮廓线高度)。
顶面全宽米,两侧各设米宽挑臂,箱梁顶底板设%横坡,腹板间距布置为++ 米。
箱梁顶板厚16 毫米,下设“U”形和板式加劲肋,“U”形加劲肋板厚8 毫米,板式加劲肋160×14 毫米;箱梁底板厚14 毫米,设“T”形加劲肋,加劲肋腹板120×8 毫米,翼缘100×10 毫米,间距300 或350 毫米;腹板厚12 毫米,设三道140×14 毫米板式加劲肋,各加劲肋除支承隔板处断开与支承隔板焊连外,其余加劲肋均穿过横隔板或挑臂并与之焊连。
普通横隔板间距约3 米,厚10 毫米,中部挖空设100×10 毫米翼缘。
桥台简支处支撑隔板板厚20 毫米,桥墩连续处支撑隔板板厚30 毫米,支撑隔板为围焊。
简支处隔板四角不设焊缝通过的切口,保证整个钢箱梁安装完成后的气密性;其他横隔板四角均设置焊缝通过的切口。
挑臂为“T”形截面,腹板厚10 毫米,下翼缘300×14 毫米。
2.结构计算分析模型2.1.主要规范标准.(1)《城市桥梁设计规范》(CJJ 11-2011)(2)《公路桥涵设计通用规范》(JTG D60-2004)(3)《公路圬工桥涵设计规范》(JTG D61-2005)(4)《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)(5)《公路桥涵地基与基础设计规范》(JTG D63-2007)(6)《公路桥梁抗震设计细则》(JTG/T B02-01-2008)(7)《混凝土结构设计规范》(GB50010-2010)(8)《公路桥涵施工技术规范》(JTG/T F50-2011)(9)《城市桥梁工程施工与质量验收规范》(CJJ 2—2008)(10)《公路桥涵钢结构及木结构设计规范》(JTJ025—86)(11)《钢结构工程施工质量及验收规范》(GB50205-2001)(12)《铁路桥梁钢结构设计规范》(TB )2.2.主要材料及力学参数Q345qD:弹性模量E=×105MPa剪切模量G=×105MPa轴向容许应力:200MPa剪切容许应力:120MPa表2-1 钢材容许应力表2.3.计算荷载取值(1)结构设计安全等级:一级(2)永久作用自重:实际结构建立计算模型,由程序自动计算,材料容重取m3;横隔板:横隔板处按节点荷载加载,支点截面45kN,其余隔板处15kN;二期:8cm沥青混凝土铺装:25××13=26kN/m,墙式护栏按10kN/m计算,共计36kN/m。
悬臂20米跨铁路钢箱梁顶推架设工法一、前言随着我国桥梁建设的发展,中等跨度箱梁的顶推架设法已成为桥梁建设的一个重要发展方向。
我局承担的天津开发区泰达大街京山桥,由于主桥跨越京山铁路线,钢箱梁架设采用顶推法进行架设施工。
顶推是将钢箱梁在桥跨的一侧沿桥纵轴线方向逐段拼装,梁下及墩顶布设滑道和滑移装置,用千斤顶顶推钢箱梁,沿纵向滑移至预定桥孔,然后拆除辅助设施构件,移正钢梁,降落就位。
这是一种新的行之有效的钢箱梁架设方式。
二、工法特点1、不需要大型机械设备,利用门式排架及其配套装置解决梁片的吊运、平移;利用简单提升设备及配套机具解决钢箱梁提升和拼装,经济合理。
2、采用普通工字钢与聚四氟乙烯滑块组成滑道,减小摩擦阻力,省力、省料,顶进速度快,平均达0.5m∕min。
3、顶推设备自动化程度高,循环周期短,施工进度快,梁体在顶推过程中运行平稳、安全可靠。
4、梁段运输与拼装架设平行作业,按流水作业安排工艺流程,既保证施工质量,又便于施工管理和合理安排机具人力。
5、操作简便,便于掌握,一般工人经过短时间培训即可达到熟练程度。
6、不受桥址地形条件及坡高的限制,不影响桥下交通。
三、适用范围1、适应于公路、铁路中等跨度的等高度钢箱梁。
2、适应于有水桥、跨谷桥、跨线桥及城市立交桥。
当要求施工不影响桥下通航和交通时,本工法更能显出其优越性。
3、适应于工期紧张、用现有架梁设备很难完成的桥梁架设。
四、工艺原理利用钢箱梁的可拼装性,在桥一端的拼装平台将钢梁进行逐段拼装;在钢梁拼装完成后,利用设置在墩顶上的水平千斤顶及其自动牵引装置牵引顶推传力索,通过主控台的集中控制,将整体顶推到位,再起梁,拆除滑道,安装支座,落梁,调整支座反力,完成钢箱梁顶推施工。
五、主要设备1、主要机械设备。
主要机械设备表2、主要材料主要材料表六、施工准备1、平整场地,设置钢梁拼装平台,铺设龙门吊走行线,组装龙门吊。
2、架设门式排架和移梁装置,安装吊运设备。
计算书一、设计依据1.《苏州广济北延GY-A1项目“钢箱梁顶推专项施工方案”(论证稿)》2.《公路桥涵设计通用规范》(JTG D60-2004)3.《公路桥涵地基与基础设计规范》(JTJ024-85)4.《公路桥涵钢结构及木结构设计规范》(JTJ025-86)5.《公路桥涵施工技术规范》(JTJ041--2000)二、设计参数1.箱梁自重:钢箱梁自重按80.7kN/m进行计算。
2、导梁自重:导梁总重为316kN,建模时对其结构进行简化,按14.1kN/m 进行计算。
3、其它结构自重:由程序自动记入。
4、墩顶水平力:顶推施工中拼装平台处的支架墩顶受摩檫力F1作用,取摩檫系数μ为0.1;在11#墩处的支架由于是千斤顶牵引施工,受到千斤顶的作用力T,同时受到墩顶摩檫力F2的作用,取摩檫系数μ为0.1。
三、设计工况及荷载组合根据施工工艺及现场的结构形式,确定荷载工况如下:工况一:钢箱梁拼装阶段。
荷载组合为:钢箱梁自重+导梁自重+其它结构自重。
工况二:钢箱梁顶推阶段。
在钢箱梁顶推阶段按每顶推2.5m为一个工况,以箱梁端头顶推至12#墩为最后一个工况,共30个工况,以此进行各墩顶的受力和导梁的受力分析,其荷载组合为:钢箱梁自重+导梁自重。
根据以上工况的计算结果,统计出各临时墩的最大受力,对其结构进行分析。
对于11#墩的荷载组合为:墩顶作用力+顶推力+摩阻力+结构自重;对于其它各临时墩的荷载组合为:墩顶作用力+摩阻力+结构自重。
四、钢箱梁拼装阶段的受力分析4.1 贝雷支架的计算分析钢箱梁在贝雷支架上进行拼装,支撑箱梁的贝雷片的最大跨径为14m。
每个断面布置有四组贝雷片进行箱梁支撑,考虑1.4的不均匀分配系数,作用在每组贝雷片的作用力为F=80.7/4×1.4+2.7/3=29.2kN/m。
其计算模型及结果如下:计算模型弯矩图剪力图通过计算得贝雷片所受到的最大弯矩为M=715.4kNm,最大剪力为V=204.4kN。
1 设计要点1.1 总体设计达连坝大桥主桥为钢箱连续梁桥,跨径组合为(40+60+40)m,全长140m。
1.2 主桥上部结构设计概况(1)结构布置主桥为(40+60+40)m三跨钢箱连续梁桥,全长140m。
边中跨比为0.667。
桥梁横断面布置为:(0.5m防撞墙)+(14.75m车行道)+(0.5m防撞墙)=单幅桥总宽15.75m (2)钢箱梁主梁方案主梁采用等截面钢箱梁,单箱五室断面,桥面宽15.75m,箱宽12.0m,悬臂长1.925m。
主梁中心高度2.4m,高跨比1/25。
1.3 主桥下部结构设计概况见施工图纸。
1.4 主要材料(1)混凝土C15:承台基础垫层C30:过渡墩承台、防撞栏、桩基、主墩墩身、过渡墩墩身及盖梁C40:支座垫石(2)钢材主体结构采用Q345qD;附属结构采用Q235B;(3)支座主墩:LQZ3000GD、LQZ3000DX、LQZ3000SX;过渡墩:LQZ1500DX、LQZ1500SX;(4)伸缩缝伸缩缝:D160型伸缩缝。
2 计算依据2.1设计规范及参考资料(1)执行规范:《公路桥涵钢结构及木结构设计规范》(JTJ 025-86)《铁路桥梁钢结构设计规范》(TB 10002.2-2005)《钢结构设计规范》(GB 50017-2003)《公路桥涵设计通用规范》(JTG D60-2004)《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)《公路桥梁抗风设计规范》(JTG/T D60-01-2004)(2)参考规范及文献资料:《日本道路桥示方书·同解说》《钢桥、混凝土桥及结合桥》BS5400 (1978~1982)《公路钢结构桥梁设计规范—征求意见稿》《现代钢桥》(上册)(吴冲主编 2006年4月)《公路钢结构桥梁设计规范》( 征求意见稿)《公路钢箱梁桥面铺装设计与施工技术指南》2.2技术标准(1)公路等级:双向6车道,一级公路。
麻尾大桥钢箱梁组拼及顶推前移计算资料一、工程概况本桥是国道G210独山至新寨公路改造工程麻尾过境线建设工程的一个子项,设计道路于桩号K1+809.876处与现状兰海高速立体交叉,本桥为跨越现状兰海高速而设计,走向为至东向西。
桥梁中心桩号K1+809.876,起点桩号K1+745.876,终点桩号K1+873.876,桥梁全长128.0m,桥面宽度12.0m,桥面面积1536m²。
桥梁跨径布置为(35+50+35)m,上部结构采用等高度连续钢箱梁,下部结构桥台采用肋板式桥台,桥墩采用柱式墩,墩台基础采用浅基础。
二、钢箱梁组拼1、钢箱梁结构形式主跨上部钢箱梁结构采用35+50+35m等高度连续,箱梁总长120m,采用钢箱梁工厂预制,现场节段拼装后,采用顶推施工工艺,顶推就位成桥。
由于工期紧张,采用在桥位3#台尾部一侧搭设钢箱梁拼装推进支架,按箱梁节段划分设立钢管支承柱。
箱梁钢结构主体总长:119.8m,宽11.8m,节段划分如图112图1-2:钢箱梁节段划分断面2、钢箱梁拼装支架设计钢箱梁拼装支架根据箱梁节段划分,在箱梁对接缝处树立2列钢管柱支承,每列钢管柱支承由4根∅630×12mm 螺旋焊钢管为竖向支承,2根I36a 为支承横梁,横梁上根据箱梁底板分段线竖立∅219×8mm 钢管做拼装调节支撑。
钢箱梁拼装架根据箱梁顶推施工需要,在A 、B 、C 、D 处布设顶推设备,同时增设斜向支承钢管平衡顶推水平力。
钢箱梁拼装区域跨越输油管道,故在输油管道处搭设门式支架跨越石油管道。
拼装架布置图如图2:图2-1:钢箱梁拼装支架立面及平面3图2-2:顶推点及门式支架布置大样图2-3:钢箱梁拼装支架横断面42、钢箱梁拼装支架普通段受力验算(1)、钢箱梁总重约900吨,总长119.8m ,箱梁纵向最长分块长度为12.9m ,一列拼装架最大承担钢箱梁长度为12.9/2=6.45m ,箱梁底板宽度8.9m ,钢箱梁按均布荷载加载于I36a 横梁上,考虑受力的不均匀性取提高系数1.2。
计算书一、设计依据 1.《广济北延 GY-A1 项目“钢箱梁顶推专项施工方案”(论证稿)》 2.《公路桥涵设计通用规》(JTG D60-2004) 3.《公路桥涵地基与基础设计规》(JTJ024-85) 4.《公路桥涵钢结构及木结构设计规》(JTJ025-86) 5.《公路桥涵施工技术规》(JTJ041--2000) 二、设计参数 1.箱梁自重:钢箱梁自重按 80.7kN/m 进行计算。
2、导梁自重:导梁总重为 316kN,建模时对其结构进行简化,按 14.1kN/m 进行计算。
3、其它结构自重:由程序自动记入。
4、墩顶水平力:顶推施工中拼装平台处的支架墩顶受摩檫力 F1 作用,取摩 檫系数μ为 0.1;在 11#墩处的支架由于是千斤顶牵引施工,受到千斤顶的作用 力 T,同时受到墩顶摩檫力 F2 的作用,取摩檫系数μ为 0.1。
三、设计工况及荷载组合 根据施工工艺及现场的结构形式,确定荷载工况如下: 工况一:钢箱梁拼装阶段。
荷载组合为:钢箱梁自重+导梁自重+其它结构 自重。
工况二:钢箱梁顶推阶段。
在钢箱梁顶推阶段按每顶推 2.5m 为一个工况,以箱梁端头顶推至 12#墩为 最后一个工况,共 30 个工况,以此进行各墩顶的受力和导梁的受力分析,其荷 载组合为:钢箱梁自重+导梁自重。
根据以上工况的计算结果,统计出各临时墩的最大受力,对其结构进行分析。
对于 11#墩的荷载组合为:墩顶作用力+顶推力+摩阻力+结构自重;对于其它各 临时墩的荷载组合为:墩顶作用力+摩阻力+结构自重。
四、钢箱梁拼装阶段的受力分析 4.1 贝雷支架的计算分析 钢箱梁在贝雷支架上进行拼装,支撑箱梁的贝雷片的最大跨径为 14m。
每个断面布置有四组贝雷片进行箱梁支撑,考虑 1.4 的不均匀分配系数,作用在每组 贝雷片的作用力为 F=80.7/4×1.4+2.7/3=29.2kN/m。
其计算模型及结果如下:计算模型弯矩图剪力图通 过 计 算 得 贝 雷 片 所 受 到 的 最 大 弯 矩 为 M=715.4kNm , 最 大 剪 力 为 V=204.4kN。
广东省新建梅州至潮汕铁路MSSG-3标—跨汕昆高速特大桥(34+160+34)M刚架系杆拱-钢箱梁连续组合桥钢箱梁顶推临时支架、防护棚及钢管拱提升支架复核计算书二〇一七年六月目录一、项目背景及概况 (1)1.1工程概况 (1)1.1.1 主梁结构构造 (2)1.1.2 拱部结构构造 (3)1.1.3 工程技术标准 (5)1.1.4 工作目的及内容 (5)1.2计算依据 (6)1.3施工方案 (6)1.3.1 钢箱梁顶推施工 (6)1.3.2 钢管拱施工 (15)二、钢箱梁顶推支架计算 (21)2.1计算参数取值 (21)2.2钢箱梁顶推支反力计算 (21)2.2.1 顶推工况1 (21)2.2.2 顶推工况2 (22)2.2.3 顶推工况3 (22)2.2.4 顶推工况4 (23)2.2.5 顶推工况5 (23)2.2.6 顶推工况6 (24)2.2.7 顶推工况7 (24)2.2.8 顶推工况8 (25)2.2.9 顶推工况9 (25)2.2.10 顶推工况10 (26)2.2.11 顶推工况11 (26)2.2.12 顶推工况12 (27)2.2.13 顶推工况13 (27)2.2.14 顶推工况14 (28)2.2.15 顶推工况15 (28)2.2.16 顶推工况16 (29)2.2.17 顶推工况17 (29)2.2.18 顶推工况18 (30)2.2.19 顶推工况19 (30)2.2.20 顶推工况20 (31)2.2.21 顶推工况21 (31)2.2.22 钢箱梁顶推支反力汇总 (32)2.2.23 钢箱梁顶推支架水平推力计算 (32)2.3拱肋吊装过程中桥下支架反力计算 (33)2.3.1 吊装1#拱 (34)2.3.2 吊装2#拱 (35)2.3.3 吊装3#拱 (36)2.3.4 吊装4#拱 (37)2.3.5 吊装拱支反力汇总 (38)2.4风荷载计算 (39)2.4.1 顶推过程中风荷载 (39)2.4.2 不顶推过程中风载 (39)2.5防护棚自重反力计算 (40)2.6钢箱梁顶推支架计算结果 (41)2.6.1 1、6#支架分析 (42)2.6.2 2、5#支架分析 (51)2.6.3 3、4#支架分析 (60)2.7钢箱梁顶推支架计算小结 (70)3.1计算参数取值 (71)3.2荷载计算 (72)3.3防护棚架计算结果 (72)3.4防护棚架计算小结 (78)四、钢管拱提升支架计算 (78)4.1钢管拱提升支架结构设计 (78)4.2计算参数取值 (78)4.3风荷载计算 (78)4.4工况分析 (79)4.5钢管拱提升支架计算结果 (80)4.5.1 1#支架分析 (80)4.5.2 2#支架分析 (87)4.5.3 3#支架分析 (95)4.6钢管拱提升支架计算小结 (103)一、项目背景及概况1.1 工程概况广东省新建梅州至潮汕铁路于DK085+520.2—DK085+572.4处设置一座(34+160+34)m钢管混凝土刚架系杆拱钢箱连续梁组合桥跨越昆汕高速。
某钢箱梁复核计算报告苏通长江公路大桥施工图设计阶段钢箱梁合理构造与受力特性研究目录1概述 (1)1.1钢箱梁概况 (1)1.2钢梁的安装及顶推 (1)2计算模型与方法 (2)2.1计算参数 (2)2.1.1材料 (2)2.1.2计算荷载 (2)2.2荷载组合 (2)2.3计算模型 (3)3主梁内力 (4)3.1.1顶推施工阶段 (4)3.1.2(恒载+活载)组合一 (5)3.1.3(恒载+活载+支座沉降+温度)组合二 (6)4主梁应力 (8)4.1控制断面内力 (8)4.1.1顶推施工阶段 (8)4.1.2(恒载+活载)组合一 (8)4.1.3(恒载+活载+支座沉降+温度)组合二 (8)4.2截面有效宽度 (8)4.3局部稳定系数 (9)4.4控制截面应力 (10)5加劲肋验算 (13)5.1主梁顶底板加劲肋 (13)5.2主梁腹板加劲肋 (15)5.3支座加劲肋 (16)5.3.1支座反力 (16)5.3.2支座加劲肋构造 (16)5.3.3支座加劲肋验算 (17)5.3.4顶推施工加劲肋验算 (20)6中间横隔板验算 (21)6.1横隔板构造 (21)6.2横隔板的开口率 (21)6.3横隔板最小刚度 (22)7挠度 (27)7.1恒载挠度 (27)7.2活载挠度 (27)1概述1.1钢箱梁概况主梁为四跨一联的连续钢箱梁,两幅桥错孔布置,位于半径R=1190m的平面圆曲线上,跨径布置为(25+35+35+25)m,每幅桥顶面宽17.25m,箱梁顶板为单向横坡2%,箱梁中心线位置梁高 1.8m,采用单箱三室闭合截面。
桥面铺装为防水粘结层(环氧粘结层+5mm碎石覆盖)+3.0cm环氧沥青混凝土+4cm高弹改性沥青SMA13钢箱梁为正交异性板,一般截面:顶面板厚14mm,底面板厚14mm,设4道竖直腹板,厚度12mm,顶板采用U型加劲肋,厚8mm、高260mm、间距600mm,底板采用T型加劲肋,竖肋厚8mm、高120mm;水平肋厚10mm、100mm宽,腹板加劲肋厚度14mm、高度160mm,横隔板采用板结构, 间距2m,板厚为10mm。
50m高速公路钢箱梁顶推校核计算书一、工程概况二、计算要点1. 整体稳定性校核2. 结构荷载校核3. 箱梁横向位移校核4. 轴心受压构件校核5. 轴心受拉构件校核三、整体稳定性校核钢箱梁作为承载结构,其整体的稳定性是重要的考虑因素之一、校核时需满足以下条件:1. 满足中心线受力需要,即通过计算确定主要抗弯构件的截面尺寸和钢材强度等级。
2. 钢箱梁在施工阶段的整体稳定性满足要求,即对于整体变形、失稳等情况进行计算分析。
四、结构荷载校核钢箱梁在使用阶段需要承受各种荷载。
在校核计算中需考虑以下荷载:1. 永久荷载:包括梁自重、沥青路面、护栏等。
2. 活载荷载:包括车辆荷载、风荷载等。
3. 应力组合:根据设计规范的要求,进行相应的应力组合计算。
五、箱梁横向位移校核钢箱梁在使用过程中可能会发生横向位移,因此需进行横向位移校核。
校核时需满足以下条件:1. 结构整体的横向位移符合规范要求,保证桥梁的安全和稳定。
2. 对于钢箱梁横向位移的影响,需要考虑不同工况下的影响因素,如温度变化、交通荷载等。
3. 根据计算结果,可能需要进行一些结构的优化设计。
六、轴心受压构件校核钢箱梁在承受荷载时,其上部构件可能会受到轴心受压力。
校核时需满足以下条件:1. 根据设计要求,确定轴心受压构件的截面尺寸和材料强度等级。
2. 根据应力和应变的平衡条件,计算轴心受压构件的承载能力。
3. 校核计算结果应满足设计要求和规范规定。
七、轴心受拉构件校核钢箱梁在承受荷载时,其下部构件可能会受到轴心受拉力。
校核时需满足以下条件:1. 根据设计要求,确定轴心受拉构件的截面尺寸和材料强度等级。
2. 根据应力和应变的平衡条件,计算轴心受拉构件的承载能力。
3. 校核计算结果应满足设计要求和规范规定。
以上为对50m高速公路钢箱梁顶推校核计算书的概述,校核计算需根据具体工程情况和设计要求进行详细计算。
.计算书一、设计依据 1.《苏州广济北延 GY-A1 项目“钢箱梁顶推专项施工方案”(论证稿)》 2.《公路桥涵设计通用规范》(JTG D60-2004) 3.《公路桥涵地基与基础设计规范》(JTJ024-85) 4.《公路桥涵钢结构及木结构设计规范》(JTJ025-86) 5.《公路桥涵施工技术规范》(JTJ041--2000) 二、设计参数 1.箱梁自重:钢箱梁自重按 80.7kN/m 进行计算。
2、导梁自重:导梁总重为 316kN,建模时对其结构进行简化,按 14.1kN/m 进行计算。
3、其它结构自重:由程序自动记入。
4、墩顶水平力:顶推施工中拼装平台处的支架墩顶受摩檫力 F1 作用,取摩 檫系数μ为 0.1;在 11#墩处的支架由于是千斤顶牵引施工,受到千斤顶的作用 力 T,同时受到墩顶摩檫力 F2 的作用,取摩檫系数μ为 0.1。
三、设计工况及荷载组合 根据施工工艺及现场的结构形式,确定荷载工况如下: 工况一:钢箱梁拼装阶段。
荷载组合为:钢箱梁自重+导梁自重+其它结构 自重。
工况二:钢箱梁顶推阶段。
在钢箱梁顶推阶段按每顶推 2.5m 为一个工况,以箱梁端头顶推至 12#墩为 最后一个工况,共 30 个工况,以此进行各墩顶的受力和导梁的受力分析,其荷 载组合为:钢箱梁自重+导梁自重。
根据以上工况的计算结果,统计出各临时墩的最大受力,对其结构进行分析。
对于 11#墩的荷载组合为:墩顶作用力+顶推力+摩阻力+结构自重;对于其它各 临时墩的荷载组合为:墩顶作用力+摩阻力+结构自重。
四、钢箱梁拼装阶段的受力分析 4.1 贝雷支架的计算分析 钢箱梁在贝雷支架上进行拼装,支撑箱梁的贝雷片的最大跨径为 14m。
每个'..断面布置有四组贝雷片进行箱梁支撑,考虑 1.4 的不均匀分配系数,作用在每组 贝雷片的作用力为 F=80.7/4×1.4+2.7/3=29.2kN/m。
其计算模型及结果如下:计算模型弯矩图剪力图通 过 计 算 得 贝 雷 片 所 受 到 的 最 大 弯 矩 为 M=715.4kNm , 最 大 剪 力 为 V=204.4kN。
单组贝雷片的容许弯矩为[M]=788.2kNm>715.4kNm,单组贝雷片的 容许剪力为[V]=245.2kN>204.4kN,故贝雷片的强度满足要求。
4.2 牛腿的计算分析 将贝雷片简化为两跨 14m 连续梁进行计算,计算模型及结果如下:计算模型弯矩图剪力图'..通过计算得牛腿的支座反力为 F=511kN。
贝雷片的支撑牛腿选用工 28B,从钢管内部穿过,悬臂长度为 20cm。
牛腿 型钢所受到的最大弯矩为 M=511×0.2=102.2kNm,最大剪力为 V=511kN。
型钢 工 28B 的截面模量为 W=5.34×10-4m3。
则其弯曲应力为σ=M/W=188.2MPa<[σ]=1.4×145=203MPa 其剪力为τ=VS/Ib=17.2MPa<[τ]=85MPa 故牛腿的强度满足要求。
4.3 钢管桩的计算分析 在该施工阶段,钢管桩顶的最大支反力小于钢箱梁顶推阶段的最大支反力, 故在该施工阶段,略去钢管桩支架的验算。
五、钢箱梁顶推阶段的受力分析 5.1 支座反力的计算 在钢箱梁顶推阶段按每顶推 2.5m 为一个工况,以箱梁端头顶推至 12#墩为 最后一个工况,共 30 个工况,以此进行各墩顶的受力和导梁的受力分析,其荷 载组合为:钢箱梁自重+导梁自重。
采用 MIDAS 对其进行建模计算。
模型中,将钢箱梁及导梁换算成等效截面 结构,对应于 30 个工况,设置 30 个施工阶段。
其模型如下:计算模型通过计算得出其支座反力结果如下表: 对于各工况条件下的结构应力进行统计,发现导梁的最大应力出现在施工阶 段 25 处,其最大应力为σ=118.0MPa<145MPa,结构的最大变形出现在施工阶 段 20 处,其最大变形量为 246.6mm,其应力云图及变形图见下图。
'..施工阶段-25 应力云图施工阶段 1 施工阶段 2 施工阶段 3 施工阶段 4 施工阶段 5 施工阶段 6 施工阶段 7 施工阶段 8 施工阶段 9 施工阶段 10 施工阶段 11 施工阶段 12 施工阶段 13 施工阶段 14施工阶段-25 变形图 表 5.1-1 计算结果汇总表(单位:kN)ABCDEFGH80.8 278.9 1125.6 927.5 1064.0 1234.2 771.1116.8 362.1 1230.8 902.1 1057.0 1284.8 528.5162.9 480.5 1232.3 1070.2 501.1 2035.1622.3 215.0 1240.4 1009.5 768.7 1626.3275.6 773.3 1239.5 951.3 979.4 1263.1363.1 906.5 1222.8 914.8 1128.7 946.2487.3 999.5 1207.3 894.7 1217.8 675.4450.7 650.1 1048.3 1195.8 890.1 1247.1849.8 1041.0 1300.5 416.8 1873.91095.4 995.5 1251.7 675.9 1463.61383.9 893.0 1234.2 865.9 1105.11715.7 732.8 1248.4 986.8 798.42090.7 515.0 1294.2 1038.5 543.72491.6 343.5 861.3 1785.7'..施工阶段 15 施工阶段 16 施工阶段 17 施工阶段 18 施工阶段 19 施工阶段 20 施工阶段 21 施工阶段 22 施工阶段 23 施工阶段 24 施工阶段 25 施工阶段 26 施工阶段 27 施工阶段 28 施工阶段 29 施工阶段 30 最大支座反力 最小支座反力440.3 562.4 704.6 861.5 1033.9 1218.0 1425.7 1699.8 1973.9 2248.0 2248.0 440.32947.6 3302.5 3682.7 4088.1 4203.4 4660.3 3943.1 4074.2 4151.8 3760.1 3926.6 4042.6 4056.4 3782.3 3508.2 3234.1 4660.380.81041 2151162.9 1052.4 856.2 574.3 1278.6 821.8 1098.7 845.4 625.6 860.5 521.5 221.41371.6 1127.1 943.1 819.61294.2 1785.7 1873.9 2035.1 221.4 416.8备注:各临时墩的编号由 12#墩开始向 9#墩方向的编号分别为 A~H。
5.2 11#墩处的钢管支架的计算分析钢箱梁顶推过程中,顶推千斤顶布置于 11#墩处,需考虑钢管支架顶推过程中的稳定性,故对于 11#墩处的钢管支架按两种工况进行分析。
工况一:墩顶所受作用力最小,千斤顶顶推施工。
荷载组合为:墩顶作用力F1+千斤顶顶推力 T+墩顶摩檫力 f1+结构自重。
工况二:墩顶所受作用力最大,千斤顶顶推施工。
荷载组合为:墩顶作用力F2+千斤顶顶推力 T+结构自重。
钢箱梁及导梁的总重量为 548.2t,按摩檫系数按 0.1 进行计算,则所需要的顶推力为 T=5482×0.1=548.2kN。
5.2.1 工况一荷载取值根据 5.1 节中的计算结果表中可查出,墩顶作用力最小为 F1=80.8kN,其所产生的墩顶摩檫力 f1=80.8×0.1=8.08kN。
千斤顶的荷载同步性按 1.05 进行考虑,左右墩竖向力不均匀分配系数按 1.2考虑。
则单个临时墩受到的顶推力为 T0=548.2/2×1.05=287.8kN。
单个分配梁的作用长度为 2m,宽度为 0.5m,其所受到的竖向力为 F0=80.8/4/2×0.8=8.1kN/m,其所受到的摩檫力为 f0=8.08×0.8/4=1.6kN。
'..5.2.2 工况二荷载取值 根据 5.1 节中的计算结果表中可查出,墩顶作用力最大为 F1=4660.3kN,其 所产生的墩顶摩檫力 f1=4660.3×0.1=466.03kN。
千斤顶的荷载同步性按 1.05 进行考虑,左右墩竖向力不均匀分配系数按 1.2 考虑。
则单个临时墩受到的顶推力为 T0=548.2/2×1.05=287.8kN。
单个分配梁的 作 用 长 度 为 2m , 宽 度 为 0.5m , 其 所 受 到 的 竖 向 力 为 F0=4660.3/4/2 × 1.2=699.1kN/m,其所受到的摩檫力为 f0=466.03×1.2/4=139.8kN。
5.2.3 计算模型 采用 MIDAS 对其进行建模计算,计算模型如下:计算模型5.2.4 计算结果 通过计算得出计算结果如下:工况一:结构应力图'..工况一:结构变形图 工况一:支座反力图(一) 工况一:支座反力图(二)'..工况二:结构应力图 工况二:结构变形图 工况二:支座反力图(一)'..工况二:支座反力图(二)对以上计算结果汇总如下表:计算结果汇总表(一)工况最大组合应力(MPa)最大变形(mm)允许应力(MPa)工况一73.814.8145工况二125.04.4145计算结果汇总表(二)节点 1 2 3 4 1 2 3 4荷载 工况 1 工况 1 工况 1 工况 1 工况 2 工况 2 工况 2 工况 2FX (kN) -90.8 -91.2 -51.1 -51.5 -19.8 -24.0 19.9 15.7FY (kN) 27.6 -27.1 30.5 -30.9 31.1 -26.9 27.0 -31.1FZ (kN) -638.3 730.9 -556.7 649.2 690.8 783.7 772.5 702.1MX (kN*m) -46.7 46.3 -51.3 51.7 -52.2 45.8 -45.8 52.3MY (kN*m) -207.0 -207.5 -132.9 -133.4 -37.8 -44.4 36.3 29.7MZ (kN*m) -25.1 -25.1 -26.4 -26.4 -25.7 -25.7 -25.7 -25.7从计算结果汇总表(一)中可以看出,结构最大应力均小于其容许应力,说明钢管支架的强度和刚度满足施工要求。