奥数传奇-6年级(1-20集全)
- 格式:docx
- 大小:222.35 KB
- 文档页数:8
六年级上册奥数第一讲牛吃草问题1:牧场上有一片青草,可以供6头牛吃8天,或者供10头牛吃4天,如果这片青草每天生长的速度相同,则这片青草可供18头牛吃几天?2、一只船发现漏水时,已经进了一些水,水匀速进入船内。
如果10人淘水,3小时淘完;如果5人淘水8小时淘完。
如果要求2小时淘完,要安排多少人淘水?3、牧场上有一片青草,每天生长速度相同,可供27头牛吃6天,或供69只羊吃9天,如果1头牛的吃草量等于3只羊的吃草量,那么这片青草可供11头牛和30只羊吃几天?4、某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多。
从开始检票到等候检票的队伍消失,同时开4个检票口需30分钟,同时开5个检票口需20分钟。
如果同时打开7个检票口,那么需多少分钟?5、因天气渐冷,牧场上的草以均匀的速度减少。
已知牧场上的草可供33头牛吃5天,或可供24头牛吃6天。
照此计算,这个牧场可供多少头牛吃10天?6、一个牧场,草每天匀速生长,每头牛每天吃的草量相同。
17头牛30天可以将草吃完,19头牛只需要24天就可以将草吃完,现有一群牛,吃了6天后,卖掉4头,余下的牛再吃2天就将草吃完。
则没有卖掉之前这群牛共有多少头?7、自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼。
已知男孩每分钟走20级梯级,女孩每分钟走15级梯级,结果男孩用了5分钟到达楼上,女孩用了6分钟到达楼上。
问该扶梯共有多少级?8、一个蓄水池,每分钟流入4立方米水,如果打开5个水龙头,150分钟就把水池中的水放光;如果打开8个水龙头,90分钟就把水池中的水放光。
现打开13个水龙头,要多少时间才能把水池中的水放光?9、甲、乙、丙三个仓库,各存放着两样数量的化肥,甲仓库用皮带输送机一台和12名工人需要5小时才能把甲仓搬空;乙仓库用一台皮带输送机和28名工人需要3小时才能把乙仓搬空;丙仓库用二台皮带输送机,如果需要2小时把乙仓搬空,同时还需要多少名工人?(皮带输送机工效相同,每个工人每小时搬运量相同。
学奥数,这里总有一本适合你
2000年华东师范大学出版社出版了《奥数教程》丛书,首次在书名中使用“奥数”一词。
《奥数教程》由国家集训队教练组执笔联合编写,获得第十届全国教育图书展优秀畅销图书奖,深受读者喜爱,被奉为经典奥数蓝皮书。
自《奥数教程》出版以来,华东师范大学出版社聚集国内最顶尖的作者团队,陆续为不同层次、不同需求的读者打造了近200种奥数图书, 形成多品种、多层次、全系列的格局,“奥数”图书累计销量超1000万册,由此奠定了奥数品牌出版社的地位。
“奥数”入门篇——《从课本到奥数》(1‐9年级)A、B版
“奥数”智优篇——《优等生数学》(1‐9年级)
“奥数”辅导篇——《奥数教程》、《学习手册》、《能力测试》(一至高三年级) “奥数”小学顶级篇——《高思学校竞赛数学课本》、《高思学校竞赛数学导引》 “奥数”专题篇——《数学奥林匹克小丛书》(小学、初中、高中共30种) “奥数”题库篇——《多功能题典 数学竞赛》(小学、初中、高中共3种) “奥数”高中预赛篇——《高中数学联赛备考手册(预赛试题集锦)》
“奥数”联赛冲刺篇——《高(初)中数学联赛考前辅导》
“奥数”IMO 终极篇——《走向IMO:数学奥林匹克试题集锦》
“奥数”域外篇——《日本小学数学奥林匹克》、《全俄中学生数学奥林匹克》。
小学六年级奥数题(六篇)整理的《小学六年级奥数题(六篇)》相关资料,希望帮助到您。
【篇一】小学六年级奥数题 1、哥哥今年18岁,弟弟今年12岁。
当两人的年龄和是40岁时,兄弟两人各多少岁?2、甲、乙、丙三人各有若干本故事书,甲拿出自己的一部分书给乙、丙,例乙、丙两人的书增加一倍,乙拿出一部分书给甲、丙,使甲、丙两人的书增加一倍,丙也拿出一部分书给甲、乙,使甲、乙两人的书也增加一倍,这时甲、乙、丙三人的书都是16本。
甲、乙、丙原来各有多少本故事书?3、有一只水桶装满了8千克水,如果把这桶水平均分装在两只水桶内,两只水桶分别可装5千克与3千克。
最少需要倒多少次?4、甲、乙、丙三校在体育用品商店买了不同数目的足球,共48个。
第一次从甲校的足球中拿出与乙校个数相同的足球并入乙校;第二次再从乙校现有的足球中拿出与丙校个数相同的足球并入丙校;第三次又从丙校现有的’足球中拿出与这时甲校个数相同的足球并入甲校。
经过这样的变动后,三校足球的个数正好相等。
已知每个足球的售价是12元,问三校原来买的足球各值多少元?5、甲、乙两个油桶各装了15千克油,售货员卖了14千克。
后来,售货员从剩下较多油的甲桶倒一部分给乙桶,使乙桶的油增加一倍;然后又从乙桶倒一部分给甲桶,使甲桶的油也增加一倍;这时甲桶的油恰好是乙桶油的3倍。
问售货员从两个油桶里各卖了多少千克油?【篇二】小学六年级奥数题 1、求下列时刻的时针与分针所形成的角的度数。
(1)9点整(2) 2点整(3)5点30分(4)10点20分(5)7点36分2、从时针指向4点开始,再经过多少分钟,时针正好与分针重合?3、某人下午6点多外出时,看手表上两指针的夹角为1100,下午7点前回家时发现两指针夹角仍为1100,问:他外出多长时间?4、一点到两点之间,分针与时针在什么时候成直角?5、在3点至4点之间的什么时刻,钟表的时针和分针分别相互重合和相互垂直。
【篇三】小学六年级奥数题 1、小明和小英各自在公路上往返于甲、乙两地。
小学六年级分数奥数题100道及答案(完整版)1. 一个分数,分母比分子大25,分子、分母同时除以一个相同的数后得4/9,原来的分数是多少?答案:20/45。
思路:9-4=5,25÷5=5,分子是4×5=20,分母是9×5=45。
2. 把一根绳子平均分成5 段,每段长6 米,这根绳子长多少米?答案:30 米。
思路:5×6=30(米)。
3. 有一堆煤,第一天用去1/4,第二天用去余下的1/3,还剩下12 吨,这堆煤原有多少吨?答案:24 吨。
思路:第二天用去总数的(1-1/4)×1/3=1/4,剩下总数的1-1/4-1/4=1/2,所以总数为12÷1/2=24 吨。
4. 一桶油,第一次用去1/5,第二次比第一次多用去20 千克,还剩下22 千克,这桶油原来有多少千克?答案:50 千克。
思路:设这桶油原来有x 千克,x-1/5x-(1/5x+20)=22,解得x=50。
5. 某班男生人数是女生人数的4/5,女生比男生多5 人,这个班共有多少人?答案:45 人。
思路:设女生人数为x,x-4/5x=5,解得x=25,男生人数为20,全班人数为45 人。
6. 一本书,第一天看了全书的1/3,第二天看了余下的1/2,还剩下40 页没看,这本书共有多少页?答案:120 页。
思路:第二天看了全书的(1-1/3)×1/2=1/3,剩下全书的1-1/3-1/3=1/3,所以全书有40÷1/3=120 页。
7. 一条公路,已经修了全长的2/5,再修60 米,就正好修了全长的一半,这条公路长多少米?答案:300 米。
思路:设公路长x 米,1/2x-2/5x=60,解得x=300。
8. 小明看一本书,第一天看了全书的1/5,第二天看了25 页,两天共看了全书的3/10,这本书共有多少页?答案:125 页。
思路:设全书有x 页,1/5x+25=3/10x,解得x=125。
小学六年级奥数难题100道及答案(完整版)1. 一个数的2/3加上4等于这个数的1/2,求这个数。
解:设这个数为x,根据题意可得方程:(2/3)x + 4 = (1/2)x。
解得x = -24。
2. 一个水池,第一天放水1/3,第二天放水1/4,第三天放水1/5,第四天放水1/6,最后剩下15立方米的水,求水池原来有多少立方米的水。
解:设水池原来有x立方米的水,根据题意可得方程:x * (1 - 1/3 - 1/4 - 1/5 - 1/6) = 15。
解得x = 60。
3. 一个长方形的长比宽多4厘米,周长是32厘米,求长方形的长和宽。
解:设长方形的长为x厘米,宽为y厘米。
根据题意可得方程组:x - y = 4;2x + 2y = 32。
解得x = 10,y = 6。
所以长方形的长为10厘米,宽为6厘米。
4. 一个数的3倍减去5等于这个数的2倍加上7,求这个数。
解:设这个数为x,根据题意可得方程:3x - 5 = 2x + 7。
解得x = 12。
5. 一个三角形的三边长分别为a、b、c,已知a + b > c,a + c > b,b + c > a,求三角形的面积。
解:根据海伦公式,三角形的面积S = sqrt[p * (p - a) * (p - b) * (p - c)],其中p = (a + b + c) / 2。
将已知的三边长代入公式即可求得三角形的面积。
6. 一个数的5倍减去8等于这个数的3倍加上12,求这个数。
解:设这个数为x,根据题意可得方程:5x - 8 = 3x + 12。
解得x = 10。
7. 一个正方形的边长增加2厘米,面积增加20平方厘米,求原来正方形的边长。
解:设原来正方形的边长为x厘米,根据题意可得方程:(x + 2)^2 - x^2 = 20。
解得x = 4。
所以原来正方形的边长为4厘米。
8. 一个数的4倍加上6等于这个数的3倍加上18,求这个数。
小学六年级奥数题100道及答案1. 有两组数列,第一组数列是:2, 4, 6, 8, ..., 100;第二组数列是:1, 3, 5, 7, ..., 99。
问两组数列中所有数的和是多少?答案:第一组数列是一个等差数列,首项为2,公差为2,共有50项。
第二组数列也是一个等差数列,首项为1,公差为2,共有50项。
两组数列的和可以通过求和公式计算得出:\[ S_1 = 2 \times 50 + 50 \times 49 / 2 = 2550 \];\[ S_2 = 1 \times 50 + 50 \times 49/ 2 = 1225 \]。
所以,两组数列的和是:\[ S_1 + S_2 = 2550 + 1225 = 3775 \]。
2. 一个长方体的长、宽、高分别是10厘米、8厘米和6厘米。
如果把这个长方体切割成两个大小相等的正方体,那么切割后的每个正方体的体积是多少?答案:首先计算长方体的体积,\[ V_{长方体} = 10 \times 8\times 6 = 480 \] 立方厘米。
切割成两个正方体后,每个正方体的体积是原长方体体积的一半,即\[ V_{正方体} = 480 / 2 = 240 \]立方厘米。
3. 一个数列的前5项是:1, 1, 2, 3, 5。
这个数列的第6项是多少?答案:这是一个斐波那契数列,每一项都是前两项的和。
所以第6项是\[ 3 + 5 = 8 \]。
4. 有一个数字,如果把它乘以3然后加上10,得到的结果是这个数字的5倍。
这个数字是多少?答案:设这个数字为x,根据题意,我们有\[ 3x + 10 = 5x \]。
解这个方程,我们得到\[ 2x = 10 \],所以\[ x = 5 \]。
5. 一个班级有40名学生,其中20名男生和20名女生。
如果随机选择一名学生,那么选择到男生的概率是多少?答案:从40名学生中随机选择一名,选择到男生的概率是男生人数除以总人数,即\[ P(男生) = 20 / 40 = 1 / 2 \]。
百分数应用题(一)1.某商店同时卖出两件商品,每件各得60元,但其中一件赚20%,另一件亏本20%。
问这个商店卖出这两件商品是赚钱还是亏本?2.一桶油,第一次用了全桶的20%,第二次用了20千克,第三次用了前两次的和,这时桶里还剩8千克,问这桶油还有多少千克?3.甲乙两店都经营同样的某种商品,甲先涨价10%后又降价10%,乙先涨价15%后,又降价15%,请问:两位店主谁比较聪明?4.某班有学生48名,女生占全班人数的37.5%,后来又转来了若干名女生。
这是女生人数恰好是全班人数的2/5,问共转来了多少名女生?5.某工厂一车间人数占全厂的25%,二车间人数比一车间少1/5,三车间人数比二车间多3/10,三车间有156人,求这个工厂全厂共有多少人?6.小刚看一本书,第一天看了全书的1/6,第二天看了24页,第三天看前两天看的总数的150%,这时还剩下全书的1/4没有看。
全书共有多少页?2.百分数应用题(二)【题型概述】商品的打折可以转化成百分数应用题解决,主要的关系式有:定价=成本×(1+利润百分数)利润百分数=(卖价-成本)÷成本×100%【典型例题】把一套西装按50%的利润定价,然后打八八折卖出,可以获得利润480元,这套西装的成本是多少元?【举一反三】1.把一件女装按40%的利润定价,然后打九折卖出,可以获得利润130元,这件女装的成本是多少元?2. 有一批空调,如果按每台20%的利润定价,然后按八折出售,每台空调反而亏损128元,这种空调的进货价是多少?3.一批新书按定价的20%出售时,仍能获得40%的利润,那么定价时所期望的利润率是多少?【拓展提高】一种自行车,甲商店比乙商店的进货价便宜5%,甲商店按20%的利润定价,乙商店按15%的利润定价,结果甲店比乙店便宜3元,乙店的进货价是多少元?【奥赛训练】4.一种商品,甲商店比乙商店的进货价便宜10%,甲商店按30%的利润定价,乙商店按25%的利润定价,结果甲店比乙店便宜40元,甲店的进货价是多少元?5.两家商店购进同一种商品,一店比二店的进货价便宜5%,一店按40%的利润定价,二店按25%的利润定价,结果一店比二店贵16元,二店的进货价是多少元?6.有两家商场,当第一家商场的利润减少15%,而第二家商场利润增加18%时,这两家商场的利润相同。
六年级奥数题100道及答案题目1计算 2+3 的结果。
答案:5题目2计算 6-2 的结果。
答案:4题目3计算 4*5 的结果。
答案:20题目4计算 10/2 的结果。
答案:5题目5计算 8+2*4 的结果。
答案:16题目6计算 (6+2)*3 的结果。
答案:24题目7计算 12/3-2 的结果。
答案:2题目8计算 4*5+6 的结果。
答案:26题目9计算 18/3/2 的结果。
答案:3题目10计算 10-3+5 的结果。
答案:12计算 2^3 的结果。
答案:8题目12计算 5^2 的结果。
答案:25题目13计算 4^0 的结果。
答案:1题目14计算 16^(1/2) 的结果。
答案:4题目15将 3/8 化成小数。
答案:0.375题目16将 0.75 化成分数。
答案:3/4题目17计算 1/4+2/3 的结果。
答案:11/12题目18计算 2/3-1/6 的结果。
答案:1/2题目19计算 1/3*2/5 的结果。
答案:2/15题目20计算 3/4÷1/2 的结果。
答案:3/2题目21计算 \(\sqrt{9} - \sqrt{4}\) 的结果。
答案:1计算 \(\sqrt{16} + \sqrt{25}\) 的结果。
答案:9题目23计算 \(\sqrt{144}\) 的结果。
答案:12题目24计算 \(\sqrt{81} \times \sqrt{49}\) 的结果。
答案:63题目25已知一个正方形的面积为64平方厘米,求其边长。
答案:8厘米题目26已知一个长方形的长为10厘米,宽为5厘米,求其面积。
答案:50平方厘米题目27已知一个长方体的底面积为20平方厘米,高为5厘米,求其体积。
答案:100立方厘米题目28已知一个圆的半径为6厘米,求其周长。
答案:12π厘米题目29已知三角形的底边长为8厘米,高为4厘米,求其面积。
答案:16平方厘米题目30已知一个正方体的边长为5厘米,求其表面积。
小学六年级数学奥数题100题附答案(完整版)题目1甲、乙两车分别从A、B 两地同时相向而行,在距A 地80 千米处相遇,相遇后两车继续前进,甲车到达B 地、乙车到达A 地后均立即按原路返回,第二次在距B 地60 千米处相遇。
A、B 两地相距多少千米?答案:第一次相遇时,甲、乙两车共行了A、B 两地的距离,其中甲行了80 千米。
第二次相遇时,甲、乙两车共行了A、B 两地距离的3 倍,则甲车行了80×3 = 240 千米。
此时甲行的路程是一个A、B 两地的距离加上60 千米,所以A、B 两地相距240 - 60 = 180 千米。
题目2一项工程,甲单独做12 天完成,乙单独做18 天完成。
两人合作多少天可以完成这项工程的2/3 ?答案:甲的工作效率为1/12,乙的工作效率为1/18,两人合作的工作效率为1/12 + 1/18 = 5/36 。
完成工程的2/3 需要的时间为2/3 ÷5/36 = 24/5 = 4.8 天。
题目3一个分数,分子与分母的和是68,约分后是8/9,原来这个分数是多少?答案:设分子为8x,分母为9x,则8x + 9x = 68,17x = 68,x = 4 。
分子为8×4 = 32,分母为9×4 = 36,原来的分数是32/36 。
题目4在一个周长为62.8 米的圆形花坛周围铺一条 2 米宽的小路,这条小路的面积是多少平方米?答案:花坛的半径:62.8÷3.14÷2 = 10 米加上小路后的半径:10 + 2 = 12 米小路的面积:3.14×(12²- 10²) = 138.16 平方米题目5有浓度为20%的糖水300 克,要使其浓度变为40%,需要加糖多少克?答案:原来糖水中糖的质量:300×20% = 60 克设加糖x 克,(60 + x)÷(300 + x) = 40% ,解得x = 100 克题目6一本书,第一天看了全书的1/4,第二天看了120 页,这时已看的页数与未看的页数比是2:3,这本书共有多少页?答案:已看的页数占全书的2/(2 + 3) = 2/5第二天看的占全书的2/5 - 1/4 = 3/20全书页数:120÷3/20 = 800 页题目7一个长方体的棱长总和是120 厘米,长、宽、高的比是5:3:2,这个长方体的体积是多少立方厘米?答案:一组长、宽、高的和:120÷4 = 30 厘米长:30×5/(5 + 3 + 2) = 15 厘米宽:30×3/(5 + 3 + 2) = 9 厘米高:30×2/(5 + 3 + 2) = 6 厘米体积:15×9×6 = 810 立方厘米题目8甲、乙两个仓库共存粮90 吨,其中甲仓库的存粮是乙仓库的4/5。
小学六年级超难奥数题1、(鸡兔同笼问题)小丽买回0.8元一本和0.4元一本的练习本共50本,付出人民币32元。
0.8元一本的练习本有多少本?2、(年龄问题)5年前父亲的年龄是儿子的7倍。
15年后父亲的年龄是儿子的二倍,父亲和儿子今年各是多少岁?3、(盈亏问题)王老师播发笔记本给学生们,每人6本则剩41本,每人8本则高29本。
Morena多少个学生?存有多少个笔记本?4、(还原问题)便民水果店卖芒果,第一次卖掉总数的一半多2个,第二次卖掉剩下的一半多1个,第三次卖掉第二次卖后剩下的一半少1个,这时只剩下11个芒果。
求水果店里原来一共有多少个芒果?5、(转让问题)学校买来6张桌子和6把椅子共用去元。
未知3张桌子的价钱和5把椅子的价钱成正比,每张桌子和每把椅子各就是多少元?6、(安排)烤面包的架子上一次最多只能烤两个面包,烤一个面包每面需要2分钟,那么烤三个面包最少需要多少分钟?7、(油和桶问题)一桶油连桶共重18千克,用回去油的一半后,连桶还轻9.75千克,旧有油多少千克?桶轻多少千克?8、(和倍)青青农场一共养鸡、鸭、鹅共只,鸭的只数是鸡的2倍,鹅的只数是鸭的'4倍,问鸡、鸭、鹅各有多少只?9、(鸡兔同笼)实验小学举办数学竞赛,每搞对一题些9分后,做错一题上边3分后,共计12道题,大受高得了84分后,小旺做错了几道题?10、(相遇问题)甲、乙两人同时从相距20xx米的两地相向而行,甲每分钟行55米,乙每分钟行45米,如果一只狗与甲同时同向而行,每分钟行米,遇到乙后,立即回头向甲跑去,遇到甲再向乙跑去。
这样不断来回,直到甲和乙相遇为止,狗共行了多少米?1、一个整数除以13后,乘积的最后三位数就是,那么这样的整数中最轻的就是多少?2、将37拆成若干个不同的质数之和,使得这些质数的乘积尽可能大,那么,这个乘积等于多少?3、一个五位数,五个数字各相同,且是13的倍数,则合乎以上条件的最轻的数是多少?4、一把钥匙只能开一把锁,现在有4把锁,但不知道哪把钥匙开哪把锁,最多要试几次能配好全部的钥匙和锁?5、用长和阔就是4公分和3公分的长方形大木块,拆成一个正方形,最少必须用这样的木块多少块?6、个自然数,他们的总和是,在这些数里,奇数的个数比偶数是个数多,那么这些数里至多有多少个偶数?7、×××(),必须并使这个连乘积的最后四个数字都就是零,在括号内最轻应填多少?8、有三个连续自然数,他们依次是12、13、14的倍数,这三个连续自然数中(除13外)是13倍数的那个数最小是多少?9、将发货的单价为40块的商品按50块卖出时,每个的利润就是10块,但就可以买进个,未知这种商品每个涨价1块,其销售量就增加10个,为了赚取最少的利润,售价应当订为多少?10、一个三角形的三条边长是三个两位的连续偶数,他们的末位数字和能被7整除,这个三角形的周长等于多少?1、(归属于一问题)工程队计划用60人5天修通一条短米的公路,实际上减少了20人,每人每天比计划多修成了4米,实际修完这条路譬如了几天?2、(相遇问题)甲、乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。
第一讲圆的周长与面积(一)【知识概述】圆是由曲线围成的平面图形。
在日常生活和学习中我们经常会遇到与圆的周长和面积有关的问题。
圆的周长除以它的直径的商是一个固定不变的数,这个结果被称为“圆周率”。
圆周率是一个无限不循环的小数,用字母“π”表示,圆的周长=圆周率x直径,即C=πd或C=2πr。
圆的面积等于圆周率与半径平方的乘积,即S=2r 。
下图圆的阴影部分是一个扇形,它的面积是一个圆的面积的四分之一,它的周长是圆周长的四分之一再加上两条半径的长。
【例题精学】例1:把4个啤酒瓶扎在一起(如图所示)捆4圈至少用绳子多少厘米?(接头部分用去15厘米)思路点拨:用绳子捆4圈的长度就是指周长的4倍。
这个图形的周长可分为两类:线段的长度和弧的长度。
而这四条弧正好可以拼成一个圆,每条线段的长正好是圆的直径的长。
所以绳子捆1圈的长度就是图中一个圆的周长加上4条直径的长度之和。
【同步精炼】1、计算下雨中阴影部分的周长。
(单位:厘米)2、一个街心花园如下图的形状,中间正方形的边长是 20 米,四周为半圆形,这个街心花园的周长是多少米?3、在学校200米的跑道中,每条跑道宽1.2米.由于有弯道,为了公平,外道和内道选手的起跑线不在同一地点.如:A点处是小明的起跑线,B是小强的起跑线,AB两点的距离是? 例2:如下图,从点A到点B沿着大圆走和沿着中,小圆周走的路程相同吗?思路点拨:从点A到点B有两种走法:第一种是大圆的周长的一半;第二种是由A到C 的中圆周长的一半与C到B的小圆周长的一半的和。
设小圆的直径为a,中原的直径为b,则大圆的直径为a+b。
那么第一种走法的路程为C1=πa÷2+πb÷2;第二种走法的路程为C2=πa÷2+πb÷2,所以C1=C2.【同步精炼】1、下图中,从A点到B点沿着大圆周走和沿着小圆周走,路程相同吗?2、已知AB=50cm,求圆中各圆的周长总和。
3、已知一个大圆中紧紧的排列着三个半径不同的小圆(如图),并且这四个圆的圆心恰好在同一条直线上。
小学奥数题六年级小学奥数题六年级 11、有鸡兔共20只,脚44只,鸡兔各几只?2、小红的储钱罐里有面值2元和5元的人民币共65张,总钱数为205元,两种面值的人民币各多少张?3、现有大小油桶50个,每个大桶可装油4千克,每个小桶可装油2千克,大桶比小桶共多装油20千克,问大小桶各多少个?4、有两桶油共重86千克,假如从甲桶油倒入乙桶4千克,则两桶油的重量相同。
这两桶油各有多少千克?5、瓷器商店委托搬运站运送800只花瓶,双方商定每只运费是0.35元,如果打破1只,不但不计运费,而且要赔偿2.50元,结果运到目的地后,搬运站共得运费268。
6元,求打破了几只花瓶?6、学校举行运动会,三年级有35人参加比赛,四年级参加的人数是三年级的3倍,五年级参加的人数比三、四年级参加的总人数多10人,五年级参加比赛的有多少人?7、蓝墨水和红墨水,以前都是3角钱一瓶,王营小学每学期都花12元买若干瓶。
现在每瓶蓝墨水涨价5分,每瓶红墨水涨价3分,虽然买的两种墨水瓶数还和各学期相等,但比每学期都多付1.8元。
该校每学期买两种墨水各多少瓶?8、大院里养了三种动物,每只小山羊戴着3个铃铛,每只狮子狗戴着一个铃铛,大白鹅不戴铃铛。
小明数了数,一共9个脑袋、28条腿、11个铃铛,三种动物各有多少只?9、小毛参加数学竞赛,共做20道题,得64分,已知做对一道得5分,不做得0分,错一题扣2分,又知道他做错的题和没做的一样多。
问小毛做对几道题?10、赵传伦把一张50元和一张5元的人民币,兑换成了两元和5角的人民币共50张。
他兑换了两种面额的人民币各多少张?小学奥数题六年级 21、有一辆货车运输2000只玻璃瓶,运费按到达时完好瓶子数目计算,每只2角,如有破损,破损1个瓶子还要倒赔1元,结果得到运费379。
6元,问这次搬运中玻璃损坏了几只?2、鸡与兔共有200只,鸡的脚比兔的脚少56只,问鸡与兔各多少只?3、今有鸡兔共居一笼,已知鸡头与兔头共35个,鸡脚与兔脚共94只,问鸡兔各几只?4、蜘蛛有8条腿,蝴蝶有6条腿和2对翅膀,蝉有6条腿和一对翅膀,现有这三种动物共21只,共140条腿和23对翅膀,问蜘蛛、蝴蝶、蝉各有几只?5、12张乒乓球台上共有34人在打球,问:正在进行单打和双打的台子各有几张?6、鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?7、班主任张老师带五年级(2)班50名同学栽树,张老师一人栽5棵,男生一人栽3棵,女生一人栽2棵,总共栽树120棵,问几名男生,几名女生?8、大油瓶一瓶装4千克,小油瓶2瓶装1千克。
小学六年级奥数题100道及答案解析(完整版)1. 一种商品先提价10%,再降价10%,现价与原价相比()A. 提高了B. 降低了C. 不变D. 无法确定答案:B解析:假设原价为100 元,提价10%后价格为100×(1 + 10%) = 110 元,再降价10%,价格为110×(1 - 10%) = 99 元,所以现价比原价降低了。
2. 一个圆的半径扩大3 倍,它的面积扩大()倍。
A. 3B. 6C. 9D. 27答案:C解析:圆的面积= π×半径²,半径扩大3 倍,面积扩大3²= 9 倍。
3. 甲数的2/3 等于乙数的3/4,甲数()乙数。
A. 大于B. 小于C. 等于D. 无法比较答案:A解析:设甲数×2/3 = 乙数×3/4 = 1,可得甲数= 3/2,乙数= 4/3,3/2 > 4/3,所以甲数大于乙数。
4. 把20 克盐放入200 克水中,盐和盐水的比是()A. 1:10B. 1:11C. 10:1D. 11:1答案:B解析:盐20 克,盐水= 20 + 200 = 220 克,盐和盐水的比是20:220 = 1:115. 一个三角形三个内角的度数比是1:2:3,这个三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 无法确定答案:B解析:三个内角分别为180×1/(1 + 2 + 3) = 30°,180×2/(1 + 2 + 3) = 60°,180×3/(1 + 2 + 3) = 90°,是直角三角形。
6. 要反映某地气温变化情况,应绘制()统计图。
A. 条形B. 折线C. 扇形D. 以上都可以答案:B解析:折线统计图能清晰反映数据的变化情况。
7. 一个圆柱和一个圆锥等底等高,它们的体积相差18 立方厘米,圆锥的体积是()立方厘米。
小学数学奥数基础教程目30讲全本章主要内容有:1.加法的拆分和组合:将一个数拆分成几个数相加,或将几个数相加得到一个数。
例如:7=4+3,或者2+5=72.减法的逆运算:从一个数中减去几个数,或者几个数相减得到一个数。
例如:9-4=5,或者8-3-2=33.两位数的加法和减法:对于加法,先将个位数相加,然后将十位数相加,最后将得到的个位数和十位数相加得到结果。
对于减法,先将个位数相减,如果不够减,则向十位借1,然后将十位数相减。
例如:57+23=80,或者65-38=274.三位数的加法和减法:与两位数的运算类似,只是需要将百位数也相加或相减。
例如:243+137=380,或者574-238=3365.数量的估算和比较:通过近似计算来估算一个数的大小,或者将两个数进行比较。
例如:估算52+38,可以先计算50+40,得到90;比较98和73,可以根据个位数进行比较,发现8比3大,因此98比73大。
6.乘法的基本性质:乘法满足交换律和结合律,即a*b=b*a,(a*b)*c=a*(b*c)。
例如:3*4=4*3=12,(2*3)*4=2*(3*4)=247.乘法的应用:求面积和周长。
例如,长为5米,宽为3米的矩形的面积为15平方米,周长为16米。
8.乘法表的学习:通过背诵乘法表,加深对乘法的理解和运用。
例如,背诵2的乘法表:2*1=2,2*2=4,2*3=6,依次类推。
9.除法的基本性质:除法满足除法的唯一性和传递性。
例如:如果a/b=c,那么a=b*c;如果a/b=c,b/d=e,那么a/d=c*e。
10.除法的应用:求长度和宽度。
例如,一个面积为12平方米,宽度为4米的矩形,求其长度为多少。
11.多位数的乘法和除法:与两位数的运算类似,只是需要将各位数分别相乘或相除。
例如,231*4=924,或者925/5=185通过学习以上内容,学生将对加法、减法、乘法和除法有更深入的理解和掌握。
同时,他们也可以运用所学知识解决实际问题,提高数学运算能力。
[键入文字][键入文字] 六年级拔尖数学目录第1讲定义新运算第2讲简单的二元一次不定方程第3讲分数乘除法计算第4讲分数四则混合运算第5讲估算第6讲分数乘除法的计算技巧第7讲简单的分数应用题(1)第8讲较复杂的分数应用题(2)第9讲阶段复习与测试(略)第10讲简单的工程问题第11讲圆和扇形第12讲简单的百分数应用题第13讲分数应用题复习第14讲综合复习(略)第15讲测试(略)第16讲复杂的利润问题(2)第一讲定义新运算在加.减。
乘。
除四则运算之外,还有其它许多种法则的运算。
在这一讲里,我们学习的新运算就是用“#”“*”“Δ”等多种符号按照一定的关系“临时”规定的一种运算法则进行的运算。
例1:如果A*B=3A+2B,那么7*5的值是多少?例2:如果A#B表示照这样的规定,6#(8#5)的结果是多少?例3:规定求2Δ10Δ10的值。
例4:设M*N表示M的3倍减去N的2倍,即M*N=3M-2N(1)计算(14 *10)*6(2)计算(*)*(1 *)例5:如果任何数A和B有A¤B=A×B-(A+B)求(1)10¤7(2)(5¤3)¤4(3)假设2¤X=1求X例6:设P∞Q=5P+4Q,当X∞9=91时,1/5∞(X∞ 1/4)的值是多少?例7:规定X*Y=,且5*6=6*5则(3*2)*(1*10)的值是多少?例8:▽表示一种运算符号,它的意义是已知那么20088▽2009=?巩固练习1、已知2▽3=2+22+222=246; 3▽4=3+33+333+3333=3702;按此规则类推(1)3▽2 (2)5▽3(3)1▽X=123,求X的值2、已知1△4=1×2×3×4;5△3=5×6×7计算(1)(4△2)+(5△3)(2)(3△5)÷(4△4)3、如果A*B=3A+2B,那么(1)7*5的值是多少?(2)(4*5)*6 (3)(1*5)*(2*4)4、如果A〉B,那么{A,B}=A;如果A〈B,那么{A,B}=B;试求(1){8,0.8}(2){{1。
步步高教育奥数练习六---锯木头姓名:
1、小朋友在一段马路的一边种树。
每隔1米种一棵,共种了11棵,问这段马路有多长?
2
、把一根木头锯成3段,要锯几次?如果每锯一次用3分钟,一共要锯多少分钟?
3、小林家住在三楼,他每上一层楼要走14级台阶,小林从一楼走到三楼要走多少级台阶?
4、时钟5点打5下,一共需要4秒钟。
问中午12点打12下需要几秒钟?
1米
1、一根钢管,锯成6段,要据几次?如果据一次需要2分钟,共需要多少分钟?
2、一根钢管,锯成4段,要据几次?如果据一次需要3分钟,共需要多少分钟?
3、一根钢管,锯成5段,要据几次?如果据一次需要1分钟,共需要多少分钟?
4、在一条长25米的路旁种树,每隔5米栽一棵,一个要栽几棵?
5在一座长10桥上立石狮子,每隔1米立一个,一共要立几个?
6王强家住在4楼,他每上一层要走20个台阶,他从一楼走到家一共要走多少个台阶?
7、王明家住在5楼,他每上一层要2分钟,他从一楼走到家一共要多少分钟?
8、时钟2时敲2下,每敲一下1秒钟,中间隔2秒,共4秒完成,6时敲6下,共几秒完成?
思考:把10盆菊花排成一排,在两盆菊花中间摆一盆月季,一共要多少盆花?。
1.小学六年级奥数练习题及答案解析甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵。
已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树。
两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?【解析】总棵数是900+1250=2150棵,每天可以植树24+30+32=86棵需要种的天数是2150÷86=25天甲25天完成24×25=600棵那么乙就要完成900-600=300棵之后,才去帮丙即做了300÷30=10天之后即第11天从A地转到B地。
2.小学六年级奥数练习题及答案解析有三块草地,面积分别是5,15,24亩。
草地上的草一样厚,而且长得一样快。
第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?【解析】这是一道牛吃草问题,是比较复杂的牛吃草问题。
把每头牛每天吃的草看作1份。
因为第一块草地5亩面积原有草量+5亩面积30天长的草=10×30=300份所以每亩面积原有草量和每亩面积30天长的草是300÷5=60份因为第二块草地15亩面积原有草量+15亩面积45天长的草=28×45=1260份所以每亩面积原有草量和每亩面积45天长的草是1260÷15=84份所以45-30=15天,每亩面积长84-60=24份所以,每亩面积每天长24÷15=1.6份所以,每亩原有草量60-30×1.6=12份第三块地面积是24亩,所以每天要长1.6×24=38.4份,原有草就有24×12=288份新生长的每天就要用38.4头牛去吃,其余的牛每天去吃原有的草,那么原有的草就要够吃80天,因此288÷80=3.6头牛所以,一共需要38.4+3.6=42头牛来吃。
两种解法:解法一:设每头牛每天的吃草量为1,则每亩30天的总草量为:10*30/5=60;每亩45天的总草量为:28*45/15=84那么每亩每天的新生长草量为(84-60)/(45-30)=1.6每亩原有草量为60-1.6*30=12,那么24亩原有草量为12*24=288,24亩80天新长草量为24*1.6*80=3072,24亩80天共有草量3072+288=3360,所有3360/80=42(头)。
传奇第六题的答案玩过奥数或者其他数学竞赛的朋友大概都会听过”传奇的第6题”。
这条题目出自1988年国际数学奥林匹克竞赛(International Mathematical Olympiad,简称IMO)的第6题,是公认的史上最精彩、也是最困难的其中一道竞赛题目。
题目如下:设正整数a, b满足ab+1可以整除a2+b2,证明(a2+b2)/(ab+1) 是某个整数的平方。
例如代入a = 1,b = 1,我们得到 k = (12+12)/(1x1+1) = 1,显然这是一个平方数。
正如很多数论问题一样,这题目很容易理解,初中生都可以明白,但解答起来却出奇地困难。
这题目究竟有多困难呢?我们先简介一下IMO的题目来源,好让大家对这比赛有更多的认识。
IMO竞赛是让全世界不同国家的中学生参与的数学比赛,共有6道题目,比赛分两天,每天做三题,总共时间为9小时。
题目基本上都是证明类题目,每题值7分,共42分。
试题大致上会分为简单、中等与困难三个等级,第1与第4题属简单,第2与第5题属中等,第3与第6题属困难。
题目由主办国外的各参赛国提供,由主办国组成拟题委员会,从提交题目中挑选候选题目。
各国领队先于队员提前数天抵达,共同商议问题及官方答案。
话说当年西德是奥数的超级强队,曾经于1982与1983年获得总分第一。
但之后几年却被苏联、罗马尼亚及美国超越了,抢夺了第一的宝座。
有人认为也许是出于复仇心态,西德数学家就出了这道精心设计、极尽困难的题目。
澳大利亚数学奥林匹克议题委员会的六个成员都未能解决这道由西德数学家提供的问题,于是他们只好向主办国澳大利亚的4位最好的数论专家求肋,委员会希望专家能于6小时内解决问题,令人尴尬的是,专家经过一轮苦战都未能解出题目。
于是,议题委员竟然够勇气把问题寄往国际数学奥林匹克委员会,不过他们特意在问题旁加上两颗星,代表这是超难题目——也许难到不应用作竞赛题目。
委员会作了长时间的考虑后,又竟然真的斗胆敢采用此题,结果这个题目就成了第29届国际数学奥林匹克竞赛的第6题。
六年级奥数题及答案1、电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?解:设一张电影票价x元(x-3)×(1+1/2)=(1+1/5)x(1+1/5)x这一步是什么意思,为什么这么做(x-3){现在电影票的单价}×(1+1/2){假如原来观众总数为整体1,则现在的观众人数为(1+2/1)}左边算式求出了总收入(1+1/5)x{其实这个算式应该是:1x*(1+5/1)把原观众人数看成整体1,则原来应收入1x元,而现在增加了原来的五分之一,就应该再*(1+5/1),减缩后得到(1+1/5x)}如此计算后得到总收入,使方程左右相等2、甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。
这时两人钱相等,求乙的存款答案取40%后,存款有9600×(1-40%)=5760(元)这时,乙有:5760÷2+120=3000(元)乙原来有:3000÷(1-40%)=5000(元)3、由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。
再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?答案加10颗奶糖,巧克力占总数的60%,说明此时奶糖占40%,巧克力是奶糖的60/40=1。
5倍再增加30颗巧克力,巧克力占75%,奶糖占25%,巧克力是奶糖的3倍增加了3-1.5=1.5倍,说明30颗占1.5倍奶糖=30/1.5=20颗巧克力=1.5*20=30颗奶糖=20-10=10颗4、小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!”小亮说:“你要是能给我你的1/6,我就比你多2个了。
”小明原有玻璃球多少个?答案小明说:“你有球的个数比我少1/4!”,则想成小明的球的个数为4份,则小亮的球的个数为3份4*1/6=2/3 (小明要给小亮2/3份玻璃球)小明还剩:4-2/3=3又1/3(份)小亮现有:3+2/3=3又2/3(份)这多出来的1/3份对应的量为2,则一份里有:3*2=6(个)小明原有4份玻璃球,又知每份玻璃球为6个,则小明原有玻璃球4*6=24(个)5、搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时.有同样的仓库A和B,甲在A仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?解:设搬运一个仓库的货物的工作量是1.现在相当于三人共同完成工作量2,所需时间是答:丙帮助甲搬运3小时,帮助乙搬运5小时解本题的关键,是先算出三人共同搬运两个仓库的时间.本题计算当然也可以整数化,设搬运一个仓库全部工作量为 60.甲每小时搬运 6,乙每小时搬运5,丙每小时搬运4三人共同搬完,需要60 × 2÷(6+ 5+ 4)= 8(小时)甲需丙帮助搬运(60- 6× 8)÷ 4= 3(小时)乙需丙帮助搬运(60- 5× 8)÷4= 5(小时)6、一件工作,若由甲单独做72天完成,现在甲做1天后,乙加入一起工作,合作2天后,丙也一起工作,三人再一起工作4天,完成全部工作的1/3,又过了8天,完成了全部工作的5/6,若余下的工作由丙单独完成,还需要几天?答案甲乙丙3人8天完成:5/6-1/3=1/2甲乙丙3人每天完成:1/2÷8=1/16,甲乙丙3人4天完成:1/16×4=1/4则甲做一天后乙做2天要做:1/3-1/4=1/12那么乙一天做:[1/12-1/72×3]/2=1/48则丙一天做:1/16-1/72-1/48=1/36则余下的由丙做要:[1-5/6]÷1/36=6天答:还需要6天7、股票交易中,每买进或卖出一种股票都必须按成交易额的1%和2%分别交纳印花税和佣金(通常所说的手续费)。
江西省南昌市2015-2016学年度第一学期期末试卷(江西师大附中使用)高三理科数学分析一、整体解读试卷紧扣教材和考试说明,从考生熟悉的基础知识入手,多角度、多层次地考查了学生的数学理性思维能力及对数学本质的理解能力,立足基础,先易后难,难易适中,强调应用,不偏不怪,达到了“考基础、考能力、考素质”的目标。
试卷所涉及的知识内容都在考试大纲的范围内,几乎覆盖了高中所学知识的全部重要内容,体现了“重点知识重点考查”的原则。
1.回归教材,注重基础试卷遵循了考查基础知识为主体的原则,尤其是考试说明中的大部分知识点均有涉及,其中应用题与抗战胜利70周年为背景,把爱国主义教育渗透到试题当中,使学生感受到了数学的育才价值,所有这些题目的设计都回归教材和中学教学实际,操作性强。
2.适当设置题目难度与区分度选择题第12题和填空题第16题以及解答题的第21题,都是综合性问题,难度较大,学生不仅要有较强的分析问题和解决问题的能力,以及扎实深厚的数学基本功,而且还要掌握必须的数学思想与方法,否则在有限的时间内,很难完成。
3.布局合理,考查全面,着重数学方法和数学思想的考察在选择题,填空题,解答题和三选一问题中,试卷均对高中数学中的重点内容进行了反复考查。
包括函数,三角函数,数列、立体几何、概率统计、解析几何、导数等几大版块问题。
这些问题都是以知识为载体,立意于能力,让数学思想方法和数学思维方式贯穿于整个试题的解答过程之中。
二、亮点试题分析1.【试卷原题】11.已知,,A B C 是单位圆上互不相同的三点,且满足AB AC →→=,则AB AC →→⋅的最小值为( )A .14-B .12-C .34-D .1-【考查方向】本题主要考查了平面向量的线性运算及向量的数量积等知识,是向量与三角的典型综合题。
解法较多,属于较难题,得分率较低。
【易错点】1.不能正确用OA ,OB ,OC 表示其它向量。
2.找不出OB 与OA 的夹角和OB 与OC 的夹角的倍数关系。
【解题思路】1.把向量用OA ,OB ,OC 表示出来。
2.把求最值问题转化为三角函数的最值求解。
【解析】设单位圆的圆心为O ,由AB AC →→=得,22()()OB OA OC OA -=-,因为1OA OB OC ===,所以有,OB OA OC OA ⋅=⋅则()()AB AC OB OA OC OA ⋅=-⋅-2OB OC OB OA OA OC OA =⋅-⋅-⋅+ 21OB OC OB OA =⋅-⋅+设OB 与OA 的夹角为α,则OB 与OC 的夹角为2α所以,cos 22cos 1AB AC αα⋅=-+2112(cos )22α=--即,AB AC ⋅的最小值为12-,故选B 。
【举一反三】【相似较难试题】【2015高考天津,理14】在等腰梯形ABCD 中,已知//,2,1,60AB DC AB BC ABC ==∠= ,动点E 和F 分别在线段BC 和DC 上,且,1,,9BE BC DF DC λλ==则AE AF ⋅的最小值为 .【试题分析】本题主要考查向量的几何运算、向量的数量积与基本不等式.运用向量的几何运算求,AE AF ,体现了数形结合的基本思想,再运用向量数量积的定义计算AE AF ⋅,体现了数学定义的运用,再利用基本不等式求最小值,体现了数学知识的综合应用能力.是思维能力与计算能力的综合体现. 【答案】2918【解析】因为1,9DF DC λ=12DC AB =,119199918CF DF DC DC DC DC AB λλλλλ--=-=-==, AE AB BE AB BC λ=+=+,19191818AF AB BC CF AB BC AB AB BC λλλλ-+=++=++=+,()221919191181818AE AF AB BC AB BC AB BC AB BCλλλλλλλλλ+++⎛⎫⎛⎫⋅=+⋅+=+++⋅⋅ ⎪ ⎪⎝⎭⎝⎭19199421cos1201818λλλλ++=⨯++⨯⨯⨯︒2117172992181818λλ=++≥+= 当且仅当2192λλ=即23λ=时AE AF ⋅的最小值为2918. 2.【试卷原题】20. (本小题满分12分)已知抛物线C 的焦点()1,0F ,其准线与x 轴的交点为K ,过点K 的直线l 与C 交于,A B 两点,点A 关于x 轴的对称点为D . (Ⅰ)证明:点F 在直线BD 上; (Ⅱ)设89FA FB →→⋅=,求BDK ∆内切圆M 的方程. 【考查方向】本题主要考查抛物线的标准方程和性质,直线与抛物线的位置关系,圆的标准方程,韦达定理,点到直线距离公式等知识,考查了解析几何设而不求和化归与转化的数学思想方法,是直线与圆锥曲线的综合问题,属于较难题。
【易错点】1.设直线l 的方程为(1)y m x =+,致使解法不严密。
2.不能正确运用韦达定理,设而不求,使得运算繁琐,最后得不到正确答案。
【解题思路】1.设出点的坐标,列出方程。
2.利用韦达定理,设而不求,简化运算过程。
3.根据圆的性质,巧用点到直线的距离公式求解。
【解析】(Ⅰ)由题可知()1,0K -,抛物线的方程为24y x =则可设直线l 的方程为1x my =-,()()()112211,,,,,A x y B x y D x y -,故214x my y x =-⎧⎨=⎩整理得2440y my -+=,故121244y y m y y +=⎧⎨=⎩则直线BD 的方程为()212221y y y y x x x x +-=--即2222144y y y x y y ⎛⎫-=- ⎪-⎝⎭令0y =,得1214y yx ==,所以()1,0F 在直线BD 上.(Ⅱ)由(Ⅰ)可知121244y y m y y +=⎧⎨=⎩,所以()()212121142x x my my m +=-+-=-,()()1211111x x my my =--= 又()111,FA x y →=-,()221,FB x y →=-故()()()21212121211584FA FB x x y y x x x x m →→⋅=--+=-++=-,则28484,93m m -=∴=±,故直线l 的方程为3430x y ++=或3430x y -+=213y y -===±,故直线BD 的方程330x -=或330x -=,又KF 为BKD ∠的平分线,故可设圆心()(),011M t t -<<,(),0M t 到直线l 及BD 的距离分别为3131,54t t +--------------10分 由313154t t +-=得19t =或9t =(舍去).故圆M 的半径为31253t r +== 所以圆M 的方程为221499x y ⎛⎫-+= ⎪⎝⎭【举一反三】【相似较难试题】【2014高考全国,22】 已知抛物线C :y 2=2px(p>0)的焦点为F ,直线y =4与y 轴的交点为P ,与C 的交点为Q ,且|QF|=54|PQ|.(1)求C 的方程;(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l′与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.【试题分析】本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用,韦达定理,弦长公式的应用,解法及所涉及的知识和上题基本相同. 【答案】(1)y 2=4x. (2)x -y -1=0或x +y -1=0. 【解析】(1)设Q(x 0,4),代入y 2=2px ,得x 0=8p,所以|PQ|=8p ,|QF|=p 2+x 0=p 2+8p.由题设得p 2+8p =54×8p ,解得p =-2(舍去)或p =2,所以C 的方程为y 2=4x.(2)依题意知l 与坐标轴不垂直,故可设l 的方程为x =my +1(m≠0). 代入y 2=4x ,得y 2-4my -4=0. 设A(x 1,y 1),B(x 2,y 2), 则y 1+y 2=4m ,y 1y 2=-4.故线段的AB 的中点为D(2m 2+1,2m), |AB|=m 2+1|y 1-y 2|=4(m 2+1).又直线l ′的斜率为-m ,所以l ′的方程为x =-1m y +2m 2+3.将上式代入y 2=4x ,并整理得y 2+4m y -4(2m 2+3)=0.设M(x 3,y 3),N(x 4,y 4),则y 3+y 4=-4m,y 3y 4=-4(2m 2+3).故线段MN 的中点为E ⎝ ⎛⎭⎪⎫2m2+2m 2+3,-2m ,|MN|=1+1m 2|y 3-y 4|=4(m 2+1)2m 2+1m 2.由于线段MN 垂直平分线段AB ,故A ,M ,B ,N 四点在同一圆上等价于|AE|=|BE|=12|MN|,从而14|AB|2+|DE|2=14|MN|2,即 4(m 2+1)2+⎝ ⎛⎭⎪⎫2m +2m 2+⎝ ⎛⎭⎪⎫2m 2+22=4(m 2+1)2(2m 2+1)m 4,化简得m 2-1=0,解得m =1或m =-1, 故所求直线l 的方程为x -y -1=0或x +y -1=0.三、考卷比较本试卷新课标全国卷Ⅰ相比较,基本相似,具体表现在以下方面: 1. 对学生的考查要求上完全一致。
即在考查基础知识的同时,注重考查能力的原则,确立以能力立意命题的指导思想,将知识、能力和素质融为一体,全面检测考生的数学素养,既考查了考生对中学数学的基础知识、基本技能的掌握程度,又考查了对数学思想方法和数学本质的理解水平,符合考试大纲所提倡的“高考应有较高的信度、效度、必要的区分度和适当的难度”的原则. 2. 试题结构形式大体相同,即选择题12个,每题5分,填空题4 个,每题5分,解答题8个(必做题5个),其中第22,23,24题是三选一题。
题型分值完全一样。
选择题、填空题考查了复数、三角函数、简易逻辑、概率、解析几何、向量、框图、二项式定理、线性规划等知识点,大部分属于常规题型,是学生在平时训练中常见的类型.解答题中仍涵盖了数列,三角函数,立体何,解析几何,导数等重点内容。
3. 在考查范围上略有不同,如本试卷第3题,是一个积分题,尽管简单,但全国卷已经不考查了。
四、本考试卷考点分析表(考点/知识点,难易程度、分值、解题方式、易错点、是否区分度题)。