简单线性规划1
- 格式:ppt
- 大小:482.00 KB
- 文档页数:15
3.3.3 简单的线性规划问题第1课时简单的线性规划问题(教师用书独具)●三维目标1.知识与技能(1)从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决;(2)了解线性规划的意义以及线性约束条件、线性目标函数、可行解、可行域、最优解等概念,会根据条件建立线性目标函数;(3)了解线性规划的图解法,并会用图解法求线性目标函数的最大(小)值;(4)培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合、等价转化的数学思想.2.过程与方法(1)本节课是以二元一次不等式(组)表示的平面区域的知识为基础,将实际生活问题通过数学中的线性规划问题来解决;(2)考虑到学生的知识水平和消化能力,教师可通过激励学生探究入手,讲练结合,真正体现数学的工具性,同时,借助计算机的直观演示可使教学更富趣味性和生动性.3.情感、态度与价值观(1)结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生创新;(2)渗透集合、数形结合、化归的数学思想,培养学生“数形结合”的应用数学的意识,激发学生的学习兴趣.●重点、难点重点:线性规划问题的图解法,寻求线性规划问题的最优解.难点:利用图解法求最优解.为突出重点,本节教学应指导学生紧紧抓住化归、数形结合的数学思想方法,将实际问题数学化,代数问题几何化.解决难点的方法是精确作图,利用数形结合的思想将代数问题几何化.(教师用书独具)●教学建议从内容上看,简单的线性规划问题是在学习了不等式、直线方程的基础上展开的,它是对二元一次不等式的深化和再认识、再理解.它是用数学知识解决实际问题,属于数学建模,是初等数学中较抽象的,对学生要求较高,又是必须予以掌握的内容.考虑到学生的认知水平和理解能力,建议教师可以通过激励学生探究入手,讲练结合,培养学生对本节内容的学习兴趣,培养学生数形结合的意识,让学生体味数学的工具性作用.另外,教师还可借助计算机直观演示利用图解法求最优解的过程,增强教学的趣味性和生动性.●教学流程创设问题情境,引导学生了解线性约束条件、线性目标函数、可行域、线性规划问题等概念.⇒结合教材让学生掌握线性规划问题的图解法.⇒通过例1及其变式训练使学生巩固掌握利用图解法求最优解的步骤.⇒通过例2及其变式训练使学生掌握利用线性规划研究字母参数的方法.⇒通过例3及其变式训练使学生掌握求非线性目标函数的最值的方法.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双达达标,巩固所学知识,并进行反馈矫正.(对应学生用书第56页)课标解读1.了解目标函数、约束条件、可行域、最优解等基本概念.2.掌握线性规划问题的求解过程,特别是确定最优解的方法.(重点、难点)可行域约束条件所表示的平面区域,称为可行域.线性规划求线性目标函数在线性约束条件下的最大值或最小值问题,通常称为线性规划问题,上述只含两个变量的简单线性规划问题可用图解法解决.(对应学生用书第56页)线性规划问题设z =3x +5y ,式中变量x 、y 满足条件⎩⎪⎨⎪⎧x +2y ≥3,7x +10y ≥17,x ≥0,y ≥0.求z的最小值.【思路探究】【自主解答】 画出约束条件表示的点(x ,y )的可行域, 如图所示的阴影部分(包括边界直线).把z =3x +5y 变形为y =-35x +z 5,得到斜率为-35,在y 轴上的截距为z5,随z 变化的一族平行直线.作直线l :3x +5y =0,把直线向右上方平行移至l 1的位置时,直线经过可行域上的点M ,此时l 1:3x +5y -z =0的纵截距最小,同时z =3x +5y 取最小值.解方程组⎩⎪⎨⎪⎧x +2y =3,7x +10y =17,得M (1,1).故当x =1,y =1时,z min =8.1.由本例可以看出,解线性规划问题时,一定要注意最优解的对应点是最大值点,还是最小值点.对于目标函数z =ax +by ,当b >0时,直线截距最大时,z 有最大值,截距最小时,z 有最小值;当b <0时,则相反.2.图解法是解决线性规划问题的有效方法,其关键是利用z 的几何意义求解.平移直线ax +by =0时,看它经过哪个点(哪些点)时最先接触可行域和最后离开可行域,则这样的点即为最优解,最优解一般是在可行域的边界取得.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,x -5y +10≤0,x +y -8≤0,则目标函数z =3x -4y 的最大值和最小值分别为多少.【解】 作可行域如图所示,解⎩⎪⎨⎪⎧x -y +2=0,x +y -8=0得⎩⎪⎨⎪⎧x =3,y =5,∴A (3,5).解⎩⎪⎨⎪⎧x +y -8=0,x -5y +10=0得⎩⎪⎨⎪⎧x =5,y =3,∴B (5,3).平移直线3x -4y =z 可知,直线过A 点时,z 取最小值,过B 点时,z 取最大值. ∴z min =3×3-4×5=-11,z max =3×5-4×3=3.利用线性规划求字母参数的值(或范围)已知x ,y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y ≤25,x ≥1,设z =ax +y (a >0),若当z 取最大值时,对应的点有无数多个,求a 的值.【思路探究】【自主解答】 作出可行域如图所示.由⎩⎪⎨⎪⎧3x +5y =25,x -4y +3=0,得⎩⎪⎨⎪⎧x =5,y =2,∴点A 的坐标为(5,2).由⎩⎪⎨⎪⎧x =1,3x +5y =25,得⎩⎪⎨⎪⎧x =1,y =4.4,∴点C 的坐标为C (1,4.4).当直线z =ax +y (a >0)平行于直线AC ,且直线经过线段AC 上任意一点时,z 均取得最大值,此时有无数多点使z 取得最大值,而k AC =-35,∴-a =-35,即a =35.1.本题中,z 取最值时对应的点有无数多个,故这无数多个对应点构成平面区域的一段边界.2.解线性规划问题时一般要结合图形(平面区域)及目标函数的几何意义解题.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1,x -y ≥-1,2x -y ≤2,目标函数z =ax +2y 仅在点(1,0)处取得最小值,则a 的取值范围是________.【解析】 作出可行域,让目标函数所表示的直线过定点,观察斜率的范围,构建不等式求参数范围.如图所示,约束条件所表示的平面区域为三角形,目标函数z =ax +2y ,即y =-a 2x +z 2仅在点(1,0)处取得最小值,故其斜率应满足-1<-a 2<2,即-4<a <2.故填(-4,2).【答案】 (-4,2)求非线性目标函数的最值已知x ,y 满足条件⎩⎪⎨⎪⎧7x -5y -23≤0,x +7y -11≤0,4x +y +10≥0.(1)求u =x 2+y 2的最大值和最小值; (2)求z =yx +5的最大值和最小值. 【思路探究】【自主解答】 画出不等式组所表示的平面区域,如图所示.(1)∵u =x 2+y 2,∴u 为点(x ,y )到原点(0,0)的距离,结合不等式组所表示的平面区域可知,点B 到原点的距离最大,而当(x ,y )在原点时,距离为0.由⎩⎪⎨⎪⎧7x -5y -23=0,4x +y +10=0得点B 的坐标为(-1,-6),∴(x 2+y 2)max =(-1)2+(-6)2=37,(x 2+y 2)min =0. (2)z =yx +5=y -0x --5,所以求z 的最大值和最小值,即是求可行域内的点(x ,y )与点(-5,0)连线斜率的最大值和最小值.设点M 的坐标为(-5,0),由⎩⎪⎨⎪⎧x +7y -11=0,4x +y +10=0得点C 的坐标为(-3,2),由(1)知点B 的坐标为(-1,-6),∴k max =k MC =2-0-3--5=1,k min =k MB =-6-0-1--5=-32,∴yx +5的最大值是1,最小值是-32. 1.本题中,(1)x 2+y 2是平面区域内的点(x ,y )到原点的距离的平方;(2)y x +5=y -0x --5可看成平面区域内的点(x ,y )与点(-5,0)连线的斜率.2.解决此类问题,应先准确作出线性约束条件表示的平面区域,然后弄清非线性目标函数的几何意义.已知x ,y 满足⎩⎪⎨⎪⎧x -y +2≥0,x +y -4≥0,2x -y -5≤0.(1)求z =x 2+y 2+2x -2y +2的最小值; (2)求z =|x +2y -4|的最大值. 【解】 (1)作出可行域,如图所示, ∵z =(x +12+y -12)2,∴z 可看作是可行域内任意一点(x ,y )到点M (-1,1)的距离的平方. 由图可知z min 等于原点到直线x +y -4=0的距离的平方, ∴z min =(|-4|2)2=8.(2)∵z =|x +2y -4|=5·|x +2y -4|5, ∴z 可看作是可行域内任意一点(x ,y )到直线x +2y -4=0的距离的5倍. 由图可知点C 到直线x +2y -4=0的距离最大.由⎩⎪⎨⎪⎧x -y +2=0,2x -y -5=0得点C (7,9),∴z max =|7+2×9-4|5×5=21.(对应学生用书第58页) 直线的倾斜程度判断不准致误已知⎩⎪⎨⎪⎧11x +4y ≤44,7x +5y ≤35,6x +7y ≤42,x ≥0,y ≥0,求z =x +y 的最大值.【错解】 作出可行域,如图所示.作出直线l 0:x +y =0,将它移至点B ,则点B 的坐标是可行域中的最优解,它使z 达到最大值.解方程组⎩⎪⎨⎪⎧11x +4y =44,7x +5y =35,得点B 的坐标为(8027,7727).所以z max =8027+7727=15727.【错因分析】 将直线l 0向上移动时,最后离开可行域的点不是点B 而是点A ,这是由于直线倾斜程度不准确引起的,由于三条边界直线的斜率依次是-67,-75,-114,而目标函数z =x +y 的斜率为-1,它夹在-67与-75之间,故经过点B 时,直线x +y =z 必在点A 的下方,即点B 不是向上平移直线时最后离开可行域的点,而是点A .【防范措施】 解决线性规划问题时,可行域一定要准确,关键点的位置不能画错,若数据比较大,不易画图,也可用斜率分析法确定关键点或取得最值点.【正解】 作出二元一次不等式组所表示的平面区域如上图.作出直线l ′0:x +y =0,将它向上平移,当它经过点A 时,z 取得最大值.解方程组⎩⎪⎨⎪⎧7x +5y =35,6x +7y =42,得⎩⎪⎨⎪⎧x =3519,y =8419,故z max =3519+8419=119191.基础知识: (1)可行域; (2)线性规划. 2.基本技能: (1)解线性规划问题;(2)利用线性规划求字母参数的值(或范围); (3)求非线性目标函数的最值. 3.思想方法: (1)数形结合思想; (2)函数思想; (3)转化思想.(对应学生用书第58页)1.已知实数x ,y 满足⎩⎪⎨⎪⎧x -y +5≥0,x ≤3,x +y ≥0,则目标函数z =x +2y 的最小值为________.【解析】 画出不等式组表示的平面区域,由图可知目标函数在点(3,-3)处取得最小值-3.【答案】 -3图3-3-72.给出平面区域(包含边界)如图3-3-7所示,若使目标函数z =ax +y (a >0)取得最大值的最优解有无数多个,则a 的值为________.【解析】 由题意知-a =k AC =-35,∴a =35.【答案】 353.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2<0,x >1,x +y -7<0,则yx的取值范围是________.【解析】 目标函数y x 是可行域上的动点(x ,y )与原点连线的斜率,最小值是k OC =95,最大值是k AO =6,又可行域边界取不到,∴95<yx<6.【答案】 (95,6)4.已知x 、y 满足条件⎩⎪⎨⎪⎧7x -5y -23≤0,x +7y -11≤0,4x +y +10≥0,求z =4x -3y 的最值.【解】 原不等式组表示的平面区域如图所示: 其中A (4,1)、B (-1,-6)、C (-3,2). 作与4x -3y =0平行的直线l :4x -3y =t , 即y =43x -t3,则当l 过C 点时,t 最小; 当l 过B 点时,t 最大.∴z max =4×(-1)-3×(-6)=14,z min =4×(-3)-3×2=-18.(对应学生用书第97页)一、填空题1.(2013·微山高二检测)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤1,y ≤x ,y ≥-2,则z =3x +y 的最大值为________.【解析】 不等式组表示的平面区域如图所示:把z =3x +y 变形为y =-3x +z 得到斜率为-3,在y 轴截距为z 的一族平行直线,由图当直线l :y =-3x +z 过可行域内一点M 时,在y 轴截距最大,z 也最大.由⎩⎪⎨⎪⎧x +y =1,y =-2,∴⎩⎪⎨⎪⎧x =3,y =-2,即M (3,-2).∴当x =3,y =-2时,z max =3×3+(-2)=7. 【答案】 72.(2013·苏州高二检测)变量x ,y 满足⎩⎪⎨⎪⎧2x +y ≥12,2x +9y ≥36,2x +3y ≥24,x ≥0,y ≥0,则使得z =3x +2y 的值最小的(x ,y )是________.【解析】 不等式组表示的平面区域如图所示:把z =3x +2y 变形为y =-32x +z 2,作与直线l 0:y =-32x 平行的直线l ,显然当l 经过可行域内点M 时在y 轴上截距最小,z 也最小.由⎩⎪⎨⎪⎧2x +y =12,2x +3y =24,∴⎩⎪⎨⎪⎧x =3,y =6,即M (3,6)时,z =3x +2y 的值最小. 【答案】 (3,6)3.设z =2y -2x +4,式中的x ,y 满足条件⎩⎪⎨⎪⎧0≤x ≤1,0≤y ≤2,2y -x ≥1,则z 的取值范围是________.【解析】 作出满足不等式组⎩⎪⎨⎪⎧0≤x ≤1,0≤y ≤2,2y -x ≥1的可行域(如图所示),作直线2y -2x =0,并将其平移,由图象可知当直线经过点A (0,2)时,z max =2×2-2×0+4=8; 当直线经过点B (1,1)时,z min =2×1-2×1+4=4.所以z 的取值范围是[4,8]. 【答案】 [4,8]4.(2013·连云港检测)设实数x ,y 满足⎩⎪⎨⎪⎧x -y -2≤0,x +2y -4≥0,2y -3≤0,则yx的最大值是________.【解析】 不等式组表示的平面区域如图所示: 又y x =y -0x -0表示过平面区域内一点(x ,y )与原点(0,0)的直线的斜率,由图知(x ,y )在平面区域内A 点处时直线斜率最大.由⎩⎪⎨⎪⎧x +2y -4=0,2y -3=0得⎩⎪⎨⎪⎧x =1,y =32,∴A (1,32),∴y x 的最大值为32.【答案】 325.(2013·无锡检测)二元一次方程组⎩⎪⎨⎪⎧x <0,y <0,x +y +4>0表示的平面区域内,使得x +2y 取得最小值的整点坐标为________.【解析】 不等式组表示的平面区域如图所示: ∵平面区域不包括边界,∴平面区域内的整点共有(-1,-1),(-1,-2),(-2,-1)三个. 代入检验知,整点为(-1,-2)时x +2y 取得最小值. 【答案】 (-1,-2)6.已知⎩⎪⎨⎪⎧x +y -1≤0,x -y +1≥0,y ≥-1,且u =x 2+y 2-4x -4y +8,则u 的最小值为________.【解析】 不等式组表示的平面区域如图所示,由已知得(x -2)2+(y -2)2=(u )2,则(u )min =|2+2-1|1+1=32,u min =92.【答案】 927.已知变量x ,y 满足约束条件1≤x +y ≤4,-2≤x -y ≤2.若目标函数z =ax +y (其中a >0)仅在点(3,1)处取得最大值,则a 的取值范围为________.【解析】 由题设知可行域为如图所示的矩形,要使目标函数z =ax +y 在点(3,1)处取得最大值,结合图形可知a >1.【答案】 (1,+∞)8.如果点P 在平面区域⎩⎪⎨⎪⎧2x -y +2≥0,x -2y +1≤0,x +y -2≤0内,点Q 在曲线x 2+(y +2)2=1上,那么|PQ |的最小值为________.【解析】 首先作出不等式组表示的平面区域和曲线x 2+(y +2)2=1,如图所示,从而可知点P 到Q 的距离最小值是可行域上的点到(0,-2)的最小值减去圆的半径1,由图可知|PQ |min =12+-22-1=5-1。
高中数学简单线性规划教案
目标:学生能够理解和应用简单线性规划概念,解决实际问题
一、引入
1. 引导学生回顾线性规划的基本概念:目标函数、约束条件等。
2. 引导学生思考以下问题:什么是线性规划?线性规划在生活中有哪些应用?
二、知识点讲解
1. 线性规划的定义:将问题转化为目标函数和约束条件的最优化问题。
2. 线性规划的基本步骤:确定目标函数、列出约束条件、求解最优解等。
3. 简单线性规划的例子:例如生产某种产品时的最优生产数量、销售某种商品时的最大利润等。
三、练习与应用
1. 让学生通过实际例子练习简单线性规划的求解过程。
2. 给学生一个生活中的实际问题,让他们尝试用线性规划方法解决。
四、总结与反思
1. 总结本节课所学的内容,强调线性规划的重要性和应用价值。
2. 让学生思考如何将线性规划应用到更复杂的实际问题中,并鼓励他们多做练习。
五、作业
1. 布置相关练习题和应用题作为作业,巩固本节课所学的知识。
2. 提醒学生在做作业时要注意思考问题的建模和求解方法。
六、拓展
1. 可以邀请专业人士或相关领域的学者给学生讲解线性规划在实际中的应用和发展趋势。
2. 可以组织学生参加线性规划竞赛或实践活动,增强他们的动手能力和实际应用能力。
线性规划案例研究韦德玻璃制品公司新产品生产问题李克很兴奋,他领导的小组获得了显著的成功。
作为韦德玻璃制品公司发展部经理,李克凭着自己领导的小组开发的创新产品,使公司取得了相当大的增长,公司总裁吴总已公开表示过李克在公司近来的成功中所起的关键作用。
事情是这样的,吴总在6个月之前要求李克小组开发了下列新产品:2米的铝矿玻璃门;1米*1.5米的双把木框窗尽管这些规格的门窗产品其他几家公司已有生产,吴总还是认为李克能施展他惯用的魔法在产品中引入使人兴奋异常的新特征,而这些新特征将会建立新的工业标准。
现在李克真是喜不自禁,因为他们已经开发出新产品了。
背景韦德玻璃制品公司生产高质量的玻璃制品,包括工艺精湛的窗和玻璃门。
尽管这些产品昂贵,但它们是为客户提供的行业中最高质量的产品。
公司有三个工厂:工厂1:生产铝矿和五金件工厂2:生产木框工厂3:生产玻璃和组装窗与门由于某些产品销售量的下降,高层管理部门决定调整公司的产品线。
如果征得管理部门的同意,不盈利的产品要停止生产并撤出生产能力来生产李克小组开发的两个新产品。
此外,韦德公司的生产计划是以周为单位制定的。
收到李克所写的两个新产品的备忘录,吴总召集了一次会议来讨论当前的问题。
包括吴总、李克,制造副总裁老毕和营销副总裁安娜参加了会议。
李克介绍了了产品的特性。
他认为玻璃门有三个特性能够引起消费者的驻足和注意。
一是玻璃门的隔热价值,它比市场上现有的任何一个玻璃门都要高得多。
开发人员采用了三种方式来实现这个特性:第一种是两面上光;第二种是在两面玻璃之间充入惰性气体;第三种是使用了特殊涂层和色料。
第二个特性是李克所使用的玻璃比一般的玻璃有更佳的紫外线防护能力,第三个特性是这种玻璃很难打破,用大锤都不容易打碎它,有人在玻璃上行走或者一只鸟撞向玻璃,它都不会破碎。
双把木框窗所用的玻璃与玻璃门相同。
此外,木材的精细加工使其保存极为长久,而且窗还有一个专门机关,使得它比一般的窗更容易滑动。
欢迎阅读第一章 线性规划§1 线性规划在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。
此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。
自从1947年G . B. Dantzig 提出求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。
特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。
1.1 线性规划的实例与定义C 三B 为其中c 和x 为n 维列向量,b 为m 维列向量,A 为n m ⨯矩阵。
例如线性规划的Matlab 标准型为1.3 线性规划问题的解的概念一般线性规划问题的标准型为∑==nj j j x c z 1min(3) ∑==≤n j ij ij m i b x a 1,,2,1 s.t. (4)可行解 满足约束条件(4)的解),,,(21n x x x x =,称为线性规划问题的可行解,而使目标函数(3)达到最小值的可行解叫最优解。
可行域 所有可行解构成的集合称为问题的可行域,记为R 。
1.4 线性规划的图解法图解法简单直观,有助于了解线性规划问题求解的基本原理。
我们先应用图解法来求解例1。
如上图所示,阴影区域即为LP 问题的可行域R 。
对于每一固定的值z ,使目标函数值等于z 的点构成的直线称为目标函数等位线,当z 变动时,我们得到一族平行直线。
让等位线沿目标函数值减小的方向移动,直到等位线与可行域有交点的最后位置,此时的交点(一个或多个)即为LP 的最优解。
对于例1,显然等位线越趋于右上方,其上的点具有越大的目标函数值。
不难看出,本例的最优解为T x )6,2(*=,最优目标值26*=z 。
从上面的图解过程可以看出并不难证明以下断言:(1)可行域R 可能会出现多种情况。
简单线性规划线性规划(Linear Programming,LP)是一种运用数学方法,以规定的约束条件为前提,通过建立数学模型,求解线性目标函数最大或最小值的一种优化方法。
线性规划方法可用于解决许多实际问题,如资源分配、生产计划、物流管理等。
线性规划的基本形式是在一组约束条件下,最大化或最小化一个线性的目标函数。
目标函数和约束条件必须是线性的,即目标函数和约束条件中的变量的系数必须为常数。
例如,假设有两种可供选择的产品A和B,它们的产量分别为x和y。
目标是通过调整x和y的值,使得总利润最大化。
同时,需要考虑的约束条件包括资源的使用限制、产品的产能限制等。
如果将总利润表示为目标函数,资源使用和产能限制等表示为约束条件,那么这个问题可以用线性规划的方法来解决。
线性规划的解法有多种,其中最常见的是单纯形法。
单纯形法基于一个重要的性质,即在一个凸多边形的顶点上,目标函数的最优解一定存在。
单纯形法通过迭代计算,逐步接近最优解,直到找到最优解为止。
此外,还有其他的方法来解决线性规划问题,如对偶理论、内点法等。
线性规划的应用十分广泛。
在资源有限的情况下,如何合理地分配资源是一个重要的问题。
例如,在生产计划中,如何安排生产任务,对产品的产量进行合理分配,以最大化利润;在物流管理中,如何合理地安排货物的运输路线,以最小化运输成本等。
线性规划提供了一种直观且有效的工具,可以帮助我们在有限的资源下得到最优的解决方案。
尽管线性规划方法在许多场景下表现良好,但它也有一些局限性。
首先,线性规划要求目标函数和约束条件都是线性的,因此对于非线性的问题,线性规划方法并不适用。
其次,线性规划方法在求解大规模问题时可能面临计算复杂度的问题。
不过,有许多方法可以对线性规划的问题进行转化,从而将非线性问题转化为线性问题,或者通过并行计算等方法来加快计算速度。
总的来说,线性规划是一种强大的优化工具,可用于解决各种实际问题。
它的优势在于简单、直观,能够得到全局最优解。
线性规划1基础(最值,分式,平方类型)一.选择题(共33小题)1.设变量x,y满足约束条件:,则z=x﹣3y的最小值()A.﹣2 B.﹣4 C.﹣6 D.﹣82.已知x,y满足约束条件,若z=ax+y的最大值为4,则a=()A.3 B.2 C.﹣2 D.﹣33.若变量x,y满足,则x2+y2的最大值是()A.4 B.9 C.10 D.124.设变量x,y满足约束条件,则目标函数z=2x+5y的最小值为()A.﹣4 B.6 C.10 D.175.如果实数x,y满足不等式组,目标函数z=kx﹣y的最大值为6,最小值为0,则实数k的值为()A.1 B.2 C.3 D.46.变量x,y满足约束条件,若z=2x﹣y的最大值为2,则实数m等于()A.﹣2 B.﹣1 C.1 D.27.若实数x,y满足不等式组目标函数t=x﹣2y的最大值为2,则实数a的值是()A.﹣2 B.0 C.1 D.28.已知x,y满足约束条件,则z=﹣2x+y的最大值是()A.﹣1 B.﹣2 C.﹣5 D.19.x、y满足约束条件,若z=y﹣ax取得最大值的最优解不唯一,则实数a的值为()A.或﹣1 B.2或C.2或1 D.2或﹣110.已知x,y满足约束条件,则z=2x+y的最大值为()A.3 B.﹣3 C.1 D.11.设x,y满足约束条件,则z=2x﹣y的最大值为()A.10 B.8 C.3 D.212.设实数x,y满足,则xy的最大值为()A.B.C.12 D.1613.变量x、y满足条件,则(x﹣2)2+y2的最小值为()A.B.C.D.514.已知x,y满足约束条件,则z=的范围是()A.[,2]B.B[﹣,]C.[,]D.[,]15.设变量x,y满足约束条件,则s=的取值范围是()A.[1,]B.[,1]C.[1,2]D.[,2]16.设变量x、y满足约束条件,则目标函数z=x2+y2的取值范围为()A.[2,8]B.[4,13]C.[2,13]D.17.已知变量x,y满足,则u=的值范围是()A.[,]B.[﹣,﹣]C.[﹣,]D.[﹣,]18.实数x,y满足不等式组,则ω=的取值范围是()A.[﹣,]B.[﹣1,]C.[﹣1,1)D.[﹣,1)19.已知圆C:(x﹣a)2+(y﹣b)2=1,设平面区域Ω=,若圆心C∈Ω,且圆C与x轴相切,则a2+b2的最大值为()A.49 B.37 C.29 D.520.设实数x,y满足:,则z=2x+4y的最小值是()A.B.C.1 D.821.设x,y满足不等式组,若z=ax+y的最大值为2a+4,最小值为a+1,则实数a的取值范围为()A.[﹣1,2] B.[﹣2,1] C.[﹣3,﹣2]D.[﹣3,1]22.如果实数x,y满足等式(x﹣2)2+y2=3,那么的最大值是()A.B.C.D.23.已知变量x,y满足,则的取值范围是()A. B.C.D.24.已知函数f(x)=ax2+bx﹣1(a,b∈R且a>0)有两个零点,其中一个零点在区间(1,2)内,则a﹣b的取值范围是()A.(﹣1,1)B.(﹣1,+∞)C.(﹣2,1)D.(﹣2,+∞)25.x,y满足约束条件,若z=y﹣2ax取得最大值的最优解不唯一,则实数a的值为()A.或﹣1 B.1或﹣C.2或1 D.2或﹣126.已知点P(x,y)的坐标满足条件,则x2+y2的最大值为()A.17 B.18 C.20 D.2127.已知实数x,y满足:,z=|2x﹣2y﹣1|,则z的取值范围是()A.[,5]B.[0,5]C.[0,5)D.[,5)28.设x,y满足条,若目标函数z=ax+by(a>0,b>0)的最小值为2,则ab的最大值为()A.1 B.C.D.29.已知,求z=的范围()A.[,]B.[,]C.[,]D.[,]30.设x,y满足约束条件,则目标函数z=ax+by(a>0,b>0)的最大值为12,则+的最小值为()A.B.C.6 D.531.设x,y想,满足约束条件,若目标函数z=ax+by(a>0,b>0)的最大值为12,则+的最小值为()A.B.C.D.432.若x,y满足约束条件,则的最大值为()A.2 B.C.3 D.133.已知x、y满足,则z=的取值范围是()A.[﹣2,1] B.(﹣∞,﹣2]∪[1,+∞)C.[﹣1,2] D.(﹣∞,﹣1]∪[2,+∞)线性规划1基础(最值,分式,平方类型)参考答案与试题解析一.选择题(共33小题)1.(2015•马鞍山一模)设变量x,y满足约束条件:,则z=x﹣3y的最小值()A.﹣2 B.﹣4 C.﹣6 D.﹣8【分析】我们先画出满足约束条件:的平面区域,求出平面区域的各角点,然后将角点坐标代入目标函数,比较后,即可得到目标函数z=x﹣3y的最小值.【解答】解:根据题意,画出可行域与目标函数线如图所示,由图可知目标函数在点(﹣2,2)取最小值﹣8故选D.2.(2015•山东)已知x,y满足约束条件,若z=ax+y的最大值为4,则a=()A.3 B.2 C.﹣2 D.﹣3【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z 的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分).则A(2,0),B(1,1),若z=ax+y过A时取得最大值为4,则2a=4,解得a=2,此时,目标函数为z=2x+y,即y=﹣2x+z,平移直线y=﹣2x+z,当直线经过A(2,0)时,截距最大,此时z最大为4,满足条件,若z=ax+y过B时取得最大值为4,则a+1=4,解得a=3,此时,目标函数为z=3x+y,即y=﹣3x+z,平移直线y=﹣3x+z,当直线经过A(2,0)时,截距最大,此时z最大为6,不满足条件,故a=2,故选:B3.(2016•山东)若变量x,y满足,则x2+y2的最大值是()A.4 B.9 C.10 D.12【分析】由约束条件作出可行域,然后结合x2+y2的几何意义,即可行域内的动点与原点距离的平方求得x2+y2的最大值.【解答】解:由约束条件作出可行域如图,∵A(0,﹣3),C(0,2),∴|OA|>|OC|,联立,解得B(3,﹣1).∵,∴x2+y2的最大值是10.故选:C.4.(2016•天津)设变量x,y满足约束条件,则目标函数z=2x+5y的最小值为()A.﹣4 B.6 C.10 D.17【分析】作出不等式组表示的平面区域,作出直线l0:2x+5y=0,平移直线l0,可得经过点(3,0)时,z=2x+5y取得最小值6.【解答】解:作出不等式组表示的可行域,如右图中三角形的区域,作出直线l0:2x+5y=0,图中的虚线,平移直线l0,可得经过点(3,0)时,z=2x+5y取得最小值6.故选:B.5.(2016•九江一模)如果实数x,y满足不等式组,目标函数z=kx﹣y的最大值为6,最小值为0,则实数k的值为()A.1 B.2 C.3 D.4【分析】首先作出其可行域,再由题意讨论目标函数在哪个点上取得最值,解出k.【解答】解:作出其平面区域如右图:A(1,2),B(1,﹣1),C(3,0),∵目标函数z=kx﹣y的最小值为0,∴目标函数z=kx﹣y的最小值可能在A或B时取得;∴①若在A上取得,则k﹣2=0,则k=2,此时,z=2x﹣y在C点有最大值,z=2×3﹣0=6,成立;②若在B上取得,则k+1=0,则k=﹣1,此时,z=﹣x﹣y,在B点取得的应是最大值,故不成立,故选B.6.(2015•福建)变量x,y满足约束条件,若z=2x﹣y的最大值为2,则实数m等于()A.﹣2 B.﹣1 C.1 D.2【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数求得m的值.【解答】解:由约束条件作出可行域如图,联立,解得A(),化目标函数z=2x﹣y为y=2x﹣z,由图可知,当直线过A时,直线在y轴上的截距最小,z有最大值为,解得:m=1.故选:C.7.(2016•福州模拟)若实数x,y满足不等式组目标函数t=x﹣2y的最大值为2,则实数a的值是()A.﹣2 B.0 C.1 D.2【分析】画出约束条件表示的可行域,然后根据目标函数z=x﹣2y的最大值为2,确定约束条件中a的值即可.【解答】解:画出约束条件表示的可行域由⇒A(2,0)是最优解,直线x+2y﹣a=0,过点A(2,0),所以a=2,故选D8.(2015•安徽)已知x,y满足约束条件,则z=﹣2x+y的最大值是()A.﹣1 B.﹣2 C.﹣5 D.1【分析】首先画出平面区域,z=﹣2x+y的最大值就是y=2x+z在y轴的截距的最大值.【解答】解:由已知不等式组表示的平面区域如图阴影部分,当直线y=2x+z经过A时使得z最大,由得到A(1,1),所以z的最大值为﹣2×1+1=﹣1;故选:A.9.(2014•安徽)x、y满足约束条件,若z=y﹣ax取得最大值的最优解不唯一,则实数a的值为()A.或﹣1 B.2或C.2或1 D.2或﹣1【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,得到直线y=ax+z斜率的变化,从而求出a的取值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=y﹣ax得y=ax+z,即直线的截距最大,z也最大.若a=0,此时y=z,此时,目标函数只在A处取得最大值,不满足条件,若a>0,目标函数y=ax+z的斜率k=a>0,要使z=y﹣ax取得最大值的最优解不唯一,则直线y=ax+z与直线2x﹣y+2=0平行,此时a=2,若a<0,目标函数y=ax+z的斜率k=a<0,要使z=y﹣ax取得最大值的最优解不唯一,则直线y=ax+z与直线x+y﹣2=0,平行,此时a=﹣1,综上a=﹣1或a=2,故选:D10.(2016•荆州一模)已知x,y满足约束条件,则z=2x+y的最大值为()A.3 B.﹣3 C.1 D.【分析】先根据约束条件画出可行域,再利用几何意义求最值,z=2x+y表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最大值即可.【解答】解:作图易知可行域为一个三角形,当直线z=2x+y过点A(2,﹣1)时,z最大是3,故选A.11.(2014•新课标II)设x,y满足约束条件,则z=2x﹣y的最大值为()A.10 B.8 C.3 D.2【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z 的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=2x﹣y得y=2x﹣z,平移直线y=2x﹣z,由图象可知当直线y=2x﹣z经过点C时,直线y=2x﹣z的截距最小,此时z最大.由,解得,即C(5,2)代入目标函数z=2x﹣y,得z=2×5﹣2=8.故选:B.12.(2015•四川)设实数x,y满足,则xy的最大值为()A.B.C.12 D.16【分析】作出不等式组对应的平面区域,利用基本不等式进行求解即可.【解答】解:作出不等式组对应的平面区域如图;由图象知y≤10﹣2x,则xy≤x(10﹣2x)=2x(5﹣x))≤2()2=,当且仅当x=,y=5时,取等号,经检验(,5)在可行域内,故xy的最大值为,故选:A13.(2016•黔东南州模拟)变量x、y满足条件,则(x﹣2)2+y2的最小值为()A.B.C.D.5【分析】作出不等式组对应的平面区域,设z=(x﹣2)2+y2,利用距离公式进行求解即可.【解答】解:作出不等式组对应的平面区域,设z=(x﹣2)2+y2,则z的几何意义为区域内的点到定点D(2,0)的距离的平方,由图象知CD的距离最小,此时z最小.由得,即C(0,1),此时z=(x﹣2)2+y2=4+1=5,故选:D.14.(2016•莱芜一模)已知x,y满足约束条件,则z=的范围是()A.[,2]B.B[﹣,]C.[,]D.[,]【分析】画出满足条件的平面区域,求出角点的坐标,根据z=的几何意义求出z的范围即可.【解答】解:画出满足条件的平面区域,如图示:,由,解得A(1,2),由,解得B(3,1),而z=的几何意义表示过平面区域内的点与(﹣1,﹣1)的直线的斜率,显然直线AC斜率最大,直线BC斜率最小,K AC==,K BC==,故选:C.15.(2015•鄂州三模)设变量x,y满足约束条件,则s=的取值范围是()A.[1,]B.[,1]C.[1,2]D.[,2]【分析】先根据已知中,变量x,y满足约束条件,画出满足约束条件的可行域,进而分析s=的几何意义,我们结合图象,利用角点法,即可求出答案.【解答】解:满足约束条件的可行域如下图所示:根据题意,s=可以看作是可行域中的一点与点(﹣1,﹣1)连线的斜率,由图分析易得:当x=1,y=O时,其斜率最小,即s=取最小值当x=0,y=1时,其斜率最大,即s=取最大值2故s=的取值范围是[,2]故选D16.(2015•开封模拟)设变量x、y满足约束条件,则目标函数z=x2+y2的取值范围为()A.[2,8]B.[4,13]C.[2,13]D.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,即可得到结论..【解答】解:作出不等式对应的平面区域,则z=x2+y2的几何意义为动点P(x,y)到原点的距离的平方,则当动点P位于A时,OA的距离最大,当直线x+y=2与圆x2+y2=z相切时,距离最小,即原点到直线x+y=2的距离d=,即z的最小值为z=d2=2,由,解得,即A(3,2),此时z=x2+y2=32+22=9+4=13,即z的最大值为13,即2≤z≤13,故选:C17.(2015•会宁县校级模拟)已知变量x,y满足,则u=的值范围是()A.[,]B.[﹣,﹣]C.[﹣,]D.[﹣,]【分析】化简得u=3+,其中k=表示P(x,y)、Q(﹣1,3)两点连线的斜率.画出如图可行域,得到如图所示的△ABC及其内部的区域,运动点P得到PQ斜率的最大、最小值,即可得到u=的值范围.【解答】解:∵u==3+,∴u=3+k,而k=表示直线P、Q连线的斜率,其中P(x,y),Q(﹣1,3).作出不等式组表示的平面区域,得到如图所示的△ABC及其内部的区域其中A(1,2),B(4,2),C(3,1)设P(x,y)为区域内的动点,运动点P,可得当P与A点重合时,k PQ=﹣达到最小值;当P与B点重合时,k PQ=﹣达到最大值∴u=3+k的最大值为﹣+3=;最小值为﹣+3=因此,u=的值范围是[,]故选:A18.(2014•东莞二模)实数x,y满足不等式组,则ω=的取值范围是()A.[﹣,]B.[﹣1,]C.[﹣1,1)D.[﹣,1)【分析】根据已知的约束条件,画出满足约束条件的可行域,分析表示的几何意义,结合图象即可给出的取值范围.【解答】解:约束条件对应的平面区域如下图示:表示可行域内的点(x,y)与点(﹣1,1)连线的斜率,由图可知的取值范围是,故选D.19.(2014•福建)已知圆C:(x﹣a)2+(y﹣b)2=1,设平面区域Ω=,若圆心C∈Ω,且圆C与x轴相切,则a2+b2的最大值为()A.49 B.37 C.29 D.5【分析】作出不等式组对应的平面区域,利用圆C与x轴相切,得到b=1为定值,此时利用数形结合确定a的取值即可得到结论.【解答】解:作出不等式组对应的平面区域如图:圆心为(a,b),半径为1∵圆心C∈Ω,且圆C与x轴相切,∴b=1,则a2+b2=a2+1,∴要使a2+b2的取得最大值,则只需a最大即可,由图象可知当圆心C位于B点时,a取值最大,由,解得,即B(6,1),∴当a=6,b=1时,a2+b2=36+1=37,即最大值为37,故选:B20.(2016•江门模拟)设实数x,y满足:,则z=2x+4y的最小值是()A.B.C.1 D.8【分析】先根据约束条件画出可行域,设t=x+2y,把可行域内的角点代入目标函数t=x+2y 可求t的最小值,由z=2x+4y=2x+22y,可求z的最小值【解答】解:z=2x+4y=2x+22y,令t=x+2y先根据约束条件画出可行域,如图所示设z=2x+3y,将最大值转化为y轴上的截距,由可得A(﹣2,﹣1)由可得C(﹣2,3)由B(4,﹣3)把A,B,C的坐标代入分别可求t=﹣4,t=4,t=﹣2Z的最小值为故选B21.(2016•广东模拟)设x,y满足不等式组,若z=ax+y的最大值为2a+4,最小值为a+1,则实数a的取值范围为()A.[﹣1,2] B.[﹣2,1] C.[﹣3,﹣2]D.[﹣3,1]【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合进行求解即可.【解答】解:由z=ax+y得y=﹣ax+z,直线y=﹣ax+z是斜率为﹣a,y轴上的截距为z的直线,作出不等式组对应的平面区域如图:则A(1,1),B(2,4),∵z=ax+y的最大值为2a+4,最小值为a+1,∴直线z=ax+y过点B时,取得最大值为2a+4,经过点A时取得最小值为a+1,若a=0,则y=z,此时满足条件,若a>0,则目标函数斜率k=﹣a<0,要使目标函数在A处取得最小值,在B处取得最大值,则目标函数的斜率满足﹣a≥k BC=﹣1,即0<a≤1,若a<0,则目标函数斜率k=﹣a>0,要使目标函数在A处取得最小值,在B处取得最大值,则目标函数的斜率满足﹣a≤k AC=2,即﹣2≤a<0,综上﹣2≤a≤1,故选:B.22.(2015•青羊区校级模拟)如果实数x,y满足等式(x﹣2)2+y2=3,那么的最大值是()A.B.C.D.【分析】表示圆上动点与原点O连线的斜率,画出满足等式(x﹣2)2+y2=3的图形,由数形结合,我们易求出的最大值.【解答】解:满足等式(x﹣2)2+y2=3的图形如图所示:表示圆上动点与原点O连线的斜率,由图可得动点与B重合时,此时OB与圆相切,取最大值,连接BC,在Rt△OBC中,BC=,OC=2易得∠BOC=60°此时=故选D23.(2016•衡阳二模)已知变量x,y满足,则的取值范围是()A. B.C.D.【分析】作出可行域,变形目标函数可得=1+表示可行域内的点与A(﹣2,﹣1)连线的斜率与1的和,数形结合可得.【解答】解:作出满足所对应的区域(如图阴影),变形目标函数可得==1+,表示可行域内的点与A(﹣2,﹣1)连线的斜率与1的和,由图象可知当直线经过点B(2,0)时,目标函数取最小值1+=;当直线经过点C(0,2)时,目标函数取最大值1+=;故答案为:[,].24.(2013•山东模拟)已知函数f(x)=ax2+bx﹣1(a,b∈R且a>0)有两个零点,其中一个零点在区间(1,2)内,则a﹣b的取值范围是()A.(﹣1,1)B.(﹣1,+∞)C.(﹣2,1)D.(﹣2,+∞)【分析】由题意知,一个根在区间(1,2)内,得关于a,b的等式,再利用线性规划的方法求出a﹣b的取值范围.【解答】解:设f(x)=ax2+bx﹣1=0,由题意得,f(1)•f(2)<0,∴(a+b﹣1)(4a+2b﹣1)<0.且a>0.即或,(不合题意舍去)视a,b为变量,作出可行域如图.令a﹣b=t,设z=a﹣b∴b=a﹣z,得到一簇斜率为1,截距为﹣z的平行线∴当直线b=a﹣z过a+b﹣1=0与y轴的交点时截距最大,z最小又∴a=0,b=1,∴a﹣b的最小值为:0﹣1=﹣1∴a﹣b的取值范围为:(﹣1,+∞)故选:B.25.(2015•万州区模拟)x,y满足约束条件,若z=y﹣2ax取得最大值的最优解不唯一,则实数a的值为()A.或﹣1 B.1或﹣C.2或1 D.2或﹣1【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,得到直线y=2ax+z斜率的变化,从而求出a的取值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=y﹣2ax得y=2ax+z,即直线的截距最大,z也最大.若a=0,此时y=z,此时,目标函数只在A处取得最大值,不满足条件,若a>0,目标函数y=2ax+z的斜率k=2a>0,要使z=y﹣2ax取得最大值的最优解不唯一,则直线y=2ax+z与直线2x﹣y+2=0平行,此时2a=2,即a=1.若a<0,目标函数y=ax+z的斜率k=a<0,要使z=y﹣2ax取得最大值的最优解不唯一,则直线y=2ax+z与直线x+y﹣2=0,平行,此时2a=﹣1,解得a=﹣综上a=1或a=﹣,故选:B26.(2015•赤峰模拟)已知点P(x,y)的坐标满足条件,则x2+y2的最大值为()A.17 B.18 C.20 D.21【分析】作出不等式组对应的平面区域,利用数形结合即可得到结论.【解答】解:设z=x2+y2,则z的几何意义为区域内的点到原点的距离的平方,作出不等式组对应的平面区域如图:由图象可知,则OC的距离最大,由,解得,即C(3,3),则z=x2+y2=9+9=18,故选:B27.(2016•重庆三模)已知实数x,y满足:,z=|2x﹣2y﹣1|,则z的取值范围是()A.[,5]B.[0,5]C.[0,5)D.[,5)【分析】由约束条件作出可行域如图,令u=2x﹣2y﹣1,由线性规划知识求出u的最值,取绝对值求得z=|u|的取值范围.【解答】解:由约束条件作可行域如图,联立,解得,∴A(2,﹣1),联立,解得,∴.令u=2x﹣2y﹣1,则,由图可知,当经过点A(2,﹣1)时,直线在y轴上的截距最小,u最大,最大值为u=2×2﹣2×(﹣1)﹣1=5;当经过点时,直线在y轴上的截距最大,u最小,最小值为u=.∴,∴z=|u|∈[0,5).故选:C.28.(2016•滨州一模)设x,y满足条,若目标函数z=ax+by(a>0,b>0)的最小值为2,则ab的最大值为()A.1 B.C.D.【分析】作出不等式对应的平面区域,利用z的几何意义确定取得最小值的条件,然后利用基本不等式进行求则ab的最大值.【解答】解:由z=ax+by(a>0,b>0)得,∵a>0,b>0,∴直线的斜率,作出不等式对应的平面区域如图:平移直线得,由图象可知当直线经过点A时,直线的截距最小,此时z最小.由,解得,即A(2,3),此时目标函数z=ax+by(a>0,b>0)的最小值为2,即2a+3b=2,∴2=2a+3b,即ab≤,当且仅当2a=3b=1,即a=,b=时取等号.故ab的最大值为,故选:D.29.(2016•衡水校级二模)已知,求z=的范围()A.[,]B.[,]C.[,]D.[,]【分析】作出不等式对应的平面区域,利用线性规划的知识,利用目标函数的几何意义.【解答】解:z==2×,设k=,则k的几何意义是点(x,y)到定点D(﹣1,)的斜率,作出不等式组对应的平面区域如图:由图象可知AD的斜率最大,BD的斜率最小,由,解得,即A(1,3),此时k==,z最大为2k=2×=,由,解得,即B(3,1),此时k==,z最大为2k=2×=,故z=的范围是[,],故选:A30.(2015•湘西州校级模拟)设x,y满足约束条件,则目标函数z=ax+by (a>0,b>0)的最大值为12,则+的最小值为()A.B.C.6 D.5【分析】画出不等式组表示的平面区域,求出直线x﹣y+2=0与直线3x﹣y﹣6=0的交点(4,6)时,观察当目标函数过(4,6)时,取得最大12,即4a+6b=12,即2a+3b=6,要求+的最小值,先用乘“1”法进而用基本不等式即可求得最小值.【解答】解:不等式组表示的平面区域如图所示阴影部分,当直线ax+by=z(a>0,b>0)过直线x﹣y+2=0与直线3x﹣y﹣6=0的交点(4,6)时,目标函数z=ax+by(a>0,b>0)取得最大12,即4a+6b=12,即2a+3b=6,而=()=+()≥=,当且仅当a=b=,取最小值.故选B.31.(2016•潮南区模拟)设x,y想,满足约束条件,若目标函数z=ax+by (a>0,b>0)的最大值为12,则+的最小值为()A.B.C.D.4【分析】作出不等式对应的平面区域,利用线性规划的知识先求出a,b的关系,然后利用基本不等式求+的最小值.【解答】解:由z=ax+by(a>0,b>0)得y=,作出可行域如图:∵a>0,b>0,∴直线y=的斜率为负,且截距最大时,z也最大.平移直线y=,由图象可知当y=经过点A时,直线的截距最大,此时z也最大.由,解得,即A(4,6).此时z=4a+6b=12,即=1,则+=(+)()=1+1++≥2+2=4,当且仅当=时取=号,故选:D32.(2016•长沙校级一模)若x,y满足约束条件,则的最大值为()A.2 B.C.3 D.1【分析】作出不等式组对应的平面区域,利用斜率的几何意义结合数形结合进行求解即可.【解答】解:作出不等式组对应的平面区域如图:的几何意义是区域内的点到点D(0,1)的斜率,由图象知AD的斜率最大,由,得,即A(1,3),此时的最大值为,故选:A.33.(2015春•唐山校级月考)已知x、y满足,则z=的取值范围是()A.[﹣2,1] B.(﹣∞,﹣2]∪[1,+∞)C.[﹣1,2] D.(﹣∞,﹣1]∪[2,+∞)【分析】先根据约束条件画出可行域,设z=,再利用z的几何意义求最值,只需求出区域内的点Q与点P(1,﹣2)连线的斜率的取值范围即可.【解答】解:先根据约束条件画出可行域,设z=,将z转化区域内的点Q与点P(1,﹣2)连线的斜率,当动点Q在点A时,z 的值为:,当动点Q在点O时,z 的值为:,数形结合,z=的取值范围是(﹣∞,﹣2]∪[1,+∞),故选B.第31页(共31页)。