人教版高中物理选修3-4 1广义相对论简介
- 格式:ppt
- 大小:42.85 MB
- 文档页数:41
疱丁巧解牛知识·巧学一、狭义相对论的其他结论 1.相对论速度变换公式以高速火车为例,车对地的速度为v ,车上的人以u′的速度沿火车前进的方向相对火车运动,则人对地的速度u=2'1'cv u vu ++,若人相对火车反方向运动,u′取负值. 根据此式若u′=c ,则u=c ,那么c 在任何惯性系中都是相同的.深化升华 (1)当u′=c 时,不论v 有多大,总有u=c ,这表明,从不同参考系中观察,光速都是相同的,这与相对论的第二个假设光速不变原理相一致.(2)对于速度远小于光速的情形,v<<c ,u′<<c ,这时2'cvu 可以忽略不计,相对论的速度合成公式可以近似变为u=u′+v.联想发散 相对论并没有推翻牛顿力学,也不能说牛顿力学已经过时了,相对论是使牛顿力学的使用范围变得清楚了. 2.相对论质量以速度v 高速运动的物体的质量m 和静止时的质量m 0.有如下关系:m=20)(1cv m -.质量公式实际上是质量和速度的关系,在关系m=20)(1cv m -中,若v=c ,则m 可能是无限大,这是不可能的,尤其是宏观物体,设想物体由v=0逐渐向c 靠拢,m 要逐渐变大,产生加速度的力则要很大,所以能量也要很大.因此,宏观物体的速度是不可能(在目前)增大到与光速相比.但是对于一些没有静止质量的粒子(如光子),它却可以有动质量m.深化升华 (1)物体的质量随速度的增大而增大;(2)物体运动的质量总要大于静止质量. 误区警示 不要盲目从公式中得出,v=c 时,质量是无穷大的错误结论. 3.质能方程(1)爱因斯坦方程:E=mc 2.(2)质能方程表达了物体的质量和它所具有的能量的关系:一定的质量总是和一定的能量相对应. (3)对一个以速率v 运动的物体,其总能量为动能与静质能之和:E=E k +E 0.那么物体运动时的能量E 和静止时能量E 0的差就是物体的动能,即E k =E-E 0. 代入质量关系:E k =E-E 0=220)(1cv c m --m 0c 2=21m 0v 2. 误区警示 不能把质量和能量混为一谈,不能认为质量消灭了,只剩下能量在转化,更不能认为质量和能量可以相互转变,在一切过程中,质量和能量是分别守恒的,只有在微观粒子的裂变和聚变过程中有质量亏损的情况下才会有质能方程的应用. 二、广义相对论简介1.广义相对性原理和等效原理(1)广义相对性原理:在任何参考系中,物理规律都是相同的.(2)等效原理:一个均匀的引力场与一个做匀加速运动的参考系等价.深化升华 一个物体受到使物体以某一加速度下落的力,如果不知道该力的来源,就没有办法判断使物体以某一加速度下落的力到底是引力还是惯性力. 2.广义相对论的几个结论(1)光线弯曲:根据电磁理论和经典光学,在无障碍的情况下,光线是直线传播.但按照爱因斯坦的广义相对论,在引力场存在的情况下,光线是沿弯曲的路径传播的.(2)引力红移:根据爱因斯坦的广义相对论,在强引力场中,时钟要走得慢些.因此,光在引力场中传播时,它的频率或波长会发生变化.理论计算表明,氢原子发射的光从太阳(引力强度大)传播到地球(引力强度小)时,它的频率比地球上氢原子发射的光的频率低,这就是引力红移效应.典题·热题知识点一 相对论速度例1地球上一观察者,看见一飞船A 以速度2.5×108 m/s 从他身边飞过,另一飞船B 以速度2.0×108 m/s 跟随A 飞行.求:(1)A 上的乘客看到B 的相对速度; (2)B 上的乘客看到A 的相对速度. 解析:运用相对论速度公式u=2'1'cv u vu ++可解. 答案:(1)-1.125×108 m/s (2)1.125×108 m/s 知识点二 相对论质量例2一个原来静止的电子,经过100 V 的电压加速后它的动能是多少?质量改变了百分之几?速度是多少?这时能不能使用公式E k =21m 0v 2? 解析:由动能定理可以计算出电子被加速后的动能,再根据E k =mc 2-m e c 2计算质量的变化. 答案:加速后的电子的动能是E k =qU=1.6×10-19×100 J=1.6×10-17 J. 因为E k =mc 2-m e c 2,所以m-m e =E k / c 2.把数据代入得e e m m m -=2831--17)10(3109.1101.6⨯⨯⨯⨯=2×10-4. 即质量改变了0.02%.这说明在100 V 电压加速后,电子的速度与光速相比仍然很小,因此可以使用E k =21mv 2这个公式.由E k =21mv 2可得电子的速度v=m E k 2=31--17109.1101.62⨯⨯⨯ m/s≈5.9×106 m/s. 知识点三 质能方程例3一核弹含20 kg 的钚,爆炸后生成的静止质量比原来小1/10 000.求爆炸中释放的能量. 解析:由爱因斯坦质能方程可解释放出的能量. 答案:爆炸前后质量变化:Δm=100001×20 kg=0.02 kg释放的能量为ΔE=Δmc 2=0.002×(3×108)2 J=1.8×1014 J. 方法归纳 一定的质量总是和一定的能量相对应.例4两个电子相向运动,每个电子相对于实验室的速度都是54c ,在实验室中观测,两个电子的总动能是多少?以一个电子为参考系,两个电子的总动能又是多少?解析:计算时由电子运动的能量减去静止时的能量就得到电子的动能.若以其中一个电子为参考系,另一个电子相对参考系的质量应当由质速方程求出,但相对速度应当为两个电子的相对速度.答案:设在实验室中观察,甲电子向右运动,乙电子向左运动.若以乙电子为“静止”参考系,即O 系,实验室(记为O′系)就以54c 的速度向右运动,即O′系相对于O 系的速度为v=54c.甲电子相对于O′系的速度为u′=54c.这样,甲电子相对于乙电子的速度就是在O 系中观测到的电子的速度u,根据相对论的速度合成公式,这个速度是u=2'1'c v u v u ++=2545415454c cc cc ⨯++=4140 c. 在实验室中观测,每个电子的质量是m′=2)(1c v m e -=2)54(1cc m e -=35m e .在实验室中观测,两个电子的总动能为E k 1=2(m′c 2-m e c 2)=2×(35m e c 2-m e c 2)=34m e c 2. 相对于乙电子,甲电子的质量是m″=2)4140(1cc m e -=4.56m e因此,以乙为参考系,甲电子的动能为E k2=m″c 2-m e c 2=4.56m e c 2-m e c 2=3.56m e c 2 问题·探究 思想方法探究问题 被回旋加速器加速的粒子能量能无限大吗? 探究过程:这种问题只能从相对论理论出发进行探究.由相对论质量公式 m=20)(1cv m -看出,当粒子的速度很大时,其运动时的质量明显大于静止时的质量.当加速时粒子做圆周运动的周期必须和交变电压的周期相同,而当交变电压周期稳定时,粒子的速度越来越大,而速度大,半径也大,本不应影响其周期,但是速度大,其运动质量变大,周期也变大了,于是不再同步,所以其能量受到限制,不能被无限加速.探究结论:被回旋加速器加速的粒子能量不能无限大. 交流讨论探究问题 假设宇宙飞船是全封闭的,宇航员和外界没有任何联系,宇航员如何判断使物体以某一加速度下落的力到底是引力还是惯性力? 探究过程:郑小伟:宇宙飞船中的物体受到以某一加速度下落的力可能是由于受到某个星体的引力,也可能是由于宇宙飞船正在加速飞行.两种情况的效果是等价的,所以宇航员无法判断使物体以某一加速度下落的力是引力还是惯性力.宋涛:实际上,不仅是自由落体的实验,飞船内部的任何物理过程都不能告诉我们,飞船到底是加速运动,还是停泊在一个行星的表面.张小红:这个事实告诉我们:一个均匀的引力场与一个做匀加速运动的参考系是等价的.这就是爱因斯坦广义相对论的第二个基本结论,这就是著名的“等效原理”.探究结论:宇航员没有任何办法来判断,使物体以某一加速度下落的力到底是引力还是惯性力.即一个均匀的引力场与一个做匀加速运动的参考系是等价的. 交流讨论探究问题 对相对论几个结论的理解. 探究过程:李兵:从运动学的角度进行理解,根据光速不变原理可知光速与任何速度的合成都是光速,速度合成法则不再适用,光速是极限速度.从动力学的角度进行理解,质量是物体惯性大小的量度.随着物体速度的增大,质量也增大,当物体的速度趋近于光速c 时,质量m 趋向无限大,惯性也就趋向无限大,要使速度再增加,就极为困难了.这时,一个有限的力不管作用多长时间,速度实际上是停止增加了.这与速度合成定理u=2'1'cv u vu ++是吻合的,当u′=c 时,不论v 有多大,总有u=c ,这表明,从不同参考系中观察,光速都是相同的.刘晓伟:根据爱因斯坦质量和速度的关系:m=20)(1cv m -可知,物体的运动的极限速度是光速,当静止质量不为零时,物体的速度永远不会等于光速,更不会超过光速.对于速度达到光速的粒子(如光子),其静止质量一定为零.张兵:对于速度远小于光速的情形,v<<c ,u′<<c ,这时2'cvu 可以忽略不计,相对论的速度合成公式可以近似变为u=u′+v,相对论质量m=m0,不表现为尺缩效应和钟慢效应,所以牛顿力学是在低速情况下相对论的近似结论.探究结论:光速是运动物体的极限速度,对不同的参考系物体的质量是不同的,光子不会有静止质量.在低速情况下,牛顿力学是相对论结论的近似.。
4 广义相对论简介
温故知新
新知预习
1.广义相对论的基本原理
(1)广义相对性原理:在任何参考系中,物理规律都是___________的.
(2)等效原理:一个均匀的引力场与一个做___________运动的参考系等价.
2.广义相对论的几个结论
(1)物质的___________使光线弯曲.
(2)引力场的存在使得空间不同位置的___________出现差别,如引力位移现象.
知识回顾
相对地面静止或做匀速直线运动的参考系为惯性参考系,以相对地面做匀变速直线运动的参考系叫非惯性参考系.在狭义相对论中认为所有的惯性系都是等效的,言外之意即在狭义相对论中,惯性参考系与非惯性参考系不是平权等效的,这些理论限制了对引力和光传播等问题的研究与探索,于是爱因斯坦又提出了广义相对论.认为所有参考系都是平权、等效的,并对引力和光现象作了具体研究和解释.。
广义相对论简介教学目标知识与技能:〔1〕了解广义相对论基本原理广义相对性原理和等效原理〔2〕广义相对论主要结论物质的引力使光线弯曲和强引力场附近的时间进程会变慢〔3〕介绍广义相对论的实验验证过程与方法:〔1〕了解爱因斯坦思考和推演广义相对论思维过程情感态度和价值观:〔1〕体会在宇宙中人类的渺小和科学的巨大力量教学重点、难点1、广义相对性原理和等效原理2、广义相对论的主要结论:引力使光线弯曲和强引力场附近的时间进程会变慢教学方法阅读、讲解、小结教学手段多媒体课件教学活动一、超越狭义相对论的思考爱因斯坦思考狭义相对论无法解决的两个问题:1、引力问题,万有引力定律不满足洛伦兹变换,无法纳人狭义相对论的理论框架;2、非惯性系问题,狭义相对论只适用于惯性系。
它们是促成广义相对论的前提。
二、广义相对性原理和等效原理引导学生在前述背景介绍下,思考怎样来解决这两个问题。
爱因斯坦考虑要解决第二个问题,必须去掉惯性系在相对论理论中的特殊地位,把相对性原理从“任何惯性系平权〞推广到“包括非惯性系在内的任意参考系(即包括惯性系和非惯性系)平权〞。
三、广义相对论几个结论以及相关实验验证从广义相对论两个基本原理出发,爱因斯坦预见性地提出了验证这一理论的几个著名实验。
①光线经过强引力场中发生弯曲介绍物质的引力使时空弯曲,弯曲的时空又使光线弯曲的事实。
如1919年5月29日,发生日全食期间,科学家成功地观测到了太阳背后恒星发出的光线经过太阳附近发生弯曲的现象,并拍得了太阳背后恒星的照片。
从而确认广义相对论的结论是正确的。
这是广义相对论创立以来最早得到科学界认同的最重大的成果。
到目前为止科学家对400多颗恒星作了测量,射电天文学的发展使人类不用等日全食发生也能在地球上进行精度很高的观测,且与理论值符合。
②引力红移了解引力导致时空弯曲,按照相对性原理,空间效应与时间效应是互相影响的,在发生空间弯曲效应的同时,时间膨胀效应也发生了。
选修3-4_15.4广义相对论简介狭义相对论狭义相对论是由爱因斯坦、洛仑兹和庞加莱等人创立的,应用在惯性参考系下的时空理论,是对牛顿时空观的拓展和修正。
按照狭义相对论,物体运动时质量会随着物体运动速度增大而增加,同时,空间和时间也会随着物体运动速度的变化而变化,即会发生尺缩效应和钟慢效应。
狭义相对论实验基础牛顿力学是狭义相对论(Special Relativity)在低速情况下的近似。
伽利略变换与电磁学理论的不自洽。
到19世纪末,以麦克斯韦方程组为核心的经典电磁理论的正确性已被大量实验所证实,但麦克斯韦方程组在经典力学的伽利略变换下不具有协变性。
而经典力学中的相对性原理则要求一切物理规律在伽利略变换下都具有协变性。
在这样的背景下,才有了狭义相对论的产生。
狭义相对论诞生19世纪末期物理学家开尔文爵士在一次国际会议上讲到“物理学大厦已经建成,以后的工作仅仅是内部的装修和粉刷”。
但是,他话锋一转又说:“大厦上空还漂浮着两朵‘乌云’,迈克尔逊-莫雷实验结果和黑体辐射的紫外灾难。
”正是为了解决上述两问题,物理学发生了一场深刻的革命导致了相对论和量子力学的诞生。
早在电动力学麦克斯韦方程建立之日,人们就发现它没有涉及参照系问题。
人们利用经典力学的时空理论讨论电动力学方程,发现在伽利略变换下麦克斯韦方程及其导出的方程(如亥姆霍兹,达朗贝尔等方程)在不同惯性系下形式不同,这一现象应当怎样解释?经过几十年的探索,在1905年终于由爱因斯坦创建了狭义相对论。
相对论是一个时空理论,要理解狭义相对论时空理论先要了解经典时空理论的内容。
爱因斯坦意识到伽利略变换实际上是牛顿经典时空观的体现,如果承认“真空光速独立于参考系”这一实验事实为基本原理,可以建立起一种新的时空观(相对论时空观)。
在这一时空观下,由相对性原理即可导出洛伦兹变换。
1905年,爱因斯坦发表论文《论动体的电动力学》,建立狭义相对论,成功描述了在亚光速领域宏观物体的运动。
高中物理选修3-4——相对论简介??知识点总结1、惯性系:如果牛顿运动定律在某个参考系中成立,这个参考系叫做惯性系。
相对于一个惯性系做匀速直线运动的另一个参考系也是惯性系。
相对于一个惯性系做变速运动的另一个参考系是非惯性系,在非惯性系中牛顿运动定律不成立。
2、伽利略相对性原理:力学规律在任何惯性系中都是相同的。
3、狭义相对性原理:一切物理定律在任何惯性系中都是相同的。
4、广义相对性原理:物理规律在任何参考系中都是相同的。
5、经典速度变换公式:。
(是矢量式)6、狭义相对论的两个基本假设:(1)狭义相对性原理,如3所述;(2)光速不变原理:真空中的光速在不同的惯性参考系中都是相同的。
7、广义相对论的两条基本原理:(1)广义相对性原理,如4所述;(2)等效原理:一个均匀的引力场与一个做匀加速运动的参考系等价。
8、由狭义相对论推出的六个重要结论(所有结论都已经完全得到证实):(1)“同时”是相对的。
(2)长度是相对的。
是相对被测物静止的参考系中测得的长度,是相对被测物以速度运动的参考系中测得的长度,且的方向与速度的方向平行。
(3)时间是相对的。
是相对某参考系(如地面)运动的参考系中(如飞船内)的钟所测得的时间,?是静止的参考系中(地面上)的钟所测得的时间。
(4)质量是相对的。
(静质量)是在相对被测物静止的参考系中所测得的质量,(动质量)是在相对被测物以速度运动的参考系中所测得的质量。
(5)相对论速度变换公式:。
(是矢量式)(6)相对论质能关系公式:。
其中是物体的动质量。
9、由广义相对论得出的几个结论:(1)物质的引力场使光线弯曲。
如远处的星光经过太阳附近时发生偏折。
(2)物质的引力场使时间变慢。
如引力红移:同种原子在强引力场中发光的频率比在较小引力场中发光的频率低。
10、根据经典相对性原理:在一个惯性系内进行的任何力学实验都不能判断这个惯性系是否相对于另一个惯性系做匀速直线运动。
11、狭义相对论指出:光速C是自然界中速度的极限。
相对论简介教学目的:1.了解相对论的诞生及发展历程2.了解时间和空间的相对性3.了解狭义相对论和广义相对论的内容教学重点:时间和空间的相对性、狭义相对论和广义相对论教学难点:时间和空间的相对性教学过程:一、狭义相对论的基本假设牛顿力学是在研究宏观物体的低速(与光速相比)运动时总结出来的.对于微观粒子,牛顿力学并不适用,在这一章中我们还将看到,对于高速运动,即使是宏观物体,牛顿力学也不适用.19世纪后半叶,关于电磁场的研究不断深入,人们认识到了光的电磁本质.我们已经知道,电磁波是以巨大的速度传播的,因此在电磁场的研究中不断遇到一些矛盾,这些矛盾导致了相对论的出现.相对论不仅给出了物体在高速运动时所遵循的规律,而且改变了我们对于时间和空间的认识,它的建立在物理学和哲学的发展史上树立了一座重要的里程碑.经典的相对性原理如果牛顿运动定律在某个参考系中成立,这个参考系叫做惯性系,相对一个惯性系做匀速直线运动的另一个参考系也是惯性系.我们引用伽利略的一段话,生动地描述了一艘平稳行驶的大船里发生的事情.“船停着不动时,你留神观察,小虫都以等速向各方向飞行,鱼向各个方向随意游动,水滴滴进下面的罐中;你把任何东西扔给你的朋友时,只要距离相等,向这一方向不比向另一方向用更多的力.你双脚齐跳,无论向哪个方向跳过的距离都相同.当你仔细观察这些事情之后,再使船以任何速度前进,只要运动是匀速的,也不忽左忽右地摆动,你将发现,所有上述现象丝毫没有变化.你也无法从其中任何一个现象来确定,船是在运动还是停着不动”通过这段描述以及日常经验,人们很容易相信这样一个论述:力学规律在任何惯性系中都是相同的.这个论述叫做伽利略相对性原理.相对性原理可以有不同的表述.例如还可以表述为:在一个惯性参考系内进行任何力学实验都不能判断它是否在相对于另一个惯性参考系做匀速直线运动;或者说,任何惯性系都是平权的.在不同的参考系中观察,物体的运动情况可能不同,例如在一个参考系中物体是静止的,在另一个参考系中看,它可能是运动的,在不同的参考系中它们运动的速度和方向也可能不同.但是,它们在不同的惯性系中遵从的力学规律是一样的,例如遵从同样的牛顿运动定律、同样的运动合成法则……光速引起的困难自从麦克斯韦预言了光的电磁本质以及电磁波的速度以后,物理学家们就在思考,这个速度是对哪一个参考系说的?如果存在一个特殊的参考系O,光对这个参考系的速度是c,另一个参考系O′以速度v沿光传播的方向相对参考系O运动,那么在O′中观测到的光速就应该是c-v,如果参考系O′逆着光的传播方向运动,在参考系O′中观测到的光速就应该是c+v.由于一般物体的运动速度比光速小得多,c+v和c-v与光速c的差别很小,在19世纪的技术条件下很难直接测量,于是物理学家们设计了许多巧妙的实验,力图测出不同参考系中光速的差别.最著名的一个实验是美籍物理学家麦克尔逊设计的.他把一束光分成互相垂直的两束,一束的传播方向和地球运动的方向一致,另一束和地球运动的方向垂直,然后使它们发生干涉,如果不同方向上的光速有微小的差别,当两束光互相置换时干涉条纹就会发生变化.由于地球在宇宙中运动的速度很大,希望它对光速能有较大的影响.但是,这个实验和其他实验都表明,不论光源和观察者做怎样的相对运动,光速都是相同的.这些否定的结果使当时的物理学家感到震惊,因为它和传统的观念,例如速度合成的法则,是矛盾的.狭义相对论的两个假设上面的矛盾使我们面临一个困难的选择:要么放弃麦克斯韦的电磁理论,要么否定特殊参考系的存在.爱因斯坦选择了后者.他认为,既然在不同的惯性系中力学规律都一样,我们会很自然地想到,电磁规律在不同的惯性系中也是一样的,也就是说,并不存在某一个特殊参考系(例如地球参考系、太阳参考系,或者所谓的以太……)爱因斯坦把伽利略的相对性原理推广到电磁规律和一切其他物理规律,成为他的第一个假设:在不同的惯性参考系中,一切物理规律都是相同的.这个假设通常称为爱因斯坦相对性原理.另一条假设是:真空中的光速在不同的惯性参考系中都是相同的,与光源的运动和观察者的运动没有关系.这个假设通常叫做光速不变原理.这两个假设似乎是麦克尔逊实验的直接结论,为什么还要叫做假设?这是因为,虽然实验表明了假设所说的内容,但这终归是有限的几次实验.只有在从这两个假设出发,经过逻辑推理(包括数学推导)所得出的大量结论都与事实相符时,它们才能成为真正意义上的原理.同时的相对性作为相对论的两个假设的直接推论,现在讨论“同时”的相对性,以体会相对论描述的世界和我们日常的经验有多大的差别.我们研究两个“事件”的同时性.在这里,“事件”可以指一个光子与观测仪器的碰撞,也可以指闪电对地面的打击,还可以指一个婴儿的诞生……假设一列很长的火车在沿平直轨道飞快地匀速行驶.车厢中央有一个光源发出了一个闪光,闪光照到了车厢的前壁和后壁,这是两个事件.车上的观察者认为两个事件是同时的.在他看来这很好解释,因为车厢是个惯性系,光向前、后传播的速度相同,光源又在车厢的中央,闪光当然会同时到达前后两壁(图甲).车下的观察者则不以为然.他观测到,闪光先到达后壁,后到达前壁.他的解释是:地面也是一个惯性系,闪光向前、后传播的速度对地面也是相同的,但是在闪光飞向两壁的过程中,车厢向前行进了一段距离,所以向前的光传播的路程长些,到达前壁的时刻也就晚些(图乙),这两个事件不同时.在经典物理学家的头脑中,如果两个事件在一个参考系中看来是同时的,在另一个参考系中看来一定也是同时的,这一点似乎天经地义,无需讨论.但是,如果接受了爱因斯坦的两个假设,我们自然会得出“同时是相对的”这样一个结论.为什么在日常生活中没有人觉察到这种相对性?原来,火车运动的速度远远小于光速,光从车厢中央传播到前后两壁的短暂时间内,火车前进不了多大距离,因此地面观察者不会发现闪光到达前壁、后壁的时间差.时间和空间的相对性时间间隔的相对性经典物理学认为,某两个事件,在不同的惯性系中观察,它们发生的时间差,也就是它们的时间间隔,总是相同的.但是,从狭义相对论的两个基本假设出发,我们会看到,时间间隔是相对的.还以高速火车为例,假设车厢地板上有一个光源,发出一个闪光.对于车上的人来说,闪光到达光源正上方h高处的小镜后被反射,回到光源的位置(如图甲),往返所用的时间为△t′.对于地面的观察者来说,情况有所不同.从地面上看,在光的传播过程中,火车向前运动了一段距离,因此被小镜反射后又被光源接收的闪光是沿路径AMB传播的光(图乙).如果火车的速度为v,地面观察者测得的闪光从出发到返回光源所用时间记为△t,那么应用勾股定理可得这又是一个令人吃惊的结论:关于闪光从光源出发,经小镜反射后又回到光源所经历的时间,地面上的人和车上的人测量的结果不一样,地面上的人认为这个时间长些.更严格的推导表明,(1)式具有普遍意义,它意味着,从地面上观察,火车上的时间进程变慢了,由于火车在运动,车上的一切物理、化学过程和生命过程都变慢了:时钟走得慢了,化学反应慢了,甚至人的新陈代谢也变慢了……可是车上的人自己没有这种感觉,他们反而认为地面上的时间进程比火车上的慢,因为他们看到,地面正以同样的速度朝相反的方向运动!(1)式又一次生动地展示了时间的相对性.长度的相对性在这一小节中我们将要说明,高速火车上的一个杆,当它的方向和运动方向平行时,地面上的人测得的杆长要小于火车上的人测得的杆长!假设一个杆沿着车厢运动的方向固定在火车上,和车一起运动.在火车上的人看来,杆是静止的.他利用固定在火车上的坐标轴,测出杆两端的位置坐标,坐标之差就是他测出的杆长L′.地面上的人要利用固定在地面上的坐标轴,测出杆两端的位置坐标,坐标之差就是他测出的杆长L.可是,对于地面上的人,杆是运动的,要使这种测量有意义,他必须同时测出杆两端的位置坐标;如果在某一时刻测出杆一端的位置坐标,在另一时刻测出另一端的位置坐标,坐标之差就不能代表杆长了.火车上的人和地面上的人各自用上述方法测量随车运动的杆长,结果发现,L′>L.他们两人的测量都是符合测量要求的,但测量结果不同,这跟同时的相对性有关.地面上的人认s为同时的两个事件(同时对A、B两端读数),火车上的人认为不是同时的.火车上的人认为,地面上的人对B端的读数早些,对A端的读数迟些,在这个时间内杆向前运动了一段距离,因而地面上的人测得的杆长比较短.(2)式具有普遍意义,也就是说,一个杆,当它沿着自身的方向相对于测量者运动时,测得的长度比它静止时的长度小,速度越大,差别也越大.这就是我们所说的空间的相对性.当杆沿着垂直于自身的方向运动时,测得的长度和静止时一样.可以想像这样一幅图景:一列火车以接近光的速度从我们身边飞驶而过,我们感到车厢变短了,车窗变窄了……火车越快,这个现象越明显,但是车厢和车窗的高度都没有变化.车上的人有什么感觉呢?他认为车上的一切都和往常一样,因为他和火车是相对静止的.但是,他却认为地面上的景象有些异常:沿线的电线杆的距离变短了,面对铁路线的正方形布告牌由于宽度变小而高度未变竟成了窄而高的矩形……时空相对性的实验验证从(l)、(2)两式可以看到,只有当两个参考系的相对速度可与光速相比时,时间与空间的相对性才比较明显.目前的技术还不能使宏观物体达到这样的速度,但是随着对微观粒子研究的不断深入,人们发现,许多情况下粒子的速度会达到光速的90%以上,时空的相对性应该是不可忽略的.事实正是如此.时至今日,不但狭义相对论的所有结论已经完全得到证实,实际上它已经成为微观粒子研究的基础之一.时空相对性的最早证据跟宇宙线的观测有关(1941年).宇宙线是来自太阳和宇宙深处的高能粒子流,它和高层大气作用,又产生多种粒子,叫做次级宇宙线,它们统称宇宙线.次级宇宙线中有一种粒子叫做μ子,寿命不长,只有 3.0μs,超过这个时间后大多数μ子就衰变为别的粒子了.宇宙线中μ子的速度约为0.99c,所以在它的寿命之内,运动的距离只有约890m.μ子生成的高度在100km以上,这样说来宇宙线中的μ子不可能到达地面.但在实际上,地面观测到的宇宙线中有许多μ子,这只能用相对论来解释.我们说μ子的寿命为 3.0μs,这是在与它相对静止的参考系中说的.从地面参考系看,μ子在以接近光速的速度运动,根据(l)式,它的寿命比3.0μs长得多,在这样长的时间内,许多μ子可以飞到地面.如果观察者和μ子一起运动,这个现象也好解释.这位观察者看到,μ子的寿命仍是3.0μs,但是大地正向他扑面而来,因此大气层的厚度不是100km,由于长度的相对性,在他看来大气层比100km薄得多,许多μ子在衰变为其他粒子之前可以飞过这样的距离.相对论的第一次宏观验证是在1971年进行的.当时把铯原子钟放在喷气式飞机上作环球飞行,然后与地面上的基准钟对照.实验结果与理论预言符合得很好.相对论的时空观什么是时间?什么是空间?时间和空间有什么性质?经典物理学对这些问题并没有正面回答.但是从它对问题的处理上,我们体会到,经典物理学认为空间好像一个大盒子(一个没有边界的盒子),它是物质运动的场所.至于某一时刻在某一空间区域是否有物质存在,物质在做什么样的运动,这些对于空间本身没有影响,就像盒子里是否装了东西对于盒子的性质没有影响一样.时间与此相似,它在一分一秒地流逝,与物质的运动无关.换句话说,经典物理学认为空间和时间是脱离物质而存在的,是绝对的,空间与时间之间也是没有联系的.相对论则认为有物质才有空间和时间,空间和时间与物质的运动状态有关.前面已经看到,在一个确定的参考系中观察,运动物体的长度(空间距离)和它上面物理过程的快慢(时间进程)都跟物体的运动状态有关.我们生活在低速运动的世界里,因此自然而然地接受了经典的时空观,过去谁都未曾有意识地考虑过空间与时间的性质.只有当新的实验事实引出的结论与传统观念不一致时,人们才回过头来认真思考过去对于空间和时间的认识.科学的发展和人对于自然界的认识就是这样一步一步地前进的.新科学没有全盘否定经典物理学,经典物理学建立在实验的基础上,它的结论又受到无数次实践的检验.虽然相对论更具有普遍性,但是经典物理学作为它在低速运动时的特例,在自己的适用范围内还将继续发挥作用.狭义相对论的其他三个结论我们不做推导而直接引入狭义相对论的三个重要结论.相对论速度叠加公式仍以高速火车为例.设车对地面的速度为v,车上的人以速度u′沿着火车前进的方向相对火车运动,那么他相对地面的速度u为如果车上人的运动方向与火车的运动方向相反,则u′取负值.这两个速度的方向垂直或成其他角度时,(1)式不适用,这种情况不做讨论.按照经典的时空观,u=u′+v.而从(1)式来看,实际上人对地面的速度u比u′与v之和要小,不过只有在u′和v的大小可以与c相比时才会观察到这个差别.从(1)式还可以看出,如果u′和v都很大,例如十分接近光速,它们的合速度也不会超过光速,也就是说,光速是速度的极限.此外,当u′=c时,不论v取什么值,总有u=c,这表明,从不同参考系中观察,光速都是相同的,这和相对论的第二个假设一致.相对论质量按照牛顿力学,物体的质量是不变的,因此一定的力作用在物体上,产生的加速度也是一定的,这样,经过足够长的时间以后物体就可以达到任意大的速度.但是相对论的速度叠加公式告诉我们,物体的运动速度不能无限增加.这个矛盾启发我们思考:物体的质量是否随物体的速度而增大?严格的论证证实了这一点.实际上,物体以速度v运动时的质量m和它静止时的质量m之间有如下关系:微观粒子的运动速度很高,它的质量明显地大于静止质量,这个现象必须考虑.例如,回旋加速器中被加速的粒子,在速度增大后质量增大,因此做圆周运动的周期变大,它的运动与加在D形盒上的交变电压不再同步,所以回旋加速器中粒子的能量受到了限制.质能方程相对论另一个重要结论就是大家已经学过的爱因斯坦质能方程:E = mc(3)2它表达了物体的质量和它所具有的能量的关系.物体运动时的能量E和静时有以下近似关系于是知道:这就是过去熟悉的动能表达式.这个结果又一次让我们看到,牛顿力学是相对论力学在v<<c时的特例.。
4.广义相对论简介1.知道相对论速度叠加规律。
2.知道相对论质能关系。
3.初步了解广义相对论的几个主要观点以及主要观测证据。
4.关注宇宙学的新进展。
狭义相对论告诉我们,物体运动的极限速度都不可能越过真空中的光速。
在宏观低速运动的条件下,伽利略的速度叠加原理简单有效,但对高速运动的物体及微观高速粒子,速度的叠加原理与传统经典观念矛盾,必须要考虑相对论效应。
考虑相对论效应的情况下速度的叠加是怎样的呢?提示:相对论效应指的是“动尺变短”或“动钟变慢”等。
在高速运动的参考系中,速度的叠加必须考虑这个因素,低速宏观状态下遵守伽利略的速度叠加原理,高速的情况下任何运动的速度不能超过光速。
一、狭义相对论的其他结论1.相对论速度变换公式设车对地的速度为v,人对车的速度为u′,车上人相对于地面的速度为u,(1)经典的时空观:u=u′+v。
(2)相对论的速度变换公式为:_______________________________________________。
如果车上人运动方向与车运动方向相同,u′取____值,如果车上人运动方向与车运动方向相反,u′取____值。
(3)结论:光速c是宇宙万物速度的极限,且相对于任何参考系都是不变的。
注意:它只适用于沿同一直线运动物体速度的叠加。
2.相对论质量(1)经典力学:物体的质量是______的,一定的力作用在物体上,产生的加速度也是______的,足够长的时间以后物体就可以达到______速度。
(2)相对论情况下:物体的质量随其速度的增大而增大。
物体以速度v运动时的质量m 与静止时的质量m0的关系式为:____________________。
3.质能方程质能方程:________。
质能方程表达了物体的质量m和它所具有的能量E之间的关系。
思考:有人根据E=mc2得出结论:质量可以转化为能量、能量可以转化为质量。
这种说法对吗?二、广义相对论简介1.超越狭义相对论的思考爱因斯坦思考狭义相对论无法解决的两个问题:(1)引力问题,万有引力理论无法纳入______________的框架。