2019-2020学年高中物理 知识点总结 新人教版选修3-4.doc
- 格式:doc
- 大小:391.10 KB
- 文档页数:10
(完整版)高中物理必修3-4知识点清单(非常详细)第一章 机械振动 第二章 机械波一、简谐运动1.概念:质点的位移与时间的关系遵从正弦函数的规律,即它的振动图象(x -t 图象)是一条正弦曲线的振动.2.平衡位置:物体在振动过程中回复力为零的位置. 3.回复力(1)定义:使物体返回到平衡位置的力. (2)方向:时刻指向平衡位置.(3)来源:振动物体所受的沿振动方向的合力. 4.简谐运动的表达式(1)动力学表达式:F =-kx ,其中“-”表示回复力与位移的方向相反.(2)运动学表达式:x =A sin (ωt +φ),其中A 代表振幅,ω=2πf 表示简谐运动的快慢,(ωt +φ)代表简谐运动的相位,φ叫做初相.5 定义 意义振幅 振动质点离开平衡位置的最大距离描述振动的强弱和能量周期振动物体完成一次全振动所需时间描述振动的快慢,两者互为倒数:T =1f频率振动物体单位时间内完成全振动的次数相位 ωt +φ描述质点在各个时刻所处的不同状态二、单摆1.定义:在细线的一端拴一个小球,另一端固定在悬点上,如果细线的伸缩和质量都不计,球的直径比线的长度短得多,这样的装置叫做单摆.2.视为简谐运动的条件:θ<5°.3.回复力:F =G 2=G sin θ=mg lx . 4.周期公式:T =2πl g. 5.单摆的等时性:单摆的振动周期取决于摆长l 和重力加速度g ,与振幅和振子(小球)质量都没有关系.三、受迫振动及共振 1.受迫振动:系统在驱动力作用下的振动.做受迫振动的物体,它的周期(或频率)等于驱动力周期(或频率),而与物体的固有周期(或频率)无关.2.共振:做受迫振动的物体,它的固有频率与驱动力的频率越接近,其振幅就越大,当二者相等时,振幅达到最大,这就是共振现象.共振曲线如图所示.考点一 简谐运动的五个特征 1.动力学特征 F =-kx ,“-”表示回复力的方向与位移方向相反,k 是比例系数,不一定是弹簧的劲度系数.2.运动学特征简谐运动的加速度与物体偏离平衡位置的位移成正比而方向相反,为变加速运动,远离平衡位置时x 、F 、a 、E p 均增大,v 、E k 均减小,靠近平衡位置时则相反.3.运动的周期性特征相隔T 或nT 的两个时刻振子处于同一位置且振动状态相同. 4.对称性特征(1)相隔T 2或2n +12T (n 为正整数)的两个时刻,振子位置关于平衡位置对称,位移、速度、加速度大小相等,方向相反.(2)如图所示,振子经过关于平衡位置O 对称的两点P 、P ′(OP =OP ′)时,速度的大小、动能、势能相等,相对于平衡位置的位移大小相等.(3)振子由P 到O 所用时间等于由O 到P ′所用时间,即t PO =t OP ′.(4)振子往复过程中通过同一段路程(如OP 段)所用时间相等,即t OP =t PO . 5.能量特征振动的能量包括动能E k 和势能E p ,简谐运动过程中,系统动能与势能相互转化,系统的机械能守恒.6.(1)由于简谐运动具有周期性、往复性、对称性,因此涉及简谐运动时,往往出现多解.分析此类问题时,特别应注意,物体在某一位置时,位移是确定的,而速度不确定,时间也存在周期性关系.(2)相隔(2n +1)T2的两个时刻振子的位置关于平衡位置对称,位移、速度、加速度等大反向.考点二 简谐运动的图象的应用某质点的振动图象如图所示,通过图象可以确定以下各量: 1.确定振动物体在任意时刻的位移. 2.确定振动的振幅.3.确定振动的周期和频率.振动图象上一个完整的正弦(余弦)图形在时间轴上拉开的“长度”表示周期.4.确定质点在各时刻的振动方向.5.比较各时刻质点加速度的大小和方向.6.(1)简谐运动的图象不是振动质点的轨迹,它表示的是振动物体的位移随时间变化的规律;(2)因回复力总是指向平衡位置,故回复力和加速度在图象上总是指向t 轴;(3)速度方向可以通过下一个时刻位移的变化来判定,下一个时刻位移如果增加,振动质点的速度方向就远离t 轴,下一个时刻的位移如果减小,振动质点的速度方向就指向t 轴.考点三 受迫振动和共振自由振动 受迫振动 共振受力情况仅受回 复力 受驱动 力作用 受驱动力作用振动周期 或频率 由系统本身性质决定,即固有周期T 0或固有频率f 0由驱动力的周期或频率决定,即T =T 驱或f =f 驱 T 驱=T 0或f 驱=f 0振动能量 振动物体的机械能不变 由产生驱动力的物体提供振动物体获得的能量最大常见例子弹簧振子或单摆(θ≤5°) 机械工作时底座发生的振动共振筛、声音的共鸣等(1)共振曲线:如图所示,横坐标为驱动力频率f ,纵坐标为振幅A .它直观地反映了驱动力频率对某振动系统受迫振动振幅的影响,由图可知,f 与f 0越接近,振幅A 越大;当f =f 0时,振幅A 最大.(2)受迫振动中系统能量的转化:受迫振动系统机械能不守恒,系统与外界时刻进行能量交换.3.(1)无论发生共振与否,受迫振动的频率都等于驱动力的频率,但只有发生共振现象时振幅才能达到最大.(2)受迫振动系统中的能量转化不再只有系统内部动能和势能的转化,还有驱动力对系统做正功补偿系统因克服阻力而损失的机械能.三、实验:用单摆测定重力加速度1.实验原理由单摆的周期公式T =2πl g ,可得出g =4π2T2l ,测出单摆的摆长l 和振动周期T ,就可求出当地的重力加速度g .2.实验器材单摆、游标卡尺、毫米刻度尺、停表. 3.实验步骤(1)做单摆:取约1 m 长的细丝线穿过带中心孔的小钢球,并打一个比小孔大一些的结,然后把线的另一端用铁夹固定在铁架台上,让摆球自然下垂,如图所示.(2)测摆长:用毫米刻度尺量出摆线长L (精确到毫米),用游标卡尺测出小球直径D ,则单摆的摆长l =L +D2.(3)测周期:将单摆从平衡位置拉开一个角度(小于5°),然后释放小球,记下单摆摆动30~50次的总时间,算出平均每摆动一次的时间,即为单摆的振动周期.(4)改变摆长,重做几次实验. 4.数据处理(1)公式法:g =4π2lT2.(2)图象法:画l -T 2图象.g =4π2k ,k =l T 2=ΔlΔT2.5.注意事项(1)悬线顶端不能晃动,需用夹子夹住,保证悬点固定. (2)单摆必须在同一平面内振动,且摆角小于10°.(3)选择在摆球摆到平衡位置处时开始计时,并数准全振动的次数.(4)小球自然下垂时,用毫米刻度尺量出悬线长L ,用游标卡尺测量小球的直径,然后算出摆球的半径r ,则摆长l =L +r .(5)选用一米左右的细线.四、机械波 1.形成条件(1)有发生机械振动的波源. (2)有传播介质,如空气、水等. 2.传播特点(1)传播振动形式、传递能量、传递信息. (2)质点不随波迁移. 3.分类机械波⎩⎪⎨⎪⎧横波:振动方向与传播方向垂直.纵波:振动方向与传播方向在同一直线上.五、描述机械波的物理量1.波长λ:在波动中振动相位总是相同的两个相邻质点间的距离.用“λ”表示. 2.频率f :在波动中,介质中各质点的振动频率都是相同的,都等于波源的振动频率. 3.波速v 、波长λ和频率f 、周期T 的关系公式:v =λT=λf机械波的速度大小由介质决定,与机械波的频率无关. 六、机械波的图象1.图象:在平面直角坐标系中,用横坐标表示介质中各质点的平衡位置,用纵坐标表示某一时刻各质点偏离平衡位置的位移,连接各位移矢量的末端,得出的曲线即为波的图象,简谐波的图象是正弦(或余弦)曲线.2.物理意义:某一时刻介质中各质点相对平衡位置的位移. 四、波的衍射和干涉1.波的衍射定义:波可以绕过障碍物继续传播的现象.2.发生明显衍射的条件:只有缝、孔的宽度或障碍物的尺寸跟波长相差不多,或者小于波长时,才会发生明显的衍射现象.3.波的叠加原理:几列波相遇时能保持各自的运动状态,继续传播,在它们重叠的区域里,介质的质点同时参与这几列波引起的振动,质点的位移等于这几列波单独传播时引起的位移的矢量和.4.波的干涉(1)定义:频率相同的两列波叠加时,某些区域的振动加强、某些区域的振动减弱,这种现象叫波的干涉.(2)条件:两列波的频率相同.5.干涉和衍射是波特有的现象,波同时还可以发生反射、折射. 五、多普勒效应由于波源与观察者互相靠近或者互相远离时,接收到的波的频率与波源频率不相等的现象.考点一 波动图象与波速公式的应用1.波的图象反映了在某时刻介质中的质点离开平衡位置的位移情况,图象的横轴表示各质点的平衡位置,纵轴表示该时刻各质点的位移,如图.图象的应用:(1)直接读取振幅A 和波长λ,以及该时刻各质点的位移.(2)确定某时刻各质点加速度的方向,并能比较其大小. (3)结合波的传播方向可确定各质点的振动方向或由各质点的振动方向确定波的传播方向.2.波速与波长、周期、频率的关系为:v =λT=λf . 3.波的传播方向与质点的振动方向的互判方法图象律表示同一质点在各时刻的位移表示某时刻各质点的位移考点三 波的干涉、衍射、多普勒效应 1.波的干涉中振动加强点和减弱点的判断某质点的振动是加强还是减弱,取决于该点到两相干波源的距离之差Δr . (1)当两波源振动步调一致时若Δr =n λ(n =0,1,2,…),则振动加强; 若Δr =(2n +1)λ2(n =0,1,2,…),则振动减弱.(2)当两波源振动步调相反时若Δr =(2n +1)λ2(n =0,1,2,…),则振动加强;若Δr =n λ(n =0,1,2,…),则振动减弱. 2.波的衍射现象是指波能绕过障碍物继续传播的现象,产生明显衍射现象的条件是缝、孔的宽度或障碍物的尺寸跟波长相差不大或者小于波长.3.多普勒效应的成因分析 (1)接收频率:观察者接收到的频率等于观察者在单位时间内接收到的完全波的个数.当波以速度v 通过观察者时,时间t 内通过的完全波的个数为N =vtλ,因而单位时间内通过观察者的完全波的个数,即接收频率.(2)当波源与观察者相互靠近时,观察者接收到的频率变大,当波源与观察者相互远离时,观察者接收到的频率变小.第三章 电磁波一、电磁波的产生1.麦克斯韦电磁场理论变化的磁场产生电场,变化的电场产生磁场. 2.电磁场变化的电场和变化的磁场总是相互联系成为一个完整的整体,这就是电磁场. 3.电磁波电磁场(电磁能量)由近及远地向周围传播形成电磁波. (1)电磁波是横波,在空间传播不需要介质.(2)真空中电磁波的速度为3.0×108m/s.(3)电磁波能产生干涉、衍射、反射和折射等现象. 二、电磁波的发射与接收 1.电磁波的发射(1)发射条件:足够高的频率和开放电路. (2)调制分类:调幅和调频. 2.电磁波的接收(1)调谐:使接收电路产生电谐振的过程.(2)解调:使声音或图像信号从高频电流中还原出来的过程.第四章 光的折射 全反射一、光的折射与折射率 1.折射定律(1)内容:如图所示,折射光线与入射光线、法线处在同一平面内,折射光线与入射光线分别位于法线的两侧;入射角的正弦与折射角的正弦成正比.(2)表达式:sin θ1sin θ2=n .(3)在光的折射现象中,光路是可逆的. 2.折射率(1)折射率是一个反映介质的光学特性的物理量.(2)定义式:n =sin θ1sin θ2.(3)计算公式:n =c v,因为v <c ,所以任何介质的折射率都大于1.(4)当光从真空(或空气)射入某种介质时,入射角大于折射角;当光由介质射入真空(或空气)时,入射角小于折射角.二、全反射1.条件:(1)光从光密介质射入光疏介质. (2)入射角≥临界角.2.临界角:折射角等于90°时的入射角,用C 表示,sin C =1n.三、光的色散、棱镜 1.光的色散 (1)色散现象白光通过三棱镜会形成由红到紫七种色光组成的彩色光谱,如图.(2)成因由于n 红<n 紫,所以以相同的入射角射到棱镜界面时,红光和紫光的折射角不同,就是说紫光偏折得更明显些,当它们射到另一个界面时,紫光的偏折角最大,红光偏折角最小.三、 全反射现象1.在光的反射和全反射现象中,均遵循光的反射定律;光路均是可逆的.2.当光射到两种介质的界面上时,往往同时发生光的折射和反射现象,但在全反射现象中,只发生反射,不发生折射.当折射角等于90°时,实际上就已经没有折射光了.3.全反射现象可以从能量的角度去理解:当光由光密介质射向光疏介质时,在入射角逐渐增大的过程中,反射光的能量逐渐增强,折射光的能量逐渐减弱,当入射角等于临界角时,折射光的能量已经减弱为零,这时就发生了全反射.4.分析全反射问题的基本思路(1)画出恰好发生全反射的临界光线,作好光路图. (2)应用几何知识分析边、角关系,找出临界角. (3)判断发生全反射的范围. 考点三 光路的计算与判断1.光线射到介质的界面上时,要注意对产生的现象进行分析:(1)若光线从光疏介质射入光密介质,不会发生全反射,而同时发生反射和折射现象,不同色光偏折不同.(2)若光线从光密介质射向光疏介质,是否发生全反射,要根据计算判断,要注意不同色光临界角不同.2.作图时要找出具有代表性的光线,如符合边界条件或全反射临界条件的光线. 3.解答时注意利用光路可逆性、对称性和几何知识. 4.各种色光的比较颜色 红橙黄绿青蓝紫 频率ν 低―→高 同一介质中的折射率 小―→大 同一介质中速度 大―→小波长 大―→小 临界角 大―→小 通过棱镜的偏折角 小―→大四、实验:测定玻璃的折射率 1.实验原理用插针法找出与入射光线AO 对应的出射光线O ′B ,确定出O ′点,画出折射光线OO ′,然后测量出角θ1和θ2,代入公式n =sin θ1sin θ2计算玻璃的折射率.2.实验过程(1)铺白纸、画线. ①如图所示,将白纸用图钉按在平木板上,先在白纸上画出一条直线aa ′作为界面,过aa ′上的一点O 画出界面的法线MN ,并画一条线段AO 作为入射光线.②把玻璃砖平放在白纸上,使它的长边跟aa ′对齐,画出玻璃砖的另一条长边bb ′.(2)插针与测量.①在线段AO 上竖直地插上两枚大头针P 1、P 2,透过玻璃砖观察大头针P 1、P 2的像,调整视线的方向,直到P 1的像被P 2挡住,再在观察的这一侧依次插两枚大头针P 3、P 4,使P 3挡住P 1、P 2的像,P 4挡住P 1、P 2的像及P 3,记下P 3、P 4的位置.②移去玻璃砖,连接P 3、P 4并延长交bb ′于O ′,连接OO ′即为折射光线,入射角θ1=∠AOM ,折射角θ2=∠O ′ON .③用量角器测出入射角和折射角,查出它们的正弦值,将数据填入表格中. ④改变入射角θ1,重复实验步骤,列表记录相关测量数据. 3.数据处理(1)计算法:用量角器测量入射角θ1和折射角θ2,并查出其正弦值sin θ1和sin θ2.算出不同入射角时的sin θ1sin θ2,并取平均值.(2)作sin θ1-sin θ2图象:改变不同的入射角θ1,测出不同的折射角θ2,作sin θ1-sin θ2图象,由n =sin θ1sin θ2可知图象应为直线,如图所示,其斜率为折射率.(3)“单位圆”法确定sin θ1、sin θ2,计算折射率n :以入射点O 为圆心,以一定的长度R 为半径画圆,交入射光线OA 于E 点,交折射光线OO ′于E ′点,过E 作NN ′的垂线EH ,过E ′作NN ′的垂线E ′H ′.如图所示,sin θ1=EH OE ,sin θ2=E ′H ′OE ′,OE =OE ′=R ,则n =sin θ1sin θ2=EHE ′H ′.只要用刻度尺量出EH 、E ′H ′的长度就可以求出n .4.注意事项(1)玻璃砖应选用厚度、宽度较大的. (2)大头针要插得竖直,且间隔要大些.(3)入射角不宜过大或过小,一般在15°~75°之间.(4)玻璃砖的折射面要画准,不能用玻璃砖界面代替直尺画界线. (5)实验过程中,玻璃砖和白纸的相对位置不能改变.第五章 光的干涉 衍射 偏振一、光的干涉1.定义:在两列光波的叠加区域,某些区域的光被加强,出现亮纹,某些区域的光被减弱,出现暗纹,且加强和减弱互相间隔的现象叫做光的干涉现象.2.条件:两列光的频率相等,且具有恒定的相位差,才能产生稳定的干涉现象. 3.双缝干涉:由同一光源发出的光经双缝后形成两束振动情况总是频率相等的相干光波,屏上某点到双缝的路程差是波长的整数倍处出现亮条纹;路程差是半波长的奇数倍处出现暗条纹.相邻的明条纹(或暗条纹)之间距离Δx 与波长λ、双缝间距d 及屏到双缝距离l 的关系为Δx =l dλ.4.薄膜干涉:利用薄膜(如肥皂液薄膜)前后表面反射的光相遇而形成的.图样中同一条亮(或暗)条纹上所对应薄膜厚度相同.二、光的衍射 1.光的衍射现象光在遇到障碍物时,偏离直线传播方向而照射到阴影区域的现象叫做光的衍射. 2.光发生明显衍射现象的条件当孔或障碍物的尺寸比光波波长小,或者跟光波波长相差不多时,光才能发生明显的衍射现象.3.衍射图样(1)单缝衍射:中央为亮条纹,向两侧有明暗相间的条纹,但间距和亮度不同.白光衍射时,中央仍为白光,最靠近中央的是紫光,最远离中央的是红光.(2)圆孔衍射:明暗相间的不等距圆环.(3)泊松亮斑:光照射到一个半径很小的圆板后,在圆板的阴影中心出现的亮斑,这是光能发生衍射的有力证据之一.三、光的偏振1.偏振光:在跟光传播方向垂直的平面内,光在某一方向振动较强而在另一些方向振动较弱的光即为偏振光.光的偏振现象证明光是横波(填“横波”或“纵波”).2.自然光:太阳、电灯等普通光源发出的光,包括在垂直于传播方向上沿各个方向振动的光,而且沿各个方向振动的光波的强度都相同,这种光叫做自然光.3.偏振光的产生 自然光通过起偏器:通过两个共轴的偏振片观察自然光,第一个偏振片的作用是把自然光变成偏振光,叫做起偏器.第二个偏振片的作用是检验光是否是偏振光,叫做检偏器.考点一 光的干涉 1.双缝干涉(1)光能够发生干涉的条件:两光的频率相同,振动步调相同. (2)双缝干涉形成的条纹是等间距的,两相邻亮条纹或相邻暗条纹间距离与波长成正比,即Δx =l dλ.(3)用白光照射双缝时,形成的干涉条纹的特点:中央为白条纹,两侧为彩色条纹. 2.薄膜干涉(1)如图所示,竖直的肥皂薄膜,由于重力的作用,形成上薄下厚的楔形.(2)光照射到薄膜上时,在膜的前表面AA ′和后表面BB ′分别反射出来,形成两列频率相同的光波,并且叠加,两列光波同相叠加,出现明纹;反相叠加,出现暗纹.(3)条纹特点:①单色光:明暗相间的水平条纹; ②白光:彩色水平条纹. 3.明暗条纹的判断方法屏上某点到双缝距离之差为Δr ,若Δr =k λ(k =0,1,2,…),则为明条纹;若Δr =(2k +1)λ2(k =0,1,2,…),则为暗条纹. 考点二 光的衍射现象的理解 1两种现象比较项目单缝衍射 双缝干涉不同 点 条纹宽度 条纹宽度不等,中央最宽 条纹宽度相等条纹间距 各相邻条纹间距不等 各相邻条纹等间距 亮度情况中央条纹最亮,两边变暗 条纹清晰,亮度基本相等相同点干涉、衍射都是波特有的现象,属于波的叠加;干涉、衍射都有明暗相间的条纹2.光的干涉和衍射都属于光的叠加,从本质上看,干涉条纹和衍射条纹的形成有相似的原理,都可认为是从单缝通过两列或多列频率相同的光波,在屏上叠加形成的.考点三 光的偏振现象的理解 1.偏振光的产生方式(1)自然光通过起偏器:通过两个共轴的偏振片观察自然光,第一个偏振片的作用是把自然光变成偏振光,叫起偏器.第二个偏振片的作用是检验光是否为偏振光,叫检偏器.(2)自然光射到两种介质的交界面上,如果光入射的方向合适,使反射光和折射光之间的夹角恰好是90°时,反射光和折射光都是偏振光,且偏振方向相互垂直.2.偏振光的理论意义及应用(1)理论意义:光的偏振现象说明了光波是横波. (2)应用:照相机镜头、立体电影、消除车灯眩光等. 考点四 实验:用双缝干涉测量光的波长 1.实验原理单色光通过单缝后,经双缝产生稳定的干涉图样,图样中相邻两条亮(暗)纹间距Δx 与双缝间距d 、双缝到屏的距离l 、单色光的波长λ之间满足λ=d Δx /l .2.实验步骤 (1)观察干涉条纹①将光源、遮光筒、毛玻璃屏依次安放在光具座上.如图所示.②接好光源,打开开关,使灯丝正常发光.③调节各器件的高度,使光源发出的光能沿轴线到达光屏.④安装双缝和单缝,中心大致位于遮光筒的轴线上,使双缝与单缝的缝平行,二者间距约5 cm ~10 cm ,这时,可观察白光的干涉条纹.⑤在单缝和光源间放上滤光片,观察单色光的干涉条纹. (2)测定单色光的波长①安装测量头,调节至可清晰观察到干涉条纹.②使分划板中心刻线对齐某条亮条纹的中央,记下手轮上的读数a 1,将该条纹记为第1条亮纹;转动手轮,使分划板中心刻线移动至另一亮条纹的中央,记下此时手轮上的读数a 2,将该条纹记为第n 条亮纹.③用刻度尺测量双缝到光屏的距离l (d 是已知的). ④改变双缝间的距离d ,双缝到屏的距离l ,重复测量. 3.数据处理(1)条纹间距Δx =|a 2-a 1n -1|.(2)波长λ=d lΔx .(3)计算多组数据,求λ的平均值. 4.注意事项(1)安装时,注意调节光源、滤光片、单缝、双缝的中心均在遮光筒的中心轴线上,并使单缝、双缝平行且间距适当.(2)光源灯丝最好为线状灯丝,并与单缝平行且靠近.(3)调节的基本依据是:照在光屏上的光很弱,主要原因是灯丝与单缝、双缝,测量头与遮光筒不共轴所致,干涉条纹不清晰一般原因是单缝与双缝不平行所致,故应正确调节.。
高中物理选修 3-4 知识点总结机械振动:物体(或物体的一部分)在均衡地点邻近做来去运动,机械振动产生的条件是:阻尼足够小,拥有均衡地点(答复力为零的地点),在均衡地点有一初速度,运动过程中遇到答复力不为零,振动拥有来去性。
答复力:阻力很小.使振动物体回到均衡地点的力叫做答复力。
答复力是变力答复力的方向老是指向均衡地点。
答复力属于成效力(产生振动加快度,改变速度的大小。
),答复力能够由合外力,几个力的协力,一个力,或某个力的分力供给。
物体振动经过均衡位置时不必定处于均衡状态(合外力不必定为零)弹簧振子振动, O点为均衡地点, AA’分别是左、右两头的最大位移处,振子的振动能够分红四个阶段:O A;A O;O A';A' O。
四个阶段中,振子的位移,答复力、速度和加快度的变化以下表:简谐振动在均衡地点,位移为零,速度最大,加快度为零;在最大位移处,速度为零,加快度最大。
物体的速度在最大位移处改变方向。
简谐振动是一种变加快运动。
简谐振动过程,系统动能和势能相互转变,总机械能守恒。
在均衡地点处,动能最大,动量最大 ,势能为零,在最大位移处,势能最大,动能为零 , 动量最小振动能量 = 动能 + 势能最大位移的势能=均衡地点的动能(由振幅决定,与周期和频次没关)在水平方向上振动的弹簧振子的答复力是弹簧的弹力;在竖直方向上振动的弹簧振子的答复力是弹簧弹力和重力的协力。
水平搁置、竖直搁置的弹簧振子的振动都是简谐运动弹簧振子具备的条件:①弹簧质量忽视不计②无摩擦等阻力③在弹性限度内弹簧振子做简谐运动的答复力公式F kx ,(k为比率系数, 恰巧等于弹簧振子的弹簧劲度系数,其余简谐运动k 不是弹簧的劲度系数。
)加快度公式a kx,加快度的大小跟位m移大小成正比,其方向与位移方向老是相反。
简谐振动的特色物体在跟位移大小成正比,并且老是指向均衡地点的答复力作用下的振动,加快度的大小跟位移大小成正比,其方向与位移方向老是相反。
第3节光_的_干_涉一、杨氏干涉实验 1.物理史实1801年,英国物理学家托马斯·杨成功地观察到了光的干涉现象,开始让人们认识到光的波动性。
2.双缝干涉实验(1)实验过程:让一束平行的完全相同的单色光投射到一个有两条狭缝的挡板上,两狭缝相距很近,两狭缝就成了两个波源,它们的频率、相位和振动方向总是相同的,两个光源发出的光在挡板后面的空间互相叠加发生干涉。
(2)实验现象:在屏上得到明暗相间的条纹。
(3)实验结论:证明光是一种波。
二、光发生干涉的条件 1.干涉条件两列光的频率相同、振动方向相同、相位差恒定。
2.相干光源发出的光能够产生干涉的两个光源。
3.一般情况下很难观察到光的干涉现象的原因由于不同光源发出的光的频率一般不同,即使是同一光源,它的不同部位发出的光也不一定有相同的频率和恒定的相位差,故一般情况下不易观察到光的干涉现象。
1.英国物理学家托马斯·杨于1801年成功地观察到了光的干涉现象。
2.双缝干涉图样:单色光——明暗相间的条纹。
3.干涉条件:两列光的频率相同,振动方向相同,相位差恒定。
4.出现明纹与暗纹的条件:两光源到屏上某点的距离之差等于半波长的偶数倍时出现亮条纹,奇数倍时出现暗条纹。
1.自主思考——判一判(1)直接用强光照射双缝,发生干涉。
(×)(2)若用白光作光源,干涉条纹是明暗相间的条纹。
(×)(3)若用单色光作光源,干涉条纹是明暗相间的条纹。
(√)(4)在双缝干涉实验中单缝屏的作用是为了获得一个线光源。
(√)(5)双缝干涉实验证明光是一种波。
(√)2.合作探究——议一议(1)两只手电筒射出的光束在空间相遇,能否观察到光的干涉现象?提示:不能。
两只手电筒射出的光束在空间相遇,不满足光发生干涉的条件,不能观察到光的干涉现象。
(2)在双缝干涉实验中,如果入射光用白光,在两条狭缝上,一个用红色滤光片(只允许通过红光)遮挡,一个用绿色滤光片(只允许通过绿光)遮挡。
高中物理选修3-4知识点总结1.波的特征量及其关系(1)波长:波动过程中,对平衡位置的位移总相等的两相邻质点的距离叫波长;(2)频率:波的频率由波源的振动频率决定,在任何介质中,频率保持不变;(3)机械振动在介质中的传播的距离和所用时间的比值叫波速,波速由介质本身的性质所决定(若光还和光的频率有关),在不同介质中波速是不同的。
(v =λ/T )2.介质中质点运动的特征:(1)每个质点都在自己平衡位置附近作振动,并不随波迁移;(2)后振动的质点振动情况总是落后于相邻的先振动的质点的振动3.波动图象(1)规定用横坐标x表示在波的传播方向上各个质点的平衡位置,纵坐标y表示某一时刻各个质...点.偏离平衡位置的位移,连结各质点位移量末端得到的曲线叫做该时刻波的图象(2)用“同侧法”判断波动图像中质点的速度方向,用作切线判断振动图像中质点的速度方向(3)在一个周期内质点沿y轴振动通过路程4A,1/4个周期不一定是A;波沿x轴匀速传播λ,1/4个周期一定是λ/44、波长、波速和频率(周期)的关系:v =△x/△t=λf=λ/ T。
5、波绕过障碍物的现象叫做波的衍射,能够发生明显的衍射现象的条件是:障碍物或孔的尺寸比波..长小..,或者跟波长相差不多。
d≤λ(超声波(它是机械波非电磁波)定位原理:频率大,波长小不易衍射,直线传播性好)6、产生干涉的必要条件是:两列波源的频率必须相同,干涉区域内某点是振动最强点还是振动最弱点的充要条件:(1)最强:该点到两个波源的路程之差是波长的整数倍,即δ=nλ;(2)最弱:该点到两个波源的路程之差是半波长的奇数倍δ= ;,即。
根据以上分析,在稳定的干涉区域内,振动加强点始终加强....。
(振动加强的点还是做简谐运动,某....;振动减弱点始终减弱时刻位移可能为零)7、声波是纵波,能在空气、液体、固体中传播.声波在固体中波速大于液体大于气体.现象叫多普勒效应。
当波源与观察者相互靠近....。
高中物理 原子物理知识总结 新人教版选修3一、原子模型1.汤姆生模型(枣糕模型)汤姆生发现了电子,使人们认识到原子有复杂结构。
2.卢瑟福的核式结构模型(行星式模型)α粒子散射实验是用α粒子轰击金箔,结果是绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进,但是有少数α粒子发生了较大的偏转。
这说明原子的正电荷和质量一定集中在一个很小的核上。
卢瑟福由α粒子散射实验提出:在原子的中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间运动。
由α粒子散射实验的实验数据还可以估算出原子核大小的数量级是10-15m 。
3.玻尔模型(引入量子理论,量子化就是不连续性,整数n 叫量子数。
) ⑴玻尔的三条假设(量子化)①轨道量子化r n =n 2r 1 r 1=0.53×10-10m ②能量量子化:21nE E n E 1=-13.6eV③原子在两个能级间跃迁时辐射或吸收光子的能量h ν=E m -E n⑵从高能级向低能级跃迁时放出光子;从低能级向高能级跃迁时可能是吸收光子,也可能是由于碰撞(用加热的方法,使分子热运动加剧,分子间的相互碰撞可以传递能量)。
原子从低能级向高能级跃迁时只能吸收一定频率的光子;而从某一能级到被电离可以吸收能量大于或等于电离能的任何频率的光子。
(如在基态,可以吸收E ≥13.6eV 的任何光子,所吸收的能量除用于电离外,都转化为电离出去的电子的动能)。
⑶玻尔理论的局限性。
由于引进了量子理论(轨道量子化和能量量子化),玻尔理论成功地解释了氢光谱的规律。
但由于它保留了过多的经典物理理论(牛顿第二定律、向心力、库仑力等),所以在解释其他原子的光谱上都遇到很大的困难。
4.光谱和光谱分析⑴炽热的固体、液体和高压气体发出的光形成连续光谱。
⑵稀薄气体发光形成线状谱(又叫明线光谱、原子光谱)。
根据玻尔理论,不同原子的结构不同,能级不同,可能辐射的光子就有不同n E /eV∞ 0 -13.6-3.44 -0.85的波长。
选修3-4期末复习知识清单一. 机械振动与机械波(1)基础回顾1.物体做简谐运动的动力学特征:回复力及加速度与位移大小成正比,方向总是与位移的方向相反,始终指向______位置,其表达式为:F =________,a =________,回复力的来源是物体所受到的合力。
2.物体做简谐运动的运动学特征是周期性运动、位移、回复力、加速度、速度、动量都随时间按“正弦”或“余弦”的规律变化,它们的周期均相同,其位移随时间变化的表达式为:x =___________或x =___________。
3.简谐运动的能量特征是:振动的能量与________有关,随______的增大而增大,振动系统的动能和势能相互转化,总机械能守恒,能量的转化周期是位移周期的21。
4.简谐运动的两种模型是________和单摆,当单摆摆动的角度10<α时,可以看成简谐运动,其周期公式为T =gLπ2,可以用该公式测定某个天体表面的______,表达式为:g =__________=_____________,l '为摆线长,d 为球的直径。
阻尼振动:(1)特征:振幅递减。
(2)原因:机械能逐渐转化成其他形式的能量。
受迫振动及共振:驱动力频率(f )与振幅(A )之间的关系图像要求掌握 5.机械波(1)机械波的产生条件:①波源;②______________。
(2)机械波的特点①机械波传播的是振动的形式和______,质点在各自的平衡位置附近振动,并不随波迁移。
实质:通过传播振动的形式而将振源的能量传播出去。
②介质中各质点的振动周期和波的传播周期都与_____________________相同。
③机械波的传播速度只由__________决定。
(3)波速、波长、周期、频率的关系λλ⋅==f Tv波长由__________决定。
波速由__________决定。
波长由______和______决定。
6.振动图象和波动图象的物理意义不同,振动图象反映的是____________________,而波动图象是_____________________________。
第十二章机械波1波的形成和传播记一记波的形成和传播知识体系1个条件——波的形成条件:波源和介质2种分类——横波和纵波3个实质——机械波传播的是振动形式、能量、信息辨一辨1.质点的振动位置不断转换即形成波.(×)2.在绳波的形成和传播中,所有质点同时运动,同时停止运动.(×)3.在绳波的形成和传播中,所有质点的运动是近似的匀速直线运动.(×)4.机械波传播的是能量和振动形式,机械波不能在真空中传播.(√)5.横波在固体、液体、气体中都能传播,纵波只能在气体中传播.(×)6.质点沿水平方向振动,波沿水平方向传播,这样的波一定是横波.(×)想一想1.振动和波的关系是什么?有振动是否一定有机械波?提示:波源和介质是形成机械波的必要条件,二者缺一不可,有振动不一定有机械波,有机械波一定有振动.2.机械波形成后,若波源停止振动,机械波会立即消失吗?提示:不会.波源停止振动后,机械波传递的能量并没有立即消失,因此机械波不会立即消失.3.如图是地震后场景.当地震发生时,地震波在地球内部和地表传播,有时使人感到左右摇晃,有时使人感到上下颠簸,由此可见地震波是什么波?提示:震源往往在地下某个深度的地方,地震发生时,人感到上下颠簸是因为有纵波,感到左右摇晃是因为有横波.所以,地震波既含有纵波成分又含有横波成分.4.登上月球的宇航员可以通过声音直接交流吗?提示:不可以.因为月球上是真空的,没有传声介质,所以不能通过声音直接交流.思考感悟:练一练1.(多选)关于振动和波的关系,下列说法中正确的是()A.振动是波的成因,波是振动的传播B.振动是单个质点呈现的运动现象,波是许多质点联合起来呈现的运动现象C.波的传播速度就是质点振动的速度D.波源停止振动时,波立即停止传播解析:机械波的产生条件是有波源和介质.由于介质中的质点之间相互作用,一个质点的振动带动相邻质点的振动由近及远传播而形成波,A、B两项正确;波的传播速度是波形由波源向外伸展的速度,而质点振动的速度和方向都随时间周期性地发生变化,C项错误;波源一旦将振动传给了介质,振动就会在介质中向远处传播;当波源停止振动时,介质仍然继续传播波源振动的运动形式,不会随波源停止振动而立即停止传播,D项错误.答案:AB2.在敲响古刹里的大钟时,有的同学发现,停止对大钟的撞击后,大钟仍“余音未绝”,分析其原因是()A.大钟的回声B.大钟在继续振动,空气中继续形成声波C.人的听觉发生“暂留”D.大钟虽停止振动,但空气仍在振动解析:停止对大钟的撞击后,大钟的振动不会立即停止,振动的能量不会立即消失,大钟做一段时间的阻尼振动,因此还会在空气中形成声波,这就是余音未绝的原因,故B项正确.答案:B3.图中所示为一简谐横波在某一时刻的波形图,已知此时质点A正向上运动,如图中箭头所示,由此可判定此横波() A.向右传播,且此时质点B正向上运动B.向右传播,且此时质点C正向下运动C.向左传播,且此时质点D正向上运动D.向左传播,且此时质点E正向下运动解析:先根据A点向上运动可判定波向左传播,后一质点总是落后于前一质点的振动,然后依同一原则可判定D点向上运动,C项正确.答案:C4.(多选)一列横波沿绳子向右传播,传播过程无能量损失,某时刻绳子形成如图所示的凹凸形状.对此时绳上A、B、C、D、E、F六个质点,下列说法正确的是()A.它们的振幅相同B.质点D和F的速度方向相同C.质点A和C的速度方向相同D.从此时算起,质点B比C先回到平衡位置解析:波源振动时,绳上各质点通过相互间的弹力作用跟着做受迫振动,不考虑传播中的能量损耗时,各质点的振幅均相同,A项正确.波传播时,离波源远的质点的振动落后于离波源近的质点的振动,并跟随着离波源近的质点振动.由题图可知,波源在左端,因此,质点D跟随离波源近的质点C正向上运动,质点F跟随离波源近的质点E正向下运动,两者速度方向相反,B项错误;同理,此时质点A 正向下运动,质点C 正向上运动,两者速度方向也相反,C 项错误;由于此时B 、C 两质点都向上运动,B 比C 先到最大位移处,故B 比C 先回到平衡位置,D 项正确.答案:AD要点一 机械波的形成和传播1.(多选)如图所示,沿水平方向的介质中的部分质点,每相邻两质点的距离相等,其中O 为波源,设波源的振动周期为T ,从波源通过平衡位置竖直向下振动开始计时,经T 4质点1开始振动,则下列说法中正确的是( )A .介质中所有质点的起振方向都是竖直向下的,但图中质点9起振最晚B .图中所画出的质点起振时间都是相同的,起振的位置和起振的方向是不同的C .图中质点8的振动完全重复质点7的振动,只是质点8振动时通过平衡位置或最大位移处的时间总是比质点7通过相同的位置时落后T 4D .只要图中所有质点都已振动了,质点1与质点9的振动步调就完全一致,如果质点1发生的是第100次振动,则质点9发生的就是第98次振动解析:从题图可知,质点9是图中距波源最远的点,尽管与波源起振方向相同,但起振时刻最晚,故A 项正确,B 项错误;质点7与质点8比较,质点7在质点8的前面,两质点的振动步调相差T 4,故C 项正确;质点9比质点1晚2T 开始起振,一旦质点9起振后,质点1、9的振动步调就完全一致,故D 项正确.答案:ACD2.(多选)关于机械波,下列说法中正确的是( )A .各质点都在各自的平衡位置附近振动B .相邻质点间必有相互作用力C .前一质点的振动带动相邻的后一质点的振动,后一质点的振动必定落后于前一质点的振动D.各质点随波的传播而迁移解析:波在传播过程中,由于介质中各质点之间的相互作用,离波源较近的质点带动离波源较远的质点振动,每一质点都以它的平衡位置为中心振动,波传播的只是振动形式和振动能量,介质中的质点并不随波迁移.答案:ABC3.振源A带动细绳上各点上下做简谐运动,t=0时刻绳上形成的波形如图所示.规定绳上质点向上运动的方向为x轴的正方向,则P点的振动图象是()解析:由“带动法”可知此时P点从平衡位置开始向下运动,B项正确.答案:B4.在一平静的湖面上漂浮着一轻木块,向湖中投入一石块,在湖面上激起水波,关于木块的运动情况.以下说法正确的是()A.因为“随波逐流”,木块将被推至远处B.因不知道木块离波源的远近如何,所以无法确定木块的运动情况C.无论木块离波源的远近如何,它都不能被波推动,最多只能在湖面上做上下振动D.木块被推动的距离与木块的质量大小和所受水的阻力的大小等情况有关解析:波传播的是振动这种形式,各质点在各自平衡位置附近运动,并不随波迁移,故A、B、D三项错误,C项正确.答案:C5.如图所示,是某绳波形成过程的示意图.质点1在外力作用下沿竖直方向做简谐运动,带动2、3、4、…各个质点依次上下振动,把振动从绳的左端传到右端.已知t=0时,质点1开始向上运动,t=T4时,1到达最上方,5开始向上运动.问:(1)t=T2时,质点8、12、16的运动状态(是否运动、运动方向)如何?(2)t=3T4时,质点8、12、16的运动状态如何?解析:各质点在各时刻的情况,如图所示:(1)由甲图可知,t=T2时,质点8未达到波峰,正在向上振动,质点12、16未振动.(2)由乙图可知,t=3T4时,质点8正在向下振动,质点12向上振动,质点16未振动.答案:见解析要点二横波和纵波6.下列关于横波的说法中,正确的是()A.横波中,质点的振动方向一定与波的传播方向垂直B.横波中,质点的振动方向也可能与波的传播方向在同一直线上C.横波中,波水平向右传播,各个质点一定上下振动D.能形成波峰、波谷的波是横波解析:横波的传播方向与质点的振动方向垂直,但水平传播的横波,质点不一定就上、下振动,A项正确,B、C两项错误;有波峰和波谷,但波的传播方向不一定与质点的振动方向垂直,即不一定就是横波,如水波,D项错误.答案:A7.下列关于纵波的说法中,正确的是()A.在纵波中,波的传播方向就是波中质点的移动方向B.纵波中质点的振动方向一定与波的传播方向在一条直线上C.纵波中质点的振动方向一定与波的传播方向垂直D.纵波也有波峰和波谷解析:纵波中质点的振动方向与波的传播方向虽然在一条直线上,但质点的振动方向与波的传播方向可能相同,也可能相反.在波动中,横波有波峰和波谷,纵波有密部和疏部,故B项正确.答案:B8.有关纵波与横波,下列说法中正确的是()A.对于纵波,质点的振动方向与波的传播方向一定相同B.对于横波,质点振动方向与波的传播方向垂直C.纵波的质点可以随波迁移,而横波的质点不能D.横波只能在固体中传播,纵波只能在液体、气体中传播解析:纵波质点振动方向与传播方向在一条直线上,方向并不一定相同,故A项错误;横波质点振动方向与波的传播方向垂直,B项正确;机械波的质点只是在其平衡位置附近做简谐运动,并不随波迁移,无论横波和纵波都是这样,故C项错误;横波只能在固体中传播,纵波可在固体、液体和气体中传播,故D项错误.答案:B基础达标1.(多选)关于机械波和机械振动,下列说法中正确的是()A.机械振动就是机械波,机械波就是机械振动B.有机械波,则一定有机械振动C.机械波就是质点在介质中的运动路径D.在波传播方向上各个质点都有相同的振动频率和振幅解析:机械振动在介质中传播,形成了机械波,A项错误;波的形成有两个条件,一是要有波源,二是要有介质,所以,有机械波一定有机械振动,B项正确;在波的形成和传播过程中,各质点不随波迁移,C项错误;离波源较远的质点依靠前面质点的带动,所以频率、振幅相同,D项正确.答案:BD2.(多选)关于机械波的说法正确的是()A.相邻的质点要相互做功B.机械波在真空中也能传播C.波源开始时怎样振动,其他质点开始时就怎样振动D.除波源外,波中各质点都做受迫振动解析:机械波是由于介质中前面的质点带动后面的质点,使波源的振动形式与波源的能量向远处传播而形成的,前、后质点间存在相互作用力,因而相互做功,故A项正确;机械波的传播必须有介质,在真空中不能传播,故B项错误;波源依次带动后面的质点,每个质点都做受迫振动,每个质点的振动频率都与波源频率相同,并且都“仿照”波源振动,故C、D两项正确.答案:ACD3.关于横波和纵波,下列说法正确的是()A.振源上下振动形成的波是横波B.振源水平振动形成的波是纵波C.波沿水平方向传播,质点上下振动,这类波是横波D.质点沿水平方向振动,波沿水平方向传播,这类波是纵波解析:根据横波和纵波的概念,质点的振动方向与波的传播方向相互垂直的波叫做横波,质点的振动方向与波的传播方向在同一直线上的波叫做纵波,并不是上下振动与水平振动的问题,故A、B两项错误,C项正确;质点沿水平方向振动,波沿水平方向传播,并不能说明是沿同一直线,故D项错误.答案:C4.(多选)机械波按质点振动方向与波传播方向的关系可分为横波和纵波.关于介质中质点的振动方向和波的传播方向,下列说法正确的是()A.在横波中二者方向有时相同B.在横波中二者方向一定不同C.在纵波中二者方向有时相同D.在纵波中二者方向一定不同解析:在横波中质点振动方向和波的传播方向相互垂直,所以二者方向一定不同,故A项错误、B项正确;在纵波中二者方向在同一直线上,既可以相同,也可以相反,故C项正确、D项错误.答案:BC5.(多选)把闹钟放在密闭的玻璃罩内,在玻璃罩外仍然可以听到闹钟的铃声.但如果将玻璃罩内的空气用抽气机全部抽出去,就听不到闹钟的铃声.这说明()A.声波是纵波B.抽去玻璃罩内的空气后,闹钟不再响铃了C.气体和固体都能传播声音D.声波不能在真空中传播解析:根据题中叙述的现象,无法说明声波是纵波,A项错误;抽去玻璃罩内的空气,不会使闹钟停止响铃,B项错误;抽去玻璃罩内的空气前,在玻璃罩外仍然可以听到闹钟的铃声,说明玻璃罩和空气都能传播声音,C项正确;抽去玻璃罩内的空气后,就听不到闹钟的铃声,说明声波不能在真空中传播,D项正确.答案:CD6.关于振动和波的关系,下列说法正确的是()A.如果波源停止振动,在介质中传播的波也立即停止B.发声体在振动时,一定会产生声波C.波动的过程是介质质点由近及远的传播过程D.波动的过程是质点的振动形式及能量由近及远的传播过程解析:波源停止振动,介质中的质点仍然在振动,所以波仍继续传播,A项错误;产生波的条件必须有介质,B项错误;在振动过程中质点不随波的传播而迁移,只是向外传播信息和能量,C项错误,D项正确.答案:D7.某地区地震波中的横波和纵波传播速率分别约为4 km/s 和9 km/s.一种简易地震仪由竖直弹簧振子P和水平弹簧振子H组成(如图所示).在一次地震中,震源在地震仪下方,观察到两振子相差5 s开始振动,则()A.P先开始振动,震源距地震仪约36 kmB.P先开始振动,震源距地震仪约25 kmC.H先开始振动,震源距地震仪约36 kmD.H先开始振动,震源距地震仪约25 km解析:横波的传播速率小于纵波的传播速率,所以P先开始振动.由x9 km/s+5 s=x4 km/s,可得x=36 km,则A项正确,B、C、D三项错误.答案:A8.一列简谐横波沿x轴传播,某时刻的波形如图所示,已知此时质点F的运动方向向y轴负方向,则()A.此波向x轴正方向传播B.质点C此时向y轴正方向运动C.质点C将比质点B先回到平衡位置D.质点E的振幅为零解析:因为机械波在传播过程中,靠近波源的质点的振动带动相邻的后边质点的振动,而后面质点要“模仿”前面质点的振动,所以本题中,已知质点F的运动方向向y轴负方向,即F质点正在“模仿”右边质点的振动,这说明波源在右边,波从右向左传播,即此波向x轴负方向传播,A项错误;质点C此时刚到达最大位移处,速度为0,此后向y轴负方向运动,B项错误;质点B要先向y轴正方向运动到达波峰位置再回到平衡位置,而质点C直接从波峰位置回到平衡位置,C项正确;振幅指的是质点离开平衡位置的最大距离,虽然此时质点E的位移为零,但其振幅不为零,D项错误.答案:C9.一列波在介质中向某一方向传播,图为此波在某一时刻的波形图,并且此时振动还只发生在M、N之间,已知此波的周期为T,Q质点速度方向在波形图中是向下的,下面说法中正确的是()A.波源是M,由波源起振开始计时,P质点已经振动时间TB.波源是N,由波源起振开始计时,P质点已经振动时间3T 4C.波源是N,由波源起振开始计时,P质点已经振动时间T 4D.波源是M,由波源起振开始计时,P质点已经振动时间T 4解析:由于此时Q质点向下振动,且Q质点右方邻近质点在Q质点下方,则波向左传播,N是波源.经过一个周期,振动从N点传播到M点,又因从波源N起振开始计时,需经34T,P质点才开始振动,故P质点已振动了T4,C项正确.答案:C10.(多选)一振动周期为T,振幅为A,位于x=0点的波源从平衡位置沿y轴正方向开始做简谐运动.该波源产生的一维简谐横波沿x轴正方向传播,波速为v,传播过程中无能量损失,一段时间后,该振动传播至某质点P,关于质点P振动的说法正确的是()A.振幅一定为AB.周期一定为TC.速度的最大值一定为vD.开始振动的方向沿y轴向上或向下取决于它离波源的距离解析:机械波将波源的振动形式和能量向外传递,对简谐波而言,介质中各振动质点的振幅和周期都与波源的相同,A、B两项正确;质点P的振动速度不是波的传播速度v,C项错误;质点P开始振动的方向与波源开始振动的方向相同,与它们之间的距离无关,D项错误.答案:AB能力达标11.在平静的湖面上漂着一块小木条,现向湖中央扔一石子,圆形波纹一圈圈的向外传播,当波传播到小木条处时,小木条将()A.随波纹漂向湖岸B.不动C.向波源处漂动D.在原来位置上下振动解析:介质中有机械波传播时,介质本身并不随波一起传播,介质质点只在自己的平衡位置附近振动,向外传播的只是振动形式和能量,生活中的水面上的一些漂浮物会沿波向外移动,是因为外界另外一些因素的干扰,如风的吹动等,故D项正确.答案:D12.(多选)一列简谐波在某时刻的波形如图所示,a、b、c、d 为介质中的四个质点,a在波峰,d在波谷,c在平衡位置,b的位移大小等于振幅的一半.四个质点的加速度大小分别为a a、a b、a c、a d,它们的速度大小分别为v a、v b、v c、v d,则()A.a c<a b<a a=a dB.a c>a b>a a=a d=0C.v a=v d>v b>v cD.v a=v d<v b<v c解析:由简谐运动规律可知,质点受到的回复力的大小与位移的大小成正比,因而加速度的大小与位移的大小成正比,所以这四个质点的加速度大小关系为a c<a b<a a=a d,A项正确;而质点越靠近平衡位置速度越大,四点的速度大小关系为v a=v d<v b<v c,D项正确.答案:AD13.AB为一弹性绳.设法在绳上传播一个脉冲波,如图所示,当波从A向B传播时,绳上质点开始起振的速度方向是________,若波从B向A传播,绳上质点开始起振时,质点振动的速度方向是________.解析:根据波的形成过程,前质点依次带动后质点并依次落后,且都重复振源的振动,当由A向B传播,B刚开始振动时,B 左侧的相邻质点比B先振动;并且位置在B的下方,所以B应该向下振,当从B向A传播,质点刚开始振动时,速度方向向上.答案:向下向上14.已知某次地震中纵波与横波的传播速度分别为9.1 km/s和3.7 km/s.某地震观测中心记录到两种波到达的时间差为7.8 s ,若机械波在地面内是匀速传播的,且传播的速度v 、传播的距离s和传播距离s 所用的时间t 满足v =s t .请你通过分析计算来完成下面问题:(1)求地震中心到此地震观测中心的距离;(2)请你分析在观测中心的工作人员当时所感觉到的地面振动方向.(设震源在地震观测中心正下方,工作人员对地面振动方向的感觉用“上下振动”“左右晃动”来说明).解析:(1)设地震中心到观测中心的距离为x ,则有x v 1-x v 2=t ,代入数据解得x ≈48.6 km.(2)由于纵波传播得快,故地震发生时纵波最先到达观测中心,因此在那里的人们先是感到地面上下振动,当横波到达后,又增加了左右晃动的感觉.答案:(1)48.6 km(2)先是上下振动,随后又增加了左右晃动。
人教版高中物理选修3-4知识点总结(总10页)-本页仅作为预览文档封面,使用时请删除本页-2 选 修3—4一、知识网络周期:gLT π2=机械振动简谐运动物理量:振幅、周期、频率 运动规律简谐运动图象阻尼振动受力特点回复力:F= - kx弹簧振子:F= - kx 单摆:x L mgF-= 受迫振动 共振波的叠加 干涉 衍射 多普勒效应 特性 实例声波,超声波及其应用机械波形成和传播特点 类型横波 纵波 描述方法 波的图象 波的公式:vT =λ x=vt电磁波电磁波的发现:麦克斯韦电磁场理论:变化的磁场产生电场,变化的电场产生磁场→预言电磁波的存在赫兹证实电磁波的存在电磁振荡:周期性变化的电场能与磁场能周期性变化,周期和频率 电磁波的发射和接收电磁波与信息化社会:电视、雷达等电磁波谱:无线电波、红外线、可见光、紫外线、x 射线、ν射线相对论简介相对论的诞生:伽利略相对性原理狭义相对论的两个基本假设:狭义相对性原理;光速不变原理 时间和空间的相对性:“同时”的相对性长度的相对性: 20)(1cvl l-=时间间隔的相对性:2)(1cv t -∆=∆τ相对论的时空观狭义相对论的其他结论:相对论速度变换公式:21cv u v u u'+'=相对论质量: 20)(1cv m m -=质能方程2mc E=广义相对论简介:广义相对性原理;等效原理 广义相对论的几个结论:物质的引力使光线弯曲引力场的存在使得空间不同位置的时间进程出现差别二、考点解析考点80 简谐运动简谐运动的表达式和图象要求:I1)如果质点所受的力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置,质点的运动就是简谐运动。
简谐运动的回复力:即F = – kx 注意:其中x都是相对平衡位置的位移。
区分:某一位置的位移(相对平衡位置)和某一过程的位移(相对起点)⑴回复力始终指向平衡位置,始终与位移方向相反⑵“k”对一般的简谐运动,k只是一个比例系数,而不能理解为劲度系数⑶F回=-kx是证明物体是否做简谐运动的依据2)简谐运动的表达式:“x= A sin (ωt+φ)”3)简谐运动的图象:描述振子离开平衡位置的位移随时间遵从正弦(余弦)函数的规律变化的,要求能将图象与恰当的模型对应分析。
2019-2020年高中物理选修3-4简谐运动的描述--相位【教学目标】1、知识目标(1)了解简谐运动位移方程中各量的物理意义,能依据振动方程描绘振动图象;(2)了解初相和相位差的概念,理解相位的物理意义。
2、能力目标(1)学会从相位的角度分析和比较两个简谐运动;(2)会计算两个同频率简谐运动的相位差。
3、德育目标通过对两个简谐运动的超前和滞后的比较,学会用相对的方法来分析问题。
【教学重点】(1)相位的物理意义;(2)同频率的简谐运动的相位差的求解。
【教学难点】(1)相位的物理意义;(2)能依据两个同频率的简谐运动的振动图象求解相位差。
【教学方法】举实例、类比法、讲授法、多媒体模拟【教具准备】两个相同的单摆、投影片、CAI课件【课时安排】1课时【教学过程】一、导入新课前面我们学习过描述振动的物理量,振幅表示振动的强弱,周期和频率表示振动的快慢。
用这些物理量能否将振动完整地描述清楚呢?教师在讲台前走路,摆动两只胳膊,尽量做到振幅和周期相同,第一次同相摆动,第二次反相摆动,引导学生比较摆动的差异,得出要描述振动,还有一个振动的步调问题,本节课就来学习这一问题。
二、新课教学1、相位(观察和比较两个摆长相等的单摆做简谐运动的情形)演示:将并列悬挂的两个等长的单摆(它们的振动周期和频率相同),向同一侧拉起相同的很小的偏角同时释放,让它们做简谐运动。
现象:两个简谐运动在同一方向同时达到位移的最大值,也同时同方向经过平衡位置,两者振动的步调一致。
对于同时释放的这两个等长单摆,我们说它们的相位相同。
演示:将两个单摆拉向同一侧拉起相同的很小的偏角,但不同时释放,先把第一个放开,当它运动到平衡位置时再放开第二个,让两者相差1/4周期,让它们做简谐运动。
现象:两者振动的步调不再一致了,当第一个到达另一侧的最高点时,第二个小球又回到平衡位置,而当第二个摆球到达另一方的最高点时,第一个小球又已经返回平衡位置了。
与第一个相比,第二个总是滞后1/4周期,或者说总是滞后1/4全振动。
第4节波的衍射和干涉一、波的衍射1.定义:波绕过障碍物继续传播的现象。
2.两种衍射现象(1)在水波槽中,在波源的前方放一个障碍物,使波源振动产生水波。
当障碍物较大时波被阻挡,在靠近障碍物后面没有波,只是在障碍物较远处,波才稍微有些绕到“影子”区域里,如图12-4-1甲所示,虽然发生衍射现象,但不明显。
图12-4-1当障碍物较小时发现波能绕过障碍物继续前进,如同障碍物不存在一样,如图乙所示,衍射现象明显。
(2)在水波槽中,在波源前方放一个有孔的屏,使波源振动产生水波。
当孔较大时发现水波经过孔后在连接波源与孔的两边的两条直线所限制的区域里传播,如图丙所示。
当孔较小时发现孔后的整个区域里传播着以孔为中心的圆形波,如图丁所示,衍射现象明显。
3.发生明显衍射现象的条件只有当缝、孔的宽度或障碍物的尺寸跟波长相差不多,或者比波长更小时,才能观察到明显的衍射现象。
二、波的叠加1.波的叠加原理1.波绕过障碍物继续传播的现象叫做波的衍射。
2.发生明显衍射的条件:缝孔的宽度或障碍物的尺寸跟波长差不多,或者比波长小。
3.波的干涉是指频率相同的两列波叠加,使某些区域的振幅加大,某些区域的振幅减小。
几列波相遇时能够保持各自的运动状态,继续传播,在它们重叠的区域里,介质中的质点同时参与这几列波引起的振动,质点的位移等于这几列波单独传播时引起的位移的矢量和。
图12-4-2表示了分别向右、向左传播的两列波1和2在相遇区域内的叠加过程。
2.波的叠加原理是波具有独立传播性的必然结果,由于总位移是两个位移的矢量和,所以叠加区域的质点的位移可能增大,也可能减小。
两列同相波的叠加,振动加强,振幅增大。
(如图12-4-2所示)两列反相波的叠加,振动减弱,振幅减小。
(如图12-4-3所示)图12-4-2 图12-4-3三、波的干涉1.定义频率相同的两列波叠加时,某些区域的振幅加大、某些区域的振幅减小的现象。
2.稳定干涉条件(1)两列波的频率必须相同。
6光的偏振记一记光的偏振知识体系1个现象——偏振现象1个区别——自然光和偏振光的区别辨一辨1.横波和纵波都能产生偏振现象.(×)2.太阳光是沿某个特定方向振动的偏振光.(×) 3.只要是波都能发生偏振现象.(×)4.自然光通过偏振片是得到偏振光的唯一办法.(×)想一想1.将一个偏振片放于眼睛的前方,观察通过窗户进入室内的自然光,转动偏振片,你感觉到的明暗有没有明显的变化?提示:无明显变化.因为自然光包含在垂直传播方向上一切方向的光且沿各个方向振动的光波的强度相同.2.通过偏振片观察玻璃表面、光滑桌面反射来的灯光或窗外的光,同时转动偏振片,你感觉到的明暗有无明显的变化?玻璃表面、光滑桌面的反射光是偏振光吗?提示:明暗有明显变化.因为玻璃表面、光滑桌面反射来的灯光或窗外的光及玻璃折射的光都是偏振光.3.将偏振片叠放在数字式电子表的液晶显示屏上,观察显示屏亮度的变化,为什么沿不同方向放置时会有不同的亮度?提示:因为电子表的液晶数字显示屏上、下两个板面处有两片偏振片,将偏振片放在显示屏上,使进入上表面的光的强度发生变化,导致显示屏亮度变化.思考感悟:练一练1.下列关于偏振光的说法中正确的是()A.自然光就是偏振光B.沿着一个特定方向传播的光叫偏振光C.沿着一个特定方向振动的光叫偏振光D.单色光就是偏振光解析:自然光包含着在垂直于传播方向上沿一切方向振动的光,而且沿各个方向振动的光波的强度都相同;只有沿着特定方向振动的光才是偏振光,故C项正确.答案:C2.(多选)下列说法中正确的是()A.光振动沿各个方向均匀分布的光是自然光B.光振动沿各个方向均匀分布的光是偏振光C.光振动沿特定方向的光才是偏振光D.光振动沿特定方向的光才是自然光解析:根据自然光、偏振光的概念易判断出A、C两项正确.答案:AC3.(多选)如下图所示,P是偏振片,P的透振方向(用带箭头的实线表示)为竖直方向.下列四种入射光束中,哪几种照射P时能在P的另一侧观察到透射光()A.太阳光B.沿竖直方向振动的光C.沿水平方向振动的光D.沿与竖直方向成45°角振动的光解析:根据光偏振的现象,只要光的振动方向不与偏振片的狭缝垂直,光都能通过偏振片.太阳光、沿竖直方向振动的光、沿与竖直方向成45°角振动的光均能通过偏振片.故A、B、D三项正确.答案:ABD4.两个偏振片紧靠在一起,将它们放在一盏灯的前面以至没有光通过,如果将其中一片旋转180°,在旋转过程中,将会产生下述哪一种现象()A.透过偏振片的光强先增强,然后又减小到零B.透过的光强先增强,然后减小到非零的最小值C.透过的光在整个过程中都增强D.透过的光强先增强,再减弱,然后又增强解析:两个偏振片紧靠在一起,不能让光通过,说明两个偏振片的透振方向垂直,将其中一个旋转180°的过程中,两个偏振片的透振方向从垂直到平行再到垂直,通过的光强先增大后减小,故A项正确.答案:A5.关于偏振光和自然光,下列观点正确的是()A.自然光能产生干涉、衍射现象,而偏振光却不能B.只有自然光通过偏振片才能获得偏振光C.自然光只能是白光,而偏振光不能是白光D.自然光和偏振光都能使感光底片感光解析:振动方向沿各个方向均匀分布的光就是自然光,而振动方向沿某特定方向的光就是偏振光,但自然光和偏振光都能发生干涉、衍射,故A项错误;光的偏振现象并不罕见,除了从光源直接发出的光以外,我们看到的绝大部分光是偏振光,故B项错误;光的颜色是由频率决定的,与光的振动方向无关,白光是复色光,既可是自然光,也可以是偏振光,故C项错误;自然光和偏振光都具有能量,都能使底片感光,故D项正确.答案:D要点一光的偏振1.下列现象中可以说明光是横波的是()A.光的干涉现象B.光的衍射现象C.光的全反射现象D.光的偏振现象解析:光能发生干涉和衍射现象,说明光是一种波,具有波动性;光的色散现象,说明同一介质对不同光的折射率不同,也说明不同光在同一介质中的速度不同;光的全反射现象,说明光由光密介质进入光疏介质和由光疏介质进入光密介质会有不同的现象;光的偏振现象说明光的振动方向与传播方向垂直,即说明光是横波,故D项正确.答案:D2.(多选)在垂直于太阳光的传播方向前后放置两个偏振片P 和Q,在Q的后边放上光屏,以下说法中正确的是() A.Q不动,旋转偏振片P,屏上光的亮度不变B.Q不动,旋转偏振片P,屏上光的亮度时强时弱C.P不动,旋转偏振片Q,屏上光的亮度不变D.P不动,旋转偏振片Q,屏上光的亮度时强时弱解析:当Q和P的透振方向平行时,通过Q的光强最大,当Q和P的透振方向垂直时,通过Q的光强最小,即无论是旋转P 还是旋转Q,屏上得到的光都是时强时弱的.答案:BD3.(多选)如图所示,电灯S发出的光先后经过偏振片A和B,人眼在P处迎着入射光方向,看不到光亮,则()A.图中a光为偏振光B.图中b光为偏振光C.以SP为轴将B转过180°后,在P处将看到光亮D.以SP为轴将B转过90°后,在P处将看到光亮解析:自然光沿各个方向振动是均匀分布的,通过偏振片后,透射光是只有沿着某一特定方向振动的光.从电灯直接发出的光为自然光,故A项错误;它通过A偏振片后,即变为偏振光,故B项正确;设通过A的光沿竖直方向振动,若B偏振片只能通过沿水平方向振动的偏振光,则P点无光亮,将B转过180°时,P 处仍无光亮,故C项错误;若将B转过90°,则该偏振片将变为能通过竖直方向上振动的光,则偏振光能通过B,即在P处有光亮,D项正确.答案:BD4.如图所示,杨氏双缝实验中,下述情况能否看到干涉条纹?简单说明理由.(1)在单色自然光源S后加一偏振片P.(2)在(1)情况下,再加P1、P2,P1与P2透射光方向垂直.解析:(1)能.到达S1、S2的光是从同一线偏振光分解出来的,它们满足相干条件,能看到干涉条纹,且由于线偏振片很薄,对路程差的影响可忽略,干涉条纹的位置与间距和没有P时基本一致,只是强度由于偏振片的吸收作用而减弱.(2)不能.由于从P1、P2射出的光方向相互垂直,不满足干涉条件,故光屏E被均匀照亮,但无干涉现象.答案:见解析要点二偏振光的应用5.光的偏振现象说明光是横波,下列现象中不能反映光的偏振特性的是()A.一束自然光相继通过两个偏振片,以光束为轴旋转其中一个偏振片,透射光的强度发生变化B.一束自然光入射到两种介质的分界面上,当反射光线与折射光线之间的夹角恰好是90°时,反射光是偏振光C.日落时分,拍摄水面下的景物,在照相机镜头前装上偏振滤光片可以使景像更清晰D.通过手指间的缝隙观察日光灯,可以看到彩色条纹解析:通过手指的缝隙观察日光灯,看到彩色条纹是光的衍射现象.D项错误.答案:D6.如图所示,两光屏间放有两个透振方向相互平行的偏振片,现让太阳光沿轴线通过光屏M上的小孔照射到偏振片P上,再通过偏振片Q.现以光的传播方向为轴使偏振片P由图示位置旋转90°度,下列说法正确的是()A.MN间为偏振光B.PQ间为自然光C.PQ间的光线亮度逐渐变暗D.光屏N上的亮线逐渐变暗解析:MP间为自然光,PN间为偏振光,故A、B两项错误;PQ间亮度不变,光屏上亮度逐渐变暗,故C项错误,D项正确.答案:D7.(多选)“假奶粉事件”曾经闹得沸沸扬扬,奶粉的碳水化合物(糖)的含量是一个重要指标,可以用“旋光法”来测量糖溶液的浓度,从而鉴定糖量.偏振光通过糖水溶液后,偏振方向会相对于传播方向向左或向右旋转一个角度α,这一角度α称为“旋光度”,α的值只与糖溶液的浓度有关,将α的测量值与标度值相比较,就能确定被测样品的含糖量了,如图所示,S是自然光源,A、B是偏振片,转动B,使到达O处的光最强,最后将被测样品P 置于A、B之间,则下列说法中正确的是()A.到达O处光的强度会明显减弱B.到达O处光的强度不会明显减弱C.将偏振片B转动一个角度,使得O处光强度最大,偏振片B转过的角度等于αD.将偏振片A转动一个角度,使得O处光强度最大,偏振片A转过的角度等于α解析:A、B之间不放糖溶液时,自然光通过偏振片A后,变成偏振光,通过B后到O.当在A、B间放糖溶液时,由于溶液的旋光作用,使通过A的偏振光振动方向转动了一定角度,到达O 处的光强会明显减弱;但当B转过一个角度,恰好使透振方向与经过糖溶液后的偏振光振动方向一致时,O处光强又为最强,故B 的旋转角度即为糖溶液的旋光度;因为A、B的偏振方向一致,故转动偏振片A也可以.答案:ACD基础达标1.下列说法正确的是()A.自然光就是白光B.自然光一定是复色光C.单色光不是自然光D.自然光可以是单色光,也可以是复色光解析:自然光是指含有垂直传播方向上沿一切方向振动的光,且沿着各个方向振动的光波的强度相同,可以是单一频率的光,也可以是不同频率的光,故D项正确.答案:D2.纵波不可能产生的现象是()A.偏振现象B.反射现象C.折射现象D.衍射现象解析:只有横波才会发生偏振现象,故A项正确.答案:A3.如图所示,白炽灯的右侧依次平行放置偏振片P和Q,A 点位于P、Q之间,B点位于Q右侧.旋转偏振片P,A、B两点光的强度变化情况是()A.A、B均不变B.A、B均有变化C.A不变,B有变化D.A有变化,B不变解析:白炽灯发出的光为自然光,通过偏振片P后产生偏振光,旋转P,A处光的强度不变,当P与Q的透振方向一致时B 点光的强度最大.当P与Q的透振方向垂直时B点光的强度最小,故C项正确.答案:C4.夜晚,汽车前灯发出的强光将迎面驶来的汽车司机照得睁不开眼,严重影响行车安全.若考虑将汽车前灯玻璃改用偏振玻璃,使射出的灯光变为偏振光;同时汽车前窗玻璃也采用偏振玻璃,其透振方向正好与灯光的振动方向垂直,但还要能看清自己车灯发出的光所照亮的物体.假设所有的汽车前窗玻璃和前灯玻璃均按同一要求设置,如下措施中可行的是()A.前窗玻璃的透振方向是竖直的,车灯玻璃的透振方向是水平的B.前窗玻璃的透振方向是竖直的,车灯玻璃的透振方向是竖直的C.前窗玻璃的透振方向是斜向右上45°,车灯玻璃的透振方向是斜向左上45°D.前窗玻璃和车灯玻璃的透振方向都是斜向右上45°解析:此题要求自己车灯发出的光经对面车窗反射后仍能进入自己眼中,而对面车灯发出的光不能进入自己的眼中.若前窗的透振方向竖直、车灯玻璃的透振方向水平,从车灯发出的光照射到物体上反射回的光线将不能透过前窗玻璃,司机面前将是一片漆黑,故A项错误;若前窗玻璃与车灯玻璃透振方向均竖直,则对面车灯的光仍能照射得司机睁不开眼,B项错误;若前窗玻璃的透振方向是斜向右上45°,车灯玻璃的透振方向是斜向左上45°,则车灯发出的光经物体反射后无法透射进本车窗内,却可以透射进对面车内,故C项错误,D项正确.答案:D5.在拍摄日落时水面下的景物时,应在照相机镜头前装一个偏振片,其目的是()A.减弱反射光,从而使景物的像清晰B.增强反射光,从而使景物的像清晰C.增强透射光,从而使景物的像清晰D.减弱透射光,从而使景物的像清晰解析:由于反射光的干扰,景物的像常常比较模糊,装上偏振片的目的是减弱反射光,且透振方向与反射光的振动方向垂直,但不能增强透射光.答案:A6.(多选)如图所示,一束自然光通过起偏器照射到光屏上,则图中光屏上发亮的有(起偏器上用箭头表示其透射方向)() 解析:自然光通过起偏器后成为偏振光,当偏振光的振动方向与起偏器的透振方向平行时能够通过,否则不能通过,故A、B、D三项正确.答案:ABD7.(多选)关于波动,下列说法正确的是()A.各种波均会发生偏振现象B.用白光做单缝衍射与双缝干涉实验,均可看到彩色条纹C.声波传播过程中,介质中质点的运动速度等于声波的传播速度D.已知地震波的纵波波速大于横波波速,此性质可用于横波的预警解析:只有横波才能发生偏振现象,A项错误;白光又是复色光,做单缝衍射和双缝干涉均能看到彩色条纹,B项正确;波在传播过程中的传播速度与介质运动速度是两回事,二者没有可比性,C项错误;在同一介质中,纵波传播速度大于横波的传播速度,D项正确.答案:BD8.(多选)如图所示是一种利用温度敏感光纤测量物体温度的装置,一束偏振光射入光纤,由于温度的变化,光纤的长度、芯径、折射率发生变化,从而使偏振光的偏振方向发生变化,光接收器接收的光强度就会变化.关于这种温度计的工作原理,正确的说法是()A.到达检偏器的光的偏振方向变化越大,光接收器所接收的光强度就会越小,表示温度变化越大B.到达检偏器的光的偏振方向变化越小,光接收器所接收的光强度就会越小,表示温度变化越小C.到达检偏器的光的偏振方向变化越小,光接收器所接收的光强度就会越大,表示温度变化越小D.到达检偏器的光的偏振方向变化越大,光接收器所接收的光强度就会越大,表示温度变化越大解析:温度变化越大,光纤的各个物理参量变化越大,光的偏振方向变化越大,光接收器接收的光强度会越小.答案:AC9.(多选)有关偏振和偏振光的下列说法中,正确的有() A.只有电磁波才能发生偏振,机械波不能发生偏振B.只有横波能发生偏振,纵波不能发生偏振C.自然界不存在偏振光,自然光只有通过偏振片才能变为偏振光D.除了从光源直接发出的光以外,我们通常看到的绝大部分光都是偏振光解析:只有横波才能产生偏振现象,而机械波中也有横波,当然能发生偏振,A项错误,B项正确;我们通常看到的绝大部分光都是偏振光,自然光不一定非要通过偏振片才能变为偏振光,C项错误,D项正确.答案:BD10.如图所示是观看立体电影时放映机镜头上的偏振片和观看者所带的偏光眼镜的配置情况,其中正确的是()解析:立体电影是利用光的偏振现象实现的.两台放映机同时放映着从不同角度同时拍摄的场景,并且放映机采用正好垂直的偏振光进行放映,观众所戴的眼镜左、右镜片的透振方向正好也相互垂直.只有透振方向与某束偏振光的偏振方向平行的镜片才能透过该束偏振光,这样,两只镜片分别只能透过这两部放映机中某一部的偏振光,则观众同时能获得两束带有不同信息的光线,在脑海中便能复合成立体感很强的场景.故B项正确.答案:B能力达标11.(多选)如图所示,一玻璃柱体的横截面为半圆形,让太阳光或白炽灯光通过狭缝S形成细光束从空气射向柱体的O点(半圆的圆心),产生反射光束1和透射光束2.现保持入射光不变,将半圆柱绕通过O点垂直于纸面的轴线转动,使反射光束1和透射光束2恰好垂直.在入射光线的方向上加偏振片P,偏振片与入射光线垂直,其透振方向在纸面内,这时看到的现象是()A.反射光束1消失B.透射光束2消失C.反射光束1和透射光束2都消失D.偏振片P以入射光线为轴旋转90°角,透射光束2消失解析:自然光射到界面上,当反射光与折射光垂直时,反射光和折射光的偏振方向相互垂直,且反射光的振动方向与纸面垂直,折射光的振动方向与纸面平行,因此当在入射光线方向垂直放上透振方向在纸面内的偏振片P时,因垂直于纸面无光;反射光束1消失,A项正确,B,C两项错误;偏振片转动90°,平行于纸面内的光消失,则透射光束2消失,D项正确.答案:AD12. 如图所示,S为一点光,P、Q是偏振片,R是一光敏电阻,R1、R2是定值电阻,电流表和电压表均为理想电表,电动势为E,内阻为r.则当偏振片Q由图示位置转动90°的过程中,电流表和电压表的示数变化情况为()A.电流表的示数变大,电压表的示数变小B.电流表的示数变大,电压表的示数变大C.电流表的示数变小,电压表的示数变大D.电流表的示数变小,电压表的示数变小解析:由题图可知偏振片Q转过90°时,几乎没有光同时透过P、Q两偏振片,则光敏电阻阻值变大,电路的总电阻变大,总电流变小,内电压变小,路端电压变大,故电压表示数变大;由于总电流变小,所以电阻R1上的分压变小,因此电阻R2上的分压变大,所以电流表的示数也变大,故B项正确.答案:B13.一束光由真空入射到平面玻璃上,当其折射角为30°时,反射光恰好发生完全偏振(反射光线与折射光线垂直),由此可以计算出玻璃的折射率是多少?此时的入射角称为起偏角,也叫布儒斯特角,试求折射率为n的介质的布儒斯特角的通用表达式.解析:光由空气进入玻璃,光路图如图所示,根据折射定律,可得n=sin θ1sin θ2而θ1+θ2=90°所以n=sin θ1=cot θ2sin θ2由题意知θ2=30°,n=cot 30°= 3=tan θ1所求的布儒斯特角为θ1,所以由n=sin θ1sin θ2可得表达式为θ1=arctan n答案:3θ1=arctan n14.通过一块偏振片去观察电灯、蜡烛、月亮、反光的黑板,当以入射光线为轴转动偏振片时,看到的现象有何不同?解析:该题考查自然光和偏振光的区别.通过一块偏振片去观察电灯、蜡烛时,透射光的强度不随偏振片的旋转而变化.因为灯光、烛光都是自然光,沿各个方向振动的光的强度相同.因此,当偏振片旋转时,透射出来的光波的振动方向虽然改变了(肉眼对此不能感觉到),但光的强弱没有改变.月亮、黑板反射的光是偏振光,它们通过偏振片透射过来的光线的强弱会随偏振片的旋转发生周期性的变化.答案:见解析。
1光的反射和折射[学习目标] 1.知道光的反射定律.2.理解折射定律的确切含义,并能用来解释有关的光现象和计算有关的问题.3.知道折射率的定义及其与光速的关系,并能用来进行有关计算.(重点)4.掌握插针法测折射率的方法.一、反射定律和折射定律1.光的反射(1)定义光从第1种介质射到它与第2种介质的分界面时,一部分光会返回到第1种介质的现象.(2)反射定律反射光线与入射光线、法线处在同一平面内,反射光线与入射光线分别位于法线的两侧;反射角等于入射角.2.光的折射和折射定律1.物理意义反映介质的光学性质的物理量.2.定义光从真空射入某种介质发生折射时,入射角的正弦与折射角的正弦之比,简称折射率,即n=sin θ1 sin θ2.3.折射率与光速的关系某种介质的折射率,等于光在真空中的传播速度c与光在这种介质中的传播速度v之比,即n=cv.4.特点任何介质的折射率都大于1.1.思考判断(正确的打“√”,错误的打“×”)(1)反射定律是确定反射光线位置的规律.(√)(2)发生漫反射时,反射角不等于入射角.(×)(3)一束光从空气进入水中时传播方向一定改变.(×)(4)当光从空气垂直进入水中时,水的折射率为0. (×)(5)折射率大的介质,密度不一定大.(√)2.关于光的反射与折射,下列说法正确的是()A.光发生反射时,光的传播方向不一定改变B.光发生反射时,光的传播方向可能偏转90°C.光发生反射时,光的传播方向一定改变D.光发生折射时,一定伴随着反射现象E.光发生反射时,一定伴随着折射现象BCD[发生反射时,光的传播方向一定发生改变,且可以改变90°,A错,B、C对;发生折射时,一定伴随着反射现象,但有反射现象,不一定有折射现象,D对,E错.]3.若某一介质的折射率较大,那么光在该介质中的速度较________.[解析]由n=cv可知,介质的折射率越大,光在该介质中的速度越小.[答案]小1光从一种介质进入另一种介质时,传播方向一般要发生变化(斜射),并非一定变化,当光垂直界面入射时,传播方向就不发生变化.2.入射角与折射角的大小关系光从一种介质进入另一种介质时,折射角与入射角的大小关系不要一概而论,要视两种介质的折射率大小而定.当光从真空斜射入介质时,入射角大于折射角;当光从介质斜射入真空时,入射角小于折射角.【例1】如图所示,虚线表示两种介质的界面及其法线,实线表示一条光线射向界面后发生反射和折射的光线,以下说法正确的是()A.bO可能是入射光线B.aO可能是入射光线C.cO可能是入射光线D.Ob可能是反射光线E.PQ可能是法线BDE[由于反射角等于入射角,入射光线,反射光线关于法线对称,所以aO、Ob应是入射光线或反射光线,PQ是法线.又因为反射光线、折射光线都不与入射光线位于法线同侧,所以aO是入射光线,Ob是反射光线,Oc是折射光线.](1)在反射、折射现象中,光路都是可逆的.(2)光从一种介质进入另一种介质时,传播方向一般要发生变化,但并非一定要变化;当光垂直分界面入射时,光的传播方向就不会变化.1.如图所示,落山的太阳看上去正好在地平线上,但实际上太阳已处于地平线以下,观察者的视觉误差大小取决于当地大气的状况.造成这种现象的原因是什么?[解析]太阳光线进入大气层发生折射,使传播方向改变,使人感觉太阳的位置比实际位置偏高.[答案]光的折射1.当光由真空射入某种介质中,入射角、折射角以及它们的正弦值是可以改变的,但正弦值之比是一个常数.2.关于常数n入射角的正弦值跟折射角的正弦值之比是一个常数,但不同介质具有不同的常数,说明常数反映着该介质的光学特性.3.光传播速度介质的折射率n跟光在其中的传播速率v有关,即n=cv,由于光在真空中的传播速率c大于光在任何介质中的传播速率v,所以任何介质的折射率n都大于1.因此,光从真空斜射入任何介质时,入射角均大于折射角;而光由介质斜射入真空时,入射角均小于折射角.4.决定因素介质的折射率是反映介质的光学性质的物理量,它的大小只能由介质本身及光的性质共同决定,不随入射角、折射角的变化而变化.【例2】一束光线从空气射向折射率为1.5 的玻璃内,入射角为45°,画出反射和折射的光路示意图.[解析]光在两介质的界面上通常同时发生反射和折射;由反射定律知反射角为45°,根据折射定律n=sin θ1sin θ2得θ1>θ2.[答案](1)折射率的定义式中θ1为真空(空气)中的光线与法线的夹角,不一定是入射角;θ2为介质中的光线与法线的夹角,也不一定是折射角.(2)介质的折射率与介质的密度没有必然的联系.密度大,折射率未必大,如水和酒精,水的密度较大,但水的折射率较小.2.一束光由空气射入某介质时,入射光线与反射光线间的夹角为90°,折射光线与反射光线间的夹角为105°,则该介质的折射率n=________,光在该介质中的传播速度v=________c.(c为真空中光速)[解析]由反射定律和题意可知,反射角和入射角均为45°,折射角为r=180°-45°-105°=30°,则折射率n=sin 45°sin 30°=2,所以光在该介质中的速度v=cn=c2=22c.[答案]22 21掌握测玻璃折射率的方法;加深对折射定律的理解.2.实验过程用插针法确定光路,找出跟入射光线相对应的折射光线,用量角器测入射角i和折射角r,根据折射定律计算出玻璃的折射率n=sin i sin r.3.实验器材玻璃砖、白纸、木板、大头针四枚、图钉四枚、量角器、三角板(或直尺)、铅笔.4.实验步骤(1)如图所示,把白纸用图钉钉在木板上.在白纸上画一条直线aa′作为玻璃砖的上界面,画一条线段AO作为入射光线,并过O点画出界面aa′的法线NN′.(2)把长方形的玻璃砖放在白纸上,使它的一个长边跟aa′严格对齐,并画出玻璃砖的另一个长边bb′.(3)在AO线段上竖直地插上两枚大头针P1、P2.(4)眼睛在另一侧透过玻璃砖看两个大头针,使P2把P1挡住,在眼睛这侧沿视线方向插上大头针P3,使它把P1、P2挡住.(5)用同样的方法在玻璃砖的bb′一侧再插上大头针P4,使P4能同时挡住P3本身和P1、P2的虚像.记下P3、P4的位置,移去玻璃砖和大头针.过P3、P4引直线O′B与bb′交于O′点,连接O、O′两点,OO′就是入射光AO在玻璃砖内的折射光线的方向.入射角i=∠AON,折射角r=∠O′ON′.(6)用量角器量出入射角i和折射角r.从三角函数表中查出入射角和折射角的正弦值,记录在自己设计的表格里.(7)用上面的方法分别测出入射角是15°、30°、45°、60°和75°时的折射角.查出入射角和折射角的正弦值,把这些数据也记录在上述的表格里.(8)计算出不同入射角时sin isin r的值.比较一下,看它们是否接近一个常数.求出几次实验中测得的sin isin r的平均值,就是玻璃的折射率. 5.注意事项(1)玻璃砖的上折射面必须与直线aa ′严格对齐,才能准确地确定法线,准确地画出入射角和折射角.(2)实验时,尽可能将大头针竖直地插在纸上,且P 1和P 2之间、P 2和O 之间、P 3和P 4之间、P 3和O ′之间距离要稍大一些.重合的时候要看玻璃砖里面的像,而不是看玻璃砖上面的大头针的头部.(3)入射角i 应适当大一些,以减小测量角度的误差,但入射角不宜过大,在操作时,手不能触摸玻璃砖光洁的光学面,更不能用玻璃砖的界面代替直尺画界线.(4)在实验的过程中玻璃砖与白纸的位置都不能改变. 6.数据处理及误差分析此实验是通过测量入射角和折射角,然后查数学用表,找出入射角和折射角的正弦值,再代入n =sin θ1sin θ2中求玻璃的折射率.除运用此方法之外,还有以下处理数据的方法:在找到入射光线和折射光线以后,以入射点O 为圆心,以任意长为半径画圆,分别与AO 交于C 点,与OO ′(或OO ′的延长线)交于D 点,过C 、D 两点分别向NN ′作垂线,交NN ′于C ′、D ′,用直尺量出CC ′和DD ′的长,如图所示.由于sin α=CC ′CO ,sin β=DD ′DO . 而CO =DO ,所以折射率n 1=sin αsin β=CC ′DD ′.重复以上实验,求得各次折射率,然后求其平均值即为玻璃折射率的测量值.【例3】在“测定玻璃折射率”的实验中:(1)操作步骤如下:①先在白纸上画出一条直线aa′代表两种介质的界面,过aa′上的O点画出界面的法线NN′,并画一条线段AO作为入射光线.②把长方形玻璃砖放在白纸上,使它的长边跟aa′对齐.③在线段AO上竖直地插上两枚大头针P1、P2,透过玻璃砖观察大头针P1、P2的像.调整视线方向,直到P1的像被P2挡住.再在观察的这一侧插两枚大头针P3、P4,使P3挡住P1、P2的像,P4挡住P1、P2的像和P3,记下P3、P4的位置.④移去大头针和玻璃砖,连接P3、P4作为折射光线,测量出入射角θ1与折射角θ2,填入表格中.上述操作步骤中存在严重的缺漏,应做的补充是______________________ ______________________________________________________.(2)实验中测出了多组入射角θ1与折射角θ2,并作出了sin θ1 sin θ2图象如图所示.则下列说法正确的________.A.实验时,光线是由空气射入玻璃B.玻璃的折射率为0.67C.玻璃的折射率为1.5[解析](1)步骤②中应在白纸上画出玻璃砖的另一个界面bb′,步骤④中应通过P3、P4的连线与bb′的交点O′和aa′上的入射点O,作出玻璃砖中的光线OO′.(2)由图可看出入射角θ1小于折射角θ2,因此,光线应该是由玻璃射入空气;则玻璃折射率n=sin θ2sin θ1=0.450.30=1.5,所以选项C正确.[答案](1)见解析(2)C3.用两面平行的玻璃砖测定玻璃的折射率的实验中,已画好玻璃砖界面aa′和bb′,不慎将玻璃砖向上平移了一些,放在如图所示的位置上,而实验中其他操作均正确,测得的折射率将________(填“偏大”“偏小”或“不变”).[解析]可作出经过玻璃砖的光路图,由几何知识可知,测出的折射角与正确值相同.[答案]不变。
高中物理选修3-4知识点(一)爱因斯坦狭义相对性原理的两个基本假设⑴狭义相对性原理:在不同的惯性参考系中,一切物理定律都是相同的。
⑵光速不变原理:在不同的惯性参考系中,真空中的光速都是相同的。
即光速与光源、观测者间的相对运动没有关系。
相对论的时空观经典物理学的时空观(牛顿物理学的绝对时空观):时间和空间是脱离物质而存在的,是绝对的,空间与时间之间没有任何联系。
相对论的时空观(爱因斯坦相对论的相对时空观):空间和时间都与物质的运动状态有关。
相对论的时空观更具有普遍性,但是经典物理学作为相对论的特例,在宏观低速运动时仍将发挥作用。
机械振动物体(或物体的一部分)在某一中心位置两侧来回做往复运动,叫做机械振动。
机械振动产生的条件是:①回复力不为零;②阻力很小。
使振动物体回到平衡位置的力叫做回复力,回复力属于效果力,在具体问题中要注意分析什么力提供了回复力。
高中物理选修3-4知识点(二)时间和空间的相对性(时长尺短)1.同时的相对性:指两个事件,在一个惯性系中观察是同时的,但在另外一个惯性系中观察却不再是同时的。
2.长度的相对性:指相对于观察者运动的物体,在其运动方向的长度,总是小于物体静止时的长度。
而在垂直于运动方向上,其长度保持不变。
3.时间间隔的相对性:指某两个事件在不同的惯性系中观察,它们发生的时间间隔是不同的。
4.简谐振动在机械振动中最简单的一种理想化的振动。
对简谐振动可以从两个方面进行定义或理解:①物体在跟位移大小成正比,并且总是指向平衡位置的回复力作用下的振动,叫做简谐振动。
②物体的振动参量,随时间按正弦或余弦规律变化的振动,叫做简谐振动,高中物理选修3-4知识点(三)研究简谐振动规律的几个思路⑴用动力学方法研究,受力特征:回复力F =- kx;加速度,简谐振动是一种变加速运动。
在平衡位置时速度最大,加速度为零;在最大位移处,速度为零,加速度最大。
⑵用运动学方法研究:简谐振动的速度、加速度、位移都随时间作正弦或余弦规律的变化,这种用正弦或余弦表示的公式法在高中阶段不要求学生掌握。
高中物理选修3-4知识点章节名称定义(内容)公式标准单位第十一章机械振动第一节简谐运动弹簧振子1、小球静止时的位置叫平衡位置2、小球在平衡位置附近的往复运动是一种机械运动,简称振动,这样的系统称谓弹簧振子弹簧振子的位移——时间图象波形图象简谐运动及其图象1、如果质点的位移与时间的关系遵从正弦函数的规律,即它的振动图象是一条正弦曲线,这样的振动叫做简谐运动。
2、简谐运动是最简单、最基本的振动3、弹簧振子的运动就是简谐运动第二节简谐运动的描述描述简谐运动的物理量1、振幅:振动物体离开平衡位置的最大距离2、全振动:弹簧振子从通过平衡位置的时刻开始,第二次到达平衡位置时完成一次完整的振动。
这个振动过程称为一次全振动3、做简谐运动的物体完成一次全振动所需要的时间叫振动的周期4、单位时间完成振动的次数叫振动的频率,单位赫兹5、周期性运动在各个时刻所处的不同状态叫相位Tf1=Hz简谐运动的表达式)2sin(ϕπ+=tTAx第三节简谐运动的回复力和能量简谐运动的回复力1、如果质点所受的力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置,质点的运动就是简谐运动2、把物体拉回平衡位置的力叫回复力kxF-=简谐运动的能量忽略阻力的损耗,在弹簧振子运动的任意位置,系统的动能与势能之和都是一定得第四节单摆单摆悬挂起来的物体在竖直平面内摆动,细线的质量与小球相比可以忽略,球的直径与线的长度相比也可以忽略,这样的装置就叫做单摆单摆的回复力在偏角很小的情况下,单摆做简谐运动(摆长越长,周期越长)kxF-=用单摆测定重力加速度单摆做简谐运动的周期与摆长的二次方成正比,与重力加速度的二次方成反比,而与振幅、摆球质量无关224Tlgπ=第五节外力作用下的振动固有频率不受外力作用的振动叫固有振动,其振动频率叫固有频率阻尼振动振幅逐渐减小的振动叫阻尼振动受迫振动系统在驱动力作用下的振动叫受迫振动共振驱动力频率等于系统的固有频率时,受迫振动的振幅最大,这种现象叫做共振高中物理选修3-4知识点章节名称定义(内容)公式标准单位第十二章机械波第一节波的形成和传播波的形成和传播振动的传播称为波动,简称波横波和纵波1、质点的振动方向与波的传播方向相互垂直的波叫做横波,在横波中,凸起的最高处叫做波峰,凹下的最低处叫做波谷2、质点的振动方向与波的传播方向在同一直线上的波,叫做纵波,在纵波中,质点分布最密的位置叫做密部机械波借以传播的物质叫做介质,机械振动在介质中传播形成了机械波第二节波的图象正弦波如果波的图象是正弦曲线,这样的波叫做正弦波第三节波长、频率和波速波长在波动中,振动相位总是相同的两个相邻质点间的距离叫做波长频率、周期质点振动的频率和周期等于波的频率和周期波速机械波在介质中的传播速度由介质本身决定,在不同的介质中,波速是不同的第四节波的衍射和干涉波的衍射波可以绕过障碍物继续传播,这种现象叫做波的衍射(一切波都能发生衍射,衍射是波特有的现象)波的叠加几列波相遇时能够保持各自的运动特征,继续传播,在其他重叠的区域里,介质的质点同时参与这几列波引起的振动,质点的位移等于这几列波单独传播时引起的位移的矢量和波的干涉频率相同的两列波叠加时,某些区域的振幅加大、某些区域的振幅减小,这种现象叫做波的干涉(干涉也是波所特有的现象)第五节多普勒效应多普勒效应波源与观察者相互靠近或者相互远离时,接收到的波的频率都会发生变化,这种现象叫做多普勒效应第六节惠更斯原理波面和波线振动状态相同的点组成的面叫波面,与波面垂直、代表波的传播方向的线叫做波线惠更斯原理在介质中任一波面上的各点,都可以看做发射子波的波源,其后任意时刻,这些子波在波前进方向的包络面就是新的波面波的反射波进入第二种介质时返回到第一种介质的现象波的折射波进入第二种介质后传播方向发生偏折的现象高中物理选修3-4知识点章节名称定义(内容)公式标准单位第十三章光第一节光的反射和折射反射定律和折射定律1、光从第一种介质射到第二种介质的分界面时,一部分光会返回到第一种介质,这个现象叫做光的反射,另一部分光会进入第二种介质,这个现象叫做光的折射2、反射定律反:射线与入射线、法线处在同一平面内,反射光线与入射光线分别位于法线的两侧;反射角等于入射角这就是反射定律3、折射定律:折射光线与入射线、法线处在同一平面内,折射光线与入射光线分别位于法线的两侧;入射角的正弦与折射角的正弦成正比4、在光的折射现象中,光路是可逆的1221sinsinn=θθ折射率光从真空射入某种介质发生折射时,入射角的正弦与折射角的正弦之比,叫做这种介质的绝对折射率,简称折射率(光从真空射入任何介质时,入射角总是大于折射角)vcn=第二节全反射全反射1、光疏介质:折射率较小的介质2、光密介质:折射率较大的介质3、光在光密介质中的传播速度比在光疏介质中的传播速度小4、全反射和临界角:光从光密介质射入光疏介质时,同时发生折射和反射。
3 电磁波的发射和接收4 电磁波与信息化社会知识内容选考要求课时要求电磁波的发射和接收b电磁波与信息化社会a1.知道有效发射无线电波的两个条件.2.知道调制、调谐、解调的含义,了解调幅和调频的主要区别.3.知道电磁波在现代信息传输中的作用,了解电视信号、移动电话信号的传输过程.知道电磁波频率越高,相同时间内传递的信息量越大.知道雷达测定物体位置的工作原理.一、电磁波的发射1. 要有效地向外发射电磁波,振荡电路必须具有的两个特点:(1)要有足够高的振荡频率,频率越高,发射电磁波的本领越大.(2)振荡电路的电场和磁场必须分散到尽可能大的空间,因此采用开放电路.2.实际应用中的开放电路,线圈的一端用导线与大地相连,这条导线叫做地线;线圈的另一端与高高地架在空中的天线相连.3.电磁波的调制:在电磁波发射技术中,使电磁波随各种信号而改变的技术.调制包括(1)调幅(AM):使高频电磁波的振幅随信号的强弱而改变的调制方法.(2)调频(FM):使高频电磁波的频率随信号的强弱而改变的调制方法.二、电磁波的接收1.接收原理:电磁波在传播时遇到导体,会使导体中产生感应电流,导体可用来接收电磁波,这个导体就是接收天线.2.电谐振:接收电路的固有频率跟收到的电磁波的频率相同时,接收电路中产生的振荡电流最强,相当于机械振动中的共振.(1)调谐:使接收电路产生电谐振的过程.(2)解调:把声音或图象信号从高频电流中还原出来的过程.调幅波的解调也叫检波.三、电磁波与信息化社会1.电磁波的传输:电磁波可以通过电缆、光缆进行有线传输,也可实现无线传输.电磁波的频率越高,相同时间内传递的信息量越大.光的频率比无线电波的频率高得多,因此光缆可以传递大量信息.2.电磁波的应用实例(1)电视:摄像管摄取景物的图像并将其转换为电信号.用信号电流调制高频电流,通过天线把带有信号的电磁波发射出去.电视接收机收到高频信号以后,经调谐、解调,将得到的图像信号送到显像管.伴音信号经解调后送到扬声器.(2)雷达:利用无线电波来测定物体位置的无线电设备.工作原理:利用电磁波遇到障碍物发生反射的特性工作.(3)移动电话:每一部移动电话既是一个无线电台,将用户的声音转变为高频电信号发射到空中;又相当于一台收音机,接收信息.(4)因特网.判断下列说法的正误.(1)调制就是将低频信号变成高频信号,再放大后直接发射出去.( × )(2)当处于电谐振时,只有被接收的电磁波才能在接收电路中产生感应电流.( × )(3)解调就是使声音或图像信号从高频电流中还原出来.( √ )(4)雷达是通过接收障碍物发出的电磁波来确定物体位置的.( × )一、电磁波的发射将两根铝管固定在感应圈的两极上,另两根铝管接微安表头并固定在绝缘手柄上,如图所示.(1)接通感应圈电源,把手柄上两铝管平行靠近感应圈上的两铝管,你看到了什么现象?为什么?(2)当把感应圈两极上的铝管拆掉后,把手柄靠近感应圈有什么现象?为什么?答案 (1)微安表头指针偏转,因为绝缘手柄上的铝管接收到了电磁波.(2)没有装铝管时,微安表头指针不偏转,说明绝缘手柄上的铝管没有接收到电磁波.因为发射电磁波要有天线.1.要想有效地发射电磁波,应增大电磁波的频率,且使电磁场分布到尽可能大的空间,实际应用中常用地线和天线形成敞开的电容器,和线圈组成高频振荡电路.2.为发射有用信号,需对电磁波进行调制,把要传递的信号“加”到高频等幅振荡电流上,使电磁波随各种信号而改变.其中使高频振荡电流的振幅随调制信号而改变的调制方法叫做调幅(AM);使高频振荡电流的频率随调制信号而改变的调制方法叫做调频(FM).例1 为了增大无线电台向空间发射无线电波的能力,对LC振荡电路的结构可采用下列哪些措施( )A.增大电容器极板的正对面积B.增大电容器极板的间距C.增大自感线圈的匝数D.提高供电电压答案 B解析 要增大无线电波向空间发射电磁波的能力,必须提高其振荡频率,即减小L或减小C,要减小L,可通过减小线圈匝数、向外抽铁芯的方法;要减小C,可采用增大板间距、减小极板正对面积、减小相对介电常数的办法,故B正确.二、电磁波的接收按图甲,用两个莱顿瓶(附矩形发射框和带氖泡的矩形接收框)、感应圈和直流电源连成电路.如图乙所示,发射框上的铜球与莱顿瓶上的铜球相距约1~2 厘米,氖泡两端分别接莱顿瓶的内壁和外壁金属箔.感应圈高压加在铜球和莱顿瓶上,使铜球间发生火花放电.调节接收框上的可移动的竖直金属滑动杆,使它从最右端慢慢向左移动,观察接收框上的氖泡发光有什么变化?并说明产生这种变化的原因.答案 滑动杆向左滑动的过程中,氖泡先变亮后变暗,当矩形接收框与发射框的大小差不多时氖泡最亮.当两框大小相等时,两框的自感系数近似相等,与莱顿瓶组成的LC振荡电路的固有频率近似相同,发射电路与接收电路发生电谐振,接收框接收到的信号最强,所以氖泡最亮.1.调谐实际上就是从众多电磁波中选出我们所需要的电磁波的过程,解调就是把有用信号从高频电流中还原出来的过程.2.无线电波的发射和接收过程如图1所示:图1例2 在如图2所示的电路中,C 1=200 pF ,L 1=40 μH ,L 2=160 μH ,怎样才能使回路2与回路1发生电谐振?发生电谐振的频率是多少?图2答案 改变可变电容器C 2的电容,使得C 2为50 pF 1.78 MHz解析 发生电谐振时两电路的固有频率相同.为使回路发生电谐振,可以改变可变电容器C 2,使f 2=f 1,即=12πL 2C 212πL 1C 1C 2== pF =50 pF.L 1C 1L 240×200160发生电谐振时的频率f 1=≈1.78×106 Hz =1.78 MHz.12πL 1C 1对概念的理解:(1)“调幅”和“调频”都是调制过程,解调是调制的逆过程.(2)电谐振相当于机械振动中的“共振”.(3)调谐与电谐振不同,电谐振是一个物理现象,而调谐则是一个操作过程.三、电磁波与信息化社会无线电视、雷达和手机都是通过电磁波传递信息的,请你从它们自身是否是发射端或接收端进行比较,它们有什么不同?答案 无线电视仅仅是接收端,它接收来自电视台的无线电信号;雷达自身发射信号,遇到障碍物反射回来,通过接收反射波来确定物体的位置,因此雷达既是发射端又是接收端.手机接收来自基站的信号,同时它又向基站发射信号,它既是接收端也是发射端.雷达侦察问题的解决方法(1)电磁波在空中的传播速度可认为等于真空中的光速c,由波速、波长和频率三者间的关系可求得频率.(2)根据雷达荧光屏上发射波形和反射波形间的时间间隔,即可求得侦察距离,为此反射波必须在下一个发射波发出前到达雷达接收器.(3)雷达的最大侦察距离应等于电磁波在雷达发射相邻两个脉冲的间隔时间内传播距离的一半.例3 (多选)目前雷达发射的电磁波频率多在200 MHz至1 000 MHz的范围内.下列关于雷达和电磁波的说法正确的是( )A.真空中上述雷达发射的电磁波的波长范围在0.3 m至1.5 m之间B.电磁波是由恒定不变的电场或磁场产生的C.测出从发射电磁波到接收到反射波的时间间隔可以确定雷达和目标的距离D.波长越短的电磁波,反射性能越强答案 ACD解析 由公式v =λf 可得,λmin == m =0.3 m ,λmax == m =1.5 vf max 3×1081 000×106v f min 3×108200×106m ,A 正确;电磁波是由周期性变化的电场或磁场产生的,B 错误;由雷达的工作原理可知,C 正确;波长越短的电磁波,传播的直线性越好,反射性能越强,D 正确.[学科素养] 例3考查了雷达的相关知识,在题目中,串联了相关物理概念和规律,锻炼了从物理学视角对客观事物的内在规律及相互联系认识的能力,体现了“物理观念”与“科学思维”的学科素养.1.(电磁波的发射)(多选)关于电磁波的发射过程,下列说法正确的是( )A .必须对信号进行调制B .必须使信号产生电谐振C .必须把传输信号加到高频电流上D .必须使用开放电路答案 ACD解析 电磁波的发射过程中,一定要对低频输入信号进行调制,把传输信号加到高频电流上,为了有效地向外发射电磁波,必须使用开放电路,A 、C 、D 正确.而产生电谐振是在接收过程,B 错误.2.(电磁波的接收)一台收音机可接收中波、短波两个波段的无线电波,打开收音机后盖,在磁棒上能看到两组线圈,其中一组是用细线密绕匝数多的线圈,另一组是用粗线疏绕匝数少的线圈,由此可以判断( )A .匝数多的电感大,使调谐电路的固有频率较小,故用于接收中波B .匝数多的电感小,使调谐电路的固有频率较大,故用于接收短波C .匝数少的电感小,使调谐电路的固有频率较小,故用于接收中波D .匝数少的电感大,使调谐电路的固有频率较大,故用于接收短波答案 A解析 根据匝数多密绕的线圈电感大、匝数少疏绕的线圈电感小,可排除B 、D 选项;根据f =,电感越大,回路固有频率越小,可排除C 选项;根据c =fλ,频率越小,波长越长,12πLC可知A 选项是正确的.3.(电磁波与信息化社会)(多选)雷达是利用无线电波来探测目标方向和距离的一种装置,雷达的天线犹如喊话筒,能使电脉冲的能量集中向某一方向发射;接收机的作用则与人耳相仿,用以接收雷达发射机所发出电脉冲的回波.测速雷达主要是利用多普勒效应,可由回波的频率改变数值,计算出目标与雷达的相对速度.以下说法正确的是( )A .雷达发射的是不连续的电磁波B .雷达用的是微波波段的无线电波C .目标离雷达天线而去时,反射信号频率将高于发射信号频率D .目标向雷达天线靠近时,反射信号频率将高于发射信号频率答案 ABD解析 雷达发射的是不连续的电磁波,采用微波进行发射.根据多普勒效应,当目标离雷达天线而去时反射信号频率低于发射信号频率,当目标向雷达天线靠近时反射信号频率高于发射信号频率,故选项A 、B 、D 对,选项C 错.4.(电磁波与信息化社会)(多选)2016年底以来,共享单车风靡全国各大城市,如图3所示,单车的车锁内集成了嵌入式芯片、GPS 模块和SIM 卡等,便于监控单车在路上的具体位置.用户仅需用手机上的客户端软件(APP)扫描二维码,即可自动开锁,骑行时手机APP 上能实时了解单车的位置;骑行结束关锁后APP 就显示计时、计价、里程等信息.此外,单车能够在骑行过程中为车内电池充电,满足定位和自动开锁等过程中的用电.根据以上信息,下列说法正确的是( )图3A .单车和手机之间是利用声波传递信息的B .单车某个时刻的准确位置信息是借助通信卫星定位确定的C .单车是利用电磁感应原理实现充电的D .由手机APP 上的显示信息,可求出骑行的平均速度答案 BC解析 单车和手机之间没有电路连接,是利用电磁波传递信息的,A 错误;单车某个时刻的准确位置信息是借助通信卫星定位确定的,B 正确;单车在骑行过程中通过电磁感应将机械能转化为电能,从而实现充电,C 正确;手机APP 上的里程表示路程,而平均速度为位移与时间的比值,只知道路程不知道位移,无法求出骑行的平均速度,D 错误.考点一 电磁波的发射和接收1.(多选)为了有效地把能量以电磁波形式发射到尽可能大的空间,除了使用开放电路,还可以( )A .增大电容器极板间的距离B .减少电容器极板的正对面积C .减小线圈的匝数D .采用低频振荡电流答案 ABC解析 采用开放电路和提高发射频率是提高电磁波发射能力的两种有效方法:由f =、C 12πLC=可知,选项A 、B 、C 正确.εr S 4πkd2.(多选)关于调制的作用,下列说法正确的是( )A .调制的作用是把低频信号的信息加载到高频电磁波上去B .调制可以把低频信号的信息加载到高频电磁波的振幅上去C .调制可以把低频信号的信息加载到高频电磁波的频率上去D .调制是将低频信号变成高频信号,再放大后直接发射出去答案 ABC3.(2018·诸暨中学期中)电台将播音员的声音转换成如图1甲所示的电信号,再加载到如图乙所示的高频载波上,使高频载波的振幅随电信号改变(如图丙所示).这种调制方式称为( )图1A.调频B.调谐C.调幅D.解调答案 C解析 使电磁波随各种信号而改变的技术叫做调制,而调制共有两种方式:一种是调幅,即通过改变电磁波的振幅来实现信号加载;另一种是调频,即通过改变电磁波的频率来实现信号加载.由题意可知高频载波的振幅随电信号改变,故为调幅,故选C.4.在无线电广播的接收中,调谐和检波是两个必须经历的过程,下列关于接收过程的顺序,正确的是( )A.调谐→高频放大→检波→音频放大B.检波→高频放大→调谐→音频放大C.调谐→音频放大→检波→高频放大D.检波→音频放大→调谐→高频放大答案 A解析 调谐是从众多的电磁波中选出所需频率的高频信号,然后进行高频放大,再从放大后的高频信号中“检”出高频信号所承载的低频声音信号,最后将这些低频声音信号放大后通过扬声器播放出来,综上所述,A对.5.(多选)(2018·泰顺高二检测)一台简单的无线电收音机,除了天线外,至少必须具备的电路是( )A.调制电路B.调谐电路C .检波电路D .等幅振荡电路答案 BC 解析 调制电路是将声音信号加载到电磁波上,A 错误;调谐电路是接收相同频率的电磁波,B 正确;检波电路是将声音信号从电信号中分离出来,C 正确;振荡电路是发射装置的组成部分,D 错误.6.(2017·宏大中学高二第二学期期中)从接收到的高频振荡电流中分离出所携带的有用信号的过程叫做( )A .调频B .解调C .调幅D .调谐答案 B解析 解调是从携带信息的已调信号中恢复信息的过程.所以从调谐电路接收到的高频振荡电流中,还原出有用信号的过程叫解调.故B 正确,A 、C 、D 错误.7.(多选)调谐电路的可变电容器的动片从完全旋出到完全旋入仍接收不到较高频率的电台发出的电信号,要收到该电台的信号,可采用下列何种办法( )A .增加调谐电路中线圈的匝数B .加大电源电压C .减少调谐电路中线圈的匝数D .将线圈中的铁芯取走答案 CD解析 当调谐电路的固有频率等于电台发出信号的频率时发生电谐振才能接收到电台信号.由题意知收不到电台信号的原因是调谐电路的固有频率低,由f =可知,在C 无法12πLC 再调节的前提下,可减小自感系数L ,即可通过选项C 、D 的操作升高调谐电路的固有频率.8.(多选)(2018·嘉兴高二检测)下列说法正确的是( )A .电磁波信号需要经过“调谐”,加到高频的等幅电磁波(载波)上才能有效地发射出去B .一部手机既是电磁波发射装置,同时又是电磁波接收装置C .“检波”就是“调谐”D.电视的图像信号和声音信号是通过电视台的发射天线同时发射的答案 BD解析 电磁波信号需要经过“调制”过程,加到高频的等幅电磁波(载波)上才能有效地发射出去,A错误;手机既能发射电磁波,也可以接收电磁波,所以一部手机既是电磁波发射装置,同时又是电磁波接收装置,B正确;“检波”是将音频信号或视频信号从高频信号(无线电波)中分离出来,也叫解调;“调谐”是将电路频率调节到电谐振状态的过程,特指通过改变自感系数、电容来实现频率的改变,以使接收设备(如收音机)的频率与所接收的信号发生电谐振的一种频率调节,C错误;电视的图像信号和声音信号是通过电视台的发射天线同时发射的,D正确.考点二 电磁波与信息化社会9.(多选)下列说法正确的是( )A.摄像机实际上是一种将光信号转变为电信号的装置B.电视机实际上是一种将电信号转变为光信号的装置C.摄像机在1 s内要送出25张画面D.电视机接收的画面是连续的答案 ABC解析 摄像机通过摄像头摄取到景物的光信号,再通过特殊装置转变为电信号,在1 s内要送出25张画面;电视机通过显像管将接收到的电信号转变为光信号,最后还原成图像,每秒要接收到25张画面;电视机接收的画面是不连续的,由于画面更换迅速和人眼的视觉暂留效应,我们感觉到的便是连续的影像.故正确答案为A、B、C.10.当电冰箱的电路接通或断开时,可从附近的收音机中听到“喀喀”的杂音,这是因为( ) A.电路通、断时,发出的声音被收音机所接收B.电路通、断时,发出的电流被收音机所接收C.电路通、断时,发出的电磁波被收音机所接收D.电路通、断时,发出的振荡电流被收音机所接收答案 C解析 当电冰箱的电路接通或断开时,会产生一定频率的电磁波,当电磁波被收音机接收到会听到“喀喀”的杂音,C正确.11.关于电视信号的发射,下列说法中错误的是( )A.摄像管输出的电信号可以直接通过天线向外发射B.摄像管输出的电信号必须“加”在高频振荡电流上,才能向外发射C.伴音信号和图像信号是同步向外发射的D.电视台发射的是带有信号的高频电磁波答案 A解析 摄像管输出的电信号是低频电流,不能直接发射,必须将其“加”在高频振荡电流上才能向外发射,伴音信号和图像信号同步向外发射高频电磁波,故选A.12.关于雷达,下列说法中正确的是( )A.雷达是早在发现电磁波之前就有的设备B.雷达是利用电磁波能产生折射的特性工作的C.雷达可用来发现飞机、舰艇,探测台风、雷雨D.雷达在能见度低的黑夜将无法使用答案 C。
2019-2020学年高中物理 知识点总结 新人教版选修3-4一、简谐运动 简谐运动的表达式和图象 Ⅰ 1、机械振动:物体(或物体的一部分)在某一中心位置两侧来回做往复运动,叫做机械振动。
机械振动产生的条件是:①回复力不为零.②阻力很小.使振动物体回到平衡位置的力叫做回复力,回复力属于效果力,在具体问题中要注意分析什么力提供了回复力。
2、简谐振动:在机械振动中最简单的一种理想化的振动。
对简谐振动可以从两个方面进行定义或理解: ①物体在跟位移大小成正比,并且总是指向平衡位置的回复力作用下的振动,叫做简谐振动。
②物体的振动参量,随时间按正弦或余弦规律变化的振动,叫做简谐振动,3、描述振动的物理量,研究振动除了要用到位移、速度、加速度、动能、势能等物理量以外,为适应振动特点还要引入一些新的物理量。
⑴位移x :由平衡位置指向振动质点所在位置的有向线段叫做位移。
位移是矢量,其最大值等于振幅。
⑵振幅A :做机械振动的物体离开平衡位置的 最大距离叫做振幅,振幅是标量,表示振动的强弱。
振幅越大表示振动的机械能越大,做简揩振动物体的振幅大小不影响简揩振动的周期和频率。
⑶周期T :振动物体完成一次余振动所经历的时间叫做周期。
所谓全振动是指物体从某一位置开始计时,物体第一次以相同的速度方向回到初始位置,叫做完成了一次全振动。
⑷频率f :振动物体单位时间内完成全振动的次数。
⑸角频率ω:角频率也叫角速度,即圆周运动物体单位时间转过的弧度数。
引入这个参量来描述振动的原因是人们在研究质点做匀速圆周运动的射影的运动规律时,发现质点射影做的是简谐振动。
因此处理复杂的简谐振动问题时,可以将其转化为匀速圆周运动的射影进行处理,这种方法高考大纲不要求掌握。
周期、频率、角频率的关系是:T f=1,T ωπ2=.⑹相位ϕ:表示振动步调的物理量。
4、研究简谐振动规律的几个思路:⑴用动力学方法研究,受力特征:回复力F =- kx ;加速度,简谐振动是一种变加速运动。
在平衡位置时速度最大,加速度为零;在最大位移处,速度为零,加速度最大。
⑵用运动学方法研究:简谐振动的速度、加速度、位移都随时间作正弦或余弦规律的变化,这种用正弦或余弦表示的公式法在高中阶段不要求学生掌握。
⑶用图象法研究:熟练掌握用位移时间图象来研究简谐振动有关特征是本章学习的重点之一。
⑷从能量角度进行研究:简谐振动过程,系统动能和势能相互转化,总机械能守恒,振动能量和振幅有关。
5、简谐运动的表达式)()(002sin sin x ϕπϕω+A =+=t Τt Α 振幅A ,周期T ,相位02ϕπ+t Τ,初相0ϕ 6、简谐运动图象描述振动的物理量1.直接描述量:①振幅A ;②周期T ;③任意时刻的位移t .2.间接描述量:①频率f :T f 1=②角速度ω:Tπω2=③x-t 图线上一点的切线的斜率等于v3.从振动图象中的x 分析有关物理量(v ,a ,F )简谐运动的特点是周期性。
在回复力的作用下,物体的运动在空间上有往复性,即在平衡位置附近做往复的变加速(或变减速)运动;在时间上有周期性,即每经过一定时间,运动就要重复一次。
我们能否利用振动图象来判断质点x ,F ,v ,a 的变化,它们变化的周期虽相等,但变化步调不同,只有真正理解振动图象的物理意义,才能进一步判断质点的运动情况。
小结:①简谐运动的图象是正弦或余弦曲线,与运动轨迹不同。
②简谐运动图象反应了物体位移随时间变化的关系。
③根据简谐运动图象可以知道物体的振幅、周期、任一时刻的位移。
二、单摆的周期与摆长的关系(实验、探究) Ⅰ单摆周期公式:glT π2=上述公式是高考要考查的重点内容之一。
对周期公式的理解和应用注意以下几个问题:①简谐振动物体的周期和频率是由振动系统本身的条件决定的。
②单摆周期公式中的l 是指摆动圆弧的圆心到摆球重心的距离,一般也叫等效摆长。
单摆周期公式中的g ,由单摆所在的空间位置决定,还由单摆系统的运动状态决定。
所以g 也叫等效重力加速度。
由可知,地球表面不同位置、不同高度,不同星球表面g 值都不相同,因此应求出单摆所在地的等效g '值代入公式,即g 不一定等于9.8m/s 2。
单摆系统运动状态不同g 值也不相同。
例如单摆在向上加速发射的航天飞机内,设加速度为a ,此时摆球处于超重状态,沿圆弧切线的回复力变大,摆球质量不变,则重力加速度等效值g ' = g + a 。
再比如在轨道上运行的航天飞机内的单摆、摆球完全失重,回复力为零,则重力加速度等效值g ' = 0,周期无穷大,即单摆不摆动了。
g 还由单摆所处的物理环境决定。
如带小电球做成的单摆在竖直方向的匀强电场中,回复力应是重力和竖直的电场合力在圆弧切向方向的分力,所以也有-g '的问题。
一般情况下g '值等于摆球静止在平衡位置时,摆线张力与摆球质量的比值。
三、受迫振动和共振 Ⅰ物体在周期性外力作用下的振动叫受迫振动。
受迫振动的规律是:物体做受迫振动的频率等于策动力的频率,而跟物体固有频率无关。
当策动力的频率跟物体固有频率相等时,受迫振动的振幅最大,这种现象叫共振。
共振是受迫振动的一种特殊情况。
四、机械波 横波和纵波 横波的图象 Ⅰ机械波:机械振动在介质中的传播过程叫机械波,机械波产生的条件有两个:一是要有做机械振动的物体作为波源,二是要有能够传播机械振动的介质。
横波和纵波:质点的振动方向与波的传播方向垂直的叫横波。
质点的振动方向与波的传播方向在同一直线上的叫纵波。
气体、液体、固体都能传播纵波,但气体和液体不能传播横波,声波在空气中是纵波,声波的频率从20到2万赫兹。
机械波的特点:⑴每一质点都以它的平衡位置为中心做简振振动;后一质点的振动总是落后于带动它的前一质点的振动。
⑵波只是传播运动形式(振动)和振动能量,介质并不随波迁移。
横波的图象用横坐标x 表示在波的传播方向上各质点的平衡位置,纵坐标y 表示某一时刻各质点偏离平衡位置的位移。
简谐波的图象是正弦曲线,也叫正弦波 简谐波的波形曲线与质点的振动图象都是正弦曲线,但他们的意义是不同的。
波形曲线表示介质中的“各个质点”在“某一时刻”的位移,振动图象则表示介质中“某个质点”在“各个时刻”的位移。
五、波长、波速和频率(周期)的关系 Ⅰ 描述机械波的物理量⑴波长λ:两个相邻的、在振动过程中对平衡位置的位移总是相等的质点间的距离叫波长。
振动在一个周期内在介质中传播的距离等于波长。
⑵频率f :波的频率由波源决定,在任何介质中频率保持不变。
⑶波速v :单位时间内振动向外传播的距离。
波速的大小由介质决定。
波速与波长和频率的关系:Tv λ=,v=λf .六、波的干涉和衍射 Ⅰ 波的干涉和衍射衍射:波绕过障碍物或小孔继续传播的现象。
产生显著衍射的条件是障碍物或孔的尺寸比波长小或与波长相差不多。
干涉:频率相同的两列波叠加,使某些区域的振动加强,使某些区域振动减弱,并且振动加强和振动减弱区域相互间隔的现象。
产生稳定干涉现象的条件是:两列波的频率相同,相差恒定。
稳定的干涉现象中,振动加强区和减弱区的空间位置是不变的,加强区的振幅等于两列波振幅之和,减弱区振幅等于两列波振幅之差。
判断加强与减弱区域的方法一般有两种:一是画峰谷波形图,峰峰或谷谷相遇增强,峰谷相遇减弱。
二是相干波源振动相同时,某点到二波源程波差是波长整数倍时振动增强,是半波长奇数倍时振动减弱。
干涉和衍射是波所特有的现象。
七、多普勒效应 Ⅰ1.多普勒效应:由于波源和观察者之间有相对运动,使观察者感到频率变化的现象叫做多普勒效应。
是奥地利物理学家多普勒在1842年发现的。
2.多普勒效应的成因:声源完成一次全振动,向外发出一个波长的波,频率表示单位时间内完成的全振动的次数,因此波源的频率等于单位时间内波源发出的完全波的个数,而观察者听到的声音的音调,是由观察者接受到的频率,即单位时间接收到的完全波的个数决定的。
3.多普勒效应是波动过程共有的特征,不仅机械波,电磁波和光波也会发生多普勒效应。
4.多普勒效应的应用:①现代医学上使用的胎心检测器、血流测定仪等有许多都是根据这种原理制成。
②波的干涉波的衍射根据汽笛声判断火车的运动方向和快慢,以炮弹飞行的尖叫声判断炮弹的飞行方向等。
③红移现象:在20世纪初,科学家们发现许多星系的谱线有“红移现象”,所谓“红移现象”,就是整个光谱结构向光谱红色的一端偏移,这种现象可以用多普勒效应加以解释:由于星系远离我们运动,接收到的星光的频率变小,谱线就向频率变小(即波长变大)的红端移动。
科学家从红移的大小还可以算出这种远离运动的速度。
这种现象,是证明宇宙在膨胀的一个有力证据。
八、电磁波谱电磁波及其应用Ⅰ一、麦克斯韦电磁场理论1、电磁场理论的核心之一:变化的磁场产生电场在变化的磁场中所产生的电场的电场线是闭合的(涡旋电场)◎理解:①均匀变化的磁场产生稳定电场②非均匀变化的磁场产生变化电场2、电磁场理论的核心之二:变化的电场产生磁场麦克斯韦假设:变化的电场就像导线中的电流一样,会在空间产生磁场,即变化的电场产生磁场◎理解:①均匀变化的电场产生稳定磁场;②非均匀变化的电场产生变化磁场〖规律总结〗1、麦克斯韦电磁场理论的理解:恒定的电场不产生磁场恒定的磁场不产生电场均匀变化的电场在周围空间产生恒定的磁场均匀变化的磁场在周围空间产生恒定的电场振荡电场产生同频率的振荡磁场振荡磁场产生同频率的振荡电场2、电场和磁场的变化关系电磁场由发生区域向远处的传播就是电磁波.3、电磁波的特点:(1) 电磁波是横波,电场强度E 和磁感应强度 B按正弦规律变化,二者相互垂直,均与波的传播方向垂直(2)电磁波可以在真空中传播,速度和光速相同. (3) 电磁波具有波的特性 三、赫兹的电火花赫兹观察到了电磁波的反射、折射、干涉、偏振和衍射等现象,他还测量出电磁波和光有相同的速度.这样赫兹证实了麦克斯韦关于光的电磁理论,赫兹在人类历史上首先捕捉到了电磁波。
电磁波(谱)及其应用 光的电磁说⑴麦克斯韦计算出电磁波传播速度与光速相同,说明光具有电磁本质 ⑵电磁波谱⑶光谱①观察光谱的仪器,分光镜一种元素,在高温下发出一些特点波长的光,在低温下,也吸收这些波长的光,所以把明线光波中的亮线和吸收光谱中的暗线都称为该种元素的特征谱线,用来进行光谱分析。
电磁波的应用:1、电视:电视信号是电视台先把影像信号转变为可以发射的电信号 ,发射出去后被接收的电信号通过还原,被还原为光的图象重现荧光屏。
电子束把一幅图象按照各点的明暗情况,逐点变为强弱不同的信号电流,通过天线把带有图象信号的电磁波发射出去。
2、雷达工作原理:利用发射与接收之间的时间差,计算出物体的距离。
3、手机:在待机状态下,手机不断的发射电磁波,与周围环境交换信息。