遥感影像数据融合原理与方法课件
- 格式:ppt
- 大小:69.50 KB
- 文档页数:23
实验五-遥感图像的融合实验五遥感图像的融合一、实验目的和要求1.理解遥感图像的融合处理方法和原理;2.掌握遥感图像的融合处理,即分辨率融合处理。
二、设备与数据设备:影像处理系统软件数据:TM SPOT 数据三、实验内容多光谱数据与高分辨率全色数据的融合。
分辨率融合是遥感信息复合的一个主要方法,它使得融合后的遥感图象既具有较好的空间分辨率,又具有多光谱特征,从而达到增强图象质量的目的。
注意:在调出了分辨率融合对话框后,关键是选择融合方法,定义重采样的方法。
四、方法与步骤融合方法有很多,典型的有 HSV、Brovey、PC、CN、SFIM、Gram-Schmidt 等。
ENVI 里除了 SFIM 以外,上面列举的都有。
HSV 可进行 RGB 图像到 HSV 色度空间的变换,用高分辨率的图像代替颜色亮度值波段,自动用最近邻、双线性或三次卷积技术将色度和饱和度重采样到高分辨率像元尺寸,然后再将图像变换回 RGB 色度空间。
输出的 RGB 图像的像元将与高分辨率数据的像元大小相同。
打开ENVI,在主菜单中打开数据文件LC81200362016120LGN00_MTL选择File>data manage,任意选择3个波段组合,查看效果打开分辨率为30和15的图像下图分别是分辨率为30、15的,可以看到图像清晰度明显发生改变,分辨率越高,图像越清晰选择如下图所示的三个波段选择分辨率高的为15的点击ok,Sensor选择landsat8_oil,Resampling选择三次方的Cubic Convolution,实现融合,选择输出路径为sssrong融合之后的图像如下图,可以发现图像清晰度提高,分辨率变高,图像质量变好五、实验心得多光谱数据与高分辨率全色数据的融合可以使遥感图象既具有较好的空间分辨率,又具有多光谱特征,继而达到增强图象质量的目的,可谓是一举两得。
这次实验虽然比较简单,但是一开始的时候还比较模模糊糊,甚至于连目的都不清楚。
如何进行遥感影像的数据融合遥感影像数据融合是一种将不同分辨率、不同传感器所得到的遥感影像数据进行整合的技术方法。
这种方法可以充分发挥各种遥感传感器的优势, 提高遥感影像的质量和信息量,广泛应用于资源与环境监测、农业与林业管理、城市规划与地理信息系统等领域。
本文将探讨如何进行遥感影像的数据融合,以及融合技术的发展趋势。
一、遥感影像数据融合的原理遥感影像数据融合的原理主要基于多源遥感数据的互补性和融合效果的增益性。
不同传感器获取的遥感影像数据在分辨率、光谱特征和时间特性上存在差异。
通过融合这些数据,可以整合各种传感器的优势,提高遥感影像的质量和信息内容。
二、融合技术的方法1. 基于像素级的融合方法像素级融合方法是将不同传感器获取的遥感影像数据在像素级别上进行直接融合。
常见的方法有加权平均法、主成分分析法和像元转换法。
加权平均法通过给予不同传感器像素不同的权重,将不同传感器获取的影像数据加权平均得到融合后的影像。
主成分分析法是将不同传感器的影像数据进行主成分分析,提取出影像的主要特征,然后将这些特征进行融合。
像元转换法是通过建立传感器之间的数学模型,将一个传感器的影像数据转换成另一个传感器的影像数据,然后进行融合。
2. 基于特征级的融合方法特征级融合方法是将不同传感器获取的遥感影像数据在特征级别上进行融合。
常见的方法有小波变换法、频谱角法和时频分析法。
小波变换法是通过应用小波变换将影像数据分解成不同尺度的子带,然后将不同传感器的子带进行融合。
频谱角法是通过计算不同传感器影像数据的频谱角来评估它们在频域上的相似性,从而决定如何进行融合。
时频分析法是通过将不同传感器的影像数据进行时频分析,提取出影像的时频特征,然后将这些特征进行融合。
三、融合技术的发展趋势随着遥感技术的不断发展,数据融合技术也在不断更新和创新。
未来融合技术的发展趋势主要包括以下几个方面:1. 多源数据融合多源数据融合是未来融合技术的重要趋势。
遥感图像融合方法遥感图像融合是指将来自不同传感器的多幅遥感图像融合成一幅具有更丰富信息和更高质量的图像,以便更好地应用于地学领域和资源环境管理中。
遥感图像融合方法的选择和应用对于提高遥感图像的分析和解译能力具有重要意义。
一、遥感图像融合的原理。
遥感图像融合的原理是基于多源数据的互补性和协同性,通过融合多个波段或多种分辨率的图像,可以获取更为全面和准确的信息。
常见的遥感图像融合方法包括基于像素级的融合和基于特征级的融合。
像素级融合是指将不同波段或分辨率的像素直接进行融合,而特征级融合则是在特征空间进行融合,如主成分分析、小波变换等。
二、遥感图像融合的方法。
1. 基于变换的融合方法。
基于变换的融合方法包括小波变换、主成分分析、非线性变换等。
小波变换能够将图像分解为不同尺度和方向的小波系数,通过选择不同的尺度和方向进行融合,可以实现多尺度和多方向的信息融合。
主成分分析则是通过对多幅图像进行主成分分解,提取出图像的主要信息进行融合。
非线性变换方法则是利用非线性映射将多幅图像进行融合,以实现更好的信息融合效果。
2. 基于分解的融合方法。
基于分解的融合方法包括多分辨率分解、多尺度分解等。
多分辨率分解将图像分解为不同分辨率的子图像,通过对子图像进行融合,可以得到更为丰富和准确的信息。
多尺度分解则是将图像分解为不同尺度的子图像,通过对不同尺度的子图像进行融合,可以获得更为全面的信息。
三、遥感图像融合的应用。
遥感图像融合方法在土地利用分类、环境监测、资源调查等领域具有广泛的应用。
通过融合多源遥感图像,可以提高图像的空间分辨率和光谱分辨率,从而更好地进行土地利用分类和环境监测。
同时,融合多源遥感图像还可以提高图像的信息量和准确性,为资源调查和规划提供更为可靠的依据。
四、结语。
遥感图像融合方法是遥感图像处理和分析的重要手段,对于提高遥感图像的信息量和质量具有重要意义。
在选择和应用遥感图像融合方法时,需要根据具体的应用需求和图像特点进行综合考虑,以实现更好的融合效果和应用效果。
遥感图像的融合1、目的与要求1、了解遥感图像融合的原理和方法2、熟悉高、低分辨率的影像的融合步方法骤3、掌握遥感软件中常用的遥感数据融合的步骤与方法2、实验内容选择ETM8波段的数据与假彩色合成波段的数据做融合处理。
融合的方法主要是高、低分辨率遥感数据的融合。
数据要求:在融合之前,第8波段和合成波段数据都已经经过了几何校正和辐射校正等预处理。
3、实验步骤1、空间分辨率融合选择“Erdas”面板菜单“Interpreter”->”Spatial Enhancement”->”Resolution Merge”命令,打开“Resolution Merge”对话框。
设置如下参数:文件设置:高空间分辨率的输入图像、多光谱输入图像和输出文件。
融合方法的选择:¤主成分变换法¤乘积变换法¤比值变换法主成分变换法:融合前融合后乘积变换法:融合前融合后2、IHS融合选择“Erdas”面板菜单“Interpreter”->”Spatial Enhancement”->”Mod.IHS Resolution Merge”命令,打开”Mod.IHS Resolution Merge”对话框,在输入、层选择和输出3个页面中设置参数。
融合前融合后3、高通滤波融合选择“Erdas”面板菜单“Interpreter”->”Spatial Enhancement”->”HPF Resolution Merge”命令,打开”HPF Resolution Merge”对话框,设置如下参数:R值:多光谱图像分辨率与高分辨率图像的分辨率的比值。
通过它可以调整卷积核的大小和中心值。
Kernel Size:高通滤波卷积核的大小,有R值决定。
Center Value:卷积核的中心值。
Weighting Factor:权重影响因子。
2Pass Processing :二次滤波选项。