抽水试验记录表
- 格式:xls
- 大小:100.50 KB
- 文档页数:20
抽水试验报告一、引言深基坑是城市建设中常见的工程,其施工过程中常会涉及地下水。
为了了解地下水的水质和水位,以及对基坑施工的可能影响,需要进行抽水试验。
本次试验旨在通过抽水试验,获取并研究深基坑地下水的相关参数,为基坑工程的施工提供科学依据。
二、试验设备和方法1.试验设备:本次试验使用了水泵、水位计以及水样采集器等设备。
2.试验方法:(1)确定试验地点:选择一深基坑工地作为试验地点,并将试验点确定在基坑附近,以确保地下水的获取。
(2)安装水位计:在试验地点附近挖掘一个试验井,将水位计安装在试验井中,并记录初始水位。
(3)设置水泵:在试验地点附近安装水泵,并与试验井相连。
通过控制水泵的开启和关闭,实现地下水位的改变,并记录不同时间段的水位变化。
(4)采集水样:在试验的不同时间点,使用水样采集器采集地下水样本,送至实验室进行水质分析。
三、试验结果与分析1.水位变化曲线图:根据试验结果,我们制作了基于时间的水位变化曲线图。
从图中可以看出,在开始抽水后,地下水位逐渐下降,直至稳定。
当停止抽水后,水位开始逐渐恢复至初始水位。
这表明水位与抽水的时间和强度密切相关。
2.水质分析结果:将试验期间采集的水样送至实验室进行水质分析,结果显示,在试验地点的水质为优良。
水样中包含的主要物质为溶解性氧、硫酸盐、硝酸盐、氯化物等。
其中,硫酸盐和硝酸盐的含量较高,这可能与周围环境和地质条件有关。
四、结果讨论通过本次实验,我们获得了深基坑地下水的水位变化和水质情况。
根据水位变化曲线,我们可以估计地下水位和抽水时间的关系,并掌握抽水过程中水位的变化规律。
根据水质分析结果,我们对地下水的水质进行了初步评估,发现了硫酸盐和硝酸盐的较高含量。
五、结论1.地下水位与抽水时间和强度相关,可以通过抽水控制地下水位。
2.试验地点的地下水水质为优良,但硫酸盐和硝酸盐的含量较高。
六、试验总结与改进建议通过本次试验,我们对深基坑地下水的水位和水质有了初步了解。
屋面排水性能试验记录表格
试验概述
本次试验旨在评估屋面排水系统的性能,以确保其正常运行和有效排水。
试验包括检查排水管道、检测排水速度以及观察排水装置的工作情况。
试验设备和材料
- 排水管道
- 测量仪器(如流量计、计时器等)
- 屋面排水装置
试验步骤
步骤一:排水管道检查
1. 检查排水管道的布局和连接情况。
2. 确保排水管道没有堵塞或漏水现象。
步骤二:排水速度测量
1. 将试验设备连接到排水管道。
2. 打开水源,使水流进入排水管道。
3. 使用流量计测量水流的速度。
4. 根据试验要求,记录水流速度和时间数据。
步骤三:排水装置观察
1. 检查屋面排水装置的工作情况。
2. 观察排水装置是否正常排水,没有积水或渗漏现象。
3. 如发现异常情况,记录并进行必要的修复或更换。
试验结果记录
排水管道检查结果
- 布局和连接情况:良好
- 堵塞或漏水情况:无
排水速度测量结果
- 水流速度:XX m/s
- 试验时间:XX 秒
排水装置观察结果
- 排水情况:正常
- 积水或渗漏情况:无
结论
根据本次试验结果,屋面排水系统的性能良好,能够有效排水
并正常工作。
备注
在试验过程中,如发现任何异常情况或有其他需要记录的内容,请在备注中详细记录。
机井抽水试验方案目录1、试验目的 (1)1.1概述 (1)1.2基本规定 (1)1.3试验基本技术要求 (1)2、试验仪器和设备 (3)2.1过滤器 (3)2.2抽水设备 (3)2.3量测器具 (3)3、抽水试验 (4)3.1稳定流抽水试验 (4)3.2试验现场记录 (5)3.3试验资料整理 (6)1、试验目的1.1概述确认是否达到设计流量,从而确定井深度,管井结构和地层柱状图,包括岩层的名称岩性描述厚度和埋藏深度,钻孔及下管深度、壁管和过滤器的规格及其组合填砾及封闭的位置,地下水静水位和动水位,电测井资料等。
1.2基本规定1.2.1完整孔:进水部分揭穿整个含水层厚度的抽水孔;1.2.2非完整孔:未揭穿整个含水层或进水部分仅揭穿部分含水层的抽水孔。
1.2.3稳定流抽水试验:在抽水过程中,要求抽水量和动水位同时相对稳定,并有一定延续时间的抽水试验。
1.2.4非稳定流抽水试验:在抽水过程中,保持抽水流量固定而观测地下水位随时间的变化,或保持水位降深固定而观测抽水流量随时变化的抽水试验。
当含水层厚度不大于15m时,宜采用完整孔抽水;当含水层厚度大于15m时,可采用非完整孔抽水。
根据设计资料显示,本项目机井含水层厚度大于15m,本次抽水试验采用单孔抽水,方式采用非完整孔抽水。
1.3试验基本技术要求1.3.1松散含水层抽水孔中的过滤器外壁应设置测压管,其有眼部分长度应与抽水孔过滤器一致。
1.3.2在试验各次降深中,抽水吸水管口均应放在同一深度。
从承压含水层中抽水,吸水管口宜放在含水层顶板以上适当位置;从潜水含水层中抽水,吸水管口宜放在最大降深动水位以下0.5~1.0m 处。
1.3.3抽水孔的静水位和动水位、动水位和出水量均应同步进行观测。
1.3.4试验停止后,应立即进行恢复水位观测,并应在抽水停止后第1min、2min、3min、4min、6min、8min、10min、15min、20min、25min、30min、40min、50min、60min、80min、100min、120min各观测一次,以后可每隔 30min 观测一次。
抽水压水注水试验技术要求及记录表格文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]抽水试验主要技术要求一、钻探技术要求:1、抽水孔的孔位应由地质、钻探、测量人员共同在现场确定。
2、钻探完成后应及时测量孔(管)口高程及孔位坐标,孔内所有测深均应从一个固定点算起。
3、抽水孔应采用跟管法钻进,也可采用能保证抽水孔平直,孔身附近不受扰动,孔壁不被覆盖和堵塞的其他钻进方法。
严禁采用泥浆和植物胶冲洗液钻进。
4、抽水孔孔径不宜小于200mm;过滤器直径不宜小于127mm,测压管内径不小于25mm。
5、取1-3组颗粒分析试验试样。
二、设备安装主要技术要求:1、下过滤器前,应用清水将孔内泥质物质冲洗干净,详细记录过滤器各部分的规格和实际长度(其中沉降管长度宜为2-3m)和实际下入深度,并及时绘制抽水孔结构图。
2、采用包网过滤器。
3、抽水孔的测压管应固定在过滤器外壁上,与过滤器同步下入孔内,并应采取适当措施,保证过滤器处于居中位置下到孔内预定深度。
4、抽水孔过滤器骨架的空隙率不小于30%。
5、抽水时,应将抽出的水排至影响范围以外。
6、用水表测定流量前,应准确测定起始读数。
三、抽水试验:1、采用单孔稳定流抽水试验,3次降深,以在抽水孔测压管内测得的降深为准,各次降深间的差值宜相等,降深宜从小到大,最小降深不宜小于0.5m。
2、试验前应对抽水孔进行清洗,直到水清、砂净、无沉淀时止。
3、洗孔后即可进行试验抽水,其降深宜逐渐增大,达到最大降深后的持续时间不应少于2h。
抽水试验过程中,应观测抽水孔出水量及水位变化,检查抽水设备运行是否正常;确定稳定流抽水的最大降深。
4、正式抽水前,静水位观测应每30min观测一次,2h内变幅不大于2cm,且无连续上升或下降趋势时,即可视为稳定。
5、试验时抽水开始后的第5min、10min、15min、20min、30min、40min、50min、60min,宜各观测一次动水位和出水量,以后每隔30min观测一次。
抽水试验主要技术要求一、钻探技术要求:1、抽水孔的孔位应由地质、钻探、测量人员共同在现场确定。
2、钻探完成后应及时测量孔(管)口高程及孔位坐标,孔内所有测深均应从一个固定点算起。
3、抽水孔应采用跟管法钻进,也可采用能保证抽水孔平直,孔身附近不受扰动,孔壁不被覆盖和堵塞的其他钻进方法。
严禁采用泥浆和植物胶冲洗液钻进。
4、抽水孔孔径不宜小于200mm;过滤器直径不宜小于127mm,测压管内径不小于25mm。
5、取1-3组颗粒分析试验试样。
二、设备安装主要技术要求:1、下过滤器前,应用清水将孔内泥质物质冲洗干净,详细记录过滤器各部分的规格和实际长度(其中沉降管长度宜为2-3m)和实际下入深度,并及时绘制抽水孔结构图。
2、采用包网过滤器。
3、抽水孔的测压管应固定在过滤器外壁上,与过滤器同步下入孔内,并应采取适当措施,保证过滤器处于居中位置下到孔内预定深度。
4、抽水孔过滤器骨架的空隙率不小于30%。
5、抽水时,应将抽出的水排至影响范围以外。
6、用水表测定流量前,应准确测定起始读数。
三、抽水试验:1、采用单孔稳定流抽水试验,3次降深,以在抽水孔测压管内测得的降深为准,各次降深间的差值宜相等,降深宜从小到大,最小降深不宜小于0.5m。
2、试验前应对抽水孔进行清洗,直到水清、砂净、无沉淀时止。
3、洗孔后即可进行试验抽水,其降深宜逐渐增大,达到最大降深后的持续时间不应少于2h。
抽水试验过程中,应观测抽水孔出水量及水位变化,检查抽水设备运行是否正常;确定稳定流抽水的最大降深。
4、正式抽水前,静水位观测应每30min观测一次,2h内变幅不大于2cm,且无连续上升或下降趋势时,即可视为稳定。
5、试验时抽水开始后的第5min、10min、15min、20min、30min、40min、50min、60min,宜各观测一次动水位和出水量,以后每隔30min观测一次。
6、动水位稳定标准:采用地面离心泵和潜水电泵抽水时,抽水孔的水位波动不应大于3cm;采用空压机抽水时,抽水孔的水位波动值不应大于10cm。
抽水井和回灌井竣工及抽水和回灌试验报告建设单位:施工单位:技术负责人:日期:项目基本情况OOO住宅小区位于OOOOOOOOOO交汇处,其规划用地面积OOO行,总建筑面积OOO行,本次开发有10栋居民楼,其中小高层9栋,均为住宅,1 栋高层,为商住建筑,配有停车场、智能化系统等设施,是低楼层、低密度、低容积率、高绿化率的生态居住园区。
背景为完善000住宅小区配套设施,小区采用集中供应生活热水,使用面积为OOOO 行,通过方案选择及讨论后,本小区计划采用地下水地源热泵进行生产热水,为了保证地下水源供给稳定,以及地下水回灌安全无隐患,杜绝地下水源供应不足或干枯情况发生,我司特意完成了抽水井和问灌井竣工及抽水和回灌实验,并记录相关数据后进行分析。
一、试验目的:,为了保证地下水源供给稳定、地下水回灌安全无隐患、杜绝地下水源供应不足或干枯情况发生。
二、实验内容:检验抽水井的实际出水量、动水位、含砂量、出水温度;回水井实际回灌量、动水位。
三、试验工具:一台潜水泵,1台超声波流量计、电测水位计、量砂杯等。
潜水泵:250QJ(R)-125/29/1扬程:60米流量:200m3/h超声波流量计:XCT-2000四、试验方法一口抽水井分别安装潜水泵,抽水井抽水,往回水井回灌,抽水井和回水并用PE管道连接。
抽水试验分别进行了72小时,数据参数见记录表。
五、结论通过以下试验数据付以看出,抽回水井在满负荷工作状况下水位变化平稳,出回水稳定,完全满足设计要求。
抽水井稳定出水量为190m3/h,水源热泵设计每口抽水井的最大抽水量为200m3/h,抽水井完全满足要求。
一口回灌井的稳定回水量为200m3/h,水源热泵设计每口抽水井的最大回水量为200m3/H,回水井完全满足要求。
水源热泵设计1 口抽水井,最大用水量为200m3/h,水源热泵设计1 口回水井,最大回水量为200m3/h,基本上做到全部回灌。
六、其它为保证地下水更好的利用,同时最大限度的解决安全隐患,因此我司在测试中提出回灌井和抽水井一年进行作用互换,为保证原回灌井取水稳定,原抽水井回灌到位,我司进行了原回灌井抽水测试,原抽水井回灌测试,测试数据完全能够保证水量和回灌到位,满足设计要求。
抽水试验方案一、抽水试验目的此次试验目的主要是确定Rumela Spillway开挖区域的水文地质参数:渗透系数K、导水系数T、给水度μ等,为Rumela Spillway基坑开挖排水提供计算依据。
二、抽水试验地段的地质及水文地质条件The surface of Spillway Area consists of topsoil, alluvial gravel and sand, weathered sandstone and mudstone, light grey, poorly packed, low strength, argillaceous, soft rock.According to the geological synthesis drawing provided by DIU, rock mass of spillway area is Nubian sandstones; sequence of the strata from top to bottom in this area is topsoil &alluvial gravel and sand →Upper sandstone(about 15m)→ Lower mudstone(about 22m)→ Lower sandstone (about 11m)→ Basic Mudstone (hard rock).Tectonic of the area is several basaltic dykes, weak zones, and some streams.Hydrological condition of the site:Sandstone and basalt is aquifer, the two aquifers being connected of upper Atbara River, recharge for the two aquifers were expected to take place from the Upper Atbara River.For the sandstone aquifer, the transmissivity is 280m2/day and the average permeability is 0.75 m/day. For the basalt aquifer, the transmissivity is 100 m2/day with an hydraulic gradient of 1/160.三、抽水试验类型确定此次抽水试验采用多井、完整井、非稳定流抽水试验方式。