Activated carbon and carbon molecular sieves in gas separation and purification 1993 7 195-6
- 格式:pdf
- 大小:198.49 KB
- 文档页数:2
华南理工大学硕士学位论文改性活性炭吸附脱除一氧化碳的研究姓名:吕玄文申请学位级别:硕士专业:环境化工指导教师:叶菊招2000.3.1摘要l\一氧化碳是无色、无臭、毒性很大的气体,它是八大类气体污染物之一,随着国民经济的发展和人们生活水平的提高,大量生产和使用易燃产生一氧化碳和氢氰酸等有毒气体的高分子建筑材料和装饰时料,工业发达,交i匝繁忙,排出大量的工业和汽车尾气等均严重污染环境,危害人类身体健康,所以,如何监测、控制和脱除高浓度的一氧化碳有害气体、显得非常迫切和重要。
活性炭是一种有发达孔隙结构的含碳物质,具有吸附和催化特性,是性能优良的万能吸附剂。
所以早用在军用防毒面具和工业用呼吸器内作防毒滤毒物质。
但对于—氧化碳气体的防御,必须使用装有干燥剂和催化剂混合物的专用滤毒器(通常用氧化铜和二氧化锰混合物一霍加拉特剂),使一氧化碳被氧化为二氧化碳。
但催化剂受潮很快失去活性,严重影响滤毒器的有效期,这是防毒面具致命的弱点。
为此,本研究提出新的设想.利用活性炭的各种优良特性,选用木质活性炭为基础吸附剂,疏水性的有机物质为改性剂,合理地偶合吸附剂和改性剂的协同吸附效应,直接从混合气体中吸附脱除一氧化碳有毒气体。
这对保护环境和研制消防逃生自救、劳动保护面具和工业通风滤毒装置的防毒滤毒吸附剂提供理论实验依据,具有重要的学术意义和应用价值矿√本论文对一氧化碳的来源和危害,活性炭的结构性能与应用、吸附分离技术的发展背景、基础理论、及本论文的选题背景和重要性等进行了综述,对一氧化碳含最的测定方法、基础吸附剂的评选、改性、和改性后的吸附剂对混合气体中一氧化碳的静态吸附和动态吸附以及解吸、再生等进行了’一系列的研究。
通过研究选定了用静态浸渍法改性吸附剂,确立了用静态吸附和动态吸附的理论方法来研究和评价改性吸附剂对一氧化碳的吸附效果,并研究探索了改性吸附剂的应用方向。
,f研究结果表明:混合气体中一氧化碳含量的测定可以用简单快捷、重复性好的气固色谱法来测定,其最佳操作条件是以13X分子筛为固体吸附剂,选用H’作载气、载气流速为16~20ml/min、热导池作检测器,桥流160mA,,柱温为30"C,进样量为40~50ul,在此条件下空气和CO能彻底分离,重复性好,’既明这种方法可作为本研究中对CO含量的分析测定手段。
Adsorption of CO 2,CH 4,and N 2on Gas Diameter Grade Ion-Exchange Small Pore ZeolitesJiangfeng Yang,Qiang Zhao,Hong Xu,Libo Li,Jinxiang Dong,and Jinping Li *Research Institute of Special Chemicals,Taiyuan University of Technology,Taiyuan 030024,Shanxi,P.R.Chinastructure like CO 2.From the viewpoint of the equilibrium selectivity for CO 2and N 2or CO 2andof CO 2;K-zeolites with high S CO 2/N 2and S CH 4/N 2,adsorption potential order was K-zeolites >Na-zeolites >The removal of CO 2from gaseous mixtures is important for CO 2capture from flue gas,biogas,or land fill gases.These sources of natural gas mainly contain CH 4,CO 2,and N 2.Therefore,the separation of CO 2,CH 4and N 2mixtures canupgrade low quality natural energy gas and also mitigate the problem of excess CO 2emissions.1Of the available adsorption-based separation processes,energy (CH 4)and CO2capture isconsidered to be an energy-and cost-e fficient alternative.Thus,adsorption is an important solution for separation,CO 2capture,CH 4storage,and transportation.2−4This approach uses various types of sorbents or adsorption materials such as carbon materials (activated carbon and carbon molecular sieves),5,6molecular sieves (zeolites),7−10and the popular new metal −organic frameworks (MOFs).11−14Sorbents are considered to be the most important factors a ffecting adsorption techniques.A comparison of di fferent adsorption materials showed that carbon materials are di fficult to have a balance of small pores and large pores,for optimum balance between capacity and dynamics,and MOFs had lower thermal stability,but zeolites produced very homogeneous structures with high surface area and good thermal stability,and the size of the pore volume could be modulated.15,16Thus,zeolites are the most commonly used adsorbents in the field,such as LTA structures (4A,5A,and 13X).17The question is how do we choose appropriate zeolites for a speci fic application such as CO 2,CH 4,and N 2adsorption and First,an analysis of gases showed that nonpolar gases have very similar diameters and gas dynamics:CO 2=0.33nm,CH 4=0.38nm,and N 2=0.36nm,18while the adsorptionstrength of the sorbents was CO2>CH4>N2.19,20Therefore,the adsorption and separation of most gases by zeolites isreliant on their surface potential or the balance of ions in surface channels,particularly the low silicon Li-X zeolite usedfor O 2and N 2separation.21The pore diameters of zeolites areusually bigger than the gas molecules,so gases can di ffusethrough these pores.But what would happen if the pores had a similar size to or smaller than the molecular diameter of the three gases during zeolite adsorption?Titanium silicalite ETS-4had a pore size that is similar to the molecular diameter,and it can be modulated by temperature changes for the aperture separation of various gases,such as CO 2and CH 4,N 2,and CH 4,although its lower adsorptioncapacity limits theapplication of this approach.22−24The ori fice diameters of the zeolites,KFI,CHA,and LEV,are very close to the kinetic diameters of CO 2,CH 4,and N2(Figure 1).These three small-pore zeolites have cage-like structures,and the larger cavity in the hole is ideal for gas uptake.This type of small-pore size microporous zeolite is a hot research area in the field of catalysis and adsorption.25−27Received:August 28,2012Accepted:October 31,2012Published:November 7,2012Krishna and van Baten found frequent correlation e ffects with cage-type zeolites,such as LTA,CHA,and DDR,where narrow windows separated the cages.26Webley et al.studied the gas adsorption selectivity of M(Ca,K)-CHA and concluded that the high O 2/Ar selectivity was possibly due to partial pore blockage by a large K +located near the 8-member ring,producing a 20-hedron cage.28The small pore size and the metal cation balance probably plays an important role in the gas diameter grade structure of zeolites where it determines the adsorption capacity and shape-selective catalysis.It is less common to focus on these types of small pore size cage-like structures and the adsorption of gas molecules close to the aperture.In this study,we synthesized three types of zeolites,Na-LEV,K-CHA,and K-KFI,using the hydrothermal method,whereas Na-KFI,Li-KFI,Ca-KFI,Na-CHA,Li-CHA,and Ca-CHA were obtained by ion exchange.The aims of this study were to evaluate the pore size e ffect and the metal cation e ffect on the adsorption of CO 2,CH 4,and N 2.We also discuss the most suitable method for the separation of CO 2,CH 4,and N 2based on calculations of the adsorption equilibrium.■MATERIALS AND METHODSThe chemicals used in this study are described in more detail in Table 1.Partial Aluminum Potassium.[50.00g of water +29.76g of potassium hydroxide +15.80g of alumina]were heated to boiling until clear,cooled to room temperature,and corrected for any weight loss due to boiling.30,31K-KFI.The synthesis following the procedure reported by Johannes et al.30−32The batch composition was:7.2partial aluminum potassium/0.1strontium nitrate/7.5silicon dioxide/130water,and the typical procedure involved mixing the required amounts of partial aluminum potassium and water,followed by the addition of silica sol,and mixing until smooth (approximately 10min),before strontium nitrate was added to the mixture and stirred for 10min.The resulting mixture was transferred into a 23mL Te flon-lined autoclave and heated in an oven for 5days at 423K.After cooling to ambient temperature,the product was filtered,washed with water,and dried at 373K.The crystal structure of KFI and the degree of crystallinity were con firmed by powder X-ray di ffraction(XRD).Figure 1.Structures of zeolites KFI (a),CHA (b),and LEV (c).29Table 1.Purity of Chemicals Used in This Study and Their Detailschemical name source initial mass fraction purityalumina Aladdin,China >0.99silica sol QingdaoHaiyang Chemical Co.,Ltd.0.401,1-dimethylpiperidinium chloride Shanghai Bangcheng Chemical Co.,Ltd.0.98strontium nitrate Aladdin,China >0.99potassium hydroxide TianjinKemiou Chemical Reagent Co.,Ltd.0.82sodium hydroxide TianjinKemiou Chemical Reagent Co.,Ltd.0.96sodium chloride TianjinKemiou Chemical Reagent Co.,Ltd.0.99lithium hydroxide Tianjin Kemiou Chemical Reagent Co.,Ltd.0.98lithium chloride TianjinKemiou Chemical Reagent Co.,Ltd.0.97calcium hydroxide TianjinKemiou Chemical Reagent Co.,Ltd.0.95calcium chloride Tianjin Kemiou Chemical Reagent Co.,Ltd.0.96K-CHA.The synthesis method was similar to that for K-KFI,but the batch composition was:7.2partial aluminum potassium:0.1strontium nitrate:6silicon dioxide/130water,so there were lower levels of Si/Al.The crystal structure of CHA and the degree of crystallinity were con firmed by powder XRD.Na-LEV.This was prepared from:6partial aluminum sodium/10silicon dioxide/31,1-dimethylpiperidinium chlor-ide/200H 2O,which was made according to our previously reported method.33Ion Exchange.The Na-KFI described above was converted from its potassium form (K-KFI)via three consecutive ion exchanges.In general,300mL of 1M sodium chloride at pH =9(adjusted with 0.01M sodium hydroxide)was added to 5g of zeolite,and the solution was heated to 363K and stirred for 12h.The solution was decanted,and fresh solution was added.After successive washes with the requisite solution,the resulting zeolite was vacuum-filtered and washed with 500mL of deionized water.The zeolite was dried at 373K for 24h.Li-KFI was prepared from Na-KFI by five consecutive ion exchanges of Na-KFI with 2M lithium chloride (5g of zeolite:300mL of lithium chloride)at pH =9(adjusted with 0.01M lithium hydroxide).Ca-KFI was prepared from Na-KFI by five consecutive ion exchanges of Na-KFI with 1M calcium chloride (1g of zeolite:300mL of calcium chloride).The solution was heated at 353K for 12h and decanted,and fresh solution was added.This procedure was repeated five times.Finally,the Ca-KFI was filtered and washed with copious amounts of deionized water and dried at 373K overnight.Na-CHA,Li-CHA,and Ca-CHA,were prepared using the same procedure.34Characterization.The crystallinity and phase purity of the molecular sieves were measured by powder XRD using a Rigaku Mini Flex II X-ray di ffractometer with Cu K αradiation operated at 30kV and 15mA.The scanning range was from 5to 40°(2theta)at 1°/min.Morphological data were acquired by scanning electron microscopy (SEM)using a JEOL JSM-6700F scanning electron microscope operated at 15.0kV.The samples were coated with gold to increase their conductivity before scanning.The Si/Al ratio and the metal ion content of the zeolites were determined by elemental analysis using a spectrophotometer-723P.High-Pressure Gas Adsorption Measurements.The purity of the carbon dioxide was 99.999%,methane was 99.95%,and nitrogen was 99.99%.The adsorption isotherms were measured under high pressure using an Intelligent Gravimetric Analyzer (IGA 001,Hiden,UK).Before measuring the isotherm,a 50mg sample was predried under reduced pressure and then outgassed overnight at 673K under a high vacuum until no further weight loss was observed.Each adsorption/desorption step was allowed to approach equilibrium over a period of 20−30min,and all of the isotherms for each gas were measuredusing a single sample.■RESULTS AND DISCUSSION Synthesis,Ion Exchange,and Characterization.The zeolite K-KFI was synthesized according to a published method.32Figure 2a shows the XRD pattern of the synthesized molecular sieve K-KFI compared with the standard XRD data for the molecular sieve KFI.The peak positions and relative di ffraction intensity were similar to the reported values,which demonstrated that the molecular sieve K-KFI had been synthesized.Figure 2a also shows the XRD pattern of the molecular sieve K-KFI,which was calcined from (573to 1073)K.Its peak positions and relative di ffraction intensity were the same as a sample synthesized below 973K,while the skeleton collapse temperature was 1073K.The method used for the synthesis of K-CHA was similar to that used for K-KFI.Figure 2b shows the XRD pattern of the synthesized molecular sieve K-CHA compared with the standard XRD data for the molecular sieve CHA.The peak positions and relative di ffraction intensity were similar to the reported values,which demonstrated that the molecular sieve K-CHA had been synthesized.The samples had similar behavior at below 973K,while the skeleton collapse temperature was 1073K.The data showed that the structures of KFI and CHA had good thermal stability.The Si/Al values in K-KFI and K-CHA were 4.59and 2.63,respectively.The low Si/Al value indicated that K +occupied more channels in the zeolites,where the large space allowed access to small metal ions or divalent ion exchange.In addition,K-CHA with a lower Si/Al value indicated that more ions could be exchanged,while the size of the pore space could change greatly.However,the higher Si/Al value of K-KFI indicated lower ion exchange,so the size of the pore space could be regulated at a finer level.Table 2shows the experimental K-zeolites,which were changed to Na-zeolites via ion exchange,and the uncertainty is within ±0.005.This shows that the ion exchange degree was increased with temperature and frequency.K-CHA with a lower Si/Al value was produced more completely and easier than K-KFI with a higher Si/Al value from Na +exchanged with K +.The ion exchange degree of Na-CHA from K-CHA wasveryFigure 2.XRD patterns of KFI (a)and CHA (b).high in the first cycle,because the higher temperature is helpful to ion exchange in low Si/Al zeolites.35We selected the highest exchange degree for K +(Na-KFI with 0.91and Na-CHA with 0.99)and the Na-zeolites were used to obtain Li-zeolites and Ca-zeolites.Table 3shows that Li-KFI and Ca-KFI were 0.96and 0.83,respectively,based on Li +and Ca 2+exchange for Na +,while Li-CHA and Ca-CHA were 0.92and 0.96,respectively.The XRD patterns of the Na-,Li-,and Ca-zeolites showed that the zeolite structures were highly stable throughout ion exchange (Figure 3).The samples that changed in appearance are shown in Figure 4.The morphologies of the zeolites with KFI and CHA structures were observed by SEM.For K-KFI to Na-KFI,Li-KFI,and Ca-KFI,the morphologies of the crystals changed from regular cubic accumulations until they completely lost their regular structures.We also showed that there was a slight change in their appearance after a single exchange of materials,followed by a more obvious change after the secondary exchange of materials,particularly M 2+exchange with M +based on the morphologies of M-CHA (M-metal).The pore diameter of some of the samples was too small to be measured or analyzed using a liquid nitrogen adsorption isotherm,for LEV with the ori fice very close to the nitrogen-diameter,so the surfaces of all samples were measured andanalyzed using a CO 2adsorption isotherm at 273K (Figure 5).The microporous surface area and microporous volumes werecalculated using the Dubinin −Radushkevitch (D-R)equation(Table 4):β=−··⎡⎣⎢⎤⎦⎥V V B T PP log()log()log0202(1)where V was volume adsorbed at equilibrium pressure;V 0was the micropore capacity;P 0was saturation vapor pressure of gas attemperature T ;P was equilibrium pressure;B was a constant,βwasthe a ffinity coe fficient of analysis gas relative to P 0gas (for this application βis taken to be 1);T was the analysis bath temperature.36−38All of the samples with a high surface area could be used foradsorption;the surfaces and the pore volumes of the zeoliteswere changed very obvious by ion exchange.Table 4shows thesurface of the samples where the greatest changes were in theappearance of the M-CHAs with the lowest surface areas (K-CHA with 278.5m 2·g −1)and the highest (Li-CHA with 638m 2·g −1,the same situation also appear in the pore volumechange (K-CHA with 0.07cm 3·g −1and Li-KFI with 0.17cm 3·g −1).because they had lower Si/Al values and morebalanced metal ions could be exchanged,so with the smallersize of Li +instead of K +(Table 3),more space can be obtained.However,M-KFI had a higher Si/Al value than M-CHA,so the area of its surface and microporous volume that could be regulated by ion exchange was smaller;that is,the surface area ranges from 333.5m 2·g −1(Ca-KFI)to 566.2m 2·g −1(Na-KFI),and the pore volume ranges from 0.07cm 3·g −1(Ca-KFI)to 0.15cm 3·g −1(Na-KFI).We also found that the surfaces and pore volumes of Ca-zeolites were smaller than Li-or Na-zeolites,which showed that the introduction of Ca 2+reduced the number of balanced ions,while the plug was very strong because the size of Ca 2+larger than Li +and Na +.Li-KFI and Na-KFI had similar surfaces,so it was inferred from Li +that there was no hole in Na-KFI to produce major changes.The systematic errors of surface areas and pore volume have been estimated to be less than 5m 2·g −1and 0.01cm 3·g −1.Table 2.Ion Exchange Degree from K-Zeolite to Na-Zeolite at Di fferent Exchange Times and Temperatures of (323and 363)K a 0.5870.7570.8800.910363Na-CHA 0.7500.7640.9240.9343230.9240.9710.9740.991363a Uncertainties are:U (exchange degree)=0.005;U (T )=0.1K.Table 3.Ion Exchange Degree of Li and Ca-Zeolite from Na-Zeolite a zeolites cation ionic radius (nm)Na +per unit cell (wt %)exchange degree for Na +K-KFI 0.133Na-KFI 0.095 5.29Li-KFI 0.0680.200.96Ca-KFI 0.0990.900.83K-CHA 0.133Na-CHA 0.0957.94Li-CHA 0.0680.640.92Ca-CHA 0.0990.290.96a Uncertainties are:U (Na +contents)=0.02wt %;U (exchange degree)=0.005.Figure 3.XRD patterns of Na,Li,and Ca-KFI (a)and Na,Li,and Ca-CHA (b).Gas Sorption Isotherm Measurements.The CO 2,CH 4,and N 2adsorption and desorption isotherms of the samples are shown in Figure 6,where all of the isotherms have a Langmuir I form and the relative uncertainties of adsorption volumes are estimated to be 0.05V .Most of the samples exhibited rapid desorption,and this correlated with their adsorption curve.Only sample K-CHA exhibited desorption hysteresis during CH 4adsorption.We inferred that the pore size of K-CHA was too close to the kinetics of the di ffusion diameter of CH 4,so it had a very strong CH 4adsorption potential,whereas desorption was hindered by the steric e ffect of the micropores.Table 5also shows the orders of the volumes for CO 2,CH 4,and N 2adsorption of the samples at 0.1MPa.The order of CO 2adsorption at 298K corresponded to the surfaces of the samples.Based on the CO2adsorption,we can also determine the zeolites with Li +and Na +exchange with bigger surfaces and greater adsorption volumes.Based on the high levels (>100cm 3·g −1)of CO 2adsorption with Li,Na-KFI,and Li,Na-CHA at high pressurea,we conclude that micropore Li-zeolites and Na-zeolites could be used for CO 2capture and storage (CCS).The smallest CH 4adsorption volume was found with Na-LEV,so we inferred that CH4adsorption would not occur in itsmicropores because the levels were far less than with othersamples.We conclude that CH4could not di ffuse through theholes in Na-LEV because the ori fice diameter (0.36×0.48nm)was too small.The CH 4adsorption results showed thatM-Figure 4.SEM of the samples:(a)K-KFI,(b)Na-KFI,(c)Li-KFI,(d)Ca-KFI,(e)K-CHA,(f)Na-CHA,(g)Li-CHA,(h)Ca-CHA.CHA was better than M-KFI,so CH 4adsorption or storage was based on the surface features and the ori fice diameter (CHA with 0.38×0.38nm,KFI with 0.39×0.39nm),which indicated a higher adsorption potential.39The low N 2adsorption with Na-LEV shows that molecules could not di ffuse through its pores.N 2adsorption was not a ffected by the metal ion or the structure,so the pore size or surfaces of porous materials were always su fficient for liquid nitrogen adsorption.In the other samples,the N 2adsorption results showed that the pores were expanded by small metal ions or divalent ion exchange,that is,twice then once,because the order was Li,Ca-zeolite >Na-zeolite >K-zeolite (Table 5).Adsorption Equilibrium Selectivity.To evaluate the adsorption equilibrium selectivity and predict the adsorption of the gas mixture from the pure component isotherms,the adsorbent selection parameter S i /j is de fined in the following equation:=ΔΔS qq a i j i j /12/(2)where Δq 1and Δq 2are the adsorption equilibrium capacity di fferences at the adsorption pressure and desorption pressure for components 1and 2.The adsorption equilibrium selectivity a i /j between components i and j is de fined as follows:==a K K q b q b i j i j mi imj j /(3)Henry ’s law:=q Kp (4)Langmuir isotherm model:=+q q bpbp 1m (5)where q m and b are Langmuir isotherm equation parameters,which can be determined from the slope and intercept of a linear Langmuir plot of (1/q )versus (1/p )where q m i and q m jand b i and b j are the Langmuir equation constants for components i and j ,respectively.The equilibrium selectivity de fined in the above equation is basically the ratio of Henry ’s constants for the two components.40Based on the results for S CO 2/CH 4and S CO 2/N 2(in Table 6andthe relative uncertainties of S i /j are estimated to be 0.05S ),all ofthe micropore zeolites produced excellent results in the evaluations,because of the high adsorption of CO 2in the gas diameter grade micropore structures.Na-LEV was the bestmicroporous sieve for gas materials with the highest S CO 2/CH 4=137and S CO 2/N 2=934due to the almost total nonadsorption ofCH 4and N 2but high adsorption of CO 2,which is rare among sorbents.41The second best was Na-KFI (S CO 2/CH 4=92andS CO 2/N 2=374),which had produced better results than otherM-KFIs.In addition,Na-CHA had a higher SCO 2/CH 4than K andLi-CHA,and at the same time Na-CHA also had a higher S CO 2/N 2than Li,Ca-CHA,so we can conclude that Na-zeoliteshad higher CO 2adsorption.A reanalysis of the data showed that Li-zeolites were followed by Na-zeolite,so the e ffects of the smaller Li +were lower than the e ffects of the bigger Na +,and we inferred that the size of the metal ions was an important impact in zeolites.The aerodynamic diameter and physicochemical propertiesof CH 4and N 2were very similar,so separating CH4and N 2wasmuch more di fficult than CO 2and CH4or CO 2and N 2separation which used an adsorption technique.The exper-imental data for S CH 4/N 2in Table 6also con firmed this point.K-CHA had the highest S CH 4/N 2=14.5,while the second was K-KFI (S CH 4/N 2=8.5),which indicated that the introduction of alarge K +increased the potential adsorption of CH4.The Na-zeolites and Li-zeolites have very low data for S CH 4/N 2.Based on the relatively good K-zeolite data for S CO 2/N 2and the smallersurface pores,we can conclude that K +had a signi ficant role in the adsorption of CH4and CO 2,although a smaller hole did not allow greater nitrogen di ffusion.From the perspective of the adsorption potential,we conclude that the large K +was better than Na +and the small Li +;the order was K-zeolites >Na-zeolites >Li-zeolites,indicating that bigger ions had a stronger a ffinity.While the introduction of divalent ions could halve the total number of ions,thus,Ca 2+formed fewer of these small pore type zeolites,and it did not produce very good resultsfor adsorption separation.■CONCLUSION We prepared nine di fferent surfaces of gas diameter grade small pore zeolites,which were characterized by XRD,SEM,and elemental analysis.We synthesized K-CHA with a lower Si/Al value,and more balanced metal ions could be exchanged,so the surfaces and microporous volumes were changedgreatly.Figure 5.CO 2adsorption of the samples on 273K.Table 4.Microporous Surface (MS)and Microporous Volume (MV)of the Samples Obtained from CO 2Adsorption Isotherms at 273K a K-KFI 430.40.10Na-KFI 566.20.15Li-KFI 550.60.14Ca-KFI 333.50.07K-CHA 278.50.07Na-CHA 594.80.16Li-CHA 638.00.17Ca-CHA 487.20.12a Uncertainties are:U (MS)=5m 2·g −1;U (MV)=0.01cm 3·g −1.However,K-KFI had a higher Si/Al value,and the area of its surface and microporous volumes could be modulated to make it smaller.We focused on the CO 2,CH 4,and N 2adsorption isotherms of the samples under high pressure (1MPa)at room temperature (298K),and we found that the smaller Li +and Na +exchanged more with the surface and they had higher adsorption volumes,whereas the larger K +led to severe channel congestion.We calculated and evaluated the adsorption equilibrium selectivity of CO 2/CH 4/N 2,which showed that the ori fice diameter had a very important role in the sieving of CO 2and N 2or CO 2and CH 4,where Na-LEV produced the best sieving e ffect.From the viewpoint of the adsorption equilibria,the Na-zeolites produced the best results for adsorption equilibrium selectivity with CO 2and N 2or CO 2and CH 4,followed by Li-zeolites,whereasK-zeolites withhigh Figure 6.CO 2(▲),CH 4(■),and N 2(●)adsorption (solid)and desorption (hollow)isotherm of the samples at 298K and 1MPa:(a)K-KFI,(b)K-CHA,(C)Na-LEV,(d)Na-KFI,(e)Li-KFI,(f)Ca-KFI,(g)Na-CHA,(h)Li-CHA,(i)Ca-CHA.Table 5.Volumes of CO 2,CH 4,and N 2Adsorption on the Samples at 0.1MPa a K-KFI 67.317.57.1Na-KFI 93.617.79.5Li-KFI 88.315.99.3Ca-KFI 54.816.29.5K-CHA 47.119.1 5.5Na-CHA 104.330.316.7Li-CHA 106.633.016.9Ca-CHA 83.221.418.7a The relative uncertainties of adsorption volumes are estimated to be 0.05V .Table 6.Separation Factor of CH 4/N 2,CO 2/CH 4,and CO 2/N 2Calculated from Pure Component Adsorption Isothermsof the Samplesa zeolite S CO 2/CH 4S CO 2/N 2S CH 4/N 2Na-LEV 137934 6.8K-KFI 353038.5Na-KFI 92374 4.1Li-KFI 80237 3.0Ca-KFI 1959 3.0K-CHA 2435214.5Na-CHA 42187 4.3Li-CHA 32154 4.7Ca-CHA 51127 1.6a The relative uncertainties of Si /j are estimated to be 0.05S .S CH 4/N 2and S CO 2/N 2.Based on the adsorption equilibrium selectivity results,we can conclude that the adsorption potential order was K-zeolites >Na-zeolites >Li-zeolites,so the bigger ions had a stronger a ffinity.Divalent ions were less likely to be captured in the structures than univalent ions,so their separation was somewhat poorer.■AUTHOR INFORMATION Corresponding Author *E-mail:Jpli211@.Tel.:86-3516010908.Fax:86-3516010908.Funding We gratefully acknowledge financial support from the National Natural Science Foundation of China (Nos.21136007,51002103)and Research Fund for the Doctoral Program of Higher Education of China (No.20091402110006).This work was financially supported by the program for the Top Science and Technology Innovation Teams of Higher Learning Institutions of Shanxi.Notes The authors declare no competing financial interest.■REFERENCES (1)Kikkinides,E.S.;Yang,R.T.;Cho,S.H.Concentration and recovery of CO 2from flue gas by pressure swing adsorption.Ind.Eng.Chem.Res.1993,32,2714−2720.(2)Hao,G.P.;Li,W.C.;Qian,D.;Wang,G.H.;Zhang,W.P.;Zhang,T.;Wang,A.Q.;Schu t h,F.;Bongard,H.J.;Lu,A.H.Structurally Designed Synthesis of Mechanically Stable Poly-(benzoxazine-co-resol)-Based Porous Carbon Monoliths and TheirApplication as High-Performance CO 2Capture Sorbents.J.Am.Chem.Soc.2011,133,11378−11388.(3)Matranga,K.R.;Myers,A.I.;Glandt,E.D.Storage of natural gas by adsorption on activated carbon.Chem.Eng.Sci.1992,47,1569−1579.(4)Matranga,K.R.;Stella,A.;Myers,A.L.;Glandt,E.D.Molecular simulation of adsorbed natural gas.Sep.Sci.Technol.1992,27,1825−1836.(5)Liu,Y.;Wilcox,J.Effects of Surface Heterogeneity on the Adsorption ofCO 2in Microporous Carbons.Environ.Sci.Technol.2012,46,1940−1947.(6)Chen,J.;Loo,L.S.;Wang,K.An Ideal Absorbed Solution Theory (IAST)Study of Adsorption Equilibria of Binary Mixtures ofMethane and Ethane on a Templated Carbon.J.Chem.Eng.Data 2011,56,1209−1212.(7)Ducrot-Boisgontier,C.;Parmentier,J.;Faour,A.;Patarin,J.;Pirngruber,G.D.FAU-Type Zeolite Nanocasted Carbon Replicas for CO 2Adsorption and Hydrogen Purification.Energy Fuels 2010,24,3595−3602.(8)Jayaraman,A.;Hernandez-Maldonado,A.J.;Yang,R.T.;Chinn,D.;Munson,C.L.;Mohr,D.H.;Donald,H.Clinoptilolites for nitrogen/methane separation.Chem.Eng.Sci.2004,59,2407−2417.(9)Wang,Y.;LeVan,M.D.Adsorption Equilibrium of BinaryMixtures of Carbon Dioxide and Water Vapor on Zeolites 5A and 13X.J.Chem.Eng.Data 2010,55,3189−3195.(10)Bao,Z.;Yu,L.;Dou,T.;Gong,Y.;Zhang,Q.;Ren,Q.;Lu,X.;Deng,S.Adsorption Equilibria of CO 2,CH 4,N 2,O 2,and Ar on High Silica Zeolites.J.Chem.Eng.Data 2011,56,4017−4023.(11)Coudert,F.O.-X.;Mellot-Draznieks,C.;Fuchs,A.H.;Boutin,A.Prediction of Breathing and Gate Opening Transitions Upon Binary Mixture Adsorptionin Metal −Organic Frameworks.J.Am.Chem.Soc.2009,131,11329−11331.(12)Zheng,S.T.;Bu,J.T.;Li,Y.;Wu,T.;Zuo,F.;Feng,P.;Bu,X.Pore Space Partition and Charge Separation in Cage-within-Cage Indium −Organic Frameworks with High CO 2Uptake.J.Am.Chem.Soc.2010,132,17062−17064.(13)He,Y.;Xiang,S.;Chen,B.A Microporous Hydrogen-BondedOrganic Framework for Highly Selective C 2H 2/C 2H 4Separation at Ambient Temperature.J.Am.Chem.Soc.2011,133,14570−14573.(14)Sumida,K.;Rogow,D.L.;Mason,J.A.;McDonald,T.M.;Bloch,E.D.;Herm,Z.R.;Bae,T.H.;Long,J.R.Carbon Dioxide Capture in Metal −Organic Frameworks.Chem.Rev.2012,112,724−781.(15)Gemma,L.H.;Edward,B.;Martin,C.S.;Neil,C.H.;Ewan,M.M.;Paul,F.M.;Joseph,A.H.High-Pressure and Temperature IonExchange of Aluminosilicate and Gallosilicate Natrolite.J.Am.Chem.Soc.2011,133,13883−13885.(16)Aguilar-Armenta,G.;Hernandez-Ramirez,G.;Flores-Loyola,E.;Ugarte-Castaneda, A.;Silva-Gonzalez,R.;Tabares-Munoz, C.;Jimenez-Lopez,A.;Rodriguez-Castellon,E.Adsorption Kinetics of CO 2,O 2,N 2,and CH 4in Cation-Exchanged Clinoptilolite.J.Phys.Chem.B 2001,105,1313−1319.(17)Walton,K.S.;Abney,M.B.;LeVan,D.M.CO 2adsorption in Yand X zeolites modified by alkali metal cation exchange.Microporous Mesoporous Mater.2006,91,78−84.(18)Yang,R.T.Adsorbents:Fundamentals and Applications ;Wiley-Interscience:New York,2003.(19)Van den Bergh,J.;Mittelmeijer-Hazeleger,M.;Kapteijn,F.Modeling Permeation of CO 2/CH 4,N 2/CH 4,and CO 2/Air Mixturesacross a DD3R Zeolite Membrane.J.Phys.Chem.C 2010,114,9379−9389.(20)Dunne,J.A.;Mariwala,R.;Rao,M.;Sircar,S.;Gorte,R.J.;Myers, A.L.Calorimetric Heats of Adsorption and Adsorption Isotherms.1.O 2,N 2,Ar,CO 2,CH 4,C 2H 6,and SF6on Silicalite.Langmuir 1996,12,5888−5895.(21)Baksh,M.S.A.;Kikkinde,E.S.;Yang,R.T.Lithium Type XZeolite as a Superior for Air Separation.Sep.Sci.Technol.1992,27,277−294.(22)Kuznicki,S.M.;Bell,V.A.;Nair,S.;Hillhouse,H.W.;Jacubinas,R.M.;Braunbarth,C.M.;Toby,B.H.;Tsapatsis,M.A titanosilicatemolecular sieve with adjustable pores for size-selective adsorption ofmolecules.Nature 2001,412,720−724.(23)Marathe,R.P.;Farooq,S.;Srinivasan,M.P.Modeling GasAdsorption and Transport in Small-Pore Titanium ngmuir2005,21,4532−4546.(24)Pillai,R.S.;Peter,S.A.;Jasra,R.V.Adsorption of carbondioxide,methane,nitrogen,oxygen and argon in NaETS-4.Micro-porous Mesoporous Mater.2008,113,268−276.(25)Altwasser,S.;Welker,C.;Traa,Y.;Weitkamp,J.Catalyticcracking of n-octane on small-pore zeolites.Microporous MesoporousMater.2005,83,345−356.(26)Krishna,R.;van Baten,J.M.Onsager coefficients for binary mixture diffusion in nanopores.Chem.Eng.Sci.2008,63,3120−3140.(27)Saxton,C.G.;Kruth,A.;Castro,M.;Wright,P.A.;Howe,R.F.Xenon adsorption in synthetic chabazite zeolites.Microporous Mesoporous Mater.2010,129,68−73.(28)Singh,R.K.Adsorption of N 2,O 2,and Ar in PotassiumChabazite.Adsorption 2005,11,173−177.(29)Baerlocher,Ch.;McCusker,L.B.;Olson,D.H.Atlas of Zeolite Framework Types ,6th revised ed.;Elsevier:New York,2007.(30)Johannes,V.Zeolite ZK-5.U.S.Patent US4994249,1991(31)Robson,H.How to read a patent.Microporous Mesoporous Mater.1998,22,551−662.(32)Schwarz,S.;Corbin,D.R.;Sonnichsen,G.C.The effect ofcrystal size on the methylamines synthesis performance of ZK-5zeolites.Microporous Mesoporous Mater.1998,22,409−418.(33)Dong,J.;Wang,X.;Xu,H.;Zhao,Q.;Li,J.Hydrogen storage inseveral microporous zeolites.Int.J.Hydrogen Energy 2007,32,4998−5004.(34)Zhang,J.;Singh,R.;Webley,P.A.Alkali and alkaline-earthcation exchanged chabazite zeolites for adsorption based CO2capture.Microporous Mesoporous Mater.2008,111,478−487.(35)Xu,R.;Pang,W.Chemistry-Zeolites and Porous Materials(Chinese);Science Press:Beijing,2004.。
摘要传统矿物润滑油的原料来源于不可再生的石油资源,其生物降解性差、易积聚等缺点给环境带来了巨大挑战,开发可生物降解的润滑油迫在眉睫。
因此,以植物油为原料合成绿色润滑油代替传统的矿物油受到人们的重视。
酯类合成润滑油具有优异的润滑性能、良好的热稳定性、可生物降解性以及较高的粘度指数,能够满足更加苛刻的工况需求。
因此,以油酸和三羟甲基丙烷为原料通过酯化反应合成的绿色酯类润滑油三羟甲基丙烷油酸酯(TMPTO)具有广阔的应用前景。
工业生产的油酸纯度不高,通常含有亚油酸、亚麻酸等多不饱和脂肪酸,对后期合成的TMPTO性能产生不利影响。
本文采用等体积浸渍法合成贵金属Pd-Pb/SiO2选择性加氢催化剂,通过固定床反应装置对催化剂进行评价,考察了活性组分Pd负载量、第二金属Pb添加量对催化活性的影响,同时对工艺条件进行优化。
结合活性评价数据和双键键长计算,多不饱和脂肪酸在选择性加氢过程中,首先发生双键位置异构生成更高加氢能力的共轭脂肪酸,进而加氢生成目标产物油酸。
工业生产中酯类润滑油的催化合成过程繁琐、分离困难,影响产品质量,因此本文采用自催化酯化法合成TMPTO,设计实验装置并对合成工艺条件进行优化,反应温度230 o C,酸醇摩尔比3.3:1,反应时间6 h,体系压力0.09 MPa,酯化率高于96%。
采用活性炭吸附、分子蒸馏以及氧化镁吸附法对产物进行脱酸脱色处理,结果表明:加入活性炭后脱色效果明显;采用分子蒸馏和氧化镁吸附脱酸,最终产物酸值从20.63 mgKOH/g降至0.27 mgKOH/g。
经FT-IR分析结果显示,产物经后处理精制后,结构并未发生变化,此处理方法可行。
对采用不同油酸组成的粗油酸为原料合成的TMPTO进行性能测试,实验结果表明,油酸纯度对TMPTO的理化性质影响较小,但当饱和脂肪酸含量增加时,导致合成酯的倾点有所升高。
采用恒温箱氧化法并结合产物酸值和粘度测试,对两种油酸酯进行了氧化稳定性测试,结果表明,多不饱和脂肪酸中双键极易被氧化,导致TMPTO的氧化稳定性下降。
干燥剂加工制作流程英文回答:The manufacturing process of desiccants involves several steps to ensure the production of high-quality and effective moisture-absorbing products. These steps include material selection, mixing and blending, shaping, drying, packaging, and quality control.Firstly, material selection is a crucial step in the desiccant manufacturing process. Various materials can be used as desiccants, such as silica gel, activated carbon, clay, and molecular sieves. The choice of material depends on the specific application and desired moisture-absorbing properties.Once the materials are selected, they are mixed and blended together in the appropriate proportions. This ensures a homogeneous mixture and enhances the moisture-absorbing capabilities of the desiccant. The mixing processmay involve the use of specialized equipment such as mixers or blenders.After the mixing process, the desiccant mixture is shaped into the desired form. This can be in the form of packets, sachets, or canisters. The shaping process may involve the use of molding machines or other shaping techniques. The size and shape of the desiccant can vary depending on the application and packaging requirements.Next, the shaped desiccants are dried to remove any moisture present in the mixture. This is a critical step as it ensures that the desiccants are ready for use and can effectively absorb moisture. The drying process may involve the use of ovens, dryers, or other drying equipment. The desiccants are typically dried at specific temperatures and for a specified duration to achieve optimal moisture-absorbing properties.Once the desiccants are dried, they are packaged in suitable containers or packaging materials. This ensures that the desiccants remain dry and protected until they areready for use. Packaging can vary depending on the specific application and market requirements. For example, desiccants used in pharmaceutical packaging may be individually packaged in sealed foil pouches, while those used in industrial applications may be packaged in bulk containers.Finally, quality control is an essential part of the desiccant manufacturing process. This involves testing the desiccants for their moisture-absorbing capabilities, durability, and overall quality. Various quality control tests may be conducted, such as moisture absorption tests, strength tests, and visual inspections. Any desiccants that do not meet the specified quality standards are rejected and not released for sale.In conclusion, the manufacturing process of desiccants involves material selection, mixing and blending, shaping, drying, packaging, and quality control. Each step plays a crucial role in producing high-quality and effective moisture-absorbing products. By following these steps, manufacturers can ensure that their desiccants meet thedesired specifications and provide optimal moisture control in various applications.中文回答:干燥剂的加工制作流程包括几个步骤,以确保生产出高质量和有效的吸湿产品。
Vol. 49 , No. 2Feb. , 2021第49卷第2期2021年2月聚氯乙烯Polyvinyl Chloride【助剂】氯乙烯合成用无汞触媒的研究与应用苗乃芬*,赵曰剑,付炳伟,王坤,王谡,张继梁 (山东新龙科技股份有限公司,山东寿光262700)* [收稿日期]2020 -01 -13[作者简介]苗乃芬(1981-),男,工程师,2013年毕业于北京化工大学化学工程与技术专业,现任山东新龙集团有限公司副总经理、研发中心主任,主要从事PVC 生产管理、氯碱化工、氯碱下游产品研发等工作。
[关键词]氯乙烯;无汞触媒;氯化亚锡;活性炭;离子液体[摘要]利用活性炭的强吸附能力和锡的催化性能,在活性炭上负载氯化亚锡,制备了负载型氯乙烯合成触 媒。
研究了不同温度、反应时间和乙烘流量下,触媒的使用寿命和乙块的转化率。
分析了氯化亚锡作为活性组分的优缺点。
[中图分类号]TQ325.3 [文献标志码]B [文章编号]1009 -7937(2021 )02 -0010 -05Research and application of mercury ・free catalysts for vinyl chloride synthesisMIAO Naifen , ZHAO Yuejian , FU Bingwei , WANG Kun , WANG Su , ZHANG Jiliang(Shandong Xinlong Technology Co. , Ltd. , Shouguang 262700 , China)Key words : vinyl chloride ; mercury-free catalyst ; stannous chloride ; activated carbon ; ionic liquid Abstract : Based on the strong adsorption capacity of activated carbon and the catalytic performance of tin , the supported catalyst for vinyl chloride synthesis was prepared by loading stannous chloride on activated carbon. The service life of the catalyst and the acetylene conversion under different temperature , reaction time and acetylene flux were studied. The advantages and disadvantages of stannous chloride as the active component were analyzed.聚氯乙烯是一种性能优越、用途广泛的合成树 脂之一,而乙烘氢氯化法制备氯乙烯必须使用汞触媒F 。
臭氧-生物活性炭-砂滤组合工艺运行效果分析刘建广;李芳;李世俊;王逸群;刘海勇【摘要】介绍某水厂采用“臭氧-生物活性炭-砂滤”深度处理组合工艺处理引黄水库水,考察了不同进水浑浊度对组合工艺长期运行效果的影响,同时对组合工艺各单元的有机物种类及分子量分布的变化进行了分析.长期运行结果表明:(1)组合工艺对不同水质条件下的有机物指标有较高的去除效果,较高的温度有利于水中有机污染物的去除.(2)臭氧的主要作用在于将大分子量的有机物氧化为小分子量有机物,故臭氧—生物活性炭工艺对CODMn、UV254和DOC有良好的去除作用.整个工艺对氨氮的去除率在40%~50%,对亚硝酸盐氮的去除率在80%~ 90%.(3)臭氧—活性炭工艺对可生物降解有机物有较好的去除效果,砂滤工艺主要去除DOCD&A.(4)上向流BAC柱活性炭颗粒间空隙率较大,降低了对浊度的机械截留,其后置的砂滤池可起到稳定出水浊度,保证出水微生物安全性的作用.%Combined processes of "ozone-biological activated carbon-sand filtration" applied in a WTP with reservoir raw water of Yellow River is introduced.And the effect of different influent turbidity on the long term operation of the combined process are investigated.At the same time,changes of organic species and molecular weight distribution of each unit of the combined process are analyzed.Long term operation results show as follows:(1) Combination process has high removal efficiency of organic matter indexes under different water quality conditions.Higher temperature is conducive to the removal of organic pollutants in water.(2) The main effect of ozone is the oxidation of organic compounds with large molecular weight to small molecular weight organic compounds.The removal rate of ammonianitrogen in the whole process is between 40%~ 50%,the removal rate of nitritenitrogen is between 80%~ 90%.(3) Ozone activated carbon process has a good effect on the removal of biodegradable organic compounds.Sand filtration process removes DOCD & A mainly.(4) The upper flow BAC activated carbon particles column with a larger porosity gives low removal efficiency of turbidity,the rear sand filter can play a stable effluent turbidity to ensure the safety of the role of water effluent.【期刊名称】《净水技术》【年(卷),期】2017(000)008【总页数】8页(P72-79)【关键词】饮用水;臭氧;生物活性炭;砂滤;组合工艺;深度处理【作者】刘建广;李芳;李世俊;王逸群;刘海勇【作者单位】山东建筑大学市政与环境工程学院,山东济南250101;山东建筑大学市政与环境工程学院,山东济南250101;济南水务集团有限公司,山东济南250012;山东建筑大学市政与环境工程学院,山东济南250101;山东建筑大学市政与环境工程学院,山东济南250101【正文语种】中文【中图分类】TU991.2Keywordsdrinking water ozone biological activated carbon(BAC) sand filtration combined processes advanced treatment虽然活性炭具有很强的吸附性能,但是由于活性炭的再生成本高、技术要求高[1],使得活性炭吸附使用周期较短,通常将臭氧氧化法与活性炭吸附联用[2],称作臭氧-生物活性炭法。
Journal of Advances in Physical Chemistry 物理化学进展, 2017, 6(3), 121-127 Published Online August 2017 in Hans. /journal/japc https:///10.12677/japc.2017.63015文章引用: 金灿, 郑璐康, 陈琦, 肖强. 二氧化碳吸附材料研究新进展[J]. 物理化学进展, 2017, 6(3): 121-127.Recent Research Progresses on the CO 2 Adsorption MaterialsCan Jin, Lukang Zheng, Qi Chen *, Qiang XiaoInstitute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua ZhejiangReceived: Jul. 4th , 2017; accepted: Jul. 17th , 2017; published: Jul. 21st , 2017Abstract CO 2as the main greenhouse gas, the reduction of its emission is the key to curb global warming. CO 2 capture and sequestration (CCS) is of significance for the mitigation of greenhouse effect. The key of CCS is seeking for the adsorbents with high adsorption capacity, high selectivity, good thermal stability, and good recyclability. In recent years, some porous materials such as activated carbon, zeolite molecular sieves, and metal organic polymer materials have been widely applied to CO 2 adsorption. This paper firstly gives an overview introduction of the methods of CO 2 capture as well as some porous materials as CO 2 adsorbents. Afterwards, melamine based microporous polymers (MBMPs) are highlighted. Due to the advantages of the high specific surface area, the diversity of the synthetic methods, the easy functionalization, etc., MBMPs show a broad prospect of the ap-plication in gas storage and separation. KeywordsCarbon Dioxide, Capture, Adsorption, Porous Materials二氧化碳吸附材料研究新进展金 灿,郑璐康,陈 琦*,肖 强浙江师范大学含氟新材料研究所,浙江 金华收稿日期:2017年7月4日;录用日期:2017年7月17日;发布日期:2017年7月21日摘 要CO 2是导致温室效应的主要气体,减少其排放是遏制全球气候变暖的关键,CO 2的捕集与封存对于缓解温*通讯作者。
吸附树脂的种类吸附树脂是一种具有吸附功能的材料,广泛应用于工业和科研领域。
根据其化学性质和应用特点的不同,吸附树脂可以分为多种类型。
下面将介绍几种常见的吸附树脂及其应用。
1. 丙烯酸树脂(Acrylic Resin)丙烯酸树脂是一种具有高吸附性能的树脂,它可以吸附水中的有机物质和重金属离子。
在工业废水处理中,丙烯酸树脂被广泛应用于有机废水和重金属废水的处理过程中,能有效去除废水中的有害物质,净化水质。
2. 多孔性树脂(Porous Resin)多孔性树脂是一种具有高比表面积和孔隙结构的树脂材料,具有较强的吸附能力。
它可以吸附和分离气体、液体和固体中的杂质和有害物质。
在化工生产中,多孔性树脂常用于催化剂的载体、分离杂质和纯化产品。
3. 离子交换树脂(Ion Exchange Resin)离子交换树脂是一种能够吸附和释放离子的树脂材料。
它可以吸附水中的离子杂质,如钠离子、镁离子和钙离子,将其与溶液中的其他离子进行交换。
离子交换树脂广泛应用于水处理、药物制剂和电子工业中。
4. 活性炭(Activated Carbon)活性炭是一种炭质材料,具有极强的吸附能力。
它可以吸附气体和液体中的有机物质、异味和有害物质。
活性炭广泛应用于空气净化、水处理、食品加工和药物制剂等领域。
5. 分子筛(Molecular Sieve)分子筛是一种具有特殊孔道结构的吸附材料,可以选择性地吸附分子。
它具有高效吸附和分离的特点,在石油化工、气体分离和催化反应中得到广泛应用。
6. 聚酰胺树脂(Polyamide Resin)聚酰胺树脂是一种高分子化合物,具有良好的吸附性能。
它可以吸附水中的溶解性有机物和重金属离子,广泛应用于水处理和环境保护领域。
7. 聚苯乙烯树脂(Polystyrene Resin)聚苯乙烯树脂是一种常见的吸附树脂,具有较高的吸附能力和机械强度。
它广泛应用于废水处理、食品加工和医药制造等领域。
吸附树脂作为一种重要的功能材料,不仅具有吸附能力强、选择性好的特点,还具有使用方便、成本低廉等优势。
Materials Science and Engineering A391(2005)121–123Adsorption behaviors of heavy metal ions onto electrochemicallyoxidized activated carbonfibersSoo-Jin Park∗,Young-Mi KimAdvanced Materials Division,Korea Research Institute of Chemical Technology,P.O.Box107,Yusong,Daejeon305-600,South KoreaReceived4March2004;received in revised form17August2004;accepted27August2004AbstractIn this work,the effect of electrochemical oxidation treatments of activated carbonfibers(ACFs)was studied in heavy metal adsorption behaviors.As a result,the acidic or basic anodic treatment led to increases of Cr(VI),Cu(II),and Ni(II)adsorptions,which could be attributed to the oxygen-containing functional groups of the ACF surfaces.©2004Elsevier B.V.All rights reserved.Keywords:Activated carbonfibers;Electrochemical treatments;Surface properties;Heavy metal ions;Adsorption1.IntroductionAs compared with conventional granular or powder activated carbons,activated carbonfibers(ACFs)have been widely used as an excellent adsorbent because of their large surface area,microporous character,and high adsorption/desorption rate[1].Also,the microstructure of ACFs is developed during activation,and influenced by many factors,such as the degree of activation and the conditions used for carbonization[2].The adsorption/desorption rate of carbonaceous adsorbents is greatly depended on not only microporous structure but also surface properties[3].Gen-erally,the electrochemical oxidation treatment of carbon in the electrolytes used can produce microstructure and surface changes of the carbon surfaces.The advantage of electro-chemical oxidation treatment is obtaining a relatively large number of oxygen-containing functional groups on ACF surfaces[4].In this work,ACFs are modified by electrochemical ox-idation treatment with acidic or basic electrolyte to obtain oxygen-containing functional groups,and the effect of elec-∗Corresponding author.Tel.:+82428607234;fax:+82428614151.E-mail address:psjin@krict.re.kr(S.-J.Park).trochemical oxidation treatment on ACFs is studied in the context of heavy metal adsorption behaviors.2.ExperimentalThe pitch-based ACFs(bundle type,Kureha)were washed with deionized water and dried for24h at80◦C(untreated-ACFs).All other chemicals were purchased in analytical grade purity from Aldrich Chemical Co.and used as re-ceived.The ACFs were subjected to electrolytic reaction in the aqueous solutions of10wt.%H3PO4(A-ACFs)and NH4OH(B-ACFs),whereby negative ions were attracted to the surface of the ACFs acting as an anode,thereby modi-fying the ACF surfaces.A cathode graphite plate was also submerged in the electrolyte solution,and the conditions of the surface treatment were processed in an electro-bath at7A for10min.The treated ACFs emerging from the electrolytic cell were dried for6h at110◦C.The surface properties of ACFs were measured by Boehm’s titration.The specific sur-face area and the pore structure were evaluated from nitro-gen adsorption data at77K(Micromeritics,ASAP2010)[5].0.05g of the ACFs was placed in contact with150ml solution of20ppm concentrations of Na2CrO4·4H2O,CuCl2·2H2O, and NiCl2·6H2O.The single bottle was sealed with paraffin0921-5093/$–see front matter©2004Elsevier B.V.All rights reserved. doi:10.1016/j.msea.2004.08.074122S.-J.Park,Y.-M.Kim /Materials Science and Engineering A 391(2005)121–123Table 1Surface functionalities of ACFs by Boehm titrationOxygen-containing functional groups (meq/g)CarboxylicLactonic Phenolic Untreated-ACFs 34070A-ACFs 40230140B-ACFs48070film and then shaken.The adsorbed amount of heavy metal ions was measured by inductively coupled plasma-atomic emission spectrometer (ICP-AES,Jovin-Yvon Ultima-C).3.Results and discussionNumerous studies on surface functionalities of carbon are already described in the literature.The difference of the sur-face functionalities on basic ACFs and acidically treated ACFs are determined by Boehm’s titration and listed in Table 1.The three bases used in the titration are regarded as approximate probes of acidic surface functionalities accord-ing to the scheme NaHCO 3(carboxyl),Na 2CO 3(carboxyl and f-lactone),NaOH (carboxyl,f-lactonic,and phenolic).As seen in Table 1,various oxygen-containing functional groups,i.e.,carboxylic,lactonic,and phenolic groups are induced in the ACF surfaces by electrochemical oxidation treatment The porous textural parameters of the original and the modified samples are obtained,as listed in Table 2.The total pore volume and the micropore volume of elecrochemically treated ACFs are decreased.This is due to the increase of oxygen-containing functional groups,which are attributed to the block of the micropores.Also,the BET’s specific sur-face area is decreased by 19%for A-ACFs compared to the B-ACFs.This can be explained by that the specific surface area and the micropore volume of A-ACFs are decreased by the pore blocking of surface functional groups and by pore destroying of acidic electrolyte with these basic carbon ma-terials.Adsorption isotherms of Cr(VI),Cu(II),and Ni(II)from aqueous solutions of heavy metal ions in the time range 0–180min on the three samples of ACFs without adding any buffering reagent are shown in Figs.1and 2.Fig.1clearly shows that the initial adsorption rate of Cr(VI)ion on the ACFs increased rapidly,especially due to the molecular sieve structures of the ACFs.Also,the amount of Cr(VI)adsorbed is comparatively much larger than the amount of Cu(II)and Ni(II)adsorbed under similar conditions.This can be imag-ined that the high ionic radius of Cu(II)(0.70˚A)and Ni(II)Table 2Textural characteristics of electrochemically treated ACFsMicropore volume (cm 3g −1)Total pore volume (cm 3g −1)BET surface area (m 2g −1)Untreated-ACFs 0.787 1.0271944A-ACFs 0.2430.5601430B-ACFs0.6600.7811757Fig.1.Adsorption of Cr(VI)onto activated carbon fibers as a function of contacttime.Fig.2.Adsorption of metal ions onto activated carbon fibers as a function of contact time:(a)Cu(II)and (b)Ni(II).S.-J.Park,Y.-M.Kim/Materials Science and Engineering A391(2005)121–123123(0.69˚A)compared to that of Cr(VI)(0.52˚A)induces a quick saturation of adsorption sites because of steric over-crowding.It results in lower adsorption capacities for Cu(II) and Ni(II)than for Cr(VI)[6].The adsorption capacity for Cu(II)appears to be higher than that for Ni(II).It seems to be due to the difference of affinity between ACF surfaces and adsorbed ions.At the low pH,the dominant species of Cr(VI)in the solution are anionic species like HCrO4−, Cr2O72−,Cr4O132−,and Cr3O102−[7].Also,at the high pH,carbon behaves as an acid,whereas at the low pH values it behaves as a base[8].Thus,the chromate anions will be expected to interact more strongly with the electron accepter H+of surface functional groups of ACF surfaces.That is, there is a possibility of the existence of some active sites where negatively charged Cr(VI)can be adsorbed.At pH5,Cu(II)and Ni(II)are cationic species,such as, Cu2+or CuOH+and Ni2+or NiOH+[6].And they are suit-able to interact with negatively charged groups of ACFs.H+ ions compete with metal ions for the exchange sites in the system at pH5and the surface functional groups in aqueous solution produce H+ions,which are directed towards the liq-uid phase,leaving the carbon surface with negatively charged sites.Thus,the availability of relatively high concentration of negatively charged sites in case of the treated ACFs results in an increase in the adsorption of Cu(II)and Ni(II),as seen in Fig.2.As illustrated in Figs.1and2,the percentage adsorption of heavy metal ions increases with increasing the agitation reaction time and the adsorbent capacities decrease in the order B-ACFs>A-ACFs>untreated-ACFs,in spite of a de-creases of specific surface area,as seen in Figs.1and2.This is because at higher dose of adsorbent due to the increased oxygen-containing functional groups,more adsorption sites are available,causing higher removal of heavy metal ions. Also,A-ACFs show lower percentage adsorption of heavy metal ions than that of B-ACFs.It seems to be due to the destruction of micropores by acidic electrolyte,resulting in decreasing the specific surface area.These results can be ex-plained that the adsorption capacities of ACFs are greatly depended on not only microporous structure but also surface properties.4.ConclusionsIn this work,the oxidized ACFs were studied in the ad-sorption characteristics in terms of the microstructures and surface functional groups.In the results of XPS and BET, the specific surface area of the treated ACFs was decreased, whereas oxygen-containing functional groups of the treated ACFs were increased.As expected,the increased surface functional groups led to an increase of the adsorption of heavy metal ions.In case of A-ACFs,the adsorption of heavy metal ions was increased by increasing of oxygen-containing func-tional groups,in spite of a decrease of specific surface area by acidic electrolyte.References[1]A.Ahmadpour,D.D.Do,Carbon35(1997)1723.[2]Z.Yue,C.Mangun,J.Economy,P.Kemme,D.Cropek,S.Maloney,Environ.Sci.Technol.35(2001)2844.[3]S.J.Park,J.S.Shin,J.Colloid Interface Sci.264(2003)39.[4]C.Grogger,S.G.Fattakhov,V.V.Jouikov,M.M.Shulaeva,V.S.Reznik,Electrochim.Acta49(2004)721.[5]S.Brunauer,P.H.Emmett,E.Teller,J.Am.Chem.Soc.60(1938)309.[6]K.Kadirvelu,C.Faur-Brasquet,P.Le Cloirec,Langmuir16(2000)8404.[7]V.K.Garg,R.Gupta,R.Kumar,R.K.Gupta,Bioresour.Technol.92(2004)79.[8]A.¨Ozer,D.¨Ozer,J.Hazard.Mater.100(2003)219.。
工艺与设备化 工 设 计 通 讯Technology and EquipmentChemical Engineering Design Communications·86·第46卷第1期2020年1月整个企业的管理水平。
最后,技术部门与维护部门可以采取交互分配的措施,共同来检测化工设备,解决实际的机械问题。
同时,加强巡查的工作量,完善工作模式,创新维修方式,确保生产人员的安全。
5 利用智能化技术,保障生产的稳定运行信息化技术的快速变革,为化工机械设备发展提供了机遇。
在化工生产行业,企业可以利用智能化技术手段,对存在问题的设备实施跟踪观测,在每个设备中安放一个远程监控,实时监察设备的运行情况,这样不仅可以排除机械故障,还可以降低机械故障发生的频率。
或者,可以引入人工智能,代替传统的人工维修,通过电脑远程操控,这样可以降低维修的成本,达到双倍的发展效果。
6 结语综上所述,化工设备是化工企业生产的重要支撑,机械设备的运行效果影响着整个生产链的效能与质量。
为了提高生产效率,技术部门需要定期维修与检测仪器,严格把控设备的进出,从而奠定坚实的基础条件。
同时,也必须加强设备管理,做好日常的检测工作,推动生产的进度。
基于目前的发展环境,各大企业要合理地安排维护任务,避免安全事故,为企业发展打下基石。
参考文献[1] 郭伟龙,刘延鹤,司海涛,等.汽轮机组轴振值增高的原因分析与在线动平衡方法应用探究[J].石油化工设备技术,2019(3).[2] 冯学刚.岷江犍为航电枢纽船闸检修闸门及吊装设备选型研究[J].中国水运:下半月,2019(6):76-77.[3] 韦枫燕.双母线GIS 设备后期扩建与检修时的问题分析及解决方案[J].企业科技与发展,2019(8).利用吸附技术对气体进行纯化,采用适当的工艺以及选取相应的吸附剂,去除气体制备过程中掺杂的少量氮气,对于工业生产有十分重要的作用。
而且也能够利用这种技术制备高纯度的氮气,这一研究方向得到了广泛的关注。
特碳制备方法及其混捏工艺与流程Carbon is a versatile material with a wide range of industrial applications, and the development of methods for preparing special carbons has attracted significant attention in recent years. 特碳是一种多功能材料,具有广泛的工业应用,近年来,特碳制备方法的研究备受关注。
Special carbons, such as activated carbon, carbon nanotubes, and graphene, have unique properties that make them highly sought after for use in energy storage, environmental remediation, and electronic devices. 特碳,例如活化碳、碳纳米管和石墨烯,具有独特的性能,因此在能源存储、环境修复和电子设备等领域备受追捧。
One common method for preparing special carbons is the pyrolysisof carbon-containing precursors, such as organic compounds or polymers, at high temperatures. 一种常见的特碳制备方法是在高温下热解含碳前体,例如有机化合物或聚合物。
This process transforms the precursor material into a carbon-rich product with enhanced porosity and surface area, characteristics that are desirable for many applications. 这个过程将前体材料转化为富含碳的产物,具有增强的孔隙度和表面积,这些特性对许多应用都是非常有利的。
吸附分离材料英文English:Adsorption separation materials refer to substances or structures used to selectively capture or separate specific components from a mixture through the process of adsorption. These materials exploit the principle of adsorption, where molecules or ions from the mixture adhere to the surface of the adsorbent material. Various types of adsorption separation materials exist, including porous solids like zeolites, activated carbon, and molecular sieves, as well as polymeric materials like ion exchange resins and selective membranes. The selection of the appropriate adsorption material depends on factors such as the properties of the components to be separated, the desired separation efficiency, and the operating conditions. These materials find applications in diverse fields such as gas purification, wastewater treatment, chemical synthesis, and pharmaceutical manufacturing. Through continuous research and development efforts, novel adsorption separation materials with enhanced selectivity, capacity, and stability are being engineered to address specific separation challenges and improve overall process performance.中文翻译:吸附分离材料是指通过吸附过程选择性地捕获或分离混合物中的特定成分的物质或结构。
光催化氧化催化剂载体的研究进展孙 俭1,郭永成2,肖雅婷1,吕振波1,李 剑1,杨丽娜1(1. 辽宁石油化工大学 石油化工学院,辽宁 抚顺 113001;2. 中国石油 抚顺石化分公司洗化厂,辽宁 抚顺 113001)[摘要]综述了近年来负载型光催化氧化催化剂载体的研究进展,并对不同类型载体(包括硅基、碳基、金属及金属骨架类载体等)的特性进行了分析总结。
硅胶、活性炭、金属氧化物等常见载体,经提纯、改性后,负载的催化剂均表现出较好的光催化氧化性能。
介孔分子筛类载体凭借高比表面积以及丰富独特的孔道结构成为研究热点;金属有机骨架材料作为一种新兴材料,在光催化氧化方面具有极大潜力。
[关键词] 光催化氧化;催化剂;脱硫;载体[文章编号]1000-8144(2021)01-0088-06 [中图分类号]TQ 426 [文献标志码]AResearch progress of photocatalytic oxidation catalyst carrierSun Jian 1,Guo Yongcheng 2,Xiao Yating 1,Lü Zhenbo 1,Li Jian 1,Yang Lina 1(1. Institute of Petroleum and Chemical Engineering ,Liaoning Shihua University ,Liaoning Fushun 113001,China ;2. Washing Plant of PetroChina Fushun Petrochemical Company ,Liaoning Fushun 113001,China )[Abstract ]Photocatalysis technology has become a research hotspot of many scholars. The research progress of supported photocatalytic oxidation catalyst carriers in recent years were reviewed ,and the advantages and disadvantages of different types of carriers including silicon-based ,carbon-based ,metal and metal frameworks and other carriers ,were analyzed and summarized. Common carriers such as silica gel ,attapulgite ,activated carbon ,etc.,after certain purification and modification ,the supported catalysts all show good photocatalytic oxidation performance. The mesoporous molecular sieve carrier has become a research focus due to its high specific surface area and rich and unique pore structure. As an emerging material ,metal organic framework materials have great potential in photocatalytic oxidation.[Keywords ]photocatalytic oxidation ;catalyst ;desulfurization ;carrierDOI :10.3969/j.issn.1000-8144.2021.01.015[收稿日期]2020-08-06;[修改稿日期]2020-10-09。
除氧器技术参数除氧(deoxygenation)是水处理中的一种重要技术,它可以有效地去除水中的溶解氧。
与传统的减压或蒸馏技术相比,除氧技术的能源消耗量更少。
因此,越来越多的工业能源利用系统也开始使用除氧技术。
除氧器是用来除去水中的溶解氧的设备,它的工作原理是将水中的氧含量通过比较低的负压差从气相转换到液相,然后通过分离器将气相中的氧捕集然后从液相中去除。
除氧技术有很多种,最常见的有活性炭脱氧(activated carbon deoxygenation)、分子筛脱氧(molecular sieve deoxygenation)和游离气体脱氧(free-gas deoxygenation)。
其中,活性炭脱氧是最常用的,它的主要特点是结构简单、操作灵活、成本低,在溶氧量为15-20 mg/L的水中,可以达到很好的去氧效果。
另外,分子筛脱氧也广泛应用于水处理行业,它可以从水中去除比活性炭脱氧更高的溶氧量。
它的主要特炭是能够控制水中最低溶解氧量,使水中的溶解氧不会超过允许的最高水平。
最后,游离气体脱氧是最新的一种除氧技术,它可以达到很高的水中溶解氧含量,而且在低能耗的情况下使用。
它的主要优点是能够实现几乎完全的氧去除,而且可以获得很高的排放效率(98%),这使得它非常适合于排放要求非常严格的水处理应用。
除了这些技术,还有一些使用除氧剂的技术也可以用来去除水中的氧。
例如,氧化还原(oxidation-reduction)技术可以使用氧化剂(如漂白剂)去除水中的溶解氧,但它的使用必须遵循一些法律和环境规定。
为除氧设备提供良好的技术参数也是非常重要的。
一个良好的除氧器的技术参数包括能耗、出水水质和去除效率。
对于活性炭脱氧和分子筛脱氧而言,能耗应小于0.5 kWh/m3,出水水质应大于90%,去除效率应大于98%;对于游离气体脱氧而言,能耗应小于0.3 kWh/m3,出水水质应大于99.95%,去除效率应大于99.99%。
CH4/CO2在MIL-101上的吸附相平衡及选择性夏启斌;苗晋朋;孙雪娇;周欣;李忠;奚红霞【摘要】采用重量法测定了298、303、308、313 K下CH4、CO2在MIL-101多孔材料上的吸附等温线,估算了MIL-101对CH4、CO2的等量吸附热,并利用DL-IAST模型计算出不同温度下CH4/CO2混合气中各组分的吸附分量,探讨了CO2的吸附选择性.结果表明:298 K、2500 kPa时,CO2在MIL-101上的吸附量为14.51 mmol/g,远高于同等条件下商业活性炭、沸石和分子筛对CO2的吸附容量;CH4、CO2在MIL-101上的吸附等温线与Double-Langmuir 模型吻合很好,说明该吸附主要为双孔位吸附;CO2在MIL-101上的等量吸附热在19.3~25.5kJ/mol范围内;与CH4相比,CO2在MIL-101上的表面自由结合能更高;298K、250kPa时,MIL-101对CO2的吸附选择性指数为5.6;随着压力的增大,CO2的吸附选择性逐渐减小;随着混合气中CO2浓度的下降,CO2的吸附选择性上升.%In this paper,the adsorption isotherms of CH4 and CO2 on MIL-101 were obtained by means of the gravi-metric method at 298,303,308 and 313 K,and the corresponding isosteric adsorption heat was estimated.Then, the pure gas adsorption was calculated by using the DL-IAST model,and the adsorption selectivity of CO2 on MIL-101 was discussed.The results show that (1)the adsorption capacity of pure CO2 on MIL-101 is up to 14.51 mmol/g at 298 K and 2500 kPa,which is much higher than that on activated carbon,zeolite and molecular sieve under similar conditions;(2)the isotherms of pure CO2 and CH4 well accord with the Double-Langmuir model,which shows the presence of two adsorption sites;(3)the isosteric adsorption heat of CO2 on MIL-101 ranges from 19.3to 25.5 kJ/mol;(4)as compared with CH4,CO2 is of higher surface free energy for its interaction with the framework of MIL-101;(5)the adsorption selectivity index of CO2 over CH4 on MIL-101 is up to 5.6 at 298 K and 250 kPa;and (6)the adsorption selectivity of CO2 over CH4 gradually decreases with the increase of pressure and the concentration of CO2 in CH4/CO2 mixture.【期刊名称】《华南理工大学学报(自然科学版)》【年(卷),期】2013(000)012【总页数】6页(P24-28,42)【关键词】甲烷;二氧化碳;MIL-101 多孔材料;理想吸附溶液理论;吸附选择性;吸附等温线【作者】夏启斌;苗晋朋;孙雪娇;周欣;李忠;奚红霞【作者单位】华南理工大学化学与化工学院,广东广州510640;华南理工大学化学与化工学院,广东广州510640;华南理工大学化学与化工学院,广东广州510640;华南理工大学化学与化工学院,广东广州510640;华南理工大学化学与化工学院,广东广州510640;华南理工大学化学与化工学院,广东广州510640【正文语种】中文【中图分类】O647.3沼气作为生物质能源的一种,主要成分为甲烷、二氧化碳以及少量的氮气、氢气等气体,其中CO2约占20%~40%.沼气中的CO2不仅会降低沼气的热值,同时CO2排放到大气中也会导致温室效应,使沼气的应用受限.因此,从沼气中脱除CO2得到较为纯净的生物甲烷气,实现CH4/CO2高效分离显得尤为重要.沼气脱除CO2的方法有很多:低温蒸馏法、溶剂吸收法、膜分离法、吸附分离法等[1],其中,以多孔吸附材料为核心的吸附法分离CO2技术具有投资少、工艺流程简单、高能效、经济等优点,在CO2分离领域有广阔的应用前景.常见的CH4/CO2吸附分离材料包括沸石、活性炭、钙的氧化物和水滑石类等[2-4],然而这些吸附材料对CO2的吸附分离普遍存在选择性低、不宜再生的缺点,且在工业应用中亦存在工艺投资费用大、吸附效率低等问题[5].新型金属有机骨架多孔材料(MOFs)具有传统吸附材料(沸石、活性炭)所无法比拟的优点,如比表面积超高、孔结构规整、孔径大小设计可调,表面化学基团修饰可调、易功能化等,在CO2吸附分离领域具有很好的潜在应用前景[6-9].近年来,代号为MIL-101的金属有机骨架材料以其巨大的比表面积、良好的水热稳定性,以及存在中微双孔等优点[10],而备受人们的关注.目前,虽然有关CH4、CO2混合气体在MIL-101上吸附选择性的研究还很少[11-13],但这些基础数据对于MIL-101的吸附选择性评价以及吸附床的设计具有重要的理论参考价值.文中采用水热法制备MIL-101金属有机骨架材料,对其孔结构进行分析,用重量法测定CH4、CO2在MIL-101多孔材料上的吸附等温线,估算MIL-101对CH4、CO2的等量吸附热,并利用DL-IAST模型计算不同温度下CH4/CO2混合气中各组分的吸附分量,从而得到了CO2的吸附选择性.1 实验1.1 试剂九水硝酸铬(99.0%),天津市福晨化学试剂厂生产;对苯二甲酸(H2 BDC,99%),美国New Jersey公司生产;氢氟酸(40.0%),广州化学试剂厂生产;无水乙醇(99.7%),天津市富宇精细化工厂生产;去离子水,实验室自制;其他试剂皆为分析纯.1.2 主要实验设备BP121S型电子天平,德国Sartorius公司生产;定温恒温油浴锅,日本TOKYO RIKAKIKAI公司生产;真空干燥箱,上海精密实验设备有限公司生产;比表面及孔隙分析仪——ASAP2010,美国Micrometrics公司生产;磁悬浮重量吸附仪,德国Rubotherm公司生产.1.3 MIL-101材料的制备首先量取30mL去离子水,加入Cr(NO3)3·9H2O 2.395g和H2 BDC 0.994g溶解搅拌,逐滴加入0.3mL氢氟酸(40%),持续搅拌0.5 h后将溶液均匀转移到90mL聚四氟乙烯反应罐中,密闭后放入烘箱开始常规加热反应.设定程序:①从低于50℃加热45min到220℃;②于220℃维持8 h;③降温3 h到160℃;④降温3h 到90℃;(5)降温6 h到35℃.反应结束,样品冷却结晶并纯化处理后,于160℃恒温干燥活化24h,样品备用.所合成的MIL-101材料的孔径主要集中在1.26、1.48、2.16和2.53 nm左右.该样品的BET比表面积、Langmuir比表面积和孔容分别为2367m2/g,3323m2/g和1.09 cm3/g[10].1.4 吸附等温线的测定采用磁悬浮重量吸附仪测定不同温度下CO2和CH4在MIL-101上的吸附等温线.首先对样品进行预处理,即抽真空同时加热到150℃,目的在于脱除样品中的杂质.预处理结束后,设定吸附温度,开始CH4和CO2的吸附实验,待吸附达到平衡后读取CH4和CO2的吸附压力和吸附剂的质量.接下来通过设定不同的压力重复上述实验,最终得到不同压力下CH4、CO2在MIL-101上的平衡吸附量,并得到吸附等温线.实验中吸附温度分别为298、303、308和313K,吸附压力的变化范围为0~2500 kPa.2 模型及吸附选择性2.1 理想吸附溶液理论模型Myers等[14]提出的理想吸附溶液理论(IAST)是通过纯组分吸附等温线数据预测混合组分中各单组分吸附行为的一种理论方法.对于含有组分1和2的双组份混合物来说式中,p t为体系的总压,p01、p02分别为纯组分1、2在吸附相中所对应的平衡压力,y1是组分1在气相中的摩尔分数,x1是组分1在吸附相中的摩尔分数.2.2 DL模型与理想吸附溶液理论的结合DL(Double-Langmuir)模型假设吸附剂中存在两种不同的吸附位,分别为通道和交点吸附位[15],平衡总吸附量由通道吸附量和交点吸附量两部分组成,其表达式如下:式中,Q c、Q i、k c和k i是模型参数(c和i分别表示两种不同的吸附位),p是体系的压力,Q是总吸附量.将IAST与DL模型结合可得到DL-IAST模型:式中,Q c1、k c1、Q i1、k i1是组分1的DL模型参数;Q c2、k c2、Q i2、k i2是组分2的DL模型参数,y2是组分2在气相中的摩尔分数,x2为组分2在吸附相中的摩尔分数.对于给定的p t和y1,x1可以通过Matlab中的非线性数值方程求解.2.3 吸附选择性吸附选择性是考察吸附剂对混合气体分离能力的一个标准.对于二元气体混合物,吸附选择性S的定义为:3 结果与讨论3.1 CH4、CO2在MIL-101上的吸附等温线图1示出了MIL-101分别在298、303、308和313K下对CH4和CO2的吸附等温线.由图1可以看出在298K、2500kPa时,CO2在MIL-101多孔材料上的吸附量达14.51mmol/g,远高于其在传统吸附材料如硅胶(2.5mmol/g,302K,3000 kPa)[16]、NaX分子筛(7.8mmol/g,302K,3000 kPa)[16],以及商业活性炭(10mmol/g,298K,3000 kPa)[17]上的吸附量.此外,随着温度的升高,CH4和CO2的平衡吸附量减少,这说明CH4和CO2在MIL-101多孔材料上的吸附方式以物理吸附为主.图1 不同温度下CH4和CO2在MIL-101上的吸附等温线Fig.1 Adsorption isotherms ofmethane and carbon dioxide on MIL-101 at different temperatures在相同温度下,随着压力的增加,CH4和CO2的吸附量也随之增加,表明加压有利于CH4和CO2在MIL-101多孔材料上的吸附;同时发现,在50 kPa时,CO2和CH4的吸附量比值(Q CO2/Q CH4)可达4.2左右,在2500 kPa时为2.5左右.这是由于CO2和CH4在电子性能方面存在差异而造成的[18],即CO2存在较强的四极矩(1.34×10-39 cm2),可以和MIL-101中的Cr不饱和金属位点发生较强的作用力[15].CH4是非极性分子,无四极矩,与MIL-101之间的作用力很弱.因此MIL-101优先吸附CO2,可以实现CO2/CH4的有效分离.为了更好地描述CH4、CO2在MIL-101上的吸附行为,文中应用Double-Langmuir吸附等温线方程对吸附相平衡数据进行拟合.表1列出了拟合得到的参数和相关系数.从表1中可看出,拟合相关系数均不小于0.9999,表明Double-Langmuir方程能够很好地描述CH4、CO2在MIL-101多孔材料上的吸附行为. 表1 CH4和CO2的DL模型拟合参数Table 1 Fitting parameters of DL model for pure methane and carbon dioxide吸附质Q c/(mmol·g-1)Q i/(mmol·g-1)k c/(kPa)-1 k i/(kPa)-1 r 2 CH4(298K)0.7099 75.6279 0.3112 0.0030 0.9999 CH4(303K)0.5236 48.0525 0.5379 0.0043 0.9999 CH4(308K)0.4440 43.7508 0.5449 0.0046 0.9999 CH4(313K)0.4012 29.9893 0.6570 0.00610.9999 CO2(298K)1.5819 39.8022 1.1013 0.0193 0.9999 CO2(303K)1.3647 33.3389 1.1568 0.0213 0.9999 CO2(308K)1.1566 31.1068 0.7971 0.0219 0.9999 CO2(313K)1.0863 27.7899 0.9532 0.0218 1.00003.2 CH4、CO2在MIL-101上的吸附热吸附热由吸附过程的热效应产生.吸附热的大小可以衡量吸附的强弱程度,吸附热越大,吸附作用力越强.等量吸附热也称微分吸附热(ΔH),可由Clausius-Clapeyron(克拉佩隆-克劳修斯)方程定义[19]:式中,ΔH为等量吸附热,kJ/mol;R为理想气体常数;p'为吸附质在吸附剂中的压力,kPa;T为吸附温度,K;C为积分常数.对CH4和CO2气体分别在1~4mmol/g和1~10mmol/g内取8个、10个平衡值,然后根据式(5)分别在不同的吸附量下作图,得到ln p与1/T的线性关系图.依据直线的斜率(-ΔH/R),得到不同吸附量下CH4和CO2的等量吸附热,等量吸附热与吸附量之间的关系(见图2).图2 CH4和CO2在MIL-101上的等量吸附热随吸附量的变化Fig.2 Isosteric adsorption heat versus adsorption capacity for methane and carbon dioxide on MIL-101图2中的数据显示:甲烷在MIL-101上的吸附热在15.2~16.6 kJ/mol之间,吸附热随着吸附量的增加没有明显变化;二氧化碳在MIL-101上的吸附热在19.4~25.5 kJ/mol之间变化,吸附热随着吸附量的增加而减小,最后趋于恒定.由于等量吸附热描述的是吸附剂吸附了定量气体后再吸附少量气体所放出的热,此时所放出的热量就反映了吸附剂与此时被吸附分子的结合力的大小.从图2中可以看出:CO2在MIL-101上的吸附热明显高于CH4在MIL-101上的吸附热,说明二氧化碳在MIL-101上的吸附结合力更强,因此MIL-101优先吸附CO2,易实现CO2/CH4的分离;同时,CO2在MIL-101上的吸附热随着吸附量的增加而减小,所以在吸附初始阶段,CO2趋向于吸附在MIL-101活性较高的吸附位上,随着吸附量的增加,活性高的吸附位减少,CO2开始在活性较低的吸附位上进行吸附;而CH4在MIL-101上的吸附热随着吸附量的增加没有明显变化.故可推测,CO2在MIL-101上的吸附结合力随着吸附量的增加而减小,CH4在MIL-101上的吸附结合力随吸附量的增加变化不明显.3.3 CO2的吸附选择性通过Matlab中的非线性数值方程求解式(3)DL-IAST模型可以得到CO2/CH4混合体系中CO2在吸附相中的摩尔分数(x),然后代入式(4)计算得到CO2的吸附选择性.图3示出了CO2在气相中的摩尔分数(y)为0.2时,CO2的吸附选择性随压力和温度的变化趋势.由图3可以看出,CO2/CH4混合体系中CO2的吸附选择性随着压力的增加而减小,而随着温度的降低而升高,且在298K时,CO2的选择性为5.6,同等条件下在硅胶上的吸附选择性为2.1[20]、在汞黝矿结构碳C168的吸附选择性为5.1[20].图4给出了298K,CO2气相摩尔分数为0.1~0.5范围内CO2吸附选择性的变化情况.结果表明,相同的压力条件下,吸附选择性随气相中摩尔分数的减小而增加.因此,可以说明,CO2浓度越低,越有利于CH4/CO2在MIL-101多孔材料上的吸附分离.图3 摩尔分数为0.2时,不同温度下CO2的吸附选择性Fig.3 Adsorptive selectivity of carbon dioxide at different temperatures when themole fraction is 0.2图4 298K、CO2摩尔分数为0.1~0.5时,CO2的吸附选择性Fig.4 Adsorptiveselectivity of carbon dioxide at 298 K when themole fraction is 0.1~0.54 结语文中采用重量法测定了不同温度下CH4、CO2在MIL-101多孔材料上的吸附等温线,估算了MIL-101多孔材料对CH4、CO2的等量吸附热,并利用DL-IAST模型计算出不同温度下CH4/CO2混合气中各组分的吸附量,得到了CO2的吸附选择性.结果表明:在298K、2500 kPa时,CO2在MIL-101多孔材料上的吸附量为14.51mmol/g,远高于同等条件下商业活性炭、沸石、分子筛对CO2的吸附容量,Double-Langmuir模型能很好地描述MIL-101多孔材料对CH4和CO2的吸附等温线;对CH4/CO2混合体系,CO2的吸附选择性随着压力的增加而减小,在298K、250 kPa时,CO2的吸附选择性达到5.6,高于在传统吸附材料如硅胶、汞黝矿结构碳C168上的吸附选择性,表明低压有利于分离CH4/CO2混合体系;CO2的吸附选择性随着温度的降低而升高,表明低温有利于CH4/CO2的分离;用Clausius-Clapeyron方程计算得到CO2在MIL-101多孔材料上的等量吸附热为19.4~25.5 kJ/mol,其等量吸附热随着表面吸附量的增加而减小;CH4在MIL-101多孔材料上的等量吸附热为15.2~16.6 kJ/mol.这表明:CO2在MIL-101多孔材料上的吸附结合力高于CH4,CO2在MIL-101上的吸附结合力随着吸附量的增加而减小.参考文献:[1]Thiruvenkatachari Ramesh,Sue Shi,An Hui,et al.Post combustion CO2 capture by carbon fibremonolithic adsorbents[J].Progress in Energy and Combustion Science,2009,35(5):438-455.[2]Youssef Belmabkhout,Rodrigo Serna-Guerrero,Abdelhamid Sayari.Adsorption of CO2 from dry gases on MCM-41 silica at ambient temperature and high pressure(1):pure CO2 adsorption[J].ChemicalEngineering Science,2009,64(17):3721-3728.[3]Zhang Zhi-juan,Xia Qi-bin,Li Zhong,et al.Adsorption of CO2 on zeolite 13X and activated carbon with higher surface area[J].Separation Science And Technology,2010,45(5):710-719.[4]Zhang Zhi-juan,Xu Ming-yao,Li Zhong,et al.Enhancement of CO2 adsorption on high surface area activated carbonmodified by N2,H2 and ammonia[J].Chemical Engineering Journal,2010,160(2):571-577. [5]Ferey Gerard,Serre Christian,Chang Jong-San,et al.Why hybrid porous solids capture greenhouse gases[J].Chemical Society Reviews,2011,40(2):550-562.[6]Ferey Gerard.Hybrid porous solids:past,present,future[J].Chemical Society Reviews,2008,37(1):191-214.[7]Murray Leslie J,Dinca Mircea,Long Jeffrey R.Hydrogen storage in metal organic frameworks[J].Chemical Society Reviews,2009,38(5):1294-1314.[8]Meek By Scott T,Greathouse Jeffery A,Allendorf Mark D.Metal organic frameworks:a rapidlygrowing class of versatile nanoporous materials[J].Advanced Matericls,2011,23(2):249-267.[9]潘红艳,李忠,夏启斌,等.苯酚在改性活性炭上的脱附活化能[J].华南理工大学学报:自然科学版,2006,34(12):72-77.Pan Hong-yan,Li zhong,Xia Qi-bin,et al.Activation energy of phenol from modified activated carbon [J].Journal of South China University of Technology:Natural Science Edition,2006,34(12):72-77.[10]黄思思,夏启斌,李忠,等.微波辐射合成MIL-101多孔材料及其对苯的吸附热[J].功能材料,2010,41(6):961-968.Huang Si-si,Xia Qi-bin,Li Zhong,et al.Microwave synthesis of MIL-101 and its adsorption heat of benzene[J].Functional Material,2010,41(6):961-968.[11]Saha Dipendu,Bao Zong-bi,Jia Feng,etal.Adsorption of CO2,CH4,N2 O,and N2 on MOF-5,MOF-177,and Zeolite 5A[J].Environ-Mental Science&Technology,2010,44(5):1820-1826.[12]Babarao Ravichandar,Jiang Jian-wen,Sandler Stanley I.Molecular simulations for adsorptive separation of CO2/CH4 mixture in metal-exposed,catenated,and charged metal-organic frameworks[J].Langmuir,2009,25(9):5239-5247.[13]Zhang Zhi-juan,Li Zhong,Li putational study of adsorption and separation of CO2,CH4,and N2 by an rht-typemetal-organic framework[J].Langmuir,2012,28(33):12122-12133.[14]Myers A L,Prausnitz JM.Aiche J.Thermodynamics of mixed-gas adsorption[J].Aiche Journal,1965,11(1):121-127.[15]Zhu W,van de Graaf JM,van den Broeke JP L,et al.TEOM:a unique technique for measuring adsorption properties.Light alkanes in silicalite-1[J].Industricl&Engineering Chemistry Research,1998,37(5):1934-1942.[16]Llewellyn Philip L,Bourrelly Sandrine,Ferey Gerard,et al.High uptakes of CO2 and CH4 in mesoporousmetals organic Frameworks MIL-100 and MIL-101[J].Langmuir,2008,24(14):7245-7250.[17]Kitagawa Susumu,Kitaura Ryo,Noro Shin-ichiro.Functional porous coordination polymers[J].Angewandte Chemie-International Edition,2004,43(18):2334-2375.[18]Zhang Zhi-juan,Huang Si-si,Li Zhong,et al.Adsorption equilibrium and kinetics of CO2 on chromium terephthalate MIL-101[J].Energy Fuel,2011,25(2):835-842.[19]叶振华.化工吸附分离过程[M].北京:中国石化出版社,1992.[20]Babarao Ravichandar,Hu Zhong-qiao,Jiang Jian-wen.Storage and separation of CO2 and CH4 in silicalite,C168 schwarzite,and IRMOF-1:a comparative study from monte carlo simulation[J].Langmuir,2007,23(2):659-666.。
外文翻译---活性炭和活化海泡石颗粒对NH3和H2S吸附性能研究附录A:英文译文及原文活性炭和活化海泡石颗粒对NH3和H2S吸附性能研究作者:Molina-Sabio, J.C.Gonz_alez, F. Rodr_ıguez-Reinoso 光键词:A、活性炭B、黏合C、吸附D、多孔性从空气中分离气态化合物应用在很多工业领域。
对于这种应用,使用活性粒进行吸附相当普遍,这种颗粒在活化之前与适当的黏合剂混合后制成。
然而,使用混合后的活性炭黏土颗粒吸附象氨和硫化氢这样的极性分子,会影响吸附效果,但是海泡石作为黏合剂加入黏土颗粒后,吸附效果会变的更好。
海泡石是一种纤维状硅酸盐,分子式是Si12Mg6O30(OH)4(H2O)4,由很多相互平行的纤维管状物构成[1]。
纤维的尺寸变化范围广,但是在很多情况下,长度为10-5000nm,宽度为10-30nm,高度为5-10nm。
如果在海泡石遇到水,它通过毛吸现象吸收水分,如果水继续渗透进去,就会形成松散的海泡石粉末。
海泡石在自然界中广泛的存在,因此它经常作为其他材料一种黏合剂[2]。
本课题主要研究海泡石、活性炭、和二者黏合后的颗粒作为一种吸附剂对废气中的氨和硫化氢的吸附性能的研究。
实验中,准备4份活性炭颗粒,其中一份在850°C蒸汽下加热活化,其他3份加入化学试剂氢氧化钾进行活化[3]。
我们从实验样品的化学式中可以看到样品的制备过程。
因此,C5-3由炭石在500°C温度下烧成粉末,再加入3mol/L 的氢氧化钾溶液,然后在85°C下加入大量的酸进行加热酸化处理。
本实验用到的海泡石原料来自西班牙的Yonclillos,并在实验的前天晚上在100°C左右做烘干处理。
对于吸附剂的后期制备[4],是将活化过的活性炭颗粒粉碎到合适的大小,一般不低于100目,然后再与海泡石粉末进行混合处理,在110°C左右进行烘干,样品制成后其中海泡石的含量约为70%、活性炭含量约为30%。