00两个微分中值定理证明中辅助函数的多种作法
- 格式:pdf
- 大小:243.66 KB
- 文档页数:5
第34卷第10期2004年10月数学的实践与认识M AT HEM A TICS IN PRACTICE A NDT HEORYV o l.34 No.10 Octo ber ,2004 教学园地两个微分中值定理证明中辅助函数的多种作法李君士(江西九江师专,江西 332000)摘要: 在数学分析中,三个微分中值定理极为重要.在证明L agrange 中值定理和Cauchy 中值定理时,都少不了作辅助函数,各种版本的《数学分析》或《高等数学》书本中,都只给出了一种形式的辅助函数.为了扩展思路,给出了多种形式的辅助函数,并得出了一般形式.关键词: 中值定理;辅助函数1 Laguange 中值定理辅助函数的作法收稿日期:2002-01-11 Rolle 中值定理 若函数f 满足如下条件:(i)f 在闭区间[a ,b ]上连续;(ii)f 在开区间(a ,b )内可导;(iii)f (a )=f (b ),则在(a ,b )内至少存在一点N,使得f ′(N )=0(1) Lagrange 中值定理若函数f 满足如下条件:(i)f 在闭区间[a ,b ]上连续;(ii)f 在开区间(a ,b )内可导;则在(a ,b )内至少存在一点N ,使得f ′(N )=f (b )-f (a )b -a(2) 证明 ∵(2)式可以写作f ′(N )-f (b )-f (a )b -a=0(3)依此作辅助函数F (x )=f (x )-f (b )-f (a )b -ax(4) 显然,函数F 在[a ,b ]上连续,在(a ,b )内可导,而且F (a )=F (b ),于是由罗尔中值定理知道,存在一点N ∈(a ,b ),使得F ′(N )=f ′(N )-f (b )-f (a )b -a=0(5)这就是所要证明的(3)式.¹本文要给出的是Lag rang e 中值定理证明中所需之辅助函数的多种作法所得的不同形式的函数F (x ),皆能满足证明之需.这里的函数f 皆满足定理中的条件(i )、(ii ).1.取F(x)=f(x)-f(b)-f(a)b-a(x-a)(6)则F(x)满足Rolle定理条件(i)、(ii)及(iii)F(a)=f(a)=F(b) 2.取F(x)=f(x)-f(a)-f(b)-f(a)b-a(x-a)(7)则F(x)满足Rolle定理条件(i)、(ii)及(iii)F(a)=0=F(b) 3.取F(x)=f(x)-B-f(b)-f(a)b-a(x-a)(8)其中B为任意常数.则F(x)满足Rolle定理条件(i)、(ii)及(iii)F(a)=f(a)-B=F(b) 4.取F(x)=f(x)-f(b)-f(a)b-a(x-b)(9)则F(x)满足Rolle定理条件(i)、(ii)及(iii)F(a)=f(b)=F(b) 5.取F(x)=f(x)-f(b)-f(b)-f(a)b-a(x-b)(10)则F(x)满足Rolle定理条件(i)、(ii)及(iii)F(a)=0=F(b) 6.取F(x)=f(x)-B-f(b)-f(a)b-a(x-b)(11)其中B为任意常数.则F(x)满足Rolle定理条件(i)、(ii)及(iii)F(a)=f(b)-B=F(b) 7.取F(x)=f(x)-f(b)-f(a)b-ax(12)则F(x)满足Rolle定理条件(i)、(ii)及(iii),∵由F(a)=f(a)-f(b)-f(a)b-a a, F(b)=f(b)-f(b)-f(a)b-a bF(a)-F(b)=f(a)-f(b)-f(b)-f(a)b-a(a-b)=0得F(a)=F(b).8)取(13) 166数 学 的 实 践 与 认 识34卷其中A为任意常数.则F(x)满足Rolle定理条件(i)、(ii)及(iii),∵由F(a)=f(a)-f(b)-f(a)b-a(a-A), F(b)=f(b)-f(b)-f(a)b-a(b-A)F(a)-F(b)=f(a)-f(b)-f(b)-f(a)b-a(a-b)=0得F(a)=F(b).9.取F(x)=f(x)-f(a)-f(b)-f(a)b-a(x-A)(15)其中A为任意常数,则F(x)仍然满足Ro lle定理条件(i)、(ii)、(iii).10.取F(x)=f(x)-f(b)-f(b)-f9a)b-a(x-A)(15)其中A为任意常数,则F(x)仍然满足Ro lle定理条件(i)、(ii)、(iii).11.一般地,可取F(x)=f(x)-B-f(b)-f(a)b-a(x-A)(16)其中A、B皆为任意常数,容易验证,F(x)满足Rolle定理条件(i)、(ii)、(iii).特别地,当a.B=0,A=a时,即为(6);b.B=f(a),A=a时,即为(7);c.A=a时,即为(8);d.B=0,A=b时,即为(9);e.B=f(b),A=b时,即为(10);f.A=b,即为(11);g.B=0,A=0时,即为(12);h.B=0时,即为(13);i.B=f(a)时,即为(14);j.B=f(b)时,即为(15);故(16)可作为Lagr ang e中值定理证明中辅助函数F(x)的一般形式.2 Cauchy中值定理辅助函数的作法Cauchy中值定理 若(i)函数f与g都在闭区间[a,b]上连续;(ii)f与g都在开区间(a,b)内可导;(iii)f′与g′在(a,b)内不同时为零;(iv)g(a)≠g(b),则在(a,b)内至少存在一点N,使得f′(N) g′(N)=f(b)-f(a)g(b)-g(a)(17) 证明 作辅助函数16710期李君士:两个微分中值定理证明中辅助函数的多种作法F(x)=f(x)-f(b)-f(a)g(b)-g(a)g(x)(18)显然,F在[a,b]上连续,在(a,b)内可导,且有F(a)=F(b),故由Rolle中值定理,存在N∈(a,b),使得F′(N)=f′(N)-f(b)-f(a)g(b)-g(a)g′(N)=0(19)这里必有g′(N)≠0,否则由上式可知,若g′(N)=0也将有f′(N)=0,而这个结论与定理的条件(iii)相矛盾,因而我们能将(19)式改写成(17)式.º本文也将给出该定理证明中辅助函数的多种不同作法所得的不同形式的函数F(x),皆能满足证明之需.f、g满足定理条件(i)、(ii)、(iii)、(iv).1.取F(x)=f(x)-f(a)-f(b)-f(a)g(b)-g(a)[g(x)-g(a)](20) 显然,F在[a,b]上连续,在(a,b)内可导,且F(a)=F(b)=0,满足Rolle中值定理条件,故存在一点N∈(a,b),使得F′(N)=f′(N)-f(b)-f(a)g(b)-g(a)g′(N)=0由此式即可得(17)式.2.取F(x)=f(x)-f(b)-f(b)-f(a)g(b)-g(a)[g(x)-g(b)](21) 显然F在[a,b]上连续,在(a,b)内可导,且F(a)=F(b)=0,满足Rolle中值定理条件,同上一方法,即可得到(17)式.3.取F(x)=f(x)-A-f(b)-f(a)g(b)-g(a)[g(x)-B](22)其中A、B为任意常数.显然F在[a,b]上连续,在(a,b)内可导,且F(a)=F(b),满足Rolle 中值定理条件,同前一方法,即可得到(17)式.4.当f(b)≠f(a)时,我们还可以取F(x)=g(x)-A-g(b)-g(a)f(b)-f(a)[f(x)-B](23)其中A、B为任意常数,显然F在[a,b]上连续,在(a,b)内可导,且F(a)=F(b),满足Rolle 中值定理条件,故在(a,b)内存在一点N,使得F′(N)=g′(N)-g(b)-g(a)f(b)-f(a)f′(N)=0(24)其中f′(N)必不等于零,否则,若f′(N)=0,由(24)式将有g′(N)=0,则与定理的条件(ii)相矛盾,因而从(24)式可得(17)式.从而以上各种函数F(x)的表达式皆可取作定理证明中的辅助函数.其中(22)式即为Cauchy中值定理证明中的辅助函数的一般形式,而当f(b)≠f(a)时,(23)式亦可成为Cauchy中值定理证明中的辅助函数的一般形式.以上结果充分说明了Lag rang e中值定理、Cauchy中值定理证明中所作辅助函数的多168数 学 的 实 践 与 认 识34卷样性.但是,都离不开一个基本点:F 一定要满足Rolle 中值定理的条件,否则就失去了作为辅助函数的意义.参考文献:[1] 《数学分析》第二版[M ].华东师范大学数学系编,156—157.[2] 《数学分析》第二版[M ].华东师范大学数学系编,160.Multiprocess of the Auxiliary Functions ,in the Two Differential Mean ValueTheorem ′s proveLI Jun -shi(Jiangx i Jiujiang T eacher s ′Co lleg e,Jiangx i 332000,China)Abstract : I n the mathemat ical analysis,t hree differential mean value theor ems are v ery impor tant,in the pro ve o f L ang uage m ean v alue t heo r em and Cauchy mean V alue t heo rem the auxiliary funct ions ar e essent ial in the any edition ,auxiliary functio n of some for m is g iven .F orthe ex panding t raining of thought ,this tex t g ive mult ifor m of aux ilia ry funct ion and their or dinary for ms.Keywords : mean value theor em ;aux iliar y funct ion16910期李君士:两个微分中值定理证明中辅助函数的多种作法。
运用中值定理证题时构造辅助函数的三种方法微分中值定理应用中,怎么寻找辅助函数,是比较头疼的一件事。
今天笔者就介绍下三种方式帮忙寻找到这个函数。
首先声明:这三种方式也不是万能的,但对常见题目还是挺有帮助的,而且学霸们应该都知道这些方法,故慎入。
因此本文目的是向还没留意过这些方法的同学做普及,尤其是线下笔者所带的那些可爱的学生们。
至于还有些仗着自己有点学识就恨不得鄙视这个、鄙视那个,恨不得日天日地日地球的所谓学霸请自行绕道。
一、积分原函数法具体方法简述:将要证明的式子整理为φ(ξ)=0 (一般不包含分式),然后令 F′(ξ)=φ(ξ) ,对两边式子分别积分,则有 F(ξ)=∫φ(ξ)dξ,那么F(x)就是我们所求的辅助函数。
说白了,就是将所证明的表达式进行积分还原,如果能够还原成功,那么成功找到的这个F(x)就是我们苦苦寻找的辅助函数。
还不懂?没事,举两个例子。
例1:设f(x)、g(x)在[a,b]上连续,(a,b)内可导,且 g′(x)≠0 ,证明:在(a,b)存在ξ,使得 f(ξ)−f(a)g(b)−g(ξ)=f′(ξ)g′(ξ) 。
解析:这是非常常见的一道题。
估计即使做过了这道题,还有很多同学很迷惑,解答中的辅助函数到底是咋构建出来的。
其实利用原函数法,很容易就找到这个辅助函数了。
首先先所证明的分式整理成易观的式子,如下:F′(ξ)=g′(ξ)f(ξ)+f′(ξ)g(ξ)−f(a)g′(ξ)−g(b)f′(ξ)然后我们令:F′(ξ)=g′(ξ)f(ξ)+f′(ξ)g(ξ)−f(a)g′(ξ)−g(b)f′(ξ)好,对上式两边进行积分,如下:F(ξ)=∫g′(ξ)f(ξ)+f′(ξ)g(ξ)−f(a)g′(ξ)−g(b)f′(ξ)dξ=∫f(ξ)dg(ξ)+∫g(ξ)df(ξ)−f(a)g(ξ)−g(b)f(ξ)=f(ξ)g(ξ)−∫g(ξ)df(ξ)+∫g(ξ)df(ξ)−f(a)g(ξ)−g(b)f(ξ)=f(ξ)g(ξ)−f(a)g(ξ)−g(b)f(ξ)所以我们要寻找的辅助函数就为:F(x)=f(x)g(x)−f(a)g(x)−g(b)f(x)很容易验证:F(a)=F(b)=−f(a)g(b)于是根据罗尔定理,在(a,b)上存在一点ξ,使得 F′(ξ)=0 ,也就是:g′(ξ)f(ξ)+f′(ξ)g′(ξ)−f(a)g′(ξ)−g(b)f′(ξ)=0整理便可得题目中的式子,因此原题得证。
关于中值定理证明中辅助函数的构造作者:张芝华来源:《教育教学论坛》2015年第45期摘要:构造辅助函数是高等数学证明中常用的技巧,它起着化难为易、化未知为已知的桥梁作用,特别是在应用中值定理证明问题时,需要构造辅助函数。
如何才能找出合适的辅助函数,在教学实践中人们总结出了多种方法,本文通过几个实例着重介绍如何使用原函数法构造辅助函数的方法。
关键词:中值定理;辅助函数;构造方法中图分类号:G642.0 ; ; 文献标志码:A ; ; 文章编号:1674-9324(2015)45-0153-02一、引例例1:设f(x)在[a,b]上连续,在(a,b)内可导,证明在(a,b)内至少存在一点ξ使=f(ξ)+ξf ′(ξ)证明:令φ(x)=x·f(x)φ(x)满足拉格朗日中值定理条件,∴在(a,b)内至少存在一点ξ,使φ′(ξ)=?圯f(ξ)+ξf ′(ξ)=上题结论中要证明f(ξ)+ξf ′(ξ)=0,那么对于这类题目有没有方法来构造辅助函数?我们可以用下面思路来构造辅助函数。
1°将ξ改写成x,f(x)+xf ′(x)=02°将上式化为 + =03°上式又可以改写成(lnf(x))′+(lnx)′=04°上式又可以改写成[lnx·f(x)]′=0 所以我们可以令φ(x)=x·f(x)上面构造辅助函数的方法就是原函数法。
二、证明的结论中含有ξf ′(ξ)+kf(ξ)=0可以令φ(x)=x ·f(x)1°将ξ改写成x,xf ′(x)+kf(x)=02°将上式化为 + =03°上式又可以改写成(lnf(x))′+(lnx )′=04°上式又可以改写成[lnx ·f(x)]′=0 我们可以令φ(x)=x ·f(x)例2:设f(x)在[0,1]上连续, ;f(x)dx=0,证明存在ξ∈(0,1)使ξf(ξ)=-2 ; f(t)dt分析:按上述思路1°将ξ改写成x,xf(x)+2 ; f(t)dt=02°将上式化为 + =03°上式又可以改写成(ln ; f(t)dt)′+(lnx )′=04°上式又可以改写成[lnx · ; f(f)dt]′=0我们可以令φ(x)= x · ; f(t)dt证明:令φ(x)= x ·f(t)dtφ(0)=φ(1)=0?埚ξ∈(0,1)使φ′(ξ)=0φ′(x)=2x· ; f(t)dt+x f(x)φ′(ξ)=2ξ· ; f(t)dt+ξ f(ξ)=0即:ξf(ξ)=-2 ;f(t)dt三、证明的结论中含有f ′(ξ)+kf(ξ)=0可以令φ(x)=e ·f(x)1°将ξ改写成x,f ′(x)+kf(x)=02°将上式化为 +k=03°上式又可以改写成(lnf(x))′+(lne )′=04°上式又可以改写成[lne ·f(x)]′=0我们可以令φ(x)=e ·f(x)例3:设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,f ′ (a)·f ′ (b)>0.证明(1)?埚c∈(a,b)使f(c)=0(2)?埚ξ ,ξ ∈(a,b)使f ′(ξ )-f(ξ )=0和f ′(ξ )-f(ξ )=0证明:(1)不妨设f ′ (a)>0,f ′ (b)>0由f ′ (a)>0?圯?埚x ∈(a,b)使f(x )>f(a)=0由f ′ (b)>0?圯?埚x ∈(a,b)使f(x )?圯f(x )·f(x )由零点定理得?埚c∈(a,b)使f(c)=0(2)令φ(x)=e ·f(x)∵φ(a)=φ(c)=φ(b)=0∴?埚ξ∈(a,c),?埚ξ∈(c,b)使φ′(ξ)=φ′(ξ)=0而φ′(x)=e ·(f ′(x)-f(x))=0且e ≠0f′(ξ )-f(ξ )=0f′(ξ )-f(ξ )=0四、证明的结论中可以化为以上两种形式,我们可以用原函数法构造辅助函数例4:设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,f ′ (a)·f ′ (b)>0.证明?埚η∈(a,b)使f ;″(η)-4f ′(η)+3f(η)=0分析:1°将ξ改写成x,f ;″(x)-4f ′(x)+3f(x)=02°将上式化为(f ′(x)-f(x))-3(f ′(x)-f(x))=03°将(f ′(x)-f(x))看成f ′(x)+kf(x)=0中的f(x) 4°我们可以令φ(x)=e ·(f ′(x)-f(x))证明:令φ(x)=e ·(f ′(x)-f(x))?埚η,η∈(a,b)使φ(η)=φ(η)=0?埚η∈(a,b)使φ′(η)=0φ′(x)=-3e ·(f ′(x)-f(x))+e (f ″(x)-f ′(x))=e (f ;″(x)-4f ′(x)+3f(x))∵e ≠0?圯f ;″(η)-4f ′(η)+3f(η)=0从以上例子我们可以看到用原函数法构造辅助函数的步骤为: 1°将要证的结论中ξ改写成x2°移项使等式一边为零3°用观察法或积分法求出原函数4°这个原函数就是我们要找的辅助函数。
用解微分方程的方法求中值定理类问题中的辅助函数
1. 基本说明
一般来说,中值定理类问题就是求一个函数在一定区间上极值的问题,而且这个函数往往比较复杂,我们要利用解微分方程的方法解决,就
要使用辅助函数。
辅助函数指的就是:在求解复杂函数极值的中值定
理类问题时,引入的简单函数。
2. 生成规则
首先,我们要建立一个初始函数,记为 $f(x)$,它是最基本的函数形式,其中包括一系列的常数项和x 的n次幂项;然后再引入更复杂的函数,记为 $g(x)$,由前人研究已知,它会根据给定的 f(x) 的函数形式满足
一定的性质;最后,将 g(x)和 f(x) 结合起来,形成辅助函数的形式。
具体的辅助函数表达式如下所示:
$$ h(x) = f(x) + g(x) $$
3. 具体应用
在实际应用中,我们可以使用辅助函数得到有关中值定理的重要属性,例如获得函数的凹凸性,并求出拐点及其对应的值。
此外,辅助函数
在求解凸优化问题时也大有用处,如果有一定的规模,我们可以采用
凸优化方法将辅助函数最小化,从而得到最优解。
关于中值定理证明中辅助函数的构造张芝华(上海师范大学商学院,上海201199)摘要:构造辅助函数是高等数学证明中常用的技巧,它起着化难为易、化未知为已知的桥梁作用,特别是在应用中值定理证明问题时,需要构造辅助函数。
如何才能找出合适的辅助函数,在教学实践中人们总结出了多种方法,本文通过几个实例着重介绍如何使用原函数法构造辅助函数的方法。
关键词:中值定理;辅助函数;构造方法中图分类号:G642.0文献标志码:A文章编号:1674-9324(2015)45-0153-02一、引例例1:设f(x)在[a,b]上连续,在(a,b)内可导,证明在(a,b)内至少存在一点ξ使bf(b)-af(a)b-a=f(ξ)+ξf′(ξ)证明:令φ(x)=x·f(x)φ(x)满足拉格朗日中值定理条件,∴在(a,b)内至少存在一点ξ,使φ′(ξ)=φ(b)-φ(a)b-a⇒f(ξ)+ξf′(ξ)=bf(b)-af(a)b-a上题结论中要证明f(ξ)+ξf′(ξ)=0,那么对于这类题目有没有方法来构造辅助函数?我们可以用下面思路来构造辅助函数。
1°将ξ改写成x,f(x)+xf′(x)=02°将上式化为f′(x)f(x)+1x=03°上式又可以改写成(lnf(x))′+(lnx)′=04°上式又可以改写成[lnx·f(x)]′=0所以我们可以令φ(x)=x·f(x)上面构造辅助函数的方法就是原函数法。
二、证明的结论中含有ξf′(ξ)+kf(ξ)=0可以令φ(x)=x k·f(x)1°将ξ改写成x,xf′(x)+kf(x)=02°将上式化为f′(x)f(x)+kx=03°上式又可以改写成(lnf(x))′+(lnx k)′=04°上式又可以改写成[lnx k·f(x)]′=0我们可以令φ(x)=x k·f(x)例2:设f(x)在[0,1]上连续,x 0∫f(x)dx=0,证明存在ξ∈(0,1)使ξf(ξ)=-2x∫f(t)dt分析:按上述思路1°将ξ改写成x,xf(x)+2x∫f(t)dt=02°将上式化为f(x)x∫f(t)dt+2x=03°上式又可以改写成(lnx∫f(t)dt)′+(lnx2)′=04°上式又可以改写成[lnx2·x∫f(f)dt]′=0我们可以令φ(x)=x∫x2·x0∫f(t)dt证明:令φ(x)=x∫x2·f(t)dtφ(0)=φ(1)=0∃ξ∈(0,1)使φ′(ξ)=0φ′(x)=2x·x∫f(t)dt+x2f(x)φ′(ξ)=2ξ·ξ∫f(t)dt+ξ2f(ξ)=0即:ξf(ξ)=-2ξ∫f(t)dt三、证明的结论中含有f′(ξ)+kf(ξ)=0可以令φ(x)=e kx·f(x)1°将ξ改写成x,f′(x)+kf(x)=02°将上式化为f′(x)f(x)+k=03°上式又可以改写成(lnf(x))′+(lne kx)′=04°上式又可以改写成[lne kx·f(x)]′=0我们可以令φ(x)=e kx·f(x)例3:设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,. All Rights Reserved.f ′+(a )·f ′-(b )>0.证明(1)∃c ∈(a ,b )使f (c )=0(2)∃ξ1,ξ2∈(a ,b )使f ′(ξ1)-f (ξ1)=0和f ′(ξ2)-f (ξ2)=0证明:(1)不妨设f ′+(a )>0,f ′-(b )>0由f ′+(a )>0⇒∃x 1∈(a ,b )使f (x 1)>f (a )=0由f ′-(b )>0⇒∃x 2∈(a ,b )使f (x 2)<f (b )=0⇒f (x 1)·f (x 2)<0由零点定理得∃c ∈(a ,b )使f (c )=0(2)令φ(x )=e -x·f (x )∵φ(a )=φ(c )=φ(b )=0∴∃ξ1∈(a ,c ),∃ξ2∈(c ,b )使φ′(ξ1)=φ′(ξ2)=0而φ′(x )=e -x·(f ′(x )-f (x ))=0且e -x≠0f ′(ξ1)-f (ξ1)=0f ′(ξ2)-f (ξ2)=0四、证明的结论中可以化为以上两种形式,我们可以用原函数法构造辅助函数例4:设f (x )在[a ,b]上连续,在(a ,b )内二阶可导,f (a )=f (b )=0,f ′+(a )·f ′-(b )>0.证明∃η∈(a ,b )使f ″(η)-4f ′(η)+3f (η)=0分析:1°将ξ改写成x ,f ″(x )-4f ′(x )+3f (x )=02°将上式化为(f ′(x )-f (x ))-3(f ′(x )-f (x ))=03°将(f ′(x )-f (x ))看成f ′(x )+kf (x )=0中的f (x )4°我们可以令φ(x )=e -3x·(f ′(x )-f (x ))证明:令φ(x )=e -3x·(f ′(x )-f (x ))∃η1,η2∈(a ,b )使φ(η1)=φ(η2)=0∃η∈(a ,b )使φ′(η)=0φ′(x )=-3e -3x·(f ′(x )-f (x ))+e -3x(f ″(x )-f ′(x ))=e -3x(f ″(x )-4f ′(x )+3f (x ))∵e -3x≠0⇒f ″(η)-4f ′(η)+3f (η)=0从以上例子我们可以看到用原函数法构造辅助函数的步骤为:1°将要证的结论中ξ改写成x 2°移项使等式一边为零3°用观察法或积分法求出原函数4°这个原函数就是我们要找的辅助函数. All Rights Reserved.。
微分中值定理辅助函数类型的构造技巧构造辅助函数是应用微分中值定理的一种常用技巧,通过构造合适的辅助函数,可以简化定理的证明过程,使得结论更容易得到。
下面将介绍几种常见的构造辅助函数的技巧。
1.构造差商辅助函数:差商是在微积分中常用的一个概念,表示函数在一点附近的平均变化率。
通过构造差商辅助函数,可以将函数的变化率转化成差商的形式,从而应用差商的性质进行分析和证明。
具体来说,如果要证明一个函数在一些区间上的平均变化率等于两个点之间的差商,可以构造一个辅助函数,使得辅助函数的导数等于差商,从而可以利用微分中值定理得到所需的结果。
2.构造导函数辅助函数:导函数是函数在一点处的斜率,表示函数的变化速率。
通过构造导函数辅助函数,可以转化函数在区间上的斜率问题为导函数在特定点上的函数值问题。
具体来说,可以通过构造辅助函数的导函数等于原函数的导函数,再利用微分中值定理得到结论。
3.构造积分辅助函数:积分是函数的反导数,表示函数在一点处与坐标轴之间的面积。
通过构造积分辅助函数,可以将函数的积分转化为函数在区间上的平均值。
具体来说,可以通过构造辅助函数的积分等于原函数的积分,再利用微分中值定理得到所需的结论。
4.构造复合函数辅助函数:复合函数是两个或多个函数通过函数运算得到的新函数。
通过构造复合函数辅助函数,可以将定理的证明转化为复合函数的导数的证明。
具体来说,可以通过构造复合函数辅助函数使得辅助函数的导数等于复合函数的导数,再利用微分中值定理得到结论。
总之,构造辅助函数是证明微分中值定理的一种常见技巧,可以简化证明过程,使得结论更容易得到。
不同的辅助函数类型适用于不同的证明问题,具体的构造方法需要根据具体的问题进行选择。
在构造辅助函数时,需要充分发挥函数的性质和微积分的基本概念,灵活运用各种技巧,才能得到令人满意的结果。
应用微分中值定理构造辅助函数的三种方法微分中值定理是微积分中最重要的定理之一,它可以用来构造辅助函数。
在这里,我将介绍三种常见的方法。
方法一:构造辅助函数来证明微分中值定理我们首先回顾微分中值定理的陈述:如果函数f在闭区间[a,b]上连续,在开区间(a,b)上可导,那么存在c∈(a,b),使得f'(c)=(f(b)-f(a))/(b-a)。
为了证明这一定理,我们可以构造一个辅助函数g(x)=f(x)-(f(b)-f(a))/(b-a)*(x-a)。
我们可以计算g(a)和g(b):g(a)=f(a)-(f(b)-f(a))/(b-a)*(a-a)=f(a)g(b)=f(b)-(f(b)-f(a))/(b-a)*(b-a)=f(b)由于g(x)是f(x)的线性函数,我们可以得出g(a)=f(a)和g(b)=f(b)。
根据罗尔定理,存在c∈(a,b),使得g'(c)=0。
将g(x)展开得到:g'(x)=f'(x)-(f(b)-f(a))/(b-a)当x=c时:0=g'(c)=f'(c)-(f(b)-f(a))/(b-a)因此,存在c∈(a,b),使得f'(c)=(f(b)-f(a))/(b-a)。
方法二:构造辅助函数来确定函数的最大值和最小值微分中值定理的一个重要应用是确定函数的最大值和最小值。
我们可以利用此定理构造辅助函数来确定函数在给定闭区间上的最大和最小值。
假设我们要确定函数f在闭区间[a,b]上的最大值和最小值。
我们可以构造辅助函数h(x)=f(x)-M(x-a),其中M是一个足够大的常数。
我们可以选择一个足够大的M,使得h(x)在[a,b]上永远不小于0。
当x=a时,h(a)=f(a)-M(a-a)=f(a)>=0当x=b时,h(b)=f(b)-M(b-a)=f(b)-M(b-a)<=0根据微分中值定理,存在c∈(a,b),使得h'(c)=0。
辅助函数的几种特殊用法在高等数学中,证明一些中值等式的题目也是比较困难的。
因为一般我们要花大量的时间去找一个恰当的辅助函数,如果我们能熟悉一些特殊类型题目的辅助函数的构造及相关定理的运用,这样就会为我们解题提供方便,从而节约大量的时间。
为此我们需要牢记以下几种常见题型中辅助函数的特殊用法。
(1)若题目中出现等式“'()()f kf ζζ-”时,一般可以考虑作辅助函数)()(x f e x F kx -=.例:设函数f 在[,]a b 上可微,且()()0f a f b ==证明:k R ∀∈,(,)a b ζ∃∈,使得'()()f kf ζζ=分析:要证'()()f kf ζζ=,即证'()()0f kf ζζ-=,也就是证ζ函数)()(x kf x f -'的零点.注意到[()]'['()()]kx kx f x e f x kf x e --=-,因此,只要检验函数()()kx F x f x e -=是否满足罗尔中值定理条件,但这是明显的.证明:构造辅助函数()()kx F x f x e -=,(,)x a b ∈,则()F x 在[,]a b 上满足罗尔定理条件,故(,)a b ζ∃∈,使得0)(='ζF , 而[])()()()()(ζζζζζkf f e e x kf e x f F k x kxkx -'=-'='-=--,则['()()]0k e f kf ζζζ--=,即'()()f kf ζζ=.(2)若题目结论中出现等式“1'()n A f ζζ-=)0(≠A ”时,可考虑作副主函数()()F x f x =,()n G x x =.例:设函数f 在[,]a b 上连续,在(,)a b 内可微.证明:(,)a b ζ∃∈,使得:222(()())'()()f b f a f b a ζζ-=-.证明: i )若0(,)a b ∉作辅助函数()()F x f x =,2()G x x =,()F x ,()G x 均满足柯西中值定理条件 所以(,)a b ζ∃∈使得22()()'()2f b f a f b a ζζ-=-,即222(()())'()()f b f a f b a ζζ-=-.ii )若0(,)a b ∈,'(0)0,0f a b ≠+≠由i )可类似得证. iii )若0(,)a b ∈,'(0)0f ≠,取0ζ=,即证.(3)若题目结论中出现“()'()f f ζζζ-”时,可以考虑作辅助函数()()f x F x x =,1()G x x=. 例:设函数f 在[,]a b 上连续)0(>a ,在(,)a b 内可微.证明:(,)a b ζ∃∈使得1()'()()()a b f f f a f b a b ζζζ=--,证明:因为2)()()(x x f x f x x x f -'='⎥⎦⎤⎢⎣⎡, 考虑作辅助函数()()f x F x x =,1()G x x=,显然F 与G 在[,]a b 上满足柯西中值 定理条件,所以必(,)a b ζ∃∈, 使得)()()()()()(ζζG F a G b G a F b F ''=--即221)()(11)()(ζζζζζ--'=--f f a b a a f b b f [])()()()(1ζζζf f a bf b af b a '-=--⇒证毕.(4)若命题结论中出现式“()'()f f ζζζ+”时,可考虑作辅助函数()()F x xf x =,()G x x =.例:设函数f 在[,]a b 上连续,在(,)a b 内可导,证明:必有(,)a b ζ∈,使得()()()'()bf a af a f f b aζζζ-=+-.分析:我们熟悉[])()()(x f x x f x xf '+=',因此作辅助函数()()F x xf x =,()G x x =,且知()F x ,()G x 在给定区间内均满足柯西中值定理条件,故有)()()()()()(ζζG F a G b G a F b F ''=--,即()()()'()bf a af a f f b aζζζ-=+-得证.(5)若题目中出现式“'()f ζζ”时,可考虑作辅助函数()()F x f x =,()ln G x x =.例:设函数f 在[,]a b (0)a >上连续,在(,)a b 内可导,则存在(,)a b ζ∈使得()()'()lnbf b f a f aζζ-= 证明:由我们熟悉的xx 1)(ln =',考虑作辅助函数()()F x f x =,()ln G x x =且)(),(x G x F 在给定的区间内均满足柯西中值定理条件,于是),(b a ∈∃ζ,使得()()'()1ln ln f b f a f b aζζ-=-,即()()'()lnbf b f a f aζζ-=,证毕.(6)若命题结论中出现等式“()()f kf ζζζ'-”的关系时,可考虑的辅助函数为).()(x f x x F k -=例:设)(x f 在[]b a ,上连续,)0(b a <<,在),(b a 内可导,且)()(a bf b af =,证明:),(b a ∈∃ζ使得)()(ζζζf f '=.证明:设)()(1x f x x -=ϕ,显然ϕ在[]b a ,上连续, 而2)()()(xx f x f x x -'='ϕ在在),(b a 内存在, 且)()()(11b f b a f a a --==ϕ,故ϕ在[]b a ,上满足罗尔中值定理条件, 于是必),(b a ∈∃ζ使得0)()(2=-'='ζζζζζϕf f )(, 所以0)()(=-'ζζζf f ,而0>ζ,所以)()(ζζζf f '=.证毕.(7)若题目中出现等式“2f ff '''+”,的关系时,则往往考虑构造辅助函数)()(2x f x F =,因为)(x F 经过一次求导为)()(2)(x f x f x F '=',再次求导后,即[])()()(2)(x f x f x f x F ''+'=''.例:设)(x f 在[]b a ,上连续,在),(b a 内二阶可导,且0)()(==b f a f ,证明:),(b a ∈∃ζ,使得.0)()()(2=''+'ζζζf f f证明:设辅助函数),()(2x f x F =则)()(2)(x f x f x F '=', 因为)(x F '在[]b a ,上连续,在),(b a 内可导, 且0)()(2)()()(2)(='='='='b f b f b F a f a f a F ,所以由罗尔中值定理知:必),(b a ∈∃ζ使0)(=''ζF ,而[]0)()()(2)(2=''+'=''ζζζζf f f F ,即0)()()(2=''+'ζζζf f f .证毕.(8)若题目中出现等式“2ff f '''-的关系时,则需构造辅助函数)(ln )(x f x F =,因为)(x F 经过一次求导后为)()()(x f x f x F '=',再次求导后得到.)()()()()(2x f x f x f x f x F '-''='' 例:设)(x f 在[]b a ,上连续,在),(b a 内可导,且[]b a x x f ,,0)(∈>,)()()()(b f a f a f b f '⋅='⋅,试证:必),(b a ∈∃ζ使得.0)()()(2='-''ζζζf f f证明:设)(ln )(x f x F =,得)()()(x f x f x F '=', 显然)(x F '在[]b a ,上连续,在),(b a 内可导,则)()()()()()(b F b f b f a f a f a F '='='=', 故满足罗尔中值定理条件,因此必),(b a ∈∃ζ使得0)(=''ζF ,而0)()()()()(22='-''=''=ζζx x f x f x f x f F ,即.0)()()(2='-''ζζζf f f证毕.(9)若题目结论中出现等式“0)()(0=+⎰ζζf dx x f ”,的关系时,则可考虑构造辅助函数.)()(0⎰=xx dt t f ex ϕ例:设f 在[]a ,0上连续,在),0(a 内可导,且⎰=a dx x f 0.0)(证明:),0(a ∈∃ζ使得0)()(0=+⎰ζζf dx x f .证明:作辅助函数⎰=xxdt t f e x 0)()(ϕ,显然)(x ϕ在[]a ,0上连续,在),0(a 内可导,且)0(0)()(0ϕϕ===⎰aa dt t f e a ,故满足罗尔中值定理条件,因此,必),0(a ∈∃ζ使得0)(='ζϕ,而⎥⎦⎤⎢⎣⎡+=+='⎰⎰)()()()()(00x f dt t f e x f e dt t f e x xx x x x ϕ,由于0≠ζe , 故0)()(0=+⎰ζζf dx x f .证毕.(10)若题目出现等式“()()f f ζζ''-”的关系时,则需两次构造辅助函数,第一次构造)()(x f e x g x =,第二次构造[])()()(x f x f e x x '+=-ϕ.例:设设)(x f 在[]b a ,上可导,在),(b a 内二阶可导,0)()(==b f a f ,0)()(>''b f a f ,试证:),(b a ∈∃ζ,使得).()(ζζf f =''证明:因为0)()(>'⋅'b f a f ,所以)(a f '与)(b f '同号,设0)(>'a f ,即0)(lim _)()(lim >-=-++→→ax x f a x a f x f a x ax ,所以),,(,01δδ+∈∃>∃a a x 使得0)(1>x f , 0)(lim )()(lim >-=----→→bx x f b x b f x f b x bx ,所以),(,02b b x δδ-∈∃>∃,使得.0)(2<x f 又因为f 在[]b a ,上可导,故f 在[]b a ,上连续,即f 在),(21x x 上连续, 而0)(,0)(21<>x f x f ,所以由介值定理(或零点定理),),(21x x ∈∃η使得.0)(=ηf再看,由题目结论,构造辅助函数),()(x f e x g x = 因为)()()(ηf b f a f ==,所以0)()()(===b g g a g η,故),(1ηηa ∈∃,使得,0)(1='ηg ),(2b ηη∈∃,使得.0)(2='ηg因为[])()()()()(x f x f e x f e x f e x g x x x '+='+=',由0)()(21='='ηηg g ,可得.0)()(,0)()(2211='+='+ηηηηf f f f令[])()()(x f x f e x x '+=-ϕ, 所以有[]0)()()(1111='+=-ηηηϕηf f e ,[],0)()()(2222='+=-ηηηϕηf f e即0)()(21==ηϕηϕ,又因为)(x ϕ在[]21,ηη上连续可导, 所以),()(2,1b a ⊂∈∃ηηζ,使得0)(='ζϕ,即[]0)()()(=-''='=-ζζϕx x x f x f e ,而0≠-ζe ,故0)()(=-''ζζf f .证毕.涉及罗尔定理证明中值等式的命题罗尔定理:如果函数()f x 在闭区间[,]a b 上连续,在开区间(,)a b 内可导,且在区间端点的函数值相等,即()()f a f b =.那么在区间(,)a b 内至少有一点()a b ξξ<<,使得()f x 在该点的导数等于零,0)('=ξf .题型一:设函数)(x f 在],[b a 上连续,在),(b a 内可导,且0)()(==b f a f ,证明对任何实数k ,至少存在一点),(b a ∈ξ使)()(ξξkf f ='成立.分析:首先从结论看起,欲证)()(ξξkf f =',即证0)()(=-'k f f ξξ,即0)()(=-'=ξx k x f x f .而要0)()(=-'=ξx k x f x f 就促使我们想到去构造辅助函数的思路,即构造的函数)(x F 应该满足在],[b a 上连续,在),(b a 内可导,)()(b F a F =,k x f x f x F -'=')()()(,如果这样的话kx x f x F -=)(ln )(,但是)(x F 在点a 和点b 处都没有定义,所以不满足)()(b F a F =,从而kx x f x F -=)(ln )(不是我们所需要的辅助函数,但是注意到指数函数)(x F e 的特点,当对数运算和指数运算相互抵消后得到的新函数的定义域可能会扩大,从而)(x F e 可能成为我们找的辅助函数.若令)()()(x f e e x G kx x F -==,则)(x G 满足)(0)(b G a G ==以及罗尔定理的其他条件,所以,由罗尔定理得知:至少),(b a ∈∃ξ使得0)(='ξG ,而[])()()(x kf x f G -'='ξ,所以[]0)()()(=-'='-ξξξξkf f e G k ,而0>-kx e ,所以只能0)()(=-'ξξkf f ,即)()(ξξkf f ='成立,由此)(x G 就是我们所需构造的辅助函数.注意:在分析题目时,如果我们从不同的角度看它就可能会构造不同的辅助函数,也就是说,对于解决同一个题目,所构造的辅助函数可能是不唯一的.例:设)(x ϕ为[]c c ,-上的连续奇函数,且在()c c ,-内可导,又0)(=c ϕ,证明:对任何实数λ,都存在()c c ,-∈ζ使得0)()(=+'ζλϕζϕ.证法一:由题型一的结论可作辅助函数)()(x e x G x ϕλ=,则)(x G 在[]c c ,-上连续,又因为[])()()()()(x x e x e x e x G x x x ϕλϕϕϕλλλλ'+='+='在()c c ,-内存在,且0)()(==-c G c G ,(0)()(=--=c c ϕϕ),所以它满足罗尔定理条件,故必),(c c -∈∃ζ,使得0)(='ζG ,即0)()(=+'ζλϕζϕ.证毕.证法二:若设dt t x x G xc⎰-+=)()()(ϕλϕ,则)(x G 在[]c c ,-上连续,且)()()(x x x G λϕϕ+'='在()c c ,-内存在,又因为0)()()(=+=⎰-dt t c c G ccϕλϕ,0)()()()()(=-=-=+-=-⎰--c c dt t c c G ccϕϕϕλϕ,所以它满足罗尔定理条件,故必),(c c -∈∃ζ,使得0)()()(=+'='ζλϕζϕζG .证毕.题型二:证明),(b a ∈∃ζ,使得0)()()(='+'ζζζf g f .分析:仍然从结论入手,把0)()()(='+'ζζζf g f 变形,且将ζ变为x ,则有0)()()(='+'=ζx x g x f x f ,而)()()(x g x f x f '+'有一个原函数)()(ln )(x g x f x F +=,由题型一,最好将辅助函数)(x T 作为)()()(x f e x T x g =.例:取函数()f x 在[]k k ,-上连续,在),(k k -内可导,且)()(k f k f =-,试证明在),(k k -内至少存在η,使得)(2)(ηηηf f ='.分析:由该题型的辅助函数为可知,待证等式中的)(2ηηg '=-,从而得到2)(ηη-='g ,将ηζ改为x 即2()g x x =-,因此辅助函数2()()x F x e f x -=.证明:取辅助函数2()()x F x e f x -=.则()F x 在[]k k ,-上连续,在),(k k -内可导,且)()(k F k F =-,满足罗尔定理, 故必),(k k -∈∃η使得)(ηF '0=, 由于[])(2)()(2x xf x f e x F x -'='-,将η=x 带入上式,并去掉非零因子2η-e ,即得证原式成立.附注:读者可将题型二的()g x 取为x λ或2x λ带入'()'()()0f x g x f x +=将得到一系列的命题.题型三:证明存在(,)a b ξ∈使得1()'()0k k k f f ζζζζ-+=构造的辅助函数()()k F x x f x =例:设函数()f x 在[1,2]上连续,在(1,2)内可导,1(1)2f =,(2)2f =,证明:存在(1,2)ζ∈,使得'()2()f f ζζζ=.分析:待证等式可变形为2()'()0f f ζζζ-=,即0)()(22='+-ζζζζf f .与题型二的一般形式进行比较可知k 为-2的情况,因此可作辅助函数()()x f x x F 2-=.证明:取辅助函数2()()F x x f x -=,则易知()F x 在[1,2]上连续,在(1,2)内可导,且(1)(2)0.5F F ==,由罗尔定理,至少存在一点(1,2)ζ∈使得'()0F ζ=, 由于12'()['()2()]F x x x f x xf x -=-,将x ζ=带入上式,即有 2()'()0f f ζζζ-=,故'()2()f f ζζζ=.证毕.附注:由题型三可以演变出一系列的题型.如:证明存在(,)a b ξ∈使'()''()()0kf f ζζζλ+-=,k R ∈,R λ∈ 构造的辅助函数()()'()k F x x f x λ=-例:设函数()f x 在[0,1]二阶可导,(0)(1)f f =,求证:存在(0,1)ζ∈,使得2'()''()(1)0f f ζζζ+-=.证明:取辅助函数2()(1)'()F x x f x =-.由于(0)(1)f f =,()f x 在[0,1]上二阶可导,对()f x 在[0,1]上应用罗尔定理, 则必存在(0,1)η∈使得'()0f η=,于是有()0F η=,因为(1)0F =且()F x 在[0,1]上可导,对()F x 在[,1]η上应用罗尔定理,必存在(,1)(0,1)ζη∈⊂使得'()0F ζ=, 由于2'()2(1)'()(1)''()F x x f x x f x =-+-,将x ζ=带入上式,并去掉非零因子1ζ-,即证得原式成立,证毕.题型四:证明存在)(b a ,∈η使得)()(2ηληf f ='',λ为常数.(注意:此题型需要构造两次辅助函数,第一次构造()()x F x e f x λ=;第二次构造2()'()x G x e F x λ-=).例:设函数()f x 在[,]a b 上连续,()f x 在(,)a b 内二阶可导,()()0f a f b ==,'()'()0f a f b >,求证:存在(,)a b ζ∈,使得''()4()f f ζζ=证明:由()()0>'⋅'b f a f ,不妨设'()0f a >,'()0f b >, 由导数的几何意义,在x a =的右领域中存在1B ,使得()()01=>a f B f , 在x b =的左领域中存在2B ,使得()()02=<b f B f ,且令21B B <,则由应用零点定理可知存在()21B B B ,∈,使得 ()0=B f ,取2()()x F x e f x =,则()F x 在(,)a b 上可导,且()()()0===B F b F a F ,所以分别在][B a ,和][b B ,上应用罗尔定理,存在)(B a ,1∈∃η使得()01='ηF ;)(b B ,2∈∃η,使得()02='ηF . 因此11'()2()0f f ηη+=,12'()2()0f f ηη+=,令4()x G x e -=2'()['()2()]x F x e f x f x -=+, 则()G x 在(,)a b 内可导,由于12()()0G G ηη==在12[,]ηη上应用罗尔定理,存在12(,)(,)a b ζηη∈⊂, 使得'()0G ζ=,由于()2'()''()2'()2'()4()x G x e f x f x f x f x -=+-+⎡⎤⎣⎦,故有''()4()f f ζζ=,证毕.提示:其实在涉及一些利用罗尔中值定理证明一些等式的时候,一般都是先从题目的结论入手,把结论中的等式经过变形后,观察该式,看看什么样的函数经过求导后(一次或两次等)含有如结论中的式子作为因子,则我们一般就取这样的函数为我们需要找的辅助函数.但是需要强调一点,就是我们选取的辅助函数在题目给定区间要有意义,且满足罗尔定理的条件,这种就是前面所讲的原函数法.涉及拉格朗日中值定理证明中值等式的命题拉格朗日中值定理:如果函数)(x f 在闭区间],[b a 上连续,在开区间),(b a 内可导,那么在区间),(b a 内至少有一点)(b a <<ξξ,使等式))((')()(a b f a f b f -=-ξ成立.亦即)(')()(ξf ab a f b f =--成立.例:设函数()f x 在[,]a b 上连续,在(,)a b 内可导0a >,()()1f a f b ==,证明:存在ζ使得1(,)()'()n a b f f ηηηζζζζ-⎡⎤∈∍=+⎢⎥⎣⎦. 分析:先将等式变形,即有11()'()(*)n n n n n f f ηζζζζ--=+,通过观察,我们会发现等式(*)的右边是(1()()0k k k f f ζζζζ-+=,[()]'0k x f x =,()k x f x )形式,因此构造的辅助函数()()n F x x f x =,再观察等式(*)左边可知1()'n n n ηη-=,从而得到辅助函数()n g x x =,通过拉格朗日中值定理寻找'()F x 与'()G x 的相同部分,得出待证结论.证明:取辅助函数()()n F x x f x =,易知()F x 在[,]a b 上满足拉格朗日中值定理条件.则存在),(b a ∈ξ使得⇒--='ab a F b F F )()()(ξ1()()()'()n n n nb f b a f a n f f b a ζζζζ--+=- 又()()1f a f b ==, 所以1()'()n nn nb a n f f b aζζζζ--+=- (1)取 ()n g x x =,易知()g x 在[,]a b 上满足拉格朗日中值定理条件, 则()()(,)'()n ng b g a b a a b g b a b aηη--∈∍==-- (2)比较(1)(2)可得11()()n n n n n f f ηζζζζ--=+, 即1()'()n f f ηζζζζη-⎡⎤=+⎢⎥⎣⎦, 证毕.。