概率论与数理统计试卷(二)
- 格式:doc
- 大小:125.72 KB
- 文档页数:3
《概率论与数理统计》期末测试件(二)(答案解析版)一、(12分)一学生接连参加同一课程的两次考试。
第一次及格的概率为P ,若第一次及格则第二次及格的概率也为P ;若第一次不及格则第二次及格的概率为P 2。
(1)若至少有一次及格则他能取得某种资格,求他取得该资格的概率。
(2)若已知他第二次已经及格,求他第一次及格的概率。
解:A i ={他第i 次及格},i=1,2已知P (A 1)=P (A 2|A 1)=P ,21P P(A /A )2= (1)B ={至少有一次及格}所以21}{A A B ==两次均不及格∴ )|()(1)(1)(1)(12121A A P A P A A P B P B P -=-=-= )]|(1)][(1[1121A A P A P ---=22123)21)(1(1P P P P -=---= (2)由乘法公式,有P (A 1 A 2)= P (A 1) P (A 2| A 1) = P 2 由全概率公式,有)|()()|()()(1211212A A P A P A A P A P A P +=222)1(2P P PP P P +=⋅-+⋅=得1222)|(2221+=+=P PP P P A A P .二、(14分)设随机变量~,22X U ππ⎛⎫- ⎪⎝⎭,求(1)随机变量X 的分布函数()F x ; (2) cos Y X =的密度函数 . 解:X 的密度函数为()1,220,x f x πππ⎧-<<⎪=⎨⎪⎩其他cos Y X= 的可取值范围是()0,1当01y <<时,()()Y F y P Y y =≤arccos 2arccos 2arccos arccos 2211y yP Y y P y Y dx dxππππππ--⎛⎫⎛⎫=-≤≤-+≤≤ ⎪ ⎪⎝⎭⎝⎭=+⎰⎰因此,cos Y X = 的密度函数()(),01Y Y f y F y y '===<<故,,01()0,Y y f y <<=⎩其他三、(16分)设随机向量(X , Y )的联合密度为⎩⎨⎧<<<<=.,0,10,10 ,2),(其他y x x y x f(1) 计算P (Y > X );(2) 求X , Y 的概率密度f X (x ),f Y (y );(3) 判断X 与Y 是否相互独立,说明理由; (4) 求Z = X+Y 的概率密度f Z (z ). 解:(1).312),()(110===>⎰⎰⎰⎰>x xy xdy dx dxdy y x f X Y P(2)dyy x f x f X ⎰∞∞-=),()(.2x 2)(101x dy x f x X ==<<⎰时,当⎩⎨⎧<<=.,0,10,2)(其他x x x f Xdxy x f y f Y ⎰∞∞-=),()(.10,1 2)(10<<==⎰y dx x y f Y⎩⎨⎧<<=.,0,10,1)(其他y y f Y(3)因为,..),()(),(e a y f x f y x f Y X =所以X 与Y 相互独立. (4).),()(dx x z x f z f Z ⎰∞∞--=.22)(21,2)(1021120z z dx x z f z z dx x z f z z Z zZ -==<<==<<⎰⎰-时,当时,当⎪⎩⎪⎨⎧<<-<<=. ,0,2z 1 ,2,10 ,)(22其他z z z z z f Z四、(18分)设二维连续型随机变量(X ,Y )在区域D 上服从均匀分布。
命题人或命题小组负责人签名: 教研室(系)主任签名: 分院(部)领导签名:概率论与数理统计(II )期末考试样卷2参考答案注意:所有数据结果保留小数点后两位,本试卷可能用的数据如下:20.9750.9750.02520.9750.9750.95(1.5)0.933, 1.96,(24) 2.064,(2.10)0.98,(24)12.40,(24)39.36,(10) 2.23,(2,21) 3.47,U t t F χχΦ===Φ=====一、填空题( 每小题3分,共24分)1. 在总体~(5,16)X N 中随机地抽取一个容量为36的样本,则样本均值x 落在4与6之间的概率为 0.87 .2. 设1234,,,X X X X 是取自正态总体~(0,4)X N 的简单随机样本且()()221234234Y a X X b X X =-+-,则a = 0.05 ,b = 0.01 时,统计量Y 服从2χ分布。
3.设161,,x x 是来自(8,4)N 的样本,则(1)(5)P x >= 16(0.933) . 4.设1,,n X X 为来自(0,)(0)U θθ>的一个样本,11,ni ni X X ==∑则未知参数θ的矩估计量是 2X ,最大似然估计是 1max(,,)n X X .5.设总体分布为()P λ,则其费希尔信息量为 1λ .6.设1,,n X X 为来自2(,)N μσ的一个样本,欲使1ˆni i c X X σ==-∑为σ的无偏估计,则常数 c 7.由来自正态总体2~(,0.9),X N μ容量为9的简单随机样本,若得到样本均值0.5X =,则未知参数μ的置信度为0.95的置信区间为 [-0.088,1.088] 。
8.设1,,n X X 为来自2(,)N μσ的一个样本,22111()ni n i S X X -==-∑,其中参数2,μσ未知,要检验假设2200:H σσ=应用 2χ 检验法,检验的统计量是2201n S σ-() 。
B)14.设随机变量X 的分布律为,F (x )是X 的分布函数,则F (1)=______.正确答案:(2分) 2/315.设随机变量X 的概率密度为f (x )=2010,x x ≤≤⎧⎨⎩,,其他,则12P X ⎧⎫>⎨⎬⎩⎭=______.正确答案:(2分)3/416.已知随机变量X ~N (4,9),P {X >c }=P {X ≤c },则常数c =______. 正确答案:(2分) 417.设二维随机变量(X ,Y )的分布律为则常数a =______. 正确答案:(2分) 0.218.设随机变量X 与Y 相互独立,且X ~N (0,l),Y ~N (-1,1),记Z =X -Y ,则Z ~______. 正确答案:(2分) N(1,2)19.设随机变量X 服从参数为2的泊松分布,则E (X 2)=______. 正确答案:(2分) 620.设X ,Y 为随机变量,且E (X )=E (Y )=1,D (X )=D (Y )=5,ρXY =0.8,则E (XY )=______. 正确答案:(2分) 521.设随机变量X 服从区间[-1,3]上的均匀分布,随机变量Y =0111X X <⎧⎨≥⎩,,,,则E (Y )=______. 正确答案:(2分) 1/222.设随机变量X ~B (100,0.2),()x Φ为标准正态分布函数,()2.5Φ=0.9938,应用中心极限定理,可得P {20≤x ≤30)≈______. 正确答案:(2分) 0.493823.设总体X ~N (0,l),x 1,x 2,x 3,x 4为来自总体X 的样本,则统计量22221234x x x x +++~______.正确答案:(2分)x2(4)24.设总体X~N(μ,1),μ未知,x1,x2,…,x n为来自该总体的样本,x为样本均值,则μ的置信度为1-α的置信区间是______.正确答案:(2分)]1,1[22nuxnuxaa+-25.某假设检验的拒绝域为W,当原假设H0成立时,样本值(x1,x2,…,x n)落入W的概率为0.1,则犯第一类错误的概率为______.正确答案:(2分)0.1三、计算题(本大题共2小题,每小题8分,共16分)26.设二维随机变量(X,Y)的概率密度为26,01,01,()0,x y x yf x⎧≤≤≤≤⎪=⎨⎪⎩ 其他.求:(1)(X,Y)关于X的边缘概率密度f X(x);(2)P{X>Y}.正确答案:27.设总体X的概率密度为1,0,()0,0,xe xf xxθθ-⎧>⎪=⎨⎪≤⎩其中未知参数θ>0,x1,x2,…,x n是来自该总体的样本,求θ的极大似然估计.四、综合题(本大题共2小题,每小题12分,共24分)正确答案:28.有甲、乙两盒,甲盒装有4个白球1个黑球,乙盒装有3个白球2个黑球,从甲盒中任取1个球,放入乙盒中,再从乙盒中任取2个球.(1)求从乙盒中取出的是2个黑球的概率;(2)已知从乙盒中取出的是2个黑球,问从甲盒中取出的是白球的概率.正确答案:29.设随机变量X~N(0,l),记Y=2X.求:(1)P{X<-1>;(2)P{|X|<1};(3)Y的概率密度.(附:Φ(1)=0.8413)正确答案:五、应用题(10分)30.某产品的次品率为0.l,检验员每天抽检10次,每次随机取3件产品进行检验,且不存在误检现象,设产品是否为次品相互独立,若在一次检验中检出次品多于1件,则调整设备,以X表示一天调整设备的次数,求E(X).正确答案:。
概率与数理统计试题(满分100分)一、 填空题(每空5分,共6空,30分) (1) 随机变量X 和Y 相互独立,且)5.0,1(~),5.0,1(~b Y b X ,则随机变量),max(Y X Z =的分布律为 。
答案: 75.0}1{,25.0}0{====Z P Z P(2) 已知随机变量),(Y X 具有概率密度=),(y x f ⎪⎩⎪⎨⎧≤≤≤≤+其它,040,40),sin(ππy x y x c 则=c ,Y 的边缘密度函数=)(y f Y 。
答案:12+, )4cos()(cos 12(π+-+x x ;(3) 设321,,X X X 相互独立,且)1,3(~)3,1(~),2,0(~321N X N X N X ,则=≤-+≤}6320{321X X X P 。
答案:3413.05.08413.05.0)1(=-=-Φ (4) 一名射手射击,各次射击是相互独立,正中目标的概率为 p ,射击直至击中目标两次为止。
设以 X 表示首次击中目标所进行的射击次数,以 Y 表示总共进行的射击次数,那么 X (X=m )和 Y(Y=n) 的联合分布律是 。
答案:Y =n 代表第n 次射击时二度击中目标,且在第1次、第2次,…,第n –1次射击中恰有一次击中目标。
不管X,Y 是多少,(X, Y )的概率都是22-n q p ,其中q=1-p , m=1,2,…,n-1,n = 2,3,… 。
(5) 设风速V 在(0,a )上服从均匀分布,即具有概率密度⎪⎩⎪⎨⎧<<=,其它,0a v 0 1)(a v f设飞机机翼受到的正压力W 是V 的函数:2kV W =(V 是风速,k>0 是常数)。
那么,W 的数学期望为E (W )= 。
答案: E (W )=222311)(ka dv a kv dv v f kv ⎰⎰∞∞-∞∞-== 二、 计算题(共5题,合计46分)1. (8分)以往数据分析结果表明,当机器调整良好时,产品合格率为98%,机器发生某种故障时,合格率为55%。
一、 本题满分20分,每小题5分⒈某市有30 %住户订日报,有50 %住户订晚报,有65 %的住户至少订这两种报纸中的一种, 求同时订这两种报纸的住户的百分比。
解:设A 表示订日报的住户,B 表示订晚报的住户,则由题意:()0.3()0.5()0.65P A P B P A B ===同时订两种报纸的住户为()()()()0.15P AB P A P B P A B =+-=⒉三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.9,0.8,0.7,求三台机器中至少有一台发生故障的概率。
解:令i A 表示第i 份机器有故障,i =1、2、3 且各机器相互独立运转则:112323()1()()()P A A A P A P A P A =-= 10.90.80.710.5040.496-⨯⨯=-=3.设,6/1)|(,3/1)()(===B A P B P A P 求 )|(B A P 。
解:111()()()3618P AB P B P A B ==⨯=11171()()()1()[()()]7331818()121()1()12()133P AB P A P AB P A P B P AB P A B P B P B P B --+----======--- 4.已知,25.0)(,5.0)(==B P A P 分别对事件A , B 相互独立、互不相容两种情形求)(),(A B P B A P - .解:(1)A,B 独立时,则P(AB)=P(A)P(B)故()()()()()()()()0.50.250.50.250.625P A B P A P B P AB P A P B P A P B =+-=+-=+-⨯= ()()()()()()0.250.50.250.125P B A P B P AB P B P A P B -=-=-=-⨯=(2)A,B 互不相容时,P(AB)=0故()()()P A B P A P B =+=0.5+0.25=0.75()()()()P B A P B P AB P B -=-==0.25二、本题30分,每题6分5.一射手对同一目标独立地进行射击,直到射中2次目标为止,已知每次命中率为53,求射击次数的分布率。
一.填空题(共10分)已知P(A)=12,P BA c h=34,P(B) =58,则P( A ∣B ) =______ 。
设随机变量X 服从参数为 λ 的泊松分布,且已知P{ X= 7 } =P{ X= 9 },则 λ =___________。
3、样本(,,,)X X X n 12 来自总体2~(, )X N μσ,则22(1)~n n S σ- ______________;()~n X S μ- ____________。
其中X 为样本均值,S n X X n i n 22111=--=∑()。
4、设X X X n 12,, 是来自正态总体N (,)μσ2的样本,记1nn i ii Y a X ==∑,若n Y 为μ的无偏估计,则12,,...n a a a 满足的等式为 。
5、设总体~(1,)X B p ,其中未知参数01<<p , X X X n 12,, 是X 的 样本,则p的矩估计为________,样本的似然函数为_________。
(f x p p p x x(;)()=-1 为 X的 概 率 密 度 函 数 ) 二、选择题(共10分)6、4, 1, 0.6XY DX DY ρ===,则(32)D X Y -=( )。
( A ) 40 ( B ) 34 ( C ) 25.6( D ) 17.67、样本(,,,)X X X n 12 来自总体X ,已知X 服从参数λ=1的指数分布,则Max X X X n {,,,}12 的分布函数为( )。
( A )F z z e z z()=<-≥R S T - 0010 ( B ) F z z e z z n()()=<-≥R S T - 0010 ( C ) F z z e z z ()=<≥R S T - 000 ( D )0 0()n 0nzz F Z e z -<⎧=⎨≥⎩ 8、随机变量~(1,1)X N ,记X 的概率密度为f(x),分布函数为F( x ),则有( )。
1 / 10全国2018年7月自学考试概率论与数理统计(二)课程代码:02197试卷来自百度文库 答案由绥化市馨蕾園的王馨磊导数提供一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设A ={2,4,6,8},B ={1,2,3,4},则A -B =( ) A .{2,4} B .{6,8} C .{1,3}D .{1,2,3,4}.B AB A B A B A B A 中的元素,故本题选中去掉集合合说的简单一些就是在集的差事件,记作与事件不发生”为事件发生而解:称事件“-2.已知10件产品中有2件次品,从这10件产品中任取4件,没有取出次品的概率为( )A .15B .14C .13D .12.31789105678;844104104848410C C C P C C ,故选本题的概率件正品中取,共有从件中没有次品,则只能若种取法;件,共有件产品中任取解:从=⨯⨯⨯⨯⨯⨯== 3.设事件A ,B 相互独立,()0.4,()0.7,P A P A B =⋃=,则()P B =( ) A .0.2 B .0.3 C .0.4D .0.52 / 10()()()()()()()()()()()()()().5.04.04.07.0D B P B P B P B P A P B P A P AB P B P A P B A P B P A P AB P B A ,故选,解得代入数值,得,所以,相互独立,,解:=-+=-+=-+=⋃= 4.设某实验成功的概率为p ,独立地做5次该实验,成功3次的概率为( )A .35CB .3325(1)C p p -C .335C pD .32(1)p p -()()()()()().1335.,...2,1,0110~23355B p p C P k n n k p p C k P k A p p A n p n B X kn kk n n ,故选,所以,本题,次的概率恰好发生则事件,的概率为次检验中事件重贝努力实验中,设每定理:在,解:-====-=<<-5.设随机变量X 服从[0,1]上的均匀分布,Y =2X -1,则Y 的概率密度为( )A .1,11,()20,,Y y f y ⎧-≤≤⎪=⎨⎪⎩其他 B .1,11,()0,,Y y f y -≤≤⎧=⎨⎩其他C .1,01,()20,,Y y f y ⎧≤≤⎪=⎨⎪⎩其他D .1,01,()0,,Y y f y ≤≤⎧=⎨⎩其他()()[]()()()()()()[]()[][][]..01,121.01,1211.01,1212121.01,12121211,1212112010101110~A y y y y f y f y y h y h f y f y h y y h y y x x y x x f U X X Y X Y X 故选其他,,其他,,其他,,,得其他,,由公式,,即,其中,解得由其他,,,,,,解:⎪⎩⎪⎨⎧-∈=⎪⎩⎪⎨⎧-∈⨯=⎪⎩⎪⎨⎧-∈⎪⎭⎫ ⎝⎛+=⎩⎨⎧-∈'=='+=-∈+=-=⎪⎩⎪⎨⎧≤≤=-=3 / 106.设二维随机变量(X ,Y )的联合概率分布为( )则c =A .112B .16C .14 D .13()().611411211214161.1,...2,1,0B c c P j i P Y X jij iij ,故选,解得由性质②,得②,①:的分布律具有下列性质,解:==+++++==≥∑∑7.已知随机变量X 的数学期望E (X )存在,则下列等式中不恒成立....的是( ) A .E [E (X )]=E (X ) B .E [X +E (X )]=2E (X ) C .E [X -E (X )]=0D .E (X 2)=[E (X )]2()()()().D C B A XE X E E X E X 均恒成立,故本题选、、由此易知,即,期望的期望值不变,的期望是解:=8.设X 为随机变量2()10,()109E X E X ==,则利用切比雪夫不等式估计概率P{|X-10|≥6}≤( )A .14 B .518 C .34D .109364 / 10()()()()(){}(){}.416961091001092222A X P X D X E X P X E X E X D ,故选所以;切比雪夫不等式:,解:=≤≥-≤≥-=-=-=εε 9.设0,1,0,1,1来自X ~0-1分布总体的样本观测值,且有P {X =1}=p ,P {X =0}=q ,其中0<p <1,q =1-p ,则p 的矩估计值为( ) A .1/5 B .2/5 C .3/5D .4/5()()().53ˆ5301ˆC px p q p X E x X EX E x ,故选,所以,本题,,即估计总体均值用样本均值矩估计的替换原理是:解:===⨯+⨯== 10.假设检验中,显著水平α表示( ) A .H 0不真,接受H 0的概率 B .H 0不真,拒绝H 0的概率 C .H 0为真,拒绝H 0的概率D .H 0为真,接受H 0的概率{}.00C H H P ,故选为真拒绝即拒真,表示第一类错误,又称解:显著水平αα=二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
概率论与数理统计(二)试卷(课程代码:02197)本试卷共五页,满分100分;考试时间150分钟。
一、单项选择题(每小题4分,共40分)1)、设事件A 、B 满足2.0)(=-A B P ,6.0)(=B P ,则)(AB P =( ) A )、0.12 B )、0.4 C )、0.6 D )、0.8 2)、设二维随机变量),(Y X 的分布律为 则}{Y X P ==( )A)、0.3 B )、0.5 C )、0.7 D )0.8 3)、设随机变量X 服从参数为2的泊松分布,则下列结论中正确的是( ) A )、5.0)(,5.0)(==X D X EB )、25.0)(,5.0)(==X D X EC )、4)(,2)(==XD X ED )、2)(,2)(==X D XE 4)、设随机变量X 服从正态分布(0,4)N ,()x Φ为标准正态分布函数,则{36}( ).P X ≤≤=. (6)(3) . (3)(1.5) 3. (1.5)(1) . (3)()4A B C D Φ-ΦΦ-ΦΦ-ΦΦ-Φ5)、设随机变量)2,1( ~2-N X ,则X 的概率密度=)(x f ( ) A )、4)1(241+-x eπB )、8)1(241+-x eπC )、8)1(2221+-x eπD )、8)1(2221--x eπ6)、设随机变量)1,0(~,)1,0(~N Y N X ,且X 与Y 相互独立,则~22Y X +( )A )、)2,0(NB )、)2(2χC )、)2(tD )、)1,1(F7)、设)2,1( ~2N X ,n X X ,,1 为X 的样本,记∑==n i i X n X 11则有( ) A )、)1,0(~/21N n X - B )、)1,0(~41N X - C )、)1,0(~21N X - D )、)1,0(~21N X - 8)、设总体),( ~2σμN X ,其中μ未知,4321,,,x x x x 为来自总体X的一个样本,则以下关于μ的四个估计:3211513151ˆx x x ++=μ,)(41ˆ43212x x x x +++=μ,1371ˆx =μ,2147261ˆx x +=μ中,哪一个是无偏估计?( )A )、1ˆμB )、2ˆμC )、3ˆμD )4ˆμ 9)、对随机变量X 来说,如果 EX DX ≠,则可断定X 不服从( )分布。
1、设A ,B 为随机事件,且B A ,则AB 等于(B )A .AB .BC .ABD .A2、将一枚均匀的硬币抛掷三次,恰有二次出现正面的概率为( C )A .81B .14C .38D .123、掷一颗骰子,观察出现的点数。
A 表示“出现3点”,B 表示“出现奇数点”,则(A)A. ACBB. ACBC. CD. ACB4、设A ,B 为随机事件,则(AUB)A= ( C )A. ABB. AC. BD. AUB5、设随机事件A 与B 互不相容,P(A)=0.4, P(B)=0.2, 则P(A/B)= ( D )A. 0.2B. 0.4C. 0.5D. 06、设随机变量X 服从参数为0. 5的指数分布,则下列各项中正确的是( D )A. E(x)=0.5 D(x)= 0.25B. E(x)=2 D(x)= 0.25C. E(x)=0.5 D(x)=4D. E(x)=2 D(x)=47.已知随机变量X ~N (0,1),则随机变量Y =2X -1的方差为(D )A .1B .2C .3D .48.事件A ,B 相互独立,且P(A)=0.7, P(B)=0.6, P(A -B)= ( A )。
B.0.42C.0.88D.0.189、如果函数f(x)= 2x, a≤x<b,0 ,其他,是某连续型随机变量X的概率密度,则区间[a, b]可以是(A )A. [0,1]B. [0,2]C. [0.√2]D. [1,2]10、已知D(X)=25,D(Y)=1,Pxy=0.4,则D(X-Y)=(B)A.6B.22C.30D.4611、已知随机变量X与Y相互独立,且它们分务别在区间[1,3]和[2,4]上)服从均与分布,则E(XY)=( B )A.3B.6C.10D.1212、设X~N(-1,2),Y~N(13),且X与Y相互独立,则2X+2Y~(C )A. N(1.8)B. N(1,14)C. N(0,20)D. N(1,40)13、设(X,Y)为二维随机变量,则与Cov(X,Y)=0不等价的是(A )A. X与Y相互独立B. D(X+Y)= D(X)+ D(Y)C. D(X-Y)= D(X)+ D(Y)D. E(X Y)= E(X).E(Y)14、从装有2只红球,2只白球的袋中任取两球,记: A="取到2只白球”则A= ( D )。
2015年10月高等教育自学考试全国统一命题考试概率论与数理统计(二) 试卷(课程代码02197)本试卷共4页。
满分l00分,考试时间l50分钟。
考生答题注意事项:1.本卷所有试题必须在答题卡上作答。
答在试卷上无效,试卷空白处和背面均可作草稿纸. 2.第一部分为选择题。
必须对应试卷上的题号使用2B铅笔将“答题卡”的相应代码涂黑. 3.第二部分为非选择题必须注明大、小题号,使用0.5毫米黑色字迹签字笔作答。
4.合理安排答题空间。
超出答题区域无效。
第一部分选择题一、单项选择题(本大题共l0小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的。
请将其选出并将“答题卡”的相应代码涂黑。
未涂、错涂或多涂均无分。
1.设事件4与B互不相容,且P(A)=0.4,P(B)=0.2,则P(A∪B)=A.0 B.O.2 C.O.4 D.O.62.设随机变量X~B(3,0.3),则P{X=2}=A.0.1 89 B.0.2l C.0.441 D.0.7A.0.2 B.0.4 C.0.6 D.0.85.设二维随机变量(X,Y)的分布律为6.设随机变量X~N(3,22),则E(2X+3)=A.3 B.6 C.9 D.157.设随机变量X,Y,相互独立,且,Y在区间上服从均匀分布,则第二部分非选择题二、填空题(本大题共l5小题。
每小题2分,共30分)请在答题卡上作答。
11.袋中有编号为0,l,2,3,4的5个球.今从袋中任取一球,取后放回;再从袋中任取一球,则取到两个0号球的概率为_______.12.设A,B为随机事件,则事件“A,B至少有一个发生”可由A,B表示为_______.13.设事件A,B相互独立,且P(A)=0.3,P(B)=0.4.则= _______.14.设X表示某射手在一次射击中命中目标的次数,该射手的命中率为0.9,则P{X=0}= _______.15.设随机变量X服从参数为1的指数分布,则= _______.16.设二维随机变量(X,Y)的分布律为则c= _______.17.设二维随机变量(X,Y)服从正态分布N(0,0;1,l;0),则(X,Y)的概率密度F(x,y)= _______.18.设二维随机变量(X,Y)服从区域D:-l≤x≤2,0≤y≤2上的均匀分布,则(X,Y) 的概率密度f(x,y)在D上的表达式为_______.19.设X在区间上服从均匀分布,则E(X)= _______.20.设的= _______.21.设随机变量x与y的协方差= _______.22.在贝努利试验中,若事件A发生的概率为P(0<p<1),今独立重复观察n次,记三、计算题(本大题共2小题,每小题8分,共l6分)请在答题卡上作答。
课程概率论与数理统计模拟试题(二)
课程代码:考核方式: 闭卷考试时量:120 分钟试卷类型:
一、填空题(每题2分,共20分)
P(AB)=
8次取到红球的概
3、已知F0.05(3,4)=6.59,则F0.95(4,3)=________________;已知F~F(5,9),则F
1
~_____分布
4、随机变量X服从参数为λ的指数分布,则EX = EX2=
5、根据泊松定理,对于成功率为p的n重伯努利试验,只要n充分大,而p充分小,其成功次
数X近似的服从参数为λ= 的泊松分布。
6、设D(X)=1, D(Y)=4, 相关系数ρxy=12, 则COV(X,Y)=_______
7、对于连续型随机向量,X与Y独立的充分必要条件是,对于任何(x,y)∈R2,有
f(x,y)=
8、T服从n个自由度的t分布,则T2服从自由度为的分布
9、设总体X服从正态分布N(μ,σ2),其中μ、σ2未知,则μ的置信度1-α(0<α<1)的置信区间为
__________
10、设X~N(1,3) ,则(X-1)2/3~________________分布。
二、单选题(在本题的每一小题的备选答案中,只有一个答
案是正确的,请把你认为正确答案的题号,填入题干的括号
内,多选不给分。
每题2分,共20 分)
1.设随机事件A与B互不相容,且有P(A)>0,P(B)>0,则下列关系成立的是( ).
A. A,B相互独立
B. A,B不相互独立
C. A,B互为对立事件
D. A,B不互为对立事件
2、对于任意两个随机事件A 与B ,有P(A-B)为().
①②
③. ④.
3、对任意随机变量X,若E(X)存在,则E(E(E(X)))等于( )。
①. 0 ②. X ③. (E(X))3 ④. E(X)
4、设随机变量X的分布函数为F(x),. Y=2X+1,则Y的分布函数为( )
①. F(y /2-1/2)②. F(y/2+1)③. 2F(x)+1④. 1/2F(y)-1/2
5、若E(XY)=E(X))
(Y
E⋅,则必有( )
①D(XY)=D(X)D(Y) ②D(X+Y)=D(X)+D(Y)
③X与Y相互独立④X与Y不相互独立
6、设随机变量X服从正态分布N(μ,σ2),则随σ的增大,概率P{}σ
μ≤
-
X应()
①单调增大②单调减小③保持不变④不能确定
7、设两个相互独立的随机变量X与Y分别服从正态分布N(0,1)和N(1,1)则()
①P{}1≤
+Y
X=1/2 ②P{}0≤
+Y
X=1/2
③P{}
1.5
X Y
+≥=1/2 ④P{}0≥
+Y
X=1/2
8、已知离散型随机变量X服从参数为2的泊松分布,Y=3X-2,则EY=()
①10 ② 4 ③-2 ④–1/2
9、对正态总体的数学期望μ进行假设检验,如果的显著水平0.05下拒绝H0:μ=μ0,那么在
显著水平0.01下,下列结论正确的是()
第 1 页
座
位
号
第 2 页
① 必接受H 0 ②可能接受,也可能拒绝H 0 ③ 必拒绝H 0 ④ 不接受也不拒绝H 0 10、设),(21X X 是来自总体X 的一个容量为2的样本,则在下列E(X)的无偏估计量中, 最有效的估计量是 ( )
① 2X1/3+X2/3 ②X1/4+3X2/4 ③ 2X1/5+3X2/5 ④ X1/2+X2/2
三、判断题:(共12分) A,B 一定独立。
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...( ) ... ... ... ... ... ... . ... ... .... ..( ) ... ... ... ... ... ... ... ... ... ... ... ... ..... ... .. .. .. ..( ) 4、泊松分布常用来作各种“寿命”分布的近似。
... ... ... ... ... ... ... ... ... ... ... ..... ... .. .. .. ..( ) 5、二维均匀分布的边缘分布一定是一维均匀分布。
. ... ... ... ... ... ... ... ... ... ... ..... ... .. .. ...( ) 6、如果X,Y 的协方差等于0,则X 与Y 不相关。
... ... ... ... ... ... ... ... ... ... ... ..... ... .. .. . ..( ) 7、二维正态分布的边缘分布均为一维正态分布。
... ... ... ... ... ... ... ... ... ... ... ..... ... .. .. . ..( ) 8、统计量中不应包含任何未知参数。
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...... ...( ) 9、t 分布密度函数的曲线随着自由度的增大会与标准正态密度函数曲线接近。
. ... ... ......( ) 10、最大似然估计法估计出的统计量一定具有无偏性。
.. ... ... ... ... ... ... ... ... ... ... ... ..... ...( ) 11、小概率事件在一次试验中实际上不会发生。
... ... ... ... ... ... ... ... ... ... ... .. ..... ... .. .. .. ..( ) 12、第一类错误和第二类错误是不可能同时变小的。
. ... ... ... ... ... ... ... ... ... .. ....... .. .. .. ..( ) 四、计算题( 共48 分)。
1、甲进行三次试验,A n 表示第n 次试验成功,n=1、
2、3.用事件运算的关系式表示下列事件(5分) ①、前两次试验成功,第三次未成功 ②、三次中只有一次成功 ③、三次都未成功 ④、三次中至多有一次成功 ⑤、三次中至少有一次成功
2、一间宿舍内住了6位同学,求他们中有4个人的生日在同一个月份的概率。
(5分)
3、将一枚均匀的硬币连掷三次,以X 表示正面的次数,Y 表示三次抛掷中出现正面的次数与出现反面的次数差的绝对值.试写出随机向量(X, Y )的分布律。
(6分)
4、已知X~f (x ),EX=7/6,并且f (x )= ax+b 0≤x ≤2
座位号
第 3 页
第 4 页
0 其它 求a 和b 的值,并求分布函数F (x ) (6分)
5、随机变量X~N (5,4),求概率P (5<X <8),P (X <0),P (5-X <2) [注:Φ(1.5)=0.93319、Φ(2.5)=0.99379、Φ(1)=0.8413] (6分)
6、电路供电网中有10000盏灯,夜晚每一盏灯开着的概率都是0.8,假定各灯开,关时间彼此 无关,计算同时开着的灯数在7800到8200之间的概率。
Φ(4.36)=0.99999 (6分)
7.设某大学中教授的年龄X ~N(μ,2σ),μ,2
σ均未知,今随机了解到5位教授的年龄如下:
39 54 61 72 59 ,试求均值μ的置信度0.95的置信区间(t 0.025(4)=2.7764) (7分)
8、设服用某种药物一定份量使病人每分钟脉搏增加的次数X 近似服从正态分布N(μ,σ2
),均值
μ、方差σ2均未知,今抽查9个病人,测得每分钟增加脉搏的次数为:
13 15 14 10 8 12 18 9 20
(1)试取α=0.05,检验假设 H 0:μ≤10 H 1:μ>10 0.025t (8)=2.3060 t 0.05(8)=1.8595
(7分)
第 5 页 第 6 页。