晶闸管的结构以及工作原理教学内容
- 格式:doc
- 大小:643.50 KB
- 文档页数:18
晶闸管工作原理引言概述:晶闸管是一种常用的电子器件,广泛应用于电力控制和调节领域。
本文将详细介绍晶闸管的工作原理,包括晶闸管的基本结构、工作原理和应用。
一、晶闸管的基本结构1.1 PN结的构成晶闸管由四层半导体材料构成,其中包含两个PN结。
PN结是由P型半导体和N型半导体材料的结合形成的。
P型半导体富含正电荷,N型半导体富含负电荷。
1.2 门极结构晶闸管的门极结构由控制电极和发射极组成。
控制电极通常是一个金属接触,用于控制晶闸管的导通和截止。
1.3 结构特点晶闸管的结构特点是具有双向导电性,即可以在正向和反向电压下导电。
此外,晶闸管还具有高压、大电流、高频等特点。
二、晶闸管的工作原理2.1 导通状态当晶闸管的控制电极施加正向电压时,PN结会形成一个导通通道,电流可以通过晶闸管流动。
此时,晶闸管处于导通状态。
2.2 截止状态当晶闸管的控制电极施加反向电压时,PN结会被反向偏置,导通通道被阻断,电流无法通过晶闸管。
此时,晶闸管处于截止状态。
2.3 触发条件晶闸管的导通需要满足一定的触发条件。
当控制电极施加正向电压时,需要在控制电极和发射极之间加入一个触发脉冲,以激活晶闸管的导通。
三、晶闸管的应用3.1 电力控制晶闸管可以用于电力控制领域,如交流电压调节、交流电流控制、交流电压变换等。
通过控制晶闸管的导通和截止,可以实现对电力的精确控制。
3.2 频率变换晶闸管的高频特性使其非常适适合于频率变换。
通过控制晶闸管的导通时间和截止时间,可以实现对输入信号频率的变换。
3.3 电动机控制晶闸管可以用于电动机控制,通过控制晶闸管的导通和截止,可以实现对电动机的启动、住手和调速。
四、晶闸管的优势4.1 快速开关速度晶闸管的导通和截止速度非常快,可以实现高频率的开关操作。
4.2 大电流承载能力晶闸管具有较高的电流承载能力,可以应对大功率电路的需求。
4.3 高温工作能力晶闸管具有较好的高温工作能力,能够在高温环境下稳定工作。
晶闸管的结构以及工作原理晶闸管是一种异型双极结构的电子器件,由三层PNPN结构组成。
它的结构和工作原理可以分为几个方面进行介绍。
1.结构晶闸管由P型和N型半导体材料交叉组成的四层PNPN结构,形成了三个PN结的结构,即P1-N1-P2-N2、两个P型区域称为主极(anode,A)和触发极(gate,G),两个N型区域称为P型区域的发射层(emitter,E)和P型区域的集电层(collector,C)。
晶闸管的主极两端接有外部电源,而触发极一般连接到控制电路。
2.工作原理当晶闸管的控制电极施加一个低于临界电压的阳极电压时,即晶闸管处于关断状态,没有电流通过。
当控制电极施加一个高于临界电压的阳极电压时,即晶闸管处于导通状态,电流可以通过。
晶闸管的导通过程可以分为四个阶段:保持阶段、启动阶段、加强阶段和饱和阶段。
-保持阶段:当触发电压上升时,晶闸管开始导通,但此时并没有电流通过。
主极处于反向偏置,控制电压从触发极上扩展到集电极端,使得内部的PNPN结正向偏置。
-启动阶段:当控制电压达到晶闸管的启动电压时,发射极和集电极之间的电流开始增加。
这个过程是正反馈的,因为电流的增加会引起发射层电压的降低,从而增加集电层电压。
这种正反馈的作用会使晶闸管持续导通而不需要保持电流。
-加强阶段:在启动阶段之后,电流从发射层向集电层继续增加,响应时间非常快,仅为纳秒级别。
晶闸管的涉及电压变小,其间接穿晶闸管的电流开始逐渐加强。
-饱和阶段:在集电极电流和发射极电流足够大的情况下,晶闸管进入饱和状态,其电压降只有几个伏特,并且电流保持在一个稳定的值。
晶闸管的导通和关断是通过控制电极的电压来实现的。
当控制电压去除或降低,晶闸管将自动进入关断状态。
晶闸管的关断过程相对较长,需要通过外部电路才能完全关断。
总结:晶闸管是一种PNPN结构的电子器件,由四个区域(P1-N1-P2-N2)组成。
其工作原理是通过控制电压对其导通和关断进行控制。
晶闸管的结构与工作原理晶闸管是一种电子元器件,其工作原理基于半导体材料中正负载流子的反复注入和浓缩。
晶闸管具有低损耗,高可靠性和耐受高电压和电流的特点,常用于电力电子设备和自动化控制系统中。
在本文中,我们将讨论晶闸管的结构和工作原理。
一、晶闸管的结构下面是晶闸管的主要结构:1. P型硅基板:晶片的底部是由P型硅基板组成的,其中注入了氧化物层(SiO2层)。
2. N型漂浮区:晶片的顶部是由N型漂浮区域组成的,其厚度通常约为几微米。
3. P型区:在N型区域下面,有一小块P型电极区,通常称为阳极。
在晶片上另一端同样有一块P型区,通常称为阴极。
4. 金属接触层:阳极和阴极上方均有金属接触层,以便在晶体中注入电流。
5. 控制极:在P型区和N型漂浮区中间的区域上有一个控制极,通常称为门极。
门极是一个金属电极,可以通过它来控制晶闸管的通电和断电状态。
晶闸管的主体是一个单结结构,由两个异种半导体材料组成,具有PN结的特征。
二、晶闸管的工作原理晶闸管的工作原理主要涉及PN结中存储的大量载流子的控制。
下面是晶闸管的工作原理:1. 断电状态:当晶闸管处于正常的断电状态时,P型区和N型区之间的PN结是不导电的。
此时在晶闸管两端施加的电压低于其绝缘强度,没有足够的电子跨越PN结进入N型区域,也没有足够的空穴跨越PN结进入P型区域。
2. 触发状态:通过控制极施加一个短的脉冲电压,可以注入到N型区的少量电子,这些电子在PN结中的重复撞击产生更多的电子,这些电子在N型区域和P型区域传播,直到引起晶闸管的完全导通。
在完全导通状态下,PN结两侧形成了大量的少数载流子,这些载流子可以像导体一样流动并在晶闸管中形成一个低阻通路。
3. 导通状态:在晶闸管的导通状态下,当控制极不再施加脉冲电压时,晶体仍继续处于导通状态,并且只有在PN结两端电流降为零时才能停止导通。
因此,在应用中可以通过控制电流的大小和时间来控制晶闸管的导通状态,从而实现所需的电路控制。
晶闸管工作原理引言概述:晶闸管是一种重要的电子器件,广泛应用于电力控制和电子调节领域。
了解晶闸管的工作原理对于理解其应用和故障排除至关重要。
本文将详细介绍晶闸管的工作原理,包括晶闸管的结构、特性和工作方式。
一、晶闸管的结构1.1 硅基材料:晶闸管的主要材料是硅,因其具有较好的电特性和热特性而被广泛应用。
1.2 PN结:晶闸管由两个PN结组成,其中一个PN结被称为控制结,另一个PN结被称为终端结。
1.3 门极结:晶闸管的控制结上有一个附加的门极结,通过控制门极上的电压来控制晶闸管的导通和截止。
二、晶闸管的特性2.1 可控性:晶闸管的导通和截止状态可以通过控制门极上的电压来实现,具有可控性。
2.2 双向导通性:晶闸管可以在正向和反向电压下导通,具有双向导通性。
2.3 高电压和高电流承受能力:晶闸管能够承受较高的电压和电流,适用于高功率电子设备的控制。
三、晶闸管的工作方式3.1 导通状态:当门极结施加正向电压时,晶闸管处于导通状态,电流可以从终端结流过。
3.2 截止状态:当门极结施加反向电压时,晶闸管处于截止状态,电流无法通过终端结。
3.3 触发方式:晶闸管可以通过正向或负向的脉冲电压来触发,使其从截止状态转变为导通状态。
四、晶闸管的应用4.1 电力控制:晶闸管可以用于电力调节、电压变换和电流控制等领域,实现对电力的精确控制。
4.2 电子调节:晶闸管可以用于调节电子设备的亮度、速度和功率等,提高设备的性能和效率。
4.3 高频电子设备:晶闸管具有快速开关速度和较低的开关损耗,适用于高频电子设备的控制和调节。
五、晶闸管的故障排除5.1 过电流保护:晶闸管在工作过程中可能会受到过电流的影响,需要采取相应的保护措施。
5.2 过电压保护:晶闸管在工作过程中可能会受到过电压的影响,需要采取相应的保护措施。
5.3 温度控制:晶闸管在工作时会产生较高的温度,需要采取散热措施来控制温度,以避免故障发生。
结论:晶闸管作为一种重要的电子器件,具有可控性、双向导通性和高电压、高电流承受能力等特点。
晶闸管工作原理晶闸管(Thyristor)是一种常用的电子器件,广泛应用于电力控制和电子变换领域。
它具有双向导电性和开关特性,可以实现高电压和高电流的控制。
本文将详细介绍晶闸管的工作原理及其相关特性。
一、晶闸管的结构晶闸管由四个半导体材料层叠而成,主要由P型半导体(阳极),N型半导体(阴极),P型半导体(门极)和N型半导体(门极)组成。
晶闸管的结构类似于二极管,但多了一个控制极(门极),因此也被称为四层结构。
二、晶闸管的工作原理晶闸管的工作原理可以分为四个阶段:关断状态、触发状态、导通状态和关断状态。
1. 关断状态:在晶闸管未被触发时,处于关断状态。
此时,晶闸管的正向电压(阳极对阴极)和反向电压(阴极对阳极)均无法导通。
晶闸管的结构中存在一个PN结,阻止了电流的流动。
2. 触发状态:当给予晶闸管的门极一个正向电压脉冲时,晶闸管将进入触发状态。
在触发状态下,晶闸管的正向电压依然无法导通,但是反向电压下的电流开始流动。
这个过程被称为触发。
3. 导通状态:一旦晶闸管被触发,它将进入导通状态。
在导通状态下,晶闸管的正向电压和反向电压均能导通。
当正向电压大于晶闸管的导通电压(通常为0.7V)时,晶闸管会导通电流。
此时,晶闸管相当于一个导电通道,允许电流从阳极流向阴极。
4. 关断状态:当导通电流下降到一个很低的水平时,晶闸管将进入关断状态。
在关断状态下,晶闸管的正向电压和反向电压均无法导通。
晶闸管需要重新触发才能再次导通。
三、晶闸管的特性晶闸管具有以下几个特性:1. 双向导电性:晶闸管可以在正向和反向电压下导通电流。
这使得晶闸管在交流电路中起到了重要的作用,可以实现电流的双向控制。
2. 开关特性:晶闸管具有开关特性,可以实现高电压和高电流的控制。
通过控制门极电压的变化,可以控制晶闸管的导通和关断状态。
3. 快速开关速度:晶闸管具有快速的开关速度,可以在微秒的时间内完成导通和关断状态的切换。
这使得晶闸管在高频电路和脉冲电路中得到广泛应用。
晶闸管工作原理引言概述:晶闸管是一种常用的电子器件,广泛应用于电力控制和电子调节领域。
本文将详细介绍晶闸管的工作原理,包括结构组成、工作方式和特点等方面。
一、晶闸管的结构组成1.1 PN结构:晶闸管由PN结构组成,其中P层和N层分别为P型半导体和N 型半导体。
PN结构是晶闸管的基本单元,它决定了晶闸管的导通和截止。
1.2 控制极:晶闸管还包括一个控制极,通常称为G极或者门极。
控制极通过控制电流来控制晶闸管的导通和截止。
1.3 金属触发极:晶闸管还具有一个金属触发极,用于触发晶闸管的导通。
触发极通常由金属片组成,通过施加正向电压来触发晶闸管的导通。
二、晶闸管的工作方式2.1 导通状态:当晶闸管的控制极施加正向电压时,PN结的正向偏置会导致电流从P层流向N层,形成导通状态。
此时,晶闸管的电阻很小,电流可以通过。
2.2 截止状态:当晶闸管的控制极施加反向电压时,PN结的反向偏置会阻挠电流流动,晶闸管处于截止状态。
此时,晶闸管的电阻很大,电流无法通过。
2.3 触发导通:当晶闸管的触发极施加正向电压时,触发电流会通过触发极和控制极,使得晶闸管从截止状态变为导通状态。
触发导通后,即使控制极的电压变为零,晶闸管仍然保持导通状态。
三、晶闸管的特点3.1 可控性:晶闸管具有良好的可控性,可以通过控制极的电压来控制晶闸管的导通和截止。
3.2 高电压和高电流:晶闸管能够承受较高的电压和电流,适合于高功率电力控制。
3.3 快速开关速度:晶闸管的开关速度较快,能够实现高频率的开关操作。
3.4 低功耗:晶闸管在导通状态时的功耗较低,能够提高电路的效率。
四、晶闸管的应用领域4.1 电力控制:晶闸管广泛应用于电力控制领域,如交流电调光、电动机控制等。
4.2 电子调节:晶闸管也被用于电子调节领域,如变频调速、电炉温度控制等。
4.3 电子开关:由于晶闸管具有快速开关速度,它还可以用作电子开关,实现高频率的开关操作。
结论:本文详细介绍了晶闸管的工作原理,包括结构组成、工作方式和特点等方面。
晶闸管的结构以及工作原理一、晶闸管的基本结构晶闸管(SemiconductorControlled Rectifier 简称SCR )是一种四层结构(PNPN )的大功率半导体器件,它同时又被称作可控整流器或可控硅元件。
它有三个引出电极,即阳极(A )、阴极(K )和门极(G )。
其符号表示法和器件剖面图如图1所示。
图1 符号表示法和器件剖面图普通晶闸管是在N 型硅片中双向扩散P 型杂质(铝或硼),形成211P N P 结构,然后在2P 的大部分区域扩散N 型杂质(磷或锑)形成阴极,同时在2P 上引出门极,在1P 区域形成欧姆接触作为阳极。
图2、晶闸管载流子分布二、晶闸管的伏安特性晶闸管导通与关断两个状态是由阳极电压、阳极电流和门极电流共同决定的。
通常用伏安特性曲线来描述它们之间的关系,如图3所示。
图3 晶闸管的伏安特性曲线当晶闸管AK V 加正向电压时,1J 和3J 正偏,2J 反偏,外加电压几乎全部降落在2J 结上,2J 结起到阻断电流的作用。
随着AK V 的增大,只要BO AK V V <,通过阳极电流A I 都很小,因而称此区域为正向阻断状态。
当AK V 增大超过BO V 以后,阳极电流突然增大,特性曲线过负阻过程瞬间变到低电压、大电流状态。
晶闸管流过由负载决定的通态电流T I ,器件压降为1V 左右,特性曲线CD 段对应的状态称为导通状态。
通常将BO V 及其所对应的BO I 称之为正向转折电压和转折电流。
晶闸管导通后能自身维持同态,从通态转换到断态,通常是不用门极信号而是由外部电路控制,即只有当电流小到称为维持电流H I 的某一临界值以下,器件才能被关断。
当晶闸管处于断态(BO AK V V <)时,如果使得门极相对于阴极为正,给门极通以电流G I ,那么晶闸管将在较低的电压下转折导通。
转折电压BO V 以及转折电流BO I 都是G I 的函数,G I 越大,BO V 越小。
如图3所示,晶闸管一旦导通后,即使去除门极信号,器件仍然然导通。
当晶闸管的阳极相对于阴极为负,只要RO AK V V <,A I 很小,且与G I 基本无关。
但反向电压很大时(RO AK V V ≈),通过晶闸管的反向漏电流急剧增大,表现出晶闸管击穿,因此称RO V 为反向转折电压和转折电流。
三、晶闸管的静态特性晶闸管共有3个PN 结,特性曲线可划分为(0~1)阻断区、(1~2)转折区、(2~3)负阻区及(3~4)导通区。
如图5所示。
(一)正向工作区1、正向阻断区(0~1)区域当AK 之间加正向电压时,1J 和3J 结承受正向电压,而2J 结承受反向电压,外加电压几乎全部落在2J 结身上。
反偏2J 结起到阻断电流的作用,这时晶闸管是不导通。
2、雪崩区(1~2也称转折区)当外加电压上升接近2J 结的雪崩击穿电压2BJ V 时,反偏2J 结空间电荷区宽度扩展的同时,内电场也大大增强,从而引起倍增效应加强。
于是,通过2J 结的电流突然增大,并使得流过器件的电流也增大。
此时,通过2J 结的电流,由原来的反向电流转变为主要由1J 和3J 结注入的载流子经过基区衰减而在2J 结空间电荷区倍增了的电流,这就是电压增加,电流急剧增加的雪崩区。
因此区域发生特性曲线转折,故称转折区。
3、负载区(2~3)当外加电压大于转折电压时候,2J 结空间电荷区雪崩倍增所产生大量的电子—空穴对,受到反向电场的抽取作用,电子进入1N 区,空穴进入2P 区,由于不能很快的复合,所以造成2J 结两侧附近发生载流子积累:空穴在2P 区、电子在1N 区,补偿离化杂质电荷,使得空间电荷区变窄。
由此使得2P 区电位升高、1N 区电位下降,起了抵消外电场作用。
随着2J 结上外加电压下降,雪崩倍增效效应也随之减弱。
另一方面1J 和3J 结的正向电压却有所增强,注入增加,造成通过2J 结的电流增大,于是出现了电流增加电压减小的负阻现象。
4、低阻通态区(3~4)如上所述,倍增效应使得2J 结两侧形成电子和空穴的积累,造成2J 结反偏电压减小;同时又使得1J 和3J 结注入增强,电路增大,因而2J 结两侧继续有电荷积累,结电压不断下降。
当电压下降到雪崩倍增停止以后,结电压全部被抵销后,2J 结两侧仍有空穴和电子积累,2J 结变为正偏。
此时1J 、2J 和3J 结全部正偏,器件可以通过大电流,因为处于低阻通态区。
完全导通时,其伏安特性曲线与整流元件相似。
(二)反向工作区(0~5)器件工作在反向时候,1J 和3J 结反偏,由于重掺杂的3J 结击穿电压很低,1J 结承受了几乎全部的外加电压。
器件伏安特性就为反偏二极管的伏安特性曲线。
因此,PNPN 晶闸管存在反向阻断区,而当电压增大到1J 结击穿电压以上,由于雪崩倍增效应,电流急剧增大,此时晶闸管被击穿。
图4 晶闸管的门极电流对电流—电压特性曲线的影响四、晶闸管的特性方程一个PNPN 四层结构的两端器件,可以看成电流放大系数分别为1α和2α的211P N P 和221N P N 晶体管,其中2J 结为共用集电结,如图6所示。
当器件加正向电压时。
正偏1J 结注入空穴经过1N 区的输运,到达集电极结(2J )空穴电流为A I 1α;而正偏的3J 结注入电子,经过2P 区的输运到达2J 结的电流为K I 2α。
由于2J 结处于反向,通过2J 结的电流还包括自身的反向饱和电流CO I 。
由图6可知,通过2J 结的电流为上述三者之和,即CO K A J I I I I ++=212αα (1)假定发射效率121==γγ,根据电流连续性原理K A J I I I ==2,所以公式(1)变成:)(121αα+-=CO A I I (2) 公式说明,当正向电压小于2J 结的雪崩击穿电压B V ,倍增效应很小,注入电流也很小,所以1α和2α也很小,故有121<+αα (3)此时的CO I 也很小。
所以1J 和3J 结正偏,所以增加AK V 只能使2J 结反偏压增大,并不能使CO I 及A I 增加很多,因而器件始终处于阻断状态,流过器件的电流与CO I 同一数量级。
因此将公式(3)称为阻断条件。
当AK V 增加使得2J 结反偏压增大而发生雪崩倍增时候,假定倍增因子M M M p n ==,则CO I 、1α和2α都将增大M 倍,故(2)变成)(121αα+-=M MI I CO A (4) 此时分母变小,A I 将随AK V 的增长而迅速增加,所以当1)(21=+ααM (5)便达到雪崩稳定状态极限(BO AK V V =),电流将趋于无穷大,因此(5)式称为正向转折条件。
准确的转折点条件,是根据特性曲线下降段的起点来标志转折点。
在这点0=A AK dI dV ,022<AAK dI V d现在利用这个特点,由特性曲线方程式(4)推导转折点条件。
因为1α和2α是电流的函数,M 是2J V 的函数,可近似用)()(2AK J V M V M =,CO I 为常数,对(4)求导AKA dV dI ,计算结果是 AK CO A A A A A A AKAA AK dV dM I I I dI d I M dI d I M dV dI dI dV )()()(11212211+++-+-==αααααα (6) 由于转折电压低于击穿电压,故AKdV dM 为一恒定值。
分母也为恒定值,由于0=AAK dI dV ,分子也必须为零,可得到 1)()(2211=+++AA A A dI d I M dI d I M αααα (7) 根据晶体管直流电压放大系数的定义,CBO E C I I I +=α (8)即可得到小信号电流放大系数EE E C dI d I dI dI ααα+==~ (9) 利用公式(9)可把公式(7)变为 1)(2~~1=+ααM (10) 即在转折点,倍增因子与小信号~α之和的乘积刚好为1。
PNPN 结构只要满足上式,便具有开关特性,即可以从断态转变成通态。
由于α是随着电流E I 变化的,当A I 增大,1α和2α都随之增大。
由此可知,在电流较大时,满足(6)的M 值反而可以减小。
这说明A I 增大,AK V 相应减小,这正是图5中曲线(2~3)所示的负阻段。
α既是电流的函数名同时也是集电结电压的函数,当α一定时电流增大则相应的集电结反偏压减小。
当电流很大,会出现121>+αα (6)根据方程(2),2J 结提供一个通态电流(0<CO I )。
因此2J 结必须正偏,于是1J 、2J 和3J 结全部正偏,器件处于导通。
这便是图5中的低压大电流段。
器件有断态变为通态,关键在于2J 结必须由反偏转为正偏。
2J 结反向专为正向的条件是2P 区、1N 区分别应有空穴和电子积累。
从图(6)可以看出,2P 区有空穴积累的条件是,1J 结注入并且被2J 收集到2P 区的空穴量A I 1α要大于同K I )1(2α-通过复合而消失的空穴量,即K A I I )1(21αα-> (7)因为K A I I =,所以得到121>+αα。
只要条件成立,2P 区的空穴积累同样,1N 区电子积累条件为K A I I )1(12αα-> (8)故121>+αα (9)可见当121>+αα条件满足时候,2P 区电位为正,1N 区电位为负。
2J 结变为正偏,器件处于导通状态,所以121>+αα称为导通条件。
五、门极触发原理如图5-7所示,断态时,晶闸管的1J 和3J 结处于轻微的正偏,2J 结处于反偏,承受几乎全部断态电压。
由于受反向2J 结所限,器件只能流过很小的漏电流。
若在门极相对于阴极加正向电压G V ,便会有一股与阳极电流同方向的门极电流G I 通过3J 结,于是通过3J 结的电流便不再受反偏2J 结限制。
只要改变加在3J 结上的电压,便可以控制3J 结的电流大小。
G I 增大时,通过3J 结的电流的电流也随着增大,由此引起2N 区向2P 区注入大量的电子。
注入2P 区的电子,一部分与空穴复合,形成门极电流的一部分,另一部分电子在2P 区通过扩散到达2J 结被收集到1N 区,由此引起通过2J 结电子电流增加,2α随之增大。
电子被收集到1N 区使得该地区电位下降,从而使得1J 结更加正偏,注入空穴电流增大,于是通过2211N P N P 结构的电流A I 也增大。
而1α和2α都是电流的函数,它将随着电流A I 增大而变大。
这样,当门极电流G I 足够大时候,就会使得通过器件的电流增大,使得121>+αα条件成立。
所以,当加门极信号时候,器件可以在较小的电压下触发导通。
G I 越大,导通时候的转折电压就越低,如图4所示。