最新北师大版九年级数学上册《反比例函数的应用》教学设计(精品教案)
- 格式:docx
- 大小:237.19 KB
- 文档页数:7
北师大版数学九年级上册5.3《反比例函数的应用》教学设计一. 教材分析北师大版数学九年级上册5.3《反比例函数的应用》是本册教材中的一个重要内容。
本节课主要让学生掌握反比例函数的图象和性质,以及如何运用反比例函数解决实际问题。
教材通过实例引导学生认识反比例函数的应用,培养学生的数学应用能力。
二. 学情分析九年级的学生已经掌握了函数的基本概念和一次、二次函数的图象及性质,具备了一定的函数知识基础。
但是,对于反比例函数的理解和应用,学生可能还存在一定的困难。
因此,在教学过程中,教师需要注重引导学生通过观察、操作、思考、交流等方式,深入理解反比例函数的图象和性质,提高学生的数学思维能力。
三. 教学目标1.理解反比例函数的图象和性质;2.学会如何运用反比例函数解决实际问题;3.培养学生的数学应用能力和团队协作能力。
四. 教学重难点1.反比例函数的图象和性质;2.反比例函数在实际问题中的应用。
五. 教学方法1.情境教学法:通过实例引入反比例函数,激发学生的学习兴趣;2.引导发现法:引导学生观察、操作、思考,自主发现反比例函数的图象和性质;3.实践操作法:让学生通过实际问题,运用反比例函数解决问题;4.小组讨论法:培养学生的团队协作能力,提高学生的数学思维能力。
六. 教学准备1.教学课件:制作反比例函数的图象和性质的课件;2.实例:准备一些实际问题,让学生运用反比例函数解决;3.练习题:准备一些练习题,巩固学生对反比例函数的理解。
七. 教学过程1.导入(5分钟)利用实例引入反比例函数,激发学生的学习兴趣。
例如,讲解一段路程不变,速度与时间的关系。
2.呈现(10分钟)展示反比例函数的图象和性质,引导学生观察、操作、思考,自主发现反比例函数的特点。
3.操练(10分钟)让学生分组讨论,每组选取一个实际问题,运用反比例函数解决问题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)出示一些练习题,让学生独立完成,巩固对反比例函数的理解。
北师大版数学九年级上册5.3《反比例函数的应用》教学设计一. 教材分析北师大版数学九年级上册5.3《反比例函数的应用》是本册教材中的一个重要内容,主要让学生掌握反比例函数的图象和性质,以及如何利用反比例函数解决实际问题。
本节内容是在学生已经掌握了反比例函数的定义和基本性质的基础上进行学习的,通过本节课的学习,使学生能够进一步理解和掌握反比例函数,提高解决实际问题的能力。
二. 学情分析九年级的学生已经具备了一定的函数知识,对反比例函数也有了一定的了解。
但在实际应用反比例函数解决生活中的问题时,往往会因为对函数思想的理解不够深入而感到困惑。
因此,在教学过程中,需要教师引导学生将反比例函数与实际问题相结合,提高学生的应用能力。
三. 教学目标1.理解反比例函数的图象和性质。
2.学会如何利用反比例函数解决实际问题。
3.提高学生的数学应用能力。
四. 教学重难点1.反比例函数的图象和性质。
2.如何将反比例函数应用于实际问题中。
五. 教学方法采用问题驱动法、案例教学法和小组合作法进行教学。
通过设置问题,引导学生探索反比例函数的图象和性质;通过案例教学,使学生了解如何将反比例函数应用于实际问题中;通过小组合作,培养学生团队合作精神,提高学生的解决问题能力。
六. 教学准备1.准备相关的案例材料和实际问题。
2.准备多媒体教学设备,如投影仪、电脑等。
3.准备黑板和粉笔。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾反比例函数的定义和性质,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过多媒体展示反比例函数的图象,让学生观察和分析反比例函数的性质。
同时,教师给出一些实际问题,让学生尝试用反比例函数解决。
3.操练(10分钟)教师引导学生分组讨论,如何将实际问题转化为反比例函数问题。
学生在讨论过程中,教师给予指导和点拨。
4.巩固(10分钟)教师给出一些练习题,让学生独立完成。
在学生解题过程中,教师巡回指导,帮助学生巩固反比例函数的应用。
北师大版数学九年级上册《反比例函数的性质》教学设计一. 教材分析《反比例函数的性质》是北师大版数学九年级上册的一章内容。
本章主要让学生理解反比例函数的定义,掌握反比例函数的性质,并能够运用反比例函数解决实际问题。
本节课的教学内容主要包括反比例函数的定义、图像特点、性质及其应用。
二. 学情分析九年级的学生已经学习了函数的基本概念和一次函数、二次函数的性质,对函数有一定的认识。
但是,对于反比例函数的理解和应用还需要进一步的引导和培养。
学生的学习兴趣和积极性需要通过丰富的教学手段和实际问题来激发。
三. 教学目标1.了解反比例函数的定义,理解反比例函数的概念。
2.掌握反比例函数的图像特点和性质。
3.能够运用反比例函数解决实际问题。
4.培养学生的数学思维能力和问题解决能力。
四. 教学重难点1.反比例函数的定义和性质的理解。
2.反比例函数图像的特点和描绘。
3.反比例函数在实际问题中的应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察、思考、探究来发现反比例函数的性质。
2.使用多媒体辅助教学,通过图像和动画展示反比例函数的性质,增强学生的直观感受。
3.结合实际例子,让学生通过动手操作和计算来解决实际问题,提高学生的应用能力。
4.采用小组讨论和合作学习的方式,培养学生的团队合作和沟通能力。
六. 教学准备1.多媒体教学设备。
2.反比例函数的图像和动画资料。
3.实际问题的案例和数据。
4.练习题和测试题。
七. 教学过程1.导入(5分钟)利用多媒体展示一些实际问题,如速度和时间的关系,引导学生思考如何用数学来描述这种关系。
然后,引出反比例函数的概念。
2.呈现(15分钟)展示反比例函数的图像和性质,让学生观察和描述图像的特点。
通过动画展示反比例函数的性质,如随着自变量的增加,因变量的值是如何变化的。
3.操练(15分钟)让学生动手操作,通过计算和作图来验证反比例函数的性质。
可以给出一些实际问题,让学生运用反比例函数来解决。
第六章反比例函数1反比例函数 (1)2反比例函数的图象与性质 (3)3反比例函数的应用 (6)1反比例函数1.了解反比例函数的概念,会判断一个式子是否是反比例函数.2.能够列出实际问题中的反比例函数的表达式,并能确定自变量的取值范围.重点了解反比例函数的概念,会判断一个式子是否是反比例函数.难点能够列出实际问题中的反比例函数的表达式.一、情境导入课件出示:导体中的电流I,与导体的电阻R、导体两端电压U之间满足关系式U=IR.当U=220 V 时,(1)你能用含有R的代数式表示I吗?(2)利用写出的关系式完成下表:R/Ω20 40 60 80 100I/A当R越来越大时,I怎样变化?当R越来越小呢?(3)变量I是R的函数吗?为什么?学生小组合作讨论后举手回答,教师点评,并引出本节课课题——反比例函数.二、探究新知1.反比例函数的概念问题1:小明有10元钱,购买y(个)单价是x(元)的铅笔,你能用含x的代数式表示y 吗?学生:y =10x.问题2:京沪高速公路全长约为1 318 km ,汽车沿京沪高速公路从上海开往北京,汽车行完全程所需的时间为t(h ),行驶的平均速度为v(km /h ),你能用含t 的代数式表示v 吗?学生:v =1318t.教师:从上面的两个问题得出关系式y =10x 和v =1318t .它们是函数吗?能否根据这两个问题归纳出这一类函数的表达式呢?引导学生观察,归纳总结出反比例函数的概念:一般地,如果两个变量x ,y 之间的对应关系可以表示成 y =kx (k 为常数,k ≠0)的形式,那么称y 是x 的反比例函数.从y =kx 中可知自变量x 作为分母,所以x 不能为零.2.反比例函数的表达式 课件出示:下列函数表达式中,哪些式子表示y 是x 的反比例函数?如果是,请写出k 的值. (1)y =5x ; (2)y =0.4x ;(3)y =x2; (4)xy =2;(5)y =x π; (6)y =-5x ;(7)y =2x -1.学生思考后汇报答案,教师点评.教师:通过上面这道题,你能总结出反比例函数表达式的不同形式吗? 学生积极思考,归纳总结: 第一种:y =k x .第二种:xy =k. 第三种:y =kx -1. 三、举例分析 例1 若y =(5+m)x2+n是反比例函数,则m ,n 的取值是( )A .m =-5,n =-3B .m≠-5,n =-3C .m ≠-5,n =3D .m≠-5,n =-4 学生举手回答,教师点评.例2 一个矩形的面积为20 cm 2,相邻的两条边长分别为x cm 和 y cm ,那么变量y 是变量x的函数吗?是反比例函数吗?为什么?例3 某村有耕地346.2公顷,人口数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?是反比例函数吗?为什么?例4 y是x的反比例函数,下表给出了x与y的一些值:x -2 -1 -12121 3y 232 -1(1)写出这个反比例函数的表达式;(2)根据函数表达式完成上表.学生独立完成后汇报答案,教师点评,并提出问题:上述问题中,自变量能取哪些值?四、练习巩固教材第150页“随堂练习”第1,2题.五、小结1.通过本节课的学习,你有什么收获?2.什么是反比例函数?六、课外作业教材第150~151页习题6.1第1~4题.本节课的知识是反比例函数.课堂上,结合实例引导学生了解所讨论的函数的表达式,形成反比例函数概念的具体形象,让学生经历从感性认识到理性认识的转化过程,发展学生的思维.在探索具体问题中的数量关系和变化规律的基础上抽象出数学概念,结合具体情境领会反比例函数.通过练习题既巩固了反比例函数的定义,也让学生认识到反比例函数的表达式有不同的形式.由学生总结归纳,锻炼了学生的观察总结能力,紧接的练习又巩固了反比例函数表达式的3种形式.在教学过程中,给学生足够的时间和空间,培养学生自主分析问题、解决问题的能力,让学生得到一个良好的自主学习的环境.2反比例函数的图象与性质1.掌握画出反比例函数图象的基本步骤,会画反比例函数的图象.2.掌握反比例函数的主要性质.3.能利用反比例函数的图象及性质解决一些实际问题.重点画反比例函数的图象,理解反比例函数的性质. 难点理解反比例函数的性质,并能灵活应用.一、复习导入1.什么是反比例函数?2.画出一次函数y =4x 的图象,图象是什么形状?画一次函数图象的步骤是什么? 学生自主思考后给出答案,教师点评. 二、探究新知 1.反比例函数的图象教师:反比例函数y =4x 的图象会是什么形状呢?我们可以用什么方法画这个反比例函数的图象?学生独立画图象,指名板演.教师点评,引导学生归纳画反比例函数图象的基本步骤. 教师:你以为画反比例函数图象时应注意哪些问题? 引导学生总结:(1)反比例函数的图象是双曲线;(2)画反比例函数的图象要经过列表、描点、连线这三个步骤; (3)双曲线的两端是无限延伸的,画的时候要“出头”;(4)画双曲线时,取的点越密集,描出的图象就越准确,但计算量会越大,故一般在原点的两侧各取3~5个点即可;(5)连线时,要按自变量从小到大(或从大到小)的顺序用平滑的曲线连接.注意:两个分支不连接.教师:观察上面的函数图象,如果点P(x 0,y 0)在函数y =4x 的图象上,那么与点P 关于原点成中心对称的P′的坐标应是什么?这个点在函数y =4x的图象上吗?学生思考回答后,教师进一步讲解:反比例函数的图象既是一个轴对称图形,又是一个中心对称图形.对称轴有两条,分别是直线y =x 与直线y =-x ;对称中心是坐标原点,任何一条经过原点的直线只要与双曲线有两个交点,则这两个交点关于原点对称.2.反比例函数的性质 课件出示:。
北师大版数学九年级上册《1 反比例函数》教学设计1一. 教材分析北师大版数学九年级上册《1 反比例函数》是学生在学习了初中数学基础知识后,对函数概念的进一步理解。
本节内容通过实例引入反比例函数,让学生理解反比例函数的定义、性质和图象,从而提高学生对函数知识的掌握和应用能力。
二. 学情分析学生在学习本节内容前,已经掌握了函数的基本概念、一次函数和二次函数的知识。
但反比例函数的概念和性质相对复杂,需要通过实例和图象让学生加深理解。
因此,在教学过程中,要注重引导学生通过观察、分析、归纳等方法,自主探究反比例函数的性质和图象。
三. 教学目标1.知识与技能:理解反比例函数的定义,掌握反比例函数的性质和图象特点,能运用反比例函数解决实际问题。
2.过程与方法:通过观察实例和图象,培养学生的观察能力、分析能力和归纳能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 教学重难点1.反比例函数的定义和性质。
2.反比例函数图象的特点。
五. 教学方法采用问题驱动法、实例分析法、小组合作法等,引导学生主动探究,培养学生的动手操作能力和思维能力。
六. 教学准备1.准备相关实例和图象,用于引导学生观察和分析。
2.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个实际问题,引入反比例函数的概念。
例如:一辆汽车以每小时60公里的速度行驶,行驶的路程与时间成反比,求行驶2小时的路程。
2.呈现(10分钟)呈现反比例函数的定义和性质,引导学生观察实例和图象,分析反比例函数的特点。
3.操练(10分钟)让学生分组讨论,自主探究反比例函数的性质和图象,每组选一个实例进行分析。
4.巩固(10分钟)针对各组的探究结果,进行讲解和总结,让学生加深对反比例函数的理解。
5.拓展(10分钟)引导学生运用反比例函数解决实际问题,如购物、交通等。
6.小结(5分钟)对本节课的内容进行总结,强调反比例函数的定义、性质和图象特点。
北师大版九年级上册3反比例函数的应用教学设计一、教学目标1.学生了解反比例函数的概念和基本性质。
2.了解反比例函数在实际生活中的应用,如工程中的液位控制、物流中的时间与距离的关系等。
3.初步掌握反比例函数在实际问题中的求解方法。
二、教学重点难点1.反比例函数的概念及基本性质;2.反比例函数在实际问题中的应用。
三、教学过程1.引入(15分钟)从生活中的例子入手,引入反比例函数的概念。
如:当我们越快跑到目的地,花费的时间就越短,这样两者之间就成为反比例关系。
在引入的过程中,教师应该给学生留出充足的时间思考,以提高学生的兴趣和主动性。
2.理论讲解(50分钟)介绍反比例函数的定义及性质,让学生领悟反比例函数在图像上的表现,如对称轴、渐近线等。
并且通过不同的数据表格,让学生感受反比例函数的表达方式及其与实际问题的关系。
3.练习(60分钟)1.个别习题:给学生分发反比例函数的基本练习材料,让学生理解反比例函数的一般表达形式。
2.情境练习:在实际生活中,反比例函数有着广泛的应用。
反比例函数在工程控制中的应用比较普遍,例如液位控制和温度控制,这些都需要学生根据情境列方程。
4.总结(15分钟)师生共同总结习得的技能,归纳所学的核心难点,让学生在总结中反思过程,梳理思路,提高其学习成效。
四、教学方法1.启发式教学法:教师让学生通过问题引发思考,逐步深化对反比例函数得认识和应用。
2.针对性分组教学法:将学生按照能力水平分组,从容易到难的顺序开始,逐步推进学生对反比例函数的理解,达到较好的教学效果。
3.探究式学习:教师引导学生通过实际问题探究反比例函数的性质和应用,培养学生自主解决问题的能力。
五、教学资源1.反比例函数教学PPT课件2.反比例函数练习材料3.常见反比例函数实际问题案例六、教学评估1.课堂实时互动量2.学生参与度3.实际应用情景模拟练习4.考试成绩七、教学反思1.如何在教学中突出重点难点2.如何在教学中培养学生针对问题解决问题的能力3.如何合理利用教学资源,提高教学效果。
第六章 反比例函数6.3 反比例函数的应用1.经历分析实际问题中两个变量之间的关系、建立反比例函数模型,进而解决问题的过程,进一步体会模型思想,发展应用意识.2.能用反比例函数解决简单实际问题,进一步体会数形结合的思想.(重点)阅读教材P158~159,完成下列内容:(一)知识探究反比例函数表达式的求法:设出反比例函数的表达式________,把反比例函数图象上的一个点的坐标代入,得关于k 的方程,解方程求出k 值,把k 的值代入,即得反比例函数的表达式.(二)自学反馈1.长方形地下室的体积V 一定,那么底面积S 与深度h 是________关系;表达式是________.2.运货物的路程s 一定,那么运货物的速度v 与时间t 是________关系;表达式是________.3.电学知识告诉我们,用电器的输出功率P 、两端的电压U 和电器的电阻R 有如下关系:PR =U 2.这个关系式还可以写成P =________,或R =________.活动1 小组讨论例 1 某校科技小组进行野外考察,利用铺垫木板的方式通过了一片烂泥湿地,你能解释他们这样做的道理吗?当人和木板对湿地的压力一定时,随着木板面积S(m 2)的变化,人和木板对地面的压强p(Pa)将如何变化?如果人和木板对湿地地面的压力合计600 N ,那么(1)用含S 的代数式表示p ,p 是S 的反比例函数吗?为什么?(2)当木板面积为0.2 m 2时,压强是多少?(3)如果要求压强不超过6 000 Pa ,木板面积至少要多大?(4)在直角坐标系中,画出相应的函数图象.(5)请利用图象对(2)和(3)作出直观解释,并与同伴交流.解:(1)p =600S(S>0),P 是S 的反比例函数. (2)p =3 000 Pa.(3)至少0.1 m 2.(4)提示:只需在第一象限作出函数的图象.因为S>0.(5)问题(2):已知图象上的某点的横坐标为0.2,求该点的纵坐标;问题(3):已知图象上点的纵坐标不大于 6 000,求这些点所处的位置及它们横坐标的取值范围.实际上这些点都在直线p =6 000下方的图象上. 例2 蓄电池的电压为定值.使用此电源时,用电器的电流I(A)与电阻R(Ω)之间的函数关系如图所示.(1)蓄电池的电压是多少?你能写出这一函数的表达式吗?(2)如果以此蓄电池为电源的用电器限制电流不得超过10 A ,那么用电器的可变电阻应控制在什么范围内?解:(1)因为电流I 与电压U 之间的关系式为IR =U(U 为定值),把图象上的点A 的坐标(9,4)代入,得U =36. 所以蓄电池的电压U =36 V .这一函数的表达式为I =36R. (2)当I ≤10 A 时,解得R ≥3.6.所以可变电阻应不小于3.6 Ω.用反比例函数去研究两个物理量之间的关系是在物理学中最常见的,首先要打好数学基础,才能促进对物理知识的理解和探索.例3 如图,正比例函数y =k 1x 的图象和反比例函数y =k 2x的图象相交于A ,B 两点,其中点A 的坐标为(3,23).(1)分别写出这两个函数的表达式;(2)你能求出点B 的坐标吗?你是怎样求出的?解:(1)y 1=2x ,y 2=6x. (2)点B 的坐标为(-3,-23).活动2 跟踪训练1.某乡粮食总产量为a(a 为常数)吨,设该乡平均每人占有粮食为y(吨),人口数为x ,则y 与x 之间的函数关系的图象应为下图的( )2.某工厂现有煤200吨,这些煤能烧的天数y 与平均每天烧煤的吨数x 之间的函数关系式是y =________.3.一定质量的二氧化碳,其体积V(m 3)是密度ρ(kg/m 3)的反比例函数,请根据图中的已知条件,写出当ρ=1.1 kg/m 3时,二氧化碳的体积V =________m 3.4.如图所示是某一蓄水池每小时的排水量V(m 3/h)与排完水池中的水所用的时间t(h)之间的函数关系图象.(1)请你根据图象提供的信息求出此蓄水池的蓄水量;(2)写出此函数的表达式;(3)若要6 h 排完水池中的水,那么每小时的排水量应该是多少?活动3 课堂小结学生试述:今天学到了什么?【预习导学】(一)知识探究y =k x(二)自学反馈1.反比例 S =V h 2.反比例 v =s t 3.U R 2 U P2 【合作探究】活动2 跟踪训练1.D 2.200x3.94.(1)因为当蓄水总量一定时,每小时的排水量与排水所用时间成反比例,所以根据图象提供的信息可知此蓄水池的蓄水量为 4 000×12=48 000(m 3).(2)因为此函数为反比例函数,所以表达式为V =48 000t .(3)若要6 h 排完水池中的水,那么每小时的排水量为V =48 0006=8 000(m 3).。
第6章反比例函数
6.3反比例函数的应用
一、教材分析
本节教材内容是对前两节知识的综合应用,同时加强了实际问题的理解和实际问题与数学知识之间的紧密联系。
能用学科间的实际题例,数学知识间的综合应用题例,使学生利用反比例函数的性质进一步解释、说明实际问题。
加强数形结合意识。
二、教学目标
1、知识与技能
能根据实际问题中的条件确定反比例函数的解析式,会画出它的图像,能根据图像指出函数值随自变量变化情况。
2、过程与方法
能通过探索实际问题列出函数关系式,利用反比例函数的性质解释实际问题,细心体会图像在解决问题时的作用。
3、情感态度和价值观
注意合作讨论,探索交流中,发展从图中获取信息的能力,渗透数形结合的思想方法通过对实际问题的分析与解决,让学生体验数学的价值,培养学生对数学的兴趣。
三、教学重点、难点
重点:反比例函数的应用,数形结合思想在函数中的应用。
难点:反比例函数与其它知识点的综合题。
四、教学准备
多媒体课件、小黑板
教学流程设计
教师指导
1、引入新课
引导学生回忆反比例函数的概念,图像与性质
2、讲授新课:
①课件(或小黑板)演示教材
课本中“科技小组进行野外考
察”的问题
②课件演示教材“做一做”
第一个问题
③课件演示教科书“做一做”
中的第二个问题
学生活动
1、独立思考作出回答
2、认真读题
注意自变量的取值范围
小组合作计论
交流后得出正确答案
独立思考,探索的解答
学生解答所有问题
④演示“随堂练习”
3、课时小结
引导学生总结本节课内容4、布置作业3、学生归纳,说出收获
4、课后完成巩固新知识
五、教学过程
教师活动学生活动一、创设问题情境,导入新课
1、请大家回忆一下反比例函
数的定义,反比例函数的图
像及其性质。
2、实际上反比例函数的性质
在实际生活中有着广泛的
应用,今天我们就从实际问
题出发来探讨一下反比例
函数的应用问题(板书课
题)
二、讲授新课
1、演示课件给出教材中本课
时问题。
某校科技
小组进行野外
考察,途中遇到1、回忆、作答、见书
2、在教师指导下,提取自己的认知体会,积极思考,踊跃发言
解:(1)利用物理中压强的计算公式P=F/S,可知当压力一定时,压强与受力面积成反比。
因此P是S的反比例函数,即P=600/S (S>0)
(2)P=3000pa
(3)至少0.1m2
一片烂泥湿地。
为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木块,构筑成一条临时通道,从而顺利完成了任务。
你能解释他们这样做的道理吗?当人和木板对湿地的压力一定时,随着木板面积S(m2)的变化,人和木板对地面的压强p (Pa)将如何变化?
如果人和木板对湿地地面的压力合计600N,那么
(1)用含S的代数式表式P,P是S的反比例函数吗?为什么?
(2)当木板面积为0.2m2时,压强是多少?
(3)如果要求压强不超过6000Pa,木板面积至少要多大?
(4)在直角坐标系中,作出相应的函数图象。
(5)请利用图象对(2)和(4)对于画图应遵循三个原则如图所示。
(5)
问题(2)是已知图像上某点的横生标为0.2,求该点的纵坐标。
问题(3)是已知图像上点的纵坐标,求这些点所处的位置及它们的横坐标的取值范围。
(3)作出直观解释,并与同伴进行交流。
好!请大家分组讨论,回答下面的问题
注意:
一是画出函数图像的三个步骤,二是画出的函数应符合实际问题的实际意义,也就是列表时应注意自变量的取值范围,并可根据图像的性质回答相关的问题。
2、做一做
多媒体展示1题
3、做一做
多媒体展示2题
这是一个数学综合题,涉及正比例函数与反比例函数。
(1)电压u=36V 表达式I=36/R (2)当I≤10A时,即36/R≤10,解得R≥3.6Ω
(1) y =2x y =6/x
(2)点B的坐标为(- 3 ,-2 3 )
y=2x 解得x
1
= 3
x
2
= - 3
y=6/x y
1
=2 3
y
2
=-2 3
∴B点的坐标为(- 3,-2 3 )事实上,点A与点B关于原点对称。
∴B(- 3,-2 3)没必要用方程
问题:
你能求出B点坐标,你是怎样求的?
巧记:点的坐标与解析式之间关系
点在双曲线上<==>点的坐标满足y=k/x(k≠0)
4、演示随堂练习。
说明:
还可以让学生课后利用函数的图像对问题作出解释,从而加深对这类问题的理解。
三、课时小结
引导学生回顾本节课的知识要点,强调解决应用题的步骤和将实际问题转化为数学模型需要注意的问题。
求解。
独立思考,作出正确解答。
(1)48 m3
(2)将减少
(3)t=48/Q
(4)9.6 m3
(5)4h
回顾本节课的知识内容注意教师强调的要点,反思自己的思维过程,找出不足的地方,以复习方式解决。
四、布置作业:
习题
板书设计
反比例函数的应用
1、反比例的定义、性质
2、例
解:3、做一做
1
4、随堂练习
1题
2 题
5、课时小结
六、教学探讨与反思
本节课的重点就是让学生体验数学与实际的紧密联系,教师
在教学过程中要充分发挥引导作用,最大限度地调动学生的积极
性,培养学生的思维能力,树立学生应用数学的意识和数学建模
的思想。