KNT-WP01型风光互补发电系统实训教程
- 格式:pdf
- 大小:4.22 MB
- 文档页数:47
KNT-WP01型风光互补发电综合实训系统教程之力控教程建立一个新的项目的基本流程:1、打开软件:双击桌面上的图标,打开软件,弹出工程管理器对话框,如图1所示,图12、新建工程:点击工程管理对话框上的按钮,弹出新建工程对话框,如图2所示,可对工程项目进行命名等,点击确定。
图23、工程开发制作,点击工程管理对话框上的按钮,弹出如图3所示界面,对工程进行开发制作。
图34、新建窗口,双击开发系统左侧的,弹出窗口对话框,如图4所示,图4可对窗口属性进行设定,如名字、背景色等。
5、新建I/O设备组态,双击图标,可对PLC、变频器、modbus 等下位设备进行I/O设备组态设置。
对话框如图5所示,图5各设备组态可对其设备名称,设备地址,串口,波特率,奇偶校验,数据位以及停止位等进行设置,如下图6、7所示:图6图7表1为各设备的I/O设备的串口,波特率,奇偶校验,数据位,停止位的一些参数。
序号名称描述通信波特奇偶数据停止串口地址1 S7_200_1 光plc PPI 9600 偶8 1 Com1 22 S7_200_2 风plc PPI 9600 偶8 1 Com2 23 VFD(变) 变频器USS 9600 偶8 1 Com2 34 SUN_I 光电流Modbus 9600 无8 1 Com3 15 SUN_V 光电压Modbus 9600 无8 1 Com3 26 WIN_I 风电流Modbus 9600 无8 1 Com3 37 WIN_V 风电压Modbus 9600 无8 1 Com3 48 INVE_I 逆电流Modbus 9600 无8 1 Com3 59 INVE_V 逆电压Modbus 9600 无8 1 Com3 610 S_CTRL 光控制Modbus 19200 无8 1 Com4 111 W_Ctrl 风控制Modbus 19200 无8 1 Com5 112 I_Ctrl 逆控制Modbus 19200 无8 1 Com6 1表16、建立数据库组态,双击图标,弹出数据库组态对话框,如图8所示:图8可建立开关量、模拟量等数据库变量,如表2所示。
风光互补发电实训系统技术方案南京康尼科技实业有限公司2013年2月26日第一部分:技术参数KNT-WP01型风光互补发电实训系统一、概述2013年全国职业院校技能大赛高职组“风光互补发电系统安装与调试”赛项使用的大赛设备是由南京康尼科技实业有限公司研发生产的产品“KNT-WP01型风光互补发电实训系统”。
二、设备组成KNT-WP01型风光互补发电实训系统主要由光伏供电装置、光伏供电系统、风力供电装置、风力供电系统、逆变与负载系统、监控系统组成,如图1所示。
KNT-WP01型风光互补发电实训系统采用模块式结构,各装置和系统具有独立的功能,可以组合成光伏发电实训系统、风力发电实训系统。
(1)、设备尺寸:光伏供电装置1610×1010×1550mm风力供电装置1578×1950×1540mm实训柜3200×650×2000mm(2)、比赛场地面积:20平方米图1 KNT-WP01型风光互补发电实训系统三、各单元介绍1、光伏供电装置(1)、光伏供电装置的组成光伏供电装置主要由光伏电池组件、投射灯、光线传感器、光线传感器控制盒、水平方向和俯仰方向运动机构、摆杆、摆杆减速箱、摆杆支架、单相交流电动机、电容器、直流电动机、接近开关、微动开关、底座支架等设备与器件组成,如图2所示。
图2 光伏供电装置4块光伏电池组件并联组成光伏电池方阵,光线传感器安装在光伏电池方阵中央。
2盏300W的投射灯安装在摆杆支架上,摆杆底端与减速箱输出端连接,减速箱输入端连接单相交流电动机。
电动机旋转时,通过减速箱驱动摆杆作圆周摆动。
摆杆底端与底座支架连接部分安装了接近开关和微动开关,用于摆杆位置的限位和保护。
水平和俯仰方向运动机构由水平运动减速箱、俯仰运动减速箱、直流电动机、接近开关和微动开关组成。
直流电动机旋转时,水平运动减速箱驱动光伏电池方阵作向东方向或向西方向的水平移动、俯仰运动减速箱驱动光伏电池方阵作向北方向或向南方向的俯仰移动,接近开关和微动开关用于光伏电池方阵位置的限位和保护。
KNT-WP01型风光互补发电系统实训数据在此次KNT-WP01型风光互补发电系统实训中,测量记录的主要数据包括太阳能电池伏安特性曲线和风力发电伏安特性曲线,以及光伏实际充电波形图、光伏模拟充电波形图、风电实际波形图、spwm波形图、基波波形图、300ns死区时间波形图、3000ns 死区时间波形图、300ns单通道逆变输出波形图、3000ns单通道逆变输出波形图。
测量工具主要为示波器。
1、太阳能电池伏安特性曲线光伏电池方阵的负载是1000Ω/50W的可调电位器,通过调节可调电位器,得出十组数据,根据数据画出伏安特性曲线。
表1 光伏电池输出数据图1 光伏电池伏安特性曲线2、风力发电伏安特性曲线风力供电系统的负载也是1000Ω/50W的可调电位器,通过调节可调电位器,得出十组数据,根据数据画出伏安特性曲线。
表2 风力发电输出数据图2 风力发电伏安特性曲线3、蓄电池的实际充电波形(光伏)打开投射灯1和投射灯2,光伏电池组件输出电压约为18V 左右,蓄电池的电压低于13.5V。
将示波器的A通道检测探头分别接到DSP控制单元的JP10-2和0V上,测到如图所示的波形。
图3 蓄电池的实际充电波形4、蓄电池的模拟充电选择光伏模拟电压值和蓄电池的模拟电压,将示波器的A通道检测探头分别接到DSP控制单元的JP10-4和0V上,测到如图所示的波形。
图4 模拟充电波形图图5 模拟充电波形图图6 模拟充电波形图5、蓄电池的实际充电波形(风电)同光伏供电装置一样,启动风力供电装置,风机输出电压约为12V左右,将示波器的A通道检测探头分别接到DSP控制单元上,测到如图所示的波形。
图7 蓄电池的实际充电波形6、SPWM波形图将示波器A通道探头接在逆变器测试模块的23.4K SPWM 测试端,测量得到SPWM波形。
图8 SPWM波形7、50Hz基波将示波器A通道探头接在逆变器测试模块的50Hz基波测试端,测量50Hz基波。
图9 50Hz基波波形8、300ns与3000ns死区时间波形图图10 300ns死区时间波形图11 3000ns死区时间波形9、300ns与3000ns单通道逆变输出波形图图12 300ns单通道逆变输出波形图13 3000ns单通道逆变输出波形逆变器的死区时间反映逆变器输出正弦波的正半周波形与负半周波形之间的延时时间,死区参数与逆变器输出电能的质量有密切关系。
风光互补发电实训系统技术方案南京康尼科技实业有限公司2013年2月26日第一部分:技术参数KNT-WP01型风光互补发电实训系统概述2013年全国职业院校技能大赛高职组“风光互补发电系统安装与调试”赛项使用的大赛设备是由南京康尼科技实业有限公司研发生产的产品“KNT-WP01型风光互补发电实训系统”。
设备组成KNT-WP01型风光互补发电实训系统主要由光伏供电装置、光伏供电系统、风力供电装置、风力供电系统、逆变与负载系统、监控系统组成,如图1所示。
KNT-WP01型风光互补发电实训系统采用模块式结构,各装置和系统具有独立的功能,可以组合成光伏发电实训系统、风力发电实训系统。
(1)、设备尺寸:光伏供电装置1610×1010×1550mm风力供电装置1578×1950×1540mm实训柜3200×650×2000mm(2)、比赛场地面积:20平方米图1 KNT-WP01型风光互补发电实训系统各单元介绍1、光伏供电装置(1)、光伏供电装置的组成光伏供电装置主要由光伏电池组件、投射灯、光线传感器、光线传感器控制盒、水平方向和俯仰方向运动机构、摆杆、摆杆减速箱、摆杆支架、单相交流电动机、电容器、直流电动机、接近开关、微动开关、底座支架等设备与器件组成,如图2所示。
图2 光伏供电装置4块光伏电池组件并联组成光伏电池方阵,光线传感器安装在光伏电池方阵中央。
2盏300W的投射灯安装在摆杆支架上,摆杆底端与减速箱输出端连接,减速箱输入端连接单相交流电动机。
电动机旋转时,通过减速箱驱动摆杆作圆周摆动。
摆杆底端与底座支架连接部分安装了接近开关和微动开关,用于摆杆位置的限位和保护。
水平和俯仰方向运动机构由水平运动减速箱、俯仰运动减速箱、直流电动机、接近开关和微动开关组成。
直流电动机旋转时,水平运动减速箱驱动光伏电池方阵作向东方向或向西方向的水平移动、俯仰运动减速箱驱动光伏电池方阵作向北方向或向南方向的俯仰移动,接近开关和微动开关用于光伏电池方阵位置的限位和保护。
风光互补部分实验1光伏电池方阵的安装1.1实训的目的和要求1.实训的目的①了解单晶硅光伏电池单体的工作原理。
②掌握光伏电池方阵的安装方法。
2.实训的要求①在室外自然光照的情况下,用万用表测量光伏电池组件的开路电压,了解光伏电池的输出电压值。
②在室外自然光照条件下和在室内灯光的情况下,用万用表测量光伏电池方阵的开路电压,分析光伏电池方阵在室内、外光照条件下开路电压区别的原因。
1.2基本原理(1)本征半导体纯净半导体是导电能力介于导体和绝缘体之间的一种物质。
纯净的半导体称为本征半导体。
制造半导体器件的常用半导体材有硅(Si)、锗(Ge)和砷化镓(GaAs)等。
本征硅半导体中的硅原子核最外层有四个价电子,硅晶体为共价键结构,硅原子最外层的价电子被共价键束缚。
在低温下,这些共价键完好,本征硅半导体显示出绝缘体特性。
当温度升高或受到光照等外界激发时,共价键中的某些价电子获得能量,摆脱共价键束缚,成为可以自由运动的电子,在原来的共价键中留出空穴,这些空穴又会被邻近的共价键中的价电子填补,并在邻近的共价键中产生新的空穴。
空穴运动是带负电荷的价电子运动造成的,其效果是带正电荷的粒子在运动。
可以认为,自由电子是带负电荷的载流子,空穴是带正电荷的载流子。
本征半导体中有两种载流子,即电子和空穴,它们是成对出现的,称为电子-空穴对,两种载流子都可以传导电流。
通常本征半导体中的载流子浓度很低,导电能力差。
当温度升高或受到光照时,本征半导体中的载流子浓度按指数规律增加,其导电能力显著增加。
(2) P型半导体和N型半导体纯净半导体中加入了微量三价元素或五价元素,其导电能力会明显增强。
三价元素的原子核的最外层有三个价电子,在形成共价键时,产生了一个空穴。
五价元素的原子核的最外层有五个价电子,在形成共价键时,产生了一个自由电子。
在本征硅半导体中掺入微量三价元素(例如硼元素)后,本征硅半导体中的空穴浓度大大增加,半导体的导电能力明显提高,主要依靠空穴导电的半导体称为P型半导体。
附件42高职制造大类风光互补发电系统安装与调试赛项技能竞赛规程、评分标准及选手须知一、竞赛内容竞赛内容包括以下7个部分:1.光伏供电装置(1)参赛选手根据任务书中的工程设计施工方案要求,将大赛提供的光伏电池组件、投射灯、光线传感器、二维运动机构、减速箱、摆杆支架等器件与设备组装成光伏供电装置;(2)将光伏电池组件串联、并联、串并联,检测开路电压和短路电流,分析光伏电池组件工作电压特性;(3)分析光线传感器的工作原理。
2.光伏供电系统(1)参赛选手根据任务书中的工程设计施工方案要求,将大赛提供的光伏供电控制单元、DSP核心单元、信号处理单元、接口单元、可编程序控制器、触摸屏、直流电压表、直流电流表、蓄电池组、负载、按钮、继电器、断路器等器件与组件安装在“光伏供电系统”网孔架内(接线排和走线槽已经安装好);(2)根据工程设计施工要求,完成光伏供电系统的布线和接线;(3)根据可编程序控制器输入输出端口的定义,编制光伏电池组件跟踪光源的程序;(4)通过触摸屏设置蓄电池充放电参数,实现光伏电池组件对蓄电池组的充放电过程。
利用示波器检测蓄电池充放电过程以及保护过程的波形并进行分析;(5)改变光伏电池组件的负载大小和投射灯的光照度,检测光伏电池组件的输出电压和电流,绘制光伏电池组件的伏安特性曲线和输出功率曲线。
分析光伏电池组件的非线性输出特性和MPPT特性;(6)正确识别和选取元器件,焊接光伏供电系统的控制电路或传感器电路模块。
利用焊接的模块实现风光互补控制;(7)完成光伏供电系统与后台监控系统的通信,实现监控系统遥测和遥控光伏供电系统的运行状态;(8)绘制光伏供电系统相关电路图并分析;(9)光伏发电过程中的故障排除。
3.风力供电装置(1)风力发电机的安装;(2)模拟风场的安装;(3)被动偏航机构的安装。
4.风力供电系统(1)风力发电机输出特性的测试;(2)模拟风场的控制与调试;(3)被动偏航的控制与调试;(4)完成风力供电系统与监控系统的通信;(5)风力发电过程中的故障排除。
风光互补控发电与并网实验平台指导手册目录实验一、风力发电实验 (3)实验1-1 、风机特性曲线实验 (3)实验1-2 、风机蓄电池充电实验 (4)实验1-3、风机卸荷器实验 (5)实验1-4、风能发电并网实验 (7)实验二、光能发电实验 (8)实验2-1 、光能发电特性曲线实验 (8)实验2-2 、光能蓄电池充电实验 (9)实验2-3、光能发电并网实验 (11)实验三、风光互补实验 (12)实验3-1、风光互补蓄电池充电实验 (12)实验3-2、风光互补带蓄电池稳压并网实验 (13)实验四、微并网实验 (14)实验一、风力发电实验实验1-1 、风机特性曲线实验一、实验类型和建议学时:实验类型:验证性实验建议学时:2学时二、实验目的:(1)熟悉风光互补控制器操作,了解实验台界面与软件;(2)了解风力发电原理;(3)了解风力发电的优缺点。
三、实验任务:(1)观察风机发电空载时的电压和电流;(2)观察风机发电运行负载时的电压和电流;(3)调节电子负载,观察电压和电流,并记录数据绘制曲线。
四、实验步骤:(1)接通实验台电源,打开电脑LABVIEW软件。
(2)切换至软件“自动模式”界面,点击启动,将风光互补控制器运行。
(3)切换至软件“风电输入”界面,点击“风电输入”按钮,将风电输入至风光互补控制器。
(4)点击“数据采集”按钮和“多曲线显示”按钮,记录空载电压和电流值,点击绘制曲线观察电压和电流的特性曲线。
(5)点击“风光VI测试”按钮,启动电子负载。
(6)切换至“电子负载控制”界面,点击“输入”按钮调节电子负载各个模式,再切换至“风电VI”界面,点击“数据采集”按钮,记录数据。
(7)点击“曲线绘制”按钮,绘制输入负载后的曲线,并与空载时的曲线进行对比。
实验1-2 、风机蓄电池充电实验一、实验类型和建议学时:实验类型:验证性实验建议学时:2学时二、实验目的:(1)熟悉蓄电池操作,了解实验台界面与软件;(2)了解风力发电原理;(3)了解风力发电的优缺点。
《风光互补发电技术》课程理实一体化教学《风光互补发电技术》课程能够集中体现该专业的教育理念、思想与方法。
现阶段新能源领域技术迅猛发展已经转变了该专业技能型人才培养的方式。
现我国高职教育领域中的《风光互补发电技术》的课程不论是从体系、结构,还是从内容角度大部分主要以理论学习为主,无法满足现在企业和社会对理论与技能双高型人才的需求。
为了让《风光互补发电技术》课程能适应新能源技术发展对职业教育人才培养的需求,?Ω妹趴纬淌敌欣硎狄惶寤?教学方式是有非常重要的意义。
1.教学系统构成1.1软件子系统理实一体化教学软件子系统中课程教学设计也就是对课程理论和实验内容进行统筹安排,使教学体系化、模块化。
课程理论及其实验大纲主要是根据教学设计使得这一模块集成化,并且对课程理论和实践环节进行删改、编排。
教材建设的要求是编写教材或者讲义。
通常意义上的教学资源建设包括资源的整合和课程的建设两大模块。
教学质量控制的核心为社会化的教学质量评价。
1.2 硬件子系统理实一体化教学硬件子系统主要包括教室和实验实训平台。
前者配备一些包括多媒体在内的信息技术工具,这些工具可以用于理论教学,还能够促使实验实训平台具备实验室功能。
后者能够促进实验实训平台的建设,按照课程和实验教学大纲配备实验实训设备,并使其模块化,力争实现实验实训设备一人一岗、人手一台。
1.3人子系统人子系统通常情况下主要包括高素质的能够胜任一体化教学的教学团队和参与积极性和热情度较高的职业院校的学生,这是理实一体化教学成功开展的必要条件。
除此之外,学生是教学活动开展的对象,要力争学生积极参与一体化教学活动,尽快熟悉设备,实现教学活动的事半功倍。
2.《风光互补发电技术》理实一体化企业化的实训环境2.1校企共同优化课程职业院校和新能源企业合作办学过程中坚持以就业能力为导向,邀请新能源行业或者新能源企业的专家,成立专业建设指导委员会。
职业院校和新能源企业合作构建课程体系、制定课程标准、拟定人才培养方案;实现资源共享,共建实训基地、共同对教学和就业质量开展评估,保证专业发展的方向性、适应性和就业的一致性。
风光互补发电系统实验指导书一、实验目的1. 学习风光互补发电系统的原理及其组成2. 通过实训学习光伏电池的I-V特性和输出功率特性3. 通过实训学习光伏发电和风力发电在不同工作状态时的能量流向二、实验器材风光互补发电实训系统V-SUN_S4000、万用表、示波器三、实验内容与步骤1. 了解整个风光互补发电系统的组成和各个部分的主要功能,并完成各个部分电路的接线。
2. 光伏电池输出特性测试(1)利用光伏电池组件光源跟踪手动控制程序,在光伏供电控制单元上分别按下东西按钮和西东按钮,调节光伏供电装置的摆杆处于垂直状态。
分别按下向东按钮、向西按钮、向北按钮和向南按钮,调节光伏电池方阵的位置,使光伏电池方阵正对着投射光灯。
(2)光伏电池方阵的负载是2000Ω的可调电位器,将可调电位器的阻值调为0,按下灯1按钮,灯1亮。
记录此时直流电压表和直流电流表显示光伏电池方阵输出的电压和电流值,直流电压表显示0V,直流电流表显示的电流数值是光伏电池方阵的短路电流,并记录在表1中。
(3)将可调电位器的旋钮顺时针旋转到50Ω左右的刻度位置,记录直流电压表和直流电流表显示光伏电池方阵输出的电压和电流值。
然后可调电位器每增加50Ω左右的阻值时,记录一次直流电压表和直流电流表显示光伏电池方阵输出的电压和电流值,指导可调电位器的阻值增大到2000Ω为止,此时直流电流表显示0A,直流电压表显示的电压数值可以作为光伏电池方阵的开路电压,并记录在表1中。
(4)将上述记录的各组光伏电池方阵输出4的电压和电流值在图1(a)坐标中绘出相应的坐标位置,然后绘制光伏电池方阵的I-V特性曲线。
(5)将各组光伏电池方阵输出的电压值和电流值相乘,结果在图1(a)坐标中绘出相应的坐标位置,然后绘制光伏电池方阵的输出功率曲线。
(6)在投射灯1和灯2都通电点亮的情况下,重复(2)~(5)过程,结果在图1(b)坐标中绘出相应的坐标位置,然后绘制光伏电池方阵的I-V特性曲线和输出功率曲线。