离散数学命题逻辑等值式
- 格式:ppt
- 大小:213.50 KB
- 文档页数:8
数理逻辑部分第1章命题逻辑命题符号化及联结词命题: 判断结果惟一的陈述句命题的真值: 判断的结果真值的取值: 真与假真命题: 真值为真的命题假命题: 真值为假的命题注意: 感叹句、祈使句、疑问句都不是命题,陈述句中的悖论以及判断结果不惟一确定的也不是命题。
简单命题(原子命题):简单陈述句构成的命题复合命题:由简单命题与联结词按一定规则复合而成的命题简单命题符号化用小写英文字母p, q, r, … ,p i,q i,r i (i≥1)表示简单命题用“1”表示真,用“0”表示假例如,令p:是有理数,则p 的真值为 0q:2 + 5 = 7,则q 的真值为 1联结词与复合命题1.否定式与否定联结词“”定义设p为命题,复合命题“非p”(或“p的否定”)称为p的否定式,记作p. 符号称作否定联结词,并规定p为真当且仅当p为假.2.合取式与合取联结词“∧”定义设p,q为二命题,复合命题“p并且q”(或“p与q”)称为p与q 的合取式,记作p∧q. ∧称作合取联结词,并规定 p∧q为真当且仅当p 与q同时为真注意:描述合取式的灵活性与多样性分清简单命题与复合命题例将下列命题符号化.(1) 王晓既用功又聪明.(2) 王晓不仅聪明,而且用功.(3) 王晓虽然聪明,但不用功.(4) 张辉与王丽都是三好生.(5) 张辉与王丽是同学.解令p:王晓用功,q:王晓聪明,则(1) p∧q(2) p∧q(3) p∧q.令r : 张辉是三好学生,s :王丽是三好学生(4) r∧s.(5) 令t : 张辉与王丽是同学,t 是简单命题 .说明:(1)~(4)说明描述合取式的灵活性与多样性.(5) 中“与”联结的是两个名词,整个句子是一个简单命题.3.析取式与析取联结词“∨”定义设p,q为二命题,复合命题“p或q”称作p与q的析取式,记作p∨q. ∨称作析取联结词,并规定p∨q为假当且仅当p与q同时为假.例将下列命题符号化(1) 2或4是素数.(2) 2或3是素数.(3) 4或6是素数.(4) 小元元只能拿一个苹果或一个梨.(5) 王晓红生于1975年或1976年.解令p:2是素数, q:3是素数, r:4是素数, s:6是素数,则 (1), (2), (3) 均为相容或.分别符号化为: p∨r , p∨q, r∨s,它们的真值分别为 1, 1, 0.而 (4), (5) 为排斥或.令t :小元元拿一个苹果,u:小元元拿一个梨,则 (4) 符号化为 (t∧u) ∨(t∧u).令v :王晓红生于1975年,w:王晓红生于1976年,则 (5) 既可符号化为 (v∧w)∨(v∧w), 又可符号化为v∨w , 为什么?4.蕴涵式与蕴涵联结词“”定义设p,q为二命题,复合命题“如果p,则q” 称作p与q的蕴涵式,记作p q,并称p是蕴涵式的前件,q为蕴涵式的后件. 称作蕴涵联结词,并规定,p q为假当且仅当p 为真q 为假.p q 的逻辑关系:q 为p 的必要条件“如果p,则q ” 的不同表述法很多:若p,就q只要p,就qp 仅当q只有q 才p除非q, 才p 或除非q, 否则非p.当p 为假时,p q 为真常出现的错误:不分充分与必要条件5.等价式与等价联结词“”定义设p,q为二命题,复合命题“p当且仅当q”称作p与q的等价式,记作p q. 称作等价联结词.并规定p q为真当且仅当p与q同时为真或同时为假.说明:(1) p q 的逻辑关系:p与q互为充分必要条件(2) p q为真当且仅当p与q同真或同假联结词优先级:( ),, , , ,同级按从左到右的顺序进行以上给出了5个联结词:, , , , ,组成一个联结词集合{, , , , },联结词的优先顺序为:, , , , ; 如果出现的联结词同级,又无括号时,则按从左到右的顺序运算; 若遇有括号时,应该先进行括号中的运算.注意: 本书中使用的括号全为园括号.命题常项命题变项命题公式及分类命题变项与合式公式命题常项:简单命题命题变项:真值不确定的陈述句定义合式公式 (命题公式, 公式) 递归定义如下:(1) 单个命题常项或变项p,q,r,…,p i ,q i ,r i ,…,0,1是合式公式(2) 若A是合式公式,则 (A)也是合式公式(3) 若A, B是合式公式,则(A B), (A B), (A B), (A B)也是合式公式(4) 只有有限次地应用(1)~(3)形成的符号串才是合式公式说明: 元语言与对象语言, 外层括号可以省去合式公式的层次定义(1) 若公式A是单个的命题变项, 则称A为0层公式.(2) 称A是n+1(n≥0)层公式是指下面情况之一:(a) A=B, B是n层公式;(b) A=B C, 其中B,C分别为i层和j层公式,且n=max(i, j);(c) A=B C, 其中B,C的层次及n同(b);(d) A=B C, 其中B,C的层次及n同(b);(e) A=B C, 其中B,C的层次及n同(b).例如公式p 0层p 1层p q 2层(p q)r 3层((p q) r)(r s) 4层公式的赋值定义给公式A中的命题变项p1, p2, … , p n指定一组真值称为对A的一个赋值或解释成真赋值: 使公式为真的赋值成假赋值: 使公式为假的赋值说明:赋值=12…n之间不加标点符号,i=0或1.A中仅出现p1, p2, …, p n,给A赋值12…n是指p1=1, p2=2, …, p n=nA中仅出现p,q, r, …, 给A赋值123…是指p=1,q=2 , r= 3 …含n个变项的公式有2n个赋值.真值表真值表: 公式A在所有赋值下的取值情况列成的表例给出公式的真值表A= (q p) q p的真值表例 B = (p q) q的真值表例C= (p q) r的真值表命题的分类重言式矛盾式可满足式定义设A为一个命题公式(1) 若A无成假赋值,则称A为重言式(也称永真式)(2) 若A无成真赋值,则称A为矛盾式(也称永假式)(3) 若A不是矛盾式,则称A为可满足式注意:重言式是可满足式,但反之不真.上例中A为重言式,B为矛盾式,C为可满足式A= (q p)q p,B =(p q)q,C= (p q)r等值演算等值式定义若等价式A B是重言式,则称A与B等值,记作A B,并称A B是等值式说明:定义中,A,B,均为元语言符号, A或B中可能有哑元出现.例如,在 (p q) ((p q) (r r))中,r为左边公式的哑元.用真值表可验证两个公式是否等值请验证:p(q r) (p q) rp(q r) (p q) r基本等值式双重否定律 : A A等幂律:A A A, A A A交换律: A B B A, A B B A结合律: (A B)C A(B C)(A B)C A(B C)分配律: A(B C)(A B)(A C)A(B C) (A B)(A C)德·摩根律: (A B)A B(A B)A B吸收律: A(A B)A, A(A B)A零律: A11, A00同一律: A0A, A1A排中律: A A1矛盾律: A A0等值演算:由已知的等值式推演出新的等值式的过程置换规则:若A B, 则(B)(A)等值演算的基础:(1) 等值关系的性质:自反、对称、传递(2) 基本的等值式(3) 置换规则应用举例——证明两个公式等值例1 证明p(q r) (p q)r证p(q r)p(q r) (蕴涵等值式,置换规则)(p q)r(结合律,置换规则)(p q)r(德摩根律,置换规则)(p q) r(蕴涵等值式,置换规则)说明:也可以从右边开始演算(请做一遍)因为每一步都用置换规则,故可不写出熟练后,基本等值式也可以不写出应用举例——证明两个公式不等值例2 证明: p(q r) (p q) r用等值演算不能直接证明两个公式不等值,证明两个公式不等值的基本思想是找到一个赋值使一个成真,另一个成假.方法一真值表法(自己证)方法二观察赋值法. 容易看出000, 010等是左边的的成真赋值,是右边的成假赋值.方法三用等值演算先化简两个公式,再观察.应用举例——判断公式类型例3 用等值演算法判断下列公式的类型(1) q(p q)解q(p q)q(p q) (蕴涵等值式)q(p q) (德摩根律)p(q q) (交换律,结合律)p0 (矛盾律)0 (零律)由最后一步可知,该式为矛盾式.(2) (p q)(q p)解 (p q)(q p)(p q)(q p) (蕴涵等值式)(p q)(p q) (交换律)1由最后一步可知,该式为重言式.问:最后一步为什么等值于1?(3) ((p q)(p q))r)解 ((p q)(p q))r)(p(q q))r(分配律)p1r(排中律)p r(同一律)这不是矛盾式,也不是重言式,而是非重言式的可满足式.如101是它的成真赋值,000是它的成假赋值.总结:A为矛盾式当且仅当A0A为重言式当且仅当A1说明:演算步骤不惟一,应尽量使演算短些对偶与范式对偶式与对偶原理定义在仅含有联结词, ∧,∨的命题公式A中,将∨换成∧, ∧换成∨,若A中含有0或1,就将0换成1,1换成0,所得命题公式称为A的对偶式,记为A*.从定义不难看出,(A*)* 还原成A定理设A和A*互为对偶式,p1,p2,…,p n是出现在A和A*中的全部命题变项,将A和A*写成n元函数形式,则 (1) A(p1,p2,…,p n) A* (p1, p2,…, p n) (2) A(p1, p2,…, p n) A* (p1,p2,…,p n) 定理(对偶原理)设A,B为两个命题公式,若A B,则A* B*.析取范式与合取范式文字:命题变项及其否定的总称简单析取式:有限个文字构成的析取式如p, q, p q, p q r, …简单合取式:有限个文字构成的合取式如p, q, p q, p q r, …析取范式:由有限个简单合取式组成的析取式A 1A2Ar, 其中A1,A2,,A r是简单合取式合取范式:由有限个简单析取式组成的合取式A 1A2Ar, 其中A1,A2,,A r是简单析取式范式:析取范式与合取范式的总称公式A的析取范式: 与A等值的析取范式公式A的合取范式: 与A等值的合取范式说明:单个文字既是简单析取式,又是简单合取式p q r, p q r既是析取范式,又是合取范式(为什么?)命题公式的范式定理任何命题公式都存在着与之等值的析取范式与合取范式.求公式A的范式的步骤:(1) 消去A中的, (若存在)(2) 否定联结词的内移或消去(3) 使用分配律对分配(析取范式)对分配(合取范式)公式的范式存在,但不惟一求公式的范式举例例求下列公式的析取范式与合取范式(1) A=(p q)r解 (p q)r(p q)r(消去)p q r(结合律)这既是A的析取范式(由3个简单合取式组成的析取式),又是A的合取范式(由一个简单析取式组成的合取式)(2) B=(p q)r解 (p q)r(p q)r(消去第一个)(p q)r(消去第二个)(p q)r(否定号内移——德摩根律)这一步已为析取范式(两个简单合取式构成)继续: (p q)r(p r)(q r) (对分配律)这一步得到合取范式(由两个简单析取式构成)极小项与极大项定义在含有n个命题变项的简单合取式(简单析取式)中,若每个命题变项均以文字的形式在其中出现且仅出现一次,而且第i(1i n)个文字出现在左起第i位上,称这样的简单合取式(简单析取式)为极小项(极大项).说明:n个命题变项产生2n个极小项和2n个极大项2n个极小项(极大项)均互不等值用m i表示第i个极小项,其中i是该极小项成真赋值的十进制表示. 用M i 表示第i个极大项,其中i是该极大项成假赋值的十进制表示, m i(M i)称为极小项(极大项)的名称.m与M i的关系: m i M i , M i m ii主析取范式与主合取范式主析取范式: 由极小项构成的析取范式主合取范式: 由极大项构成的合取范式例如,n=3, 命题变项为p, q, r时,(p q r)(p q r) m1m3是主析取范式(p q r)(p q r) M1M5 是主合取范式A的主析取范式: 与A等值的主析取范式A的主合取范式: 与A等值的主合取范式.定理任何命题公式都存在着与之等值的主析取范式和主合取范式, 并且是惟一的.用等值演算法求公式的主范式的步骤:(1) 先求析取范式(合取范式)(2) 将不是极小项(极大项)的简单合取式(简单析取式)化成与之等值的若干个极小项的析取(极大项的合取),需要利用同一律(零律)、排中律(矛盾律)、分配律、幂等律等.(3) 极小项(极大项)用名称m i(M i)表示,并按角标从小到大顺序排序.求公式的主范式例求公式A=(p q)r的主析取范式与主合取范式.(1) 求主析取范式(p q)r(p q)r , (析取范式)①(p q)(p q)(r r)(p q r)(p q r)m 6m7,r(p p)(q q)r(p q r)(p q r)(p q r)(p q r)m 1m3m5m7③②, ③代入①并排序,得(p q)r m1m3m5m6m7(主析取范式)(2) 求A的主合取范式(p q)r(p r)(q r) , (合取范式)①p rp(q q)r(p q r)(p q r)M 0M2,②q r(p p)q r(p q r)(p q r)M 0M4③②, ③代入①并排序,得(p q)r M0M2M4 (主合取范式)主范式的用途——与真值表相同(1) 求公式的成真赋值和成假赋值例如 (p q)r m1m3m5m6m7,其成真赋值为001, 011, 101, 110, 111,其余的赋值 000, 010, 100为成假赋值.类似地,由主合取范式也可立即求出成假赋值和成真赋值.(2) 判断公式的类型设A含n个命题变项,则A为重言式A的主析取范式含2n个极小项A的主合取范式为1.A为矛盾式A的主析取范式为0A的主合取范式含2n个极大项A为非重言式的可满足式A的主析取范式中至少含一个且不含全部极小项A的主合取范式中至少含一个且不含全部极大项例某公司要从赵、钱、孙、李、周五名新毕业的大学生中选派一些人出国学习. 选派必须满足以下条件:(1)若赵去,钱也去;(2)李、周两人中至少有一人去;(3)钱、孙两人中有一人去且仅去一人;(4)孙、李两人同去或同不去;(5)若周去,则赵、钱也去.试用主析取范式法分析该公司如何选派他们出国?解此类问题的步骤为:①将简单命题符号化②写出各复合命题③写出由②中复合命题组成的合取式④求③中所得公式的主析取范式解①设p:派赵去,q:派钱去,r:派孙去,s:派李去,u:派周去.② (1) (p q)(2) (s u)(3) ((q r)(q r))(4) ((r s)(r s))(5) (u(p q))③ (1) ~ (5)构成的合取式为A=(p q)(s u)((q r)(q r))((r s)(r s))(u(p q))④ A (p q r s u)(p q r s u)结论:由④可知,A的成真赋值为00110与11001,因而派孙、李去(赵、钱、周不去)或派赵、钱、周去(孙、李不去).A的演算过程如下:A (p q)((q r)(q r))(s u)(u(p q)) ((r s)(r s)) (交换律) B1= (p q)((q r)(q r))((p q r)(p q r)(q r)) (分配律)B2= (s u)(u(p q))((s u)(p q s)(p q u)) (分配律)B 1B2(p q r s u)(p q r s u) (q r s u)(p q r s)(p q r u)再令B3 = ((r s)(r s))得A B1B2B3(p q r s u)(p q r s u)注意:在以上演算中多次用矛盾律要求:自己演算一遍推理理论推理的形式结构推理的形式结构—问题的引入推理举例:(1) 正项级数收敛当且仅当部分和有上界.(2) 若推理: 从前提出发推出结论的思维过程上面(1)是正确的推理,而(2)是错误的推理.证明: 描述推理正确的过程.判断推理是否正确的方法•真值表法•等值演算法判断推理是否正确•主析取范式法•构造证明法证明推理正确说明:当命题变项比较少时,用前3个方法比较方便, 此时采用形式结构“” . 而在构造证明时,采用“前提: , 结论: B”.推理定律与推理规则推理定律——重言蕴涵式构造证明——直接证明法例构造下面推理的证明:若明天是星期一或星期三,我就有课. 若有课,今天必备课. 我今天下午没备课. 所以,明天不是星期一和星期三.解设p:明天是星期一,q:明天是星期三,r:我有课,s:我备课推理的形式结构为例构造下面推理的证明:2是素数或合数. 若2是素数,则是无理数.若是无理数,则4不是素数. 所以,如果4是素数,则2是合数.用附加前提证明法构造证明解设p:2是素数,q:2是合数,r:是无理数,s:4是素数推理的形式结构前提:p∨q, p r, r s结论:s q证明① s附加前提引入②p r前提引入③r s前提引入④p s②③假言三段论⑤p①④拒取式⑥p∨q前提引入⑦q⑤⑥析取三段论请用直接证明法证明之。
第二章作业评分要求:1. 每小题6分: 结果正确1分; 方法格式正确3分; 计算过程2分. 合计48分2. 给出每小题得分(注意: 写出扣分理由)3. 总得分在采分点1处正确设置.一. 证明下面等值式(真值表法, 解逻辑方程法, 等值演算法, 三种方法每种方法至少使用一次):说明证1. p ⇔(p ∧q)∨(p ∧¬q)解逻辑方程法设 p ↔((p ∧q)∨(p ∧¬q)) =0, 分两种情况讨论:⎩⎨⎧=⌝∧∨∧=0)()(1)1(q p q p p 或者 ⎩⎨⎧=⌝∧∨∧=1)()(0)2(q p q p p (1)(2)两种情况均无解, 从而, p ↔(p ∧q)∨(p ∧¬q)无成假赋值, 为永真式. 等值演算法(p ∧q)∨(p ∧¬q)⇔ p ∧(q ∨¬q)∧对∨的分配率⇔ p ∧1 排中律⇔ p 同一律 真值表法2. (p→q)∧(p→r)⇔p→(q∧r)等值演算法(p→q)∧(p→r)⇔ (¬p∨q)∧(¬p∨r)蕴含等值式⇔¬p∨(q∧r)析取对合取的分配律⇔ p→(q∧r)蕴含等值式3. ¬(p↔q)⇔(p∨q)∧¬(p∧q)等值演算法¬(p↔q)⇔¬( (p→q)∧(q→p) )等价等值式⇔¬( (¬p∨q)∧(¬q∨p) )蕴含等值式⇔¬( (¬p∧¬q)∨(p∧q) )合取对析取分配律, 矛盾律, 同一律⇔ (p∨q)∧¬(p∧q)德摩根律4. (p∧¬q)∨(¬p∧q)⇔(p∨q)∧¬(p∧q)等值演算法(p∧¬q)∨(¬p∧q)⇔ (p∨q)∧¬(p∧q)析取对合取分配律, 排中律, 同一律说明: 用真值表法和解逻辑方程法证明相当于证明为永真式.等值演算法证明时每一步后面最好注明理由以加深印象, 熟练后可以不写. 由于等值演算法证明具有较强的技巧性, 平时应注意总结心得.二. 求下列公式的主析取范式与主合取范式(等值演算法与用成真赋值或成假赋值求解都至少使用一次):1.2.3.4.1. (¬p→q)→(¬q∨p)解(¬p→q)→(¬q∨p)⇔ (p∨q)→(¬q∨p)蕴含等值式⇔ (¬p∧¬q)∨(¬q∨p)蕴含等值式, 德摩根律⇔ (¬p∧¬q)∨¬q ∨ p结合律⇔ p∨¬q吸收律, 交换律⇔ M1因此, 该式的主析取范式为m0∨m2∨m32. (¬p→q)∧(q∧r)解逻辑方程法设 (¬p→q)∧(q∧r) =1, 则¬p→q=1且 q∧r=1,解得q=1, r=1, p=0 或者 q=1, r=1, p=1, 从而所求主析取范式为 m3∨m7, 主合取范式为M0∧M1∧M2∧M4∧M5∧M6等值演算法(¬p→q)∧(q∧r)(p q)(q r) 蕴含等值式(p q r)(q r) 对分配律, 幂等律(p q r) (p q r)(p q r) 同一律, 矛盾律, 对分配律m7 m3主合取范式为M0∧M1∧M2∧M4∧M5∧M63. (p↔q)→r解逻辑方程法设 (p↔q)→r =0, 解得 p=q=1, r=0 或者 p=q=0, r=0, 从而所求主合取范式为M0∧M6, 主析取范式为m1∨m2∨m3∨m4∨m5∨m7等值演算法(p↔q)→r((p q)(q p))r 等价等值式((p q)(q p))r 蕴含等值式(p q)(q p)r 德摩根律, 蕴含等值式的否定(参见PPT)(p q r)(q p r) 对分配律, 矛盾律, 同一律M0 M6主析取范式为m1∨m2∨m3∨m4∨m5∨m74. (p→q)∧(q→r)解等值演算法(p→q)∧(q→r)(p q)(q r) 蕴含等值式(p q)(p r)(q r) 对分配律, 矛盾律, 同一律(p q r)(p q r) (p q r)(p q r)(p q r)(p q r)m1 m0 m3 m7主合取范式为M2 M4 M5 M6.解逻辑方程法设 (p q) (q r) = 1, 则p q =1 且 q r =1.前者解得: p=0, q=0; 或者 p=0, q=1; 或者 p=1, q=1.后者解得: q=0, r=0; 或者 q=0, r=1; 或者 q=1, r=1.综上可得成真赋值为 000, 001, 011, 111, 从而主析取范式为m0m1m3m7, 主合取范式为M2 M4 M5 M6.真值表法公式 (p q) (q r) 真值表如下:p q r(p q) (qr)00010011010001111000101011001111013724 M5 M6.。
离散数学-----命题逻辑逻辑:是研究推理的科学。
公元前四世纪由希腊的哲学家亚里斯多德首创。
作为一门独立科学,十七世纪,德国的莱布尼兹(Leibniz)给逻辑学引进了符号, 又称为数理逻辑(或符号逻辑)。
逻辑可分为:1. 形式逻辑(是研究思维的形式结构和规律的科学,它撇开具体的、个别的思维内容,从形式结构方面研究概念、判断和推理及其正确联系的规律。
)→数理逻辑(是用数学方法研究推理的形式结构和规律的数学学科。
它的创始人Leibniz,为了实现把推理变为演算的想法,把数学引入了形式逻辑中。
其后,又经多人努力,逐渐使得数理逻辑成为一门专门的学科。
)2. 辩证逻辑(是研究反映客观世界辩证发展过程的人类思维的形态的。
)一、命题及其表示方法1、命题数理逻辑研究的中心问题是推理,而推理的前提和结论都是表达判断的陈述句,因而表达判断的陈述句构成了推理的基本单位。
基本概念:命题:能够判断真假的陈述句。
命题的真值:命题的判断结果。
命题的真值只取两个值:真(用T(true)或1表示)、假(用F(false)或0表示)。
真命题:判断为正确的命题,即真值为真的命题。
假命题:判断为错误的命题,即真值为假的命题。
因而又可以称命题是具有唯一真值的陈述句。
判断命题的两个步骤:1、是否为陈述句;2、是否有确定的、唯一的真值。
说明:(1)只有具有确定真值的陈述句才是命题。
一切没有判断内容的句子,无所谓是非的句子,如感叹句、祁使句、疑问句等都不是命题。
(2)因为命题只有两种真值,所以“命题逻辑”又称“二值逻辑”。
(3)“具有确定真值”是指客观上的具有,与我们是否知道它的真值是两回事。
2、命题的表示方法在书中,用大写英文字母A,B,…,P,Q或带下标的字母P1,P2,P3 ,…,或数字(1),*2+, …,等表示命题,称之为命题标识符。
命题标识符又有命题常量、命题变元和原子变元之分。
命题常量:表示确定命题的命题标识符。
命题变元:命题标识符如仅是表示任意命题的位置标志,就称为命题变元。
数理逻辑命题逻辑基本概念等值演算析取范式合取范式范式说明单个命题变元既是简单析取式又是简单合取式命题变元的析取式和合取式不唯一主析取范式由有限给简单析取式的合取构成的命题公式主合取范式简单合取式简单析取式由有限个的文字构成的析取式由有限个文字构成的合取式由有限个简单合取式的析取构成的命题公式(只能是单层括号且括号内部都是合取)命题变项及其否定都称作文字极小项n个命题变项的简单合取式按照下标从小到大或字典顺序排列,且每个命题变项及它的否定有且仅出现一次的简单析取式极大项所有简单合取式都是极小项的析取范式可以进行补项,使得每一项均含命题变项(析取0或合取1)真值可以变化的命题(命题变项不是命题)命题变项真值确定的简单命题命题常项将命题变项用联结词和圆括号按照一定逻辑关系联结起来的符号串合式公式在它的各种赋值下取值均为真重言式/永真式在它的各种赋值下取值均为假矛盾式/永假式若其不是矛盾式,则称其为重言式可满足式命题公式分类命题公式及其赋值否定联结词子主题1合取(交集)析取(并集)蕴涵(若p则q)等价联结词基本命题联结词非真即假的陈述句,有唯一真值命题命题陈述句所表达的判断结果(真值不确定,不代表真值不唯一)真值不能再被分解成更简单的命题简单命题/原子命题既不能为真也不能为假的陈述句悖论命题公式在所有赋值下取值情况列成的表指定的一组值使公式A全为1成真赋值指定的一组值使公式A全为0成假赋值真值表等值式命题相关基本概念命题与联结词A A⇔¬¬双重否定定律A A A⟺∨A A A⟺∧幂等律交换律结合律基础等值模式(A B)A B¬∨⟺¬∧¬徳摩根律(否定内移)A (A B)A∨∧⟺A (A B)A∧∨⟺吸收律A 11∨⟺A 00∧⟺零律A B A B→⟺¬∨蕴涵等值式A B (A B)(B A)↔⟺→∧→等价等值式A B B A →⟺¬→¬假言易位(A B)(A B)A →∧→¬⟺¬归谬论A B A B↔⟺¬↔¬等价否定等值式重点等值模式A 0A∨⟺A 1A ∧⟺同一律A A 0∧¬⟺矛盾律A A 1∨¬⟺排中律逻辑三大定律。
离散数学基础2017-11-17•定义:命题逻辑等值式−给定两个命题公式 A、B,设 p1, p2,…… p n 为所有出现于 A、B 中的命题变量。
若对 p1, p2,…… p n 中的任何一组逻辑解释,A 和 B 的真值都相同,则称 A、B 是等值的或逻辑相等的。
记为 A ⇔ B。
−p1, p2,…… p n 的所有逻辑解释总数为 2n 个。
•定义:命题逻辑等值式−若两个命题公式 A、B 在任意的真值赋值函数 t : Var→{0,1} 下取得相同的真值,则称 A、B 是等值的(或逻辑相等的)。
记为 A ⇔ B。
上述定义是前一个定义的等价定义, 利用了之前定义复合语句的真值时引用的真值赋值函数 t。
我们马上意识到,使用真值表可以判断两个逻辑公式的等值性。
•定义:命题逻辑等值式−例:证明 ¬p∨q ⇔ p→qp q¬p¬p∨q p→q00111011111000011011在每个解释下, ¬p∨q 和 p→q 取相同的真值, 所以是一对等值式•等值的基本性质−对公式 A、B、C,按照等值的定义显然有:»A ⇔ A;(自反性)»若 A ⇔ B 则 B ⇔ A;(对称性)»若 A ⇔ B 且 B ⇔ C 则 A ⇔ C。
(传递性)−具有自反性、对称性和传递性的关系称为等价关系。
所以命题逻辑公式的等值性通常也称为等价性。
•定理:等值定理−设命题公式 A、B,则 A ⇔ B iff A↔B 是重言式。
−证:⇒ 若 A ⇔ B,则 A 与 B 在任意解释下都有相同的真值。
由“↔”的定义,A↔B 只能取值1,即 A↔B 是重言式。
⇐ 若 A↔B 只取值1,由“↔”的真值表, A 与 B 在任意解释下都有相同的真值。
由“⇔”的定义,有 A ⇔ B。
−定理给出验证两个命题公式相等的一种基本方法。
•命题逻辑的等值演算−当命题公式所含的命题变量个数较多时,使用真值表方法判断公式的等价性有困难。
第5章一阶逻辑等值演算与推理主要内容1. 等值式与基本的等值式①在有限个体域中消去量词等值式②量词否定等值式③量词辖域收缩与扩张等值式④量词分配等值式2. 基本规则①置换规则②换名规则③代替规则3. 前束范式4. 推理理论①推理的形式结构②推理正确③构造证明④新的推理规则全称量词消去规则,记为UI全称量词引入规则,记为UG存在量词消去规则,记为EI存在量词引入规则,记为EG学习要求1. 深刻理解重要的等值式,并能熟练地使用它们。
2. 熟练地使用置换规则、换名规则和代替规则。
3. 准确地求出给定公式的前束范式(形式可不唯一)。
4. 正确地使用UI、UG、EI、EG规则,特别地要注意它们之间的关系。
5. 对于给定的推理,正确地构造出它的证明。
5.1 一阶逻辑等值式与置换规则定义5.1设A,B是一阶逻辑中任意两个公式,若A B是永真式,则称A与B是等值的。
记做A B,称A B是等值式。
谓词逻辑中关于联结词的等值式与命题逻辑中相关等值式类似。
下面主要讨论关于量词的等值式。
一、基本等值式第一组代换实例由于命题逻辑中的重言式的代换实例都是一阶逻辑中的永真式,因而第二章的16组等值式给出的代换实例都是一阶逻辑的等值式的模式。
例如:xF(x)┐┐xF(x)x y(F(x,y)→G(x,y))┐┐x y(F(x,y)→G(x,y))等都是(2.1)式的代换实例。
又如:F(x)→G(y)┐F(x)∨G(y)x(F(x)→G(y))→zH(z)┐x(F(x)→G(y))∨zH(z))等都是(2.1)式的代换实例。
第二组消去量词等值式设个体域为有限域D={a1,a2,…,a n},则有(1)xA(x)A(a1)∧A(a2)∧…∧A(a n)(2)xA(x)A(a1)∨A(a2)∨…∨A(a n) (5.1)第三组量词否定等值式设A(x)是任意的含有自由出现个体变项x的公式,则(1)┐xA(x)x┐A(x)(2)┐xA(x)x┐A(x) (5.2)(5.2)式的直观解释是容易的。
离散数学重点笔记第一章,0命题逻辑素数=质数,合数有因子和或假必真同为真(p T q) A (q <--> r) , (p A q) An r, p A (q An r)等都是合式公式,而若公式A是单个的命题变项,则称A为0层合式n p A q) T r , (n (p q)) A ((r V s)斥甬p)分别为3层和4层公式r, ( p r (r T q)等不是合式公式。
p A q) Tn r【例】求下列公式的真值表,并求成真赋值和成假赋值。
公式(1)的成假赋值为011,其余7个赋值都是成真赋值(1)双重否定律(2)等幂律A A; A V(3)交换律A A A A ; A V V A(4) 结合律(A A B) A A(BA C);(5) 分配律(A A B)V C(A V C)A(B V C)(6) 德•摩根律(A V B)A A B;(7) 吸收律A V( A A B)A; A A(A V B)(8)零一律A V 1 1 ; A A 00(9) 同一律A V 0A A A 1A(10) 排中律A V A1(11) 矛盾律A A A0(12) 蕴涵等值式A T V B(13) 假言易位A T A(14) 等价等值式(A T B)A( B T A)第二章,命题逻辑等值演算A(A V B)V;(A V B)(A A B)V( B V C)A C (A A C) V(B A C)A V B离散数学重点笔记(15) 等价否定等值式 (16) 归缪式 (A T B )A( A TB )A一个析取范式是矛盾式当且仅当它的每个简单合取式都是矛盾式 一个合取范式是重言式当且仅当它的每个简单析取式都是重言式 主范式【A 小真,V 大假】 A 成真 小写极小项极大项1 盘我真赋值 名称舍式1成假赋值 名称-1 pA~i qA~i T 0 0 0P V<J V TI 0 0 0 n pAn 小工0 0 1pVqVn r 0 0 1 pAqAn T 0 1 0 血2 pV n qVr 0 1 0 n P A<I A T 0 1 1 口3 pVn qVn T 0 1 1pAn 10 0n pV-iVr 10 0 P A~I 1 0 1TLI5 1 pVqVn T 1 0 1 r 1 1 0 ms t pVn qVr 1 1 0 pA-qAr111 IDy n pVn aVn r ill【例】(p T q)T (n qp) =n (n p V q) V (q V n =(p An q) Vn p V q =(p An q) V (n p Anp) (消去宀) (n 内移)(已为析取范式) q) V (n p A q) V (n p A q) V (p A q) ( *) = m2 V m0 V ml V ml V m3 =m0 V ml V m2 V m3(幂等律、排序) (*)由n p 及q 派生的极小项的过程如下: n p = n p A (n q V q) =(n p An q)V (n p A q)q = (n p V p) A q =(n p A q) V (p A q)熟练之后,以上过程可不写在演算过程中。