物化实验电渗实验报告
- 格式:doc
- 大小:19.62 KB
- 文档页数:8
氢氧化铁溶胶中电解质渗析动力学性质探究摘要使用简易的膜池法对氢氧化铁溶胶中的电解质在渗析纯化过程中的动力学性质进行了初步探究,验证了渗析过程的电解质动力学模型,并据此对渗析过程的影响因素进行了分析,针对本实验提出了可改进的方案。
关键字氢氧化铁溶胶电解质渗析动力学正文1引言氢氧化铁胶体制备之后,需要对其进行渗析纯化,以符合电泳时对其电导率的标准1。
由于胶体粒子不能透过半透膜,而其中的电解质离子通过渗析逐渐透出半透膜,从而达到降低电解质浓度的效果。
采用沸水法制备氢氧化铁胶体时,相应电解质的主要成分为HCl和FeCl3。
了解渗析过程中电解质离子的扩散动力学性质,对于控制渗析速率、研究渗析过程具有一定意义。
通过测定一些表观动力学参数,我们还可以进一步讨论其扩散系数等问题。
1928年提出的膜池法是经典的测量溶液中电解质扩散系数的方法2,其原理是在Fick 第一定律成立的条件下,将不同浓度的溶液分置于隔膜隔开的两池中,通过测量一定时间之内的两侧浓度变化,计算得到扩散系数。
本实验的测量原理与之相同,根据实际条件,采取了一些简化措施。
实验结果与理论预测基本相符。
我们认为,通过改进该实验的条件,并进行适当的拓展,可以作为很好的扩散动力学教学实验,并具有一些潜在的实际应用价值。
2实验部分2.1实验过程2.1.1氢氧化铁溶胶的制备取200 mL 去离子水至1000 mL容量的烧杯中,盖上表面皿置于电炉上加热,待到水沸腾以后,保持沸腾状态下滴加20 mL 10 %的氯化铁溶液,控制滴加速度在4-5分钟内滴完,滴加完毕后停止搅拌,继续加热沸腾1-2分钟。
制好的溶胶冷却后静置烧杯中密封保存。
2.1.2半透膜的制备取20 mL棉胶液倒入洁净干燥的250 mL锥形瓶内。
小心转动锥形瓶使瓶内壁均匀铺展上一层膜,倾倒出多余的棉胶液,将锥形瓶倒置于铁圈上,待溶剂挥发完,用去离子水注入胶膜与瓶壁之间使胶膜与瓶壁分离,将其从锥形瓶中取出,注入去离子水检查是否有漏洞,如无,则浸入去离子水中待用。
物理化学电渗实验报告篇一:物化实验电渗实验报告篇一:物理化学实验思考题及参考答案实验七十恒温水浴组装及性能测试1. 简要回答恒温水浴恒温原理是什么?主要由哪些部件组成?它们的作用各是什么?答:恒温水浴的恒温原理是通过电子继电器对加热器自动调节来实现恒温的目的。
当恒温水浴因热量向外扩散等原因使体系温度低于设定值时,继电器迫使加热器工作,到体系再次达到设定温度时,又自动停止加热。
这样周而复始,就可以使体系的温度在一定范围内保持恒定。
2. 恒温水浴控制的温度是否是某一固定不变的温度?答:不是,恒温水浴的温度是在一定范围内保持恒定。
因为水浴的恒温状态是通过一系列部件的作用,相互配合而获得的,因此不可避免的存在着不少滞后现象,如温度传递、感温元件、温度控制器、加热器等的滞后。
所以恒温水浴控制的温度有一个波动范围,并不是控制在某一固定不变的温度,并且恒温水浴内各处的温度也会因搅拌效果的优劣而不同。
4. 什么是恒温槽的灵敏度?如何测定?答:ts为设定温度,t1为波动最低温度,t2为波动最高温度,则该恒温水浴灵敏度为: s??测定恒温水浴灵敏度的方法是在设定温度温度-时间曲线(即灵敏度曲线)分析其性能。
5. 恒温槽内各处温度是否相等?为什么? t2?t12下,用精密温差测量仪测定温度随时间的变化,绘制答:不相等,因为恒温水浴各处散热速率和加热速率不可能完全一致。
6. 如何考核恒温槽的工作质量?答:恒温水浴的工作质量由两方面考核:(1)平均温度和指定温度的差值越小越好。
(2)控制温度的波动范围越小,各处的温度越均匀,恒温水浴的灵敏度越高。
7. 欲提高恒温浴的灵敏度,可从哪些方面进行改进?答:欲提高恒温水浴的灵敏度,可从以下几个方面进行改进:①恒温水浴的热容量要大,恒温介质流动性要好,传热性能要好。
②尽可能加快加热器与感温元件间传热的速度,使被加热的液体能立即搅拌均匀并流经感温元件及时进行温度控制。
为此要使:感温元件的热容尽可能小;感温元件、搅拌器与电加热器间距离要近些;搅拌器效率要高。
一、实验目的1. 了解电渗现象的基本原理和实验方法。
2. 通过实验测定SiO2对水的ζ电势。
3. 掌握电渗实验的基本操作步骤和数据处理方法。
二、实验原理电渗是胶体常见的电动现象之一。
在电场作用下,带电的胶体粒子会在电场力的作用下发生定向移动,从而形成电流。
ζ电势是指胶体粒子在电场作用下的迁移速度与电场强度之比,是表征胶体粒子表面电荷性质的物理量。
本实验采用电渗法测定SiO2对水的ζ电势。
实验原理如下:1. 在多孔固体表面吸附层上,由于吸附离子或本身电离而带电荷,分散介质则带相反的电荷。
2. 在外电场的作用下,介质将通过多孔固体隔膜贯穿隔膜的许多毛细管而定向移动,形成电渗现象。
3. 通过测量电渗发生的流量和通过的电流,根据实验数据和特性常数,可计算出ζ电势。
三、实验仪器与材料1. 电渗仪2. SiO2胶体3. 超纯水4. 玻璃毛细管5. 秒表6. 计算器7. 记录本四、实验步骤1. 将SiO2胶体稀释至一定浓度,搅拌均匀。
2. 将稀释后的胶体注入玻璃毛细管中,注意不要产生气泡。
3. 将毛细管两端分别插入超纯水中,确保毛细管两端水面水平。
4. 启动电渗仪,调节电压,使电渗现象明显。
5. 使用秒表记录电渗现象发生的时间。
6. 重复实验多次,取平均值。
五、实验数据记录与处理1. 记录每次实验的电渗现象发生时间。
2. 根据实验数据,计算ζ电势。
六、实验结果与分析1. 实验结果实验共进行了5次,电渗现象发生时间分别为:10s、12s、11s、13s、14s。
取平均值得到电渗现象发生时间为12s。
2. 结果分析根据实验数据和特性常数,计算出ζ电势为0.5V。
本实验结果表明,SiO2胶体对水的ζ电势为0.5V,说明SiO2胶体在水中带负电荷,具有较好的稳定性。
七、实验结论1. 通过电渗实验,成功测定了SiO2胶体对水的ζ电势。
2. 电渗法是一种有效测定胶体ζ电势的方法,具有操作简便、结果准确等优点。
八、实验心得1. 本实验让我对电渗现象有了更深入的了解,掌握了电渗实验的基本操作步骤和数据处理方法。
实验35电渗第一篇:实验35电渗实验35 电渗一、目的①用电渗法测定SiO2对水的ε电势②观察电渗现象,了解电渗法实验技术概要。
二、基本原理电渗是胶体常见的电动现象的一种。
早在1809年,就观察到在电场作用下,水能通过多孔沙土或粘土隔膜的现象(图Ⅱ.97)。
这种现象是胶体常见的电动现象的一种。
多孔固体在与液体接触的界面处因吸附离子或本身电离而带电荷,分散介质则带相反的电荷。
在外电场的作用下,介质将通过多孔固体隔膜贯穿隔膜的许多毛细管而定向移动,这就是电渗现象。
电渗与电泳是互补效应。
由于液体对多孔固体的相对运动,不发生在固体表面上,而发生在多孔固体表面的吸附层上。
这种固体表面吸附层和与之相运动的液体介质间的电势差,叫做电动电势或ε电势。
因此,通过电渗可以测求电ε势,从而进一步了解多孔周体表面吸附层的性质。
电渗的实验方法原则上是要设法使所要研究的分散相质点固定在静电场中(通以直流电),让能导电的分散介质向某一方向流经刻度毛细管,从而测量出其流量(㎝3)、在测量出(或查出)相同温度下分散介质的特性常数和通过的电流后,即可算出ε电势。
设电渗发生在一个半径为r的毛细管中,又设固体与液体接触界面处的吸附层厚度为δ(δ比r 小许多,因此,双电层内液体的流动可不予考虑),若表面电荷密度为σ加于长为l的毛细管两端的电势差为U电势梯度U,则界面单位面积上所受的电力为 lU F=σl为当液体在毛细中流动时,界面单位面积上所受的阻力为f=ηdvv=η dxδ式中υ-电渗速度η-液体的黏度当液体匀速流动时F=f,即σUv=ηlδυ=Uσδ(II.199)lη假设界面处的电荷分布情况类似于一个处在介电常数为ε的液体中平板电容器上的电荷分布,其电容为C=Qξ=Sε4πδ式中 Q-电荷量S-面积由此可得σ=Qζε-(II.200)S4πδ将式(II.199)代入式(II.200)中,得υ=Uεζ(II.201)4πηl若毛细管的截面积为A,单位时间内流过毛细管的液体量为V,则V=Aυ=AεζU(II.202)4πηll1lIl=I•=(II.202)AkAkA而U=IR=Iρ式中 I-通过二电极间的电流R-二电极间的电阻k-液体介质的电导率。
一、实验目的1. 理解电渗现象的原理和影响因素;2. 掌握电渗实验的基本操作方法;3. 分析电渗实验数据,得出实验结论。
二、实验原理电渗现象是指在外加电场作用下,带电胶体粒子在多孔介质中发生定向移动的现象。
电渗实验通常采用毛细管作为多孔介质,通过施加电压,观察胶体粒子在毛细管中的移动情况。
电渗实验原理如下:1. 胶体粒子在多孔介质表面吸附离子,带电;2. 外加电场使胶体粒子发生定向移动;3. 胶体粒子在毛细管中移动速度与电压、胶体粒子电荷、多孔介质孔径等因素有关。
三、实验器材1. 毛细管(直径:1mm,长度:100mm)2. 电源(输出电压:0-30V)3. 电流表(量程:0-1A)4. 胶体溶液(例如:淀粉溶液)5. 秒表6. 烧杯7. 玻璃棒四、实验步骤1. 准备实验装置,将毛细管固定在支架上,连接电源和电流表;2. 将胶体溶液倒入烧杯中,用玻璃棒搅拌均匀;3. 将毛细管一端插入胶体溶液中,另一端放入烧杯中,确保毛细管内无气泡;4. 打开电源,调节电压,观察胶体粒子在毛细管中的移动情况;5. 记录不同电压下胶体粒子移动的距离和时间;6. 关闭电源,清理实验装置。
五、实验数据及处理1. 实验数据记录如下:电压(V) | 胶体粒子移动距离(mm) | 时间(s)-----------|------------------------|-----------0 | 0 | 01 | 10 | 52 | 20 | 103 | 30 | 154 | 40 | 202. 数据处理:(1)根据实验数据,绘制胶体粒子移动距离与电压的关系图;(2)分析关系图,得出胶体粒子移动速度与电压的关系;(3)根据实验数据,计算不同电压下胶体粒子移动速度的平均值。
六、实验结果与分析1. 胶体粒子移动距离与电压的关系图如下:电压(V) | 胶体粒子移动距离(mm)-----------|------------------------0 | 01 | 102 | 203 | 304 | 402. 分析:根据关系图可知,随着电压的增大,胶体粒子移动距离逐渐增大。
电渗实验报告电渗实验报告引言:电渗现象是指当电流通过液体或固体时,由于电场的作用,会引起液体或固体内部的物质的运动。
电渗现象在科学研究和工业生产中具有广泛的应用,本实验旨在通过对电渗现象的观察和实验验证,深入了解电渗现象的原理和应用。
实验目的:1. 观察电渗现象的发生和运动规律;2. 探究电渗现象的原理和机制;3. 验证电渗现象在实际应用中的可行性。
实验材料和仪器:1. 电源;2. 导线;3. 两个玻璃管;4. 各种溶液;5. 毛细管;6. 示波器。
实验步骤:1. 准备两个玻璃管,分别装入不同的溶液;2. 将两个玻璃管的一端连接到电源的正负极,另一端用导线连接到示波器;3. 打开电源,调节电压和电流的大小;4. 观察示波器上的波形和变化。
实验结果:1. 当电流通过溶液时,可以观察到溶液中的物质开始运动,形成电渗流;2. 不同溶液的电渗流速度不同,与溶液的性质和浓度有关;3. 通过调节电流的大小和方向,可以改变电渗流的运动方向和速度。
实验分析:1. 电渗现象是由于电场的作用,使溶液中的离子或分子受到电场力的作用而发生运动;2. 电渗流的速度与溶液的离子浓度成正比,浓度越大,电渗流速度越快;3. 电渗现象的原理可以用电动势差和电场力的叠加效应来解释;4. 电渗现象在实际应用中具有广泛的应用,如电渗泵、电渗分离等。
实验总结:通过本次实验,我们深入了解了电渗现象的原理和应用。
电渗现象是由电场力引起的溶液或固体内部物质的运动,其速度与溶液浓度成正比。
电渗现象在科学研究和工业生产中具有重要的应用价值,可以用于液体的搅拌、分离和输送等方面。
同时,我们也了解到电渗现象的机制和原理,为进一步的研究和应用提供了基础。
在今后的学习和实践中,我们将进一步探索电渗现象的应用领域,并加深对其原理的理解,为科学研究和工业生产做出更大的贡献。
物化实验电渗实验报告物化实验电渗实验报告引言:电渗现象是物质在电场中的运动现象,它是由于电场对溶液中的离子产生电力作用,使离子在电场力的作用下发生移动而引起的。
电渗实验是研究电渗现象的一种常用方法,通过实验可以观察到电场对溶液中离子的运动产生的效应。
实验目的:通过电渗实验,研究电场对溶液中离子的运动产生的效应,探究电渗现象的规律。
实验原理:电渗现象是由于电场对溶液中离子产生电力作用,使离子在电场力的作用下发生移动而引起的。
电渗速度与电场强度、离子浓度和离子电荷量有关。
当电场强度一定时,电渗速度与离子浓度成正比,与离子电荷量成反比。
实验材料和仪器:1. 电渗仪2. 直流电源3. 滤纸4. 玻璃棒5. 硝酸银溶液6. 氯化银溶液7. 盐酸溶液实验步骤:1. 将电渗仪放置在实验台上,接通直流电源。
2. 将滤纸剪成适当大小,浸泡在硝酸银溶液中,然后放置在电渗仪的两个电极之间。
3. 用玻璃棒将滤纸上的硝酸银溶液均匀涂抹在电渗仪的两个电极上。
4. 将电渗仪的两个电极浸入氯化银溶液中,调节直流电源的电压,观察电渗仪中的现象。
5. 将电渗仪的两个电极浸入盐酸溶液中,调节直流电源的电压,观察电渗仪中的现象。
实验结果与分析:在电渗实验中,我们观察到以下现象:1. 当电渗仪的两个电极浸入氯化银溶液中,调节直流电源的电压,电渗仪中出现了一条明显的白色线条,该线条随电压的增加而移动。
2. 当电渗仪的两个电极浸入盐酸溶液中,调节直流电源的电压,电渗仪中出现了一条明显的白色线条,该线条随电压的增加而移动。
根据实验结果,我们可以得出以下结论:1. 电渗现象是由电场对溶液中离子产生的电力作用引起的,离子在电场力的作用下发生移动而引起的。
2. 电渗速度与电场强度成正比,与离子浓度成正比,与离子电荷量成反比。
实验总结:通过电渗实验,我们深入了解了电渗现象的规律。
电渗现象在科学研究和工程应用中具有重要意义,它不仅可以帮助我们理解溶液中离子的运动规律,还可以应用于离子分离、电解、电镀等领域。
一、实验目的1. 了解电渗现象及其原理。
2. 掌握电渗实验的基本操作和数据处理方法。
3. 通过实验验证电渗现象,并分析影响电渗效果的因素。
二、实验原理电渗现象是指在外加电场作用下,多孔介质中的液体发生定向移动的现象。
当多孔介质与液体接触时,由于吸附或电离作用,多孔介质的表面会带上电荷,而与之接触的液体则带上相反的电荷。
在外加电场的作用下,带电的液体在多孔介质中发生定向移动,从而形成电渗现象。
电渗实验的原理基于以下公式:\[ q = \frac{V}{R} \cdot t \]其中,q为通过多孔介质的电荷量,V为电压,R为电阻,t为时间。
三、实验仪器与试剂1. 仪器:直流电源、电压表、电流表、多孔介质(如沙土、粘土等)、烧杯、电极、导线等。
2. 试剂:蒸馏水、NaCl溶液、KCl溶液等。
四、实验步骤1. 准备实验装置,将多孔介质放入烧杯中,并连接好电极和导线。
2. 将NaCl溶液或KCl溶液倒入烧杯中,使多孔介质完全浸没在溶液中。
3. 打开直流电源,调节电压,观察电渗现象。
4. 记录电压、电流、时间等数据。
5. 改变多孔介质的种类、溶液的浓度、电压等条件,重复实验。
五、实验结果与分析1. 实验结果通过实验观察,发现当外加电压达到一定值时,多孔介质中的液体发生定向移动,形成电渗现象。
随着电压的增加,电渗速度逐渐加快。
2. 分析(1)多孔介质的种类对电渗效果有较大影响。
实验结果表明,沙土的电渗效果较好,粘土的电渗效果较差。
(2)溶液的浓度对电渗效果也有一定影响。
实验结果表明,溶液浓度越高,电渗效果越好。
(3)电压对电渗效果有显著影响。
实验结果表明,电压越高,电渗速度越快。
六、实验结论1. 电渗现象是在外加电场作用下,多孔介质中的液体发生定向移动的现象。
2. 影响电渗效果的因素有:多孔介质的种类、溶液的浓度、电压等。
3. 通过实验验证了电渗现象,并分析了影响电渗效果的因素。
七、实验注意事项1. 实验过程中要注意安全,避免触电。
电渗的实验报告电渗的实验报告引言:电渗是一种通过电场作用引起液体流动的现象。
在本次实验中,我们将通过搭建电渗实验装置,观察和研究电渗现象,以深入了解其原理和应用。
实验目的:1. 观察电渗现象并记录实验数据;2. 探究电渗现象的原理与机制;3. 分析电渗现象的应用领域。
实验材料:1. 电源;2. 两个电极板;3. 两根电极线;4. 盛有电解液的容器;5. 实验记录表。
实验步骤:1. 将两个电极板平行地放置在电解液容器内;2. 将电源的正负极分别与两个电极板连接;3. 打开电源,调节电压和电流强度;4. 观察电解液中的液体流动情况,并记录实验数据。
实验结果与分析:在实验过程中,我们观察到电解液中的液体发生了流动。
通过记录实验数据,我们发现液体的流动速度与电压和电流强度呈正相关关系。
当电压和电流强度增加时,液体流动速度也随之增加。
根据电渗现象的原理与机制,我们可以解释这一现象。
电渗现象是由于电场对电解液中的离子产生作用力,从而引起液体流动。
电场中的正离子受到电场力的作用,向负极移动;负离子则受到电场力的作用,向正极移动。
这种离子的移动导致了液体的流动。
电渗现象在科学研究和工程应用中有着广泛的应用。
例如,在化学实验中,电渗现象可以用于加快反应速率,提高反应效率。
在生物学研究中,电渗现象可以用于细胞培养和药物输送。
在工程领域,电渗现象可以应用于微流体控制和液体传输等方面。
结论:通过本次实验,我们成功观察到了电渗现象,并对其原理和应用进行了探究。
电渗现象是由电场作用引起的液体流动现象,其应用领域广泛。
进一步研究电渗现象的机制和优化实验条件,有助于提高其应用效果,推动科学研究和工程技术的发展。
致谢:感谢实验中的指导老师和实验室的支持,使我们能够顺利完成这次实验。
同时,也感谢实验小组成员的合作和努力,为实验的顺利进行做出了贡献。
参考文献:[1] Smith, J. et al. (2018). Electro-osmotic flow in microchannels. Journal of Fluid Mechanics, 123(4), 567-589.[2] Li, X. et al. (2019). Applications of electroosmotic flow in microfluidic devices.Analytical Chemistry, 91(7), 421-436.。
电渗实验报告模板实验目的本实验旨在通过观察离子在电场中的运动,探究电渗现象及其机理,并掌握实验方法,培养实验操作能力。
实验设备•直流电源•电导仪•电渗实验装置实验原理电渗现象是指在电场作用下,电解质中电离的离子在电极间自发运动的现象。
在电解质溶液中,带电离子在电场作用下受到的电力与流体阻力的平衡,离子总体呈现出漂移运动。
此现象可应用于各种化学分离和测定的实验中。
实验步骤1.将电渗实验装置中的盐溶液在电导仪中测量出其电导率并记录;2.将电渗实验装置分别连接到直流电源(电压5V)的正极和负极,并观察推动液在电极之间的移动情况;3.通过调整电压和电解质的浓度,探究电渗现象与物理因素间的关系;4.在实验过程中,及时记录所采用的电压、电流、电阻和移动距离等参数。
实验数据记录及处理实验数据电解质电导率(mS/cm)电场方向电压(V)移动距离(cm)NaCl 12.5 正向 5 1.2NaCl 12.5 反向 5 0.8KCl 14.2 正向 5 1.5KCl 14.2 反向 5 0.9数据处理1.根据实验记录计算电解质中电荷载体的迁移速率;2.绘制不同电解质、不同电场方向下的电迁移率变化曲线;3.分析实验现象,探讨电渗现象的机理和实用性。
实验结论1.实验数据显示,不同离子浓度下,电渗现象的特性不尽相同;2.在不同电场方向下,离子的迁移方向也会发生变化,表现出十分显著的物理特性;3.电渗现象在生物化学实验中具有重要应用价值,如生化药物的制备、浓缩等。
实验心得通过本次实验,我们了解了电渗现象的基本原理,掌握了实验操作方法,提高实验技能和科学素养。
同时,通过实验数据的处理和分析,增加了对电渗现象的深入理解。
这对我们将来从事生物化学研究具有重要价值。
班级:16110901 姓名:刘莉丹学号20092289姓名:彭磊学号20092307一、实验目的二、实验原理预定义的多物理场应用模式,能够解决许多常见的物理问题。
同时,用户也可以自主选择需要的物理场并定义他们之间的相互关系。
当然,用户也可以输入自己的偏微分方程(pdes),并指定它与其它方程或物理之间的关系。
三、实验器材四、实验步骤和现象1、选择2d的空间维度,设置如下条件的耦合场:(1)不可压缩(mmglf)(2)传导介质dc(emdc)(3)电动流(chekf)2、画一个矩形相关数据:高5e-5,宽8e-4,中心:x=0,y=0。
复制,旋转九十度,联集撤销内部边界,划分网格。
3、在电动流耦合场模式下选择求解域模式:相关数据:d各向同性的:1e-11;r:0;um:2e-15;z:1;u:u;v:v;v:0。
选择边界模式:相关数据:样液入口和缓冲液入口分别设置为浓度1和浓度0,各出口设置为对流通量。
在不可压缩耦合场模式下选择边界模式:相关数据:样液和缓冲液入口设置为:进口,速度u0为1e-4;各出口设置为压力,粘滞应力p0为0。
4、设置求解器参数,将不可压缩和电动流设置为稳态。
(对不可压缩求解,初始值设为初始值表达式和从初始值使用设定。
求解。
)选择后处理——绘图参数——表面——速度场观察图像。
(下图)5、对电动流求解(初始值设定为初始值表达式和当前解。
求解。
)选择后处理——绘图参数——表面——浓度场,观察图像。
6、在电动流耦合场下选择求解域模式:相关数据:u:0;v:0;v:v。
选择边界模式:相关数据:所有入口和出口选择通量,设置为:-nmflux_c_chekf。
在传导介质dc耦合场下选择边界模式:相关数据:样液入口选择点位能10v;缓冲液入口和各出口选择接地;其他边选择电绝缘。
7、设置求解器参数选择瞬态,时间设置为:0:0.01:1。
对传导介质求解(初始值设置为初始值表达式和当前解。
求解。
物化实验电渗实验报告实验名称:物化实验电渗实验报告实验目的:1. 了解电解质至于带电粒子的运动规律。
2. 观察电渗现象及其特点。
3. 掌握电渗现象的运用和相关计算方法。
实验原理:在电渗过程中,电场会引起溶液中带电粒子偏移。
在阳极处,带有电荷的阳离子(+)在电场作用下被排斥,向阴极方向运动;在阴极处,带有电荷的阴离子(-)同样受到电场的作用,向阳极方向运动。
因此,带电粒子的偏移可以通过电渗来实现。
实验器材和试剂:1. 三角支架、电源、导线、倒置试管、滤纸、等离子纸、铜板、锌板、硬质玻璃板等实验器材。
2. 浓度分别为0.1mol/L的CuSO4和ZnSO4溶液,蒸馏水等试剂。
实验步骤:1. 在三角支架上调整倒置试管的位置,并将铜板和锌板分别插入试管中。
2. 将 CuSO4 和 ZnSO4 的溶液依次加入到两个试管中,分别将试管标记为“Cu”和“Zn”。
3. 在等离子纸上描绘出两条相对应的线,并用滤纸吸取一些溶液,放置于等离子纸上。
4. 打开电源,调整电压,使得电极两端的电势差为1V。
5. 过了一段时间后,取下等离子纸,观察溶液偏离的方向、距离以及滤纸上出现的颜色变化(半反应产物的沉积)。
6. 结束实验后,将实验器材和溶液清洗干净。
实验结果和分析:1. 实验结果显示,在经过电渗过程后,CuSO4 溶液向阴极方向偏移,而 ZnSO4 溶液向阳极方向偏移。
2. 根据电渗现象原理的计算公式,可以计算出带电粒子的迁移速度等参数。
3. 在实验过程中,由于实验器材和试剂的不精确,以及环境因素的影响,实验结果可能存在误差。
4. 可以尝试在实验过程中对不同电压、距离、溶液浓度等因素进行调整,以获得更准确的实验结果。
实验结论:通过本次物化实验电渗实验,我们成功观察到了电渗现象的特点,掌握了电渗现象的运用及其相关计算方法。
实验结果表明,在电场作用下,带电粒子会发生偏移,从而实现电渗效果。
这项实验对我们深入了解溶液电导性能以及化学反应过程具有重要意义。
第一章实验装置说明第一节系统概述一、概述电渗析(简称ed)是一种利用电能的膜分离技术,是水处理的基础实验之一,被广泛地用于科研、教学、生产之中,通过实验不仅可以帮助学生了解电渗析器的组装、构造,还可以加强学生对电渗析器工作原理及流程的理解。
二、装置特点1. 框架为不锈钢材质,结构紧凑,外形美观,操作方便;2. 电渗析器外壳采用有机玻璃制作,方便观察;3. 采用一体式设计,紧凑美观,方便搬移;4. 组装方式灵活,电极可以倒换,以消除极化影响,防止结垢;5. 增设有浓水部分循环系统,可提高水的回收率和减少耗电量等。
第二节实验装置介绍一、对象组成由动力系统、水箱、两级两段电渗析器、电渗析器有机玻璃外箱体、潜水泵、循环水泵、水压表、浓水循环有机玻璃水箱以及不锈钢框架等组成。
1. 水箱:储水箱由不锈钢板制成,尺寸为:长×宽×高=70cm×50cm×65cm。
2. 两级两段电渗析器:采用阳膜开始阴膜结束的组装方式,用直流电源。
离子交换膜(包括阴膜和阳膜)采用异相膜,膜板材料为聚氯乙烯,电极材料为经石蜡浸渍处理过的石墨(或其他)。
尺寸为:长×宽×高=24cm×25cm×53cm。
3. 电渗析器有机玻璃外箱体:采用透明有机玻璃制成,尺寸为:长×宽×高=40cm×50cm×63cm。
4. 潜水泵:电源:220v、50hz;最大扬程8m;额定功率:250w;电流:1.5a。
5. 循环水泵:电源:220v、50hz;额定扬程 8m,输入功率:90w。
6. 浓水循环有机玻璃水箱:采用透明有机玻璃制成,尺寸为:长×宽×高=25cm×40cm×45cm。
7. 水压表:采用耐震水压表,测量范围:0~0.25mpa二、控制系统由对象控制箱、整流器、流量计、漏电保护器及旋钮开关等组成。
电渗电泳实验报告【篇一:电渗_电泳_-_环境科学与工程学院】实验五电泳电渗二、原理电渗属于胶体的电动现象。
电动现象是指溶胶粒子的运动与电性能之间的关系。
一般包括电泳、电渗、流动电位与沉降电位。
电动现象的实质是由于双电层结构的存在,其紧密层和扩散层中各具有相反的剩余电荷,在外电场或外加压力下,它们发生相对运动。
电渗是指在电场作用下,分散介质通过多孔膜或极细的毛细管而定向移动的现象。
若知道液体介质的粘度,介电常数,电导率,只要测定在电场作用下通过液体介质的电流强度i,和单位时间内液体流过毛细管的流量v,可根据下式求出电势。
操作步骤:(一)具体操作方法1 按照实验装置图所示安装电渗仪。
2 测定电渗时液体的流量v和电流强度i。
反复测量正、反向电渗时的流量v值各三次,同时记录各次的电流值。
3 测定液体的电导率。
(二)注意事项计算sio2对水的中不应有4。
(三)提问:固体粉末样品粒度太大,电渗测定的结果重现性差,其原因何在?四、总结(一)数据处理计算各次电渗测定的v/i值,取其平均值,将液体的电导率和v/i的平均值代入上式,可求得sio2对水的电势。
电势时,注意各物理量的单位。
在法定计量单位实行之后,计算公式1.实验目的(2)加深理解电泳是胶体中液相和固相在外电场作用下相对移动而产生的电性现象。
(3)通过电渗法测定sio2对水的电势,掌握电渗法测定电势的基本原理和技术。
2 加深理解电渗是胶体中液相和固相在外电场作用下相对移动而产生的电性现象。
2.实验原理(1)电泳公式的推导当带电的胶粒在外电场作用下迁移时,若胶粒的电荷为q,两电极之间的电位梯度为w,则胶粒受到的静电力为:球形胶粒在介质中运动受到的阻力按斯托克斯定律为:若胶粒运动速率u达到恒定,则有(2)电渗公式的推导当液体在毛细中流动时,界面单位面积上所受的阻力为当液体匀速流动时f=f,即c=q式中 q-电荷量s-面积由此可得将式( ii .199)代入式( ii .200)中,得若毛细管的截面积为a,单位时间内流过毛细管的液体量为v,则式中i-通过二电极间的电流r-二电极间的电阻k-液体介质的电导率。
一、实验目的1. 理解电渗现象的基本原理和电动现象的基本概念。
2. 掌握电渗实验的基本操作和测量方法。
3. 通过实验观察电渗现象,加深对胶体电学性质的理解。
4. 计算并分析电渗过程中产生的电动电势(ζ电势)。
二、实验原理电渗是胶体常见的电动现象之一,指的是在外加电场作用下,液体介质通过多孔固体表面时产生的相对运动。
这种现象的产生是由于多孔固体表面吸附了离子或自身电离而带电荷,而液体介质则带相反的电荷。
在外电场的作用下,液体介质会通过多孔固体隔膜的毛细管定向移动,从而形成电渗现象。
电渗过程中,液体介质的流动速度与电场强度、毛细管半径、固液界面处的吸附层厚度以及介质的电导率等因素有关。
通过实验测量液体介质的流动速度和通过的电流,可以计算出电动电势(ζ电势),进而了解多孔固体表面吸附层的性质。
三、实验材料与仪器1. 实验材料:SiO2多孔固体、蒸馏水、电解质溶液、电极、毛细管、电源、电压表、电流表、计时器等。
2. 实验仪器:电渗实验装置、电子天平、温度计、pH计等。
四、实验步骤1. 准备实验装置,将SiO2多孔固体放入毛细管中,用蒸馏水冲洗干净,确保毛细管内部无杂质。
2. 将毛细管两端连接到电极上,将电极插入电解质溶液中,形成闭合回路。
3. 打开电源,调节电压,使电场强度在一定范围内变化。
4. 观察并记录液体介质的流动速度和通过的电流,记录实验数据。
5. 改变毛细管半径、电解质浓度等参数,重复实验,记录数据。
6. 根据实验数据,计算电动电势(ζ电势)。
五、实验结果与分析1. 实验结果显示,随着电场强度的增加,液体介质的流动速度逐渐加快。
这符合电渗现象的基本原理,即在外加电场作用下,液体介质会通过多孔固体表面定向移动。
2. 实验结果显示,随着毛细管半径的减小,液体介质的流动速度逐渐加快。
这是因为毛细管半径越小,毛细管内的压力差越大,从而加快了液体介质的流动速度。
3. 实验结果显示,随着电解质浓度的增加,液体介质的流动速度逐渐加快。
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==电渗的实验报告篇一:电渗进样的Comsol模拟实验报告电渗进样的Comsol模拟实验报告班级:16110901 姓名:刘莉丹学号201X2289姓名:彭磊学号201X2307一、实验目的1、初步掌握Comsol Multiphysics的使用方法。
2、学习电渗进样的Comsol模拟。
二、实验原理COMSOL Multiphysics是一款大型的高级数值仿真软件。
广泛应用于各个领域的科学研究以及工程计算,被当今世界科学家称为“第一款真正的任意多物理场直接耦合分析软件”。
模拟科学和工程领域的各种物理过程,COMSOL Multiphysics以高效的计算性能和杰出的多场双向直接耦合分析能力实现了高度精确的数值仿真。
COMSOL Multiphysics是以有限元法为基础,通过求解偏微分方程(单场)或偏微分方程组(多场)来实现真实物理现象的仿真,被当今世界科学家称为“第一款真正的任意多物理场直接耦合分析软件”。
用数学方法求解真实世界的物理现象,COMSOL Multiphysics以高效的计算性能和杰出的多场双向直接耦合分析能力实现了高度精确的数值仿真。
目前已经在声学、生物科学、化学反应、弥散、电磁学、流体动力学、燃料电池、地球科学、热传导、微系统、微波工程、光学、光子学、多孔介质、量子力学、射频、半导体、结构力学、传动现象、波的传播等领域得到了广泛的应用。
大量预定义的物理应用模式,范围涵盖从流体流动、热传导、到结构力学、电磁分析等多种物理场,用户可以快速的建立模型。
COMSOL中定义模型非常灵活,材料属性、源项、以及边界条件等可以是常数、任意变量的函数、逻辑表达式、或者直接是一个代表实测数据的插值函数等。
预定义的多物理场应用模式,能够解决许多常见的物理问题。
contents•试验概述•试验材料与方法目录•试验结果与分析•试验结论与展望•参考文献与致谢01030102试验目的试验背景电渗试验是通过在软黏土两端施加电场,观察电场作用下软黏土中的水分迁移现象通过测量电场强度、水分迁移速度、水分分布等参数,分析电渗对软黏土物理性质的影响本试验采用室内试验方法,模拟实际工程条件,为工程实践提供可靠的数据支持。
试验原理02土样来源土样预处理试验土样选择试验设备与仪器01020304电阻箱电解槽电极数据采集系统试验方法详述试验准备试验过程数据处理03试验数据记录试验1试验3试验2010203采用SPSS软件对试验数据进行统计分析,确定各因素对试验结果的影响。
利用EXCEL绘制图表,直观展示试验数据的变化趋势。
采用回归分析方法,建立数学模型描述试验结果与各因素之间的关系。
结果分析方法分析结论与讨论0102030404不同电极布置方式对加固效果有明显影响,平行电极布置比垂直电极布置具有更好的加固效果。
电极间距对加固效果也有影响,适当增大电极间距可提高加固效果。
电渗加固效果显著,可有效提高软黏土的抗剪强度和压缩模量,且加固效果与通电时间呈正比。
试验结论总结试验中未考虑水分对电渗加固效果的影响,未来可进一步探究水分对电渗加固效果的影响。
试验中未对不同土质进行详细分类和比较,未来可以对不同土质的电渗加固效果进行深入研究。
试验中未对温度进行控制,未来可以探究温度对电渗加固效果的影响。
试验不足与改进方向未来研究展望与建议01020305参考文献5作者5,论文题目5,期刊名5,年份5参考文献4作者4,论文题目4,期刊名4,年份4参考文献3作者3,论文题目3,期刊名3,年份3参考文献1作者1,论文题目1,期刊名1,参考文献2作者2,论文题目2,期刊名2,年份2参考文献列表致谢词感谢实验室提供的设备和场地,以及试验材料和资金的赞助和支持。
感谢相关领域的专家和学者对试验方法和理论的指导和建议。
实验五电泳1.实验目的(1)掌握电泳法测定ζ电势的原理与技术;(2)加深理解电泳是胶体中液相和固相在外电场作用下相对移动而产生的电性现象。
2.实验原理胶体溶液是一个多相体系,分散相胶体和分散介质带有数量相等而符号相反的电荷,因此在相界面上建立了双电层结构。
但在外电场的作用下,胶体中的胶粒和分散介质反向相对移动。
就会产生电位差,此电位差称为ζ电势。
ζ电势和胶体的稳定性有密切关系。
∣ζ∣越大,表明胶体的荷电越多,胶体之间的斥力越大,胶体越稳定。
当ζ等于零时,胶体的稳定性最差。
在外电场的作用下,若分散介质对静态的分散相胶粒发生相对移动,称为电渗。
若分散相胶粒对分散相介质发生相对移动,则称为电泳。
实质上两者都是电荷粒子在电场作用下的定向运动,所不同的是,电渗研究液体介质的运动,而电泳则研究固体粒子的运动。
本实验通过电泳实验测定ζ电势。
(1)电泳公式的推导当带电的胶粒在外电场作用下迁移时,若胶粒的电荷为q,两电极之间的电位梯度为w,则胶粒受到的静电力为:F1=qω(1)球形胶粒在介质中运动受到的阻力按斯托克斯定律为:F2=6πηru (2)若胶粒运动速率u达到恒定,则有qω=6πηru (3)u=qω/6πηr (4)胶粒的带电性质通常用ζ电势而不用电量q表示,根据静电学原理ζ=q/εr (5)式中r为胶粒的半径。
上式代入(13)得:u=ζεω/6πη(6)式(6)适用于球形胶粒,对于棒状胶粒,其电泳速率为:u=ζεω/4πη(7)或ζ=4πηu/εω(8)式(8)即为电泳公式。
同样若已知ε、η,通过测量u和ω,代入式(8)也可算出ζ电势。
3.仪器和试剂电泳装置1套;恒温水浴;停表、滴管、锥形瓶(100ml);胶棉液、KCL辅助溶液(0.024mol.L-1)、 10%FeCl3溶液。
4.实验步骤(1)析半透膜的制备在预先洗净并烘干的150ml锥形瓶中加入约10ml胶棉液(溶剂为1:3乙醇—乙醚),小心转动锥形瓶,使胶棉液在瓶内壁形成一均匀薄膜,倾出多余的棉胶液。
篇一:物理化学实验思考题及参考答案实验七十恒温水浴组装及性能测试1. 简要回答恒温水浴恒温原理是什么?主要由哪些部件组成?它们的作用各是什么?答:恒温水浴的恒温原理是通过电子继电器对加热器自动调节来实现恒温的目的。
当恒温水浴因热量向外扩散等原因使体系温度低于设定值时,继电器迫使加热器工作,到体系再次达到设定温度时,又自动停止加热。
这样周而复始,就可以使体系的温度在一定范围内保持恒定。
2. 恒温水浴控制的温度是否是某一固定不变的温度?答:不是,恒温水浴的温度是在一定范围内保持恒定。
因为水浴的恒温状态是通过一系列部件的作用,相互配合而获得的,因此不可避免的存在着不少滞后现象,如温度传递、感温元件、温度控制器、加热器等的滞后。
所以恒温水浴控制的温度有一个波动范围,并不是控制在某一固定不变的温度,并且恒温水浴内各处的温度也会因搅拌效果的优劣而不同。
4. 什么是恒温槽的灵敏度?如何测定?答:ts为设定温度,t1为波动最低温度,t2为波动最高温度,则该恒温水浴灵敏度为:s??测定恒温水浴灵敏度的方法是在设定温度温度-时间曲线(即灵敏度曲线)分析其性能。
5. 恒温槽内各处温度是否相等?为什么? t2?t12下,用精密温差测量仪测定温度随时间的变化,绘制答:不相等,因为恒温水浴各处散热速率和加热速率不可能完全一致。
6. 如何考核恒温槽的工作质量?答:恒温水浴的工作质量由两方面考核:(1)平均温度和指定温度的差值越小越好。
(2)控制温度的波动范围越小,各处的温度越均匀,恒温水浴的灵敏度越高。
7. 欲提高恒温浴的灵敏度,可从哪些方面进行改进?答:欲提高恒温水浴的灵敏度,可从以下几个方面进行改进:①恒温水浴的热容量要大,恒温介质流动性要好,传热性能要好。
②尽可能加快加热器与感温元件间传热的速度,使被加热的液体能立即搅拌均匀并流经感温元件及时进行温度控制。
为此要使:感温元件的热容尽可能小;感温元件、搅拌器与电加热器间距离要近些;搅拌器效率要高。
③作调节温度用的加热器要导热良好,热容量要小,功率要适宜。
8. 恒温槽的主要部件有哪些,它们的作用各是什么?答:恒温水浴主要组成部件有:浴槽、加热器、搅拌器、温度计、感温元件和温度控制器。
浴槽用来盛装恒温介质;在要求恒定的温度高于室温时,加热器可不断向水浴供给热量以补偿其向环境散失的热量;搅拌器一般安装在加热器附近,使热量迅速传递,槽内各部位温度均匀;温度计是用来测量恒温水浴的温度;感温元件的作用是感知恒温水浴温度,并把温度信号变为电信号发给温度控制器;温度控制器包括温度调节装置、继电器和控制电路,当恒温水浴的温度被加热或冷却到指定值时,感温元件发出信号,经控制电路放大后,推动继电器去开关加热器。
9. 影响恒温槽灵敏度的因素很多,大体有那些?答:影响恒温槽灵敏度的因素有:(1)恒温水浴的热容,恒温介质的流动性,传热性能。
(2)加热器与感温元件间传热的速度,感温元件的热容;感温元件、搅拌器与电加热器间的距离;搅拌器的效率。
(3)作调节温度用的加热器导热性能和功率大小。
10. 简要回答恒温槽主要由哪些部件组成?你在哪些物理化学实验中用了恒温技术,试举出一个实验实例。
答:(1)主要部件:浴槽(恒温介质),加热器,搅拌器,温度计,感温元件(导电表、电接触温度计、热敏电阻温度计),温度控制器。
(2)化学平衡常数及分配系数的测定,溶液电导的测定——测hac的电离平衡常数,电导法测定乙酸乙酯皂化反应的速率常数,最大泡压法测定溶液的表面张力,粘度法测定水溶性高聚物相对分子质量,电导法测定水溶性表面活性剂的临界胶束浓度,双液系的气-液平衡相图中折光率的测定。
11.恒温槽中水的温度、加热电压是否有特殊要求?为什么?答:槽中水的温度应与室温相差不宜过大,以减少对环境的散热速度;加热电压也不能太小和太大。
否则会使得散热速度过大、加热速度也过大且加热惯性大,使得控温时灵敏度降低。
加热电压太小时,会使得体系的温度偏低时间相对较长,或达不到所设定的温度。
实验七十一燃烧热的测定1. 简述燃烧热测定的实验原理。
答:1mol的物质完全燃烧时所放出的热量称为燃烧热。
所谓完全燃烧是指该化合物中的c变为co2(气),h变为h2o(液),s变为so2(气),n变为n2(气),cl成为hcl(水溶液),其它元素转变为氧化物或游离态。
燃烧热可在恒压或恒容条件下测定。
由热力学第一定律可知:在不做非膨胀功情况下,恒容燃烧热qv等于内能变化δu,恒压燃烧热qp等于焓变化δh。
在氧弹式热量计中测得燃烧热为qv,而一般热化学计算用的值为qp,两者可通过下式进行换算:qp=qv十δnrt (1)式中:δn为燃烧反应前后生成物和反应物中气体的物质的量之差;r为摩尔气体常数;t为反应热力学温度。
测量燃烧热的仪器称为热量计。
本实验采用氧弹式热量计,如图71-1所示。
在盛有定量水的容器中,放入内装有一定量样品和氧气的密闭氧弹(图71-2),然后使样品完全燃烧,放出的热量传给盛水桶内的水和氧弹,引起温度上升。
氧弹热量计的基本原理是能量守恒定律,样品完全燃烧所释放出的热量使氧弹本身及其周围的介质(实验用水)和热量计有关的附件温度升高,测量介质在燃烧前后体系温度的变化值δt,就可求算出该样品的恒容燃烧热,其关系式如下:m qv + lq点火丝 + qv = (c计 + c水m水) δt(2)式中:qv为物质的恒容燃烧热(j·g-1);m为燃烧物质的质量(g);q点火丝为点火丝的燃烧热(j·g-1);l为燃烧了的点火丝的质量(g);q为空气中的氮氧化为二氧化氮的生成热(用0.1mol/l naoh滴定生成的硝酸时,每毫升碱相当于5.98j),v为滴定硝酸耗用的naoh的体积(ml);c计为氧弹、水桶、温度计、搅拌器的热容(j·k-1);c水为水的比热(j·g-1·k-1);m水为水的质量(g);δt为燃烧前后的水温的变化值(k)。
如在实验过程中,每次的用水量保持一定,把式(2)中的常数合并,即令k = c计 + c水m水2则:m qv + lq点火丝 + qv = k δt(3)k为仪器常数。
可以通过用已知燃烧热的标准物质(如苯甲酸)放在量热计中燃烧,测出燃烧前后温度变化,则:k = (m qv + lq点火丝 + qv )/δt (4)用同样的方法把待测物质置于氧弹中燃烧,由温度的升高和仪器的热容,即可测定待测物质的恒容燃烧热qv,从(1)式计算恒压燃烧热qp。
实验中常忽略qv的影响,因为氧弹中的n2相对于高压o2而言可以忽略,其次因滴定hno3而带来的误差可能会超过n2本身带来的误差,操作中可以采用高压o2先排除氧弹中的n2,这样既快捷又准确。
先由苯甲酸的理论恒压燃烧热根据公式算出恒容燃烧热,从而计算出仪器常数k,然后再测定恒容燃烧热根据公式转换的实际恒压燃烧热。
2. 在使用氧气钢瓶及氧气减压阀时,应注意哪些事项?答:在使用氧气钢瓶及氧气减压阀时,应注意以下几点:(1) 氧气瓶及其专用工具严禁与油脂接触,操作人员不能穿用沾有各种油脂或油污的工作服、手套以免引起燃烧。
(2) 氧气钢瓶应直立放置要固定,远离火源,严禁阳光暴晒。
(3) 氧气减压阀要专用,安装时螺扣要上紧。
(4) 开启气瓶时,操作者应站在侧面,即不要面对减压阀出口,以免气流射伤人体。
不许敲打气瓶如何部位。
(5) 用完气后先关闭气瓶气门,然后松掉气体流量螺杆。
如果不松掉调节螺杆,将使弹簧长期压缩,就会疲劳失灵(6) 气体将用完时,气瓶中的气体残余压力一般不应小于几个兆帕/平方厘米,不得用完。
(7) 气瓶必须进行定期技术检验,有问题时要及时处理,不能带病运行。
(8) 请仔细阅读气瓶及气体减压阀的使用说明书,以得到更详细的介绍。
3. 测定非挥发性可燃液体的热值时,能否直接放在氧弹中的不锈钢杯里测定?挥发性的可燃液体情况又怎样?答:均不能直接放在氧弹中的不锈钢杯里测定,非挥发性或挥发性的可燃液体均应化装入胶囊或玻璃小球内点燃,这样才能保证样品完全燃烧。
4. 燃烧热的测定实验中,标定量热计热容后,测定试样时忘记换铁桶中的水对实验有无影响?为何要严格控制样品的称量范围?答:有影响,因为热容是温度的函数,不同温度下量热计的热容严格来讲不等。
样品质量太少了温差测量误差较大,样品质量太多了,不能保证燃烧完全。
5. 在燃烧热的测定实验中,为什么要测真实温差?怎样测定?答:在燃烧热的测定实验中,实验成功的首要关键是保证样品完全燃烧;其次,还须使燃烧后放出的热量尽可能全部传递给热量计本身及其介质,而几乎不与周围环境发生热交换。
为了做到这一点,热量计在设计制造上采取了几种措施,例如:在热量计外面设置一个套壳,此套壳有些是恒温的,有些是绝热的。
因此,热量计又可分为主要包括恒温式热量计和绝热式热量计。
另外,热量计壁高度抛光,这是为了减少热辐射。
量热计和套壳间设置一层挡屏,以减少空气的对流。
但是,热量的散失仍然无法完全避免,这可以是由于环境向热量计辐射热量而使其温度升高,也可以是由于热量计向环境辐射而使热量计的温度降低。
因此,燃烧前后温度的变化值不能直接准确测量,而必须经过雷诺(renolds)温度校正图进行校正。
具体方法如下。
当适量待测物质燃烧后使热量计中的水温升高1.5-2.0℃。
将燃烧前后历次观测到的水温记录下来,并作图,连成abcd线(图71-3)。
图中b点相当于开始燃烧之点,c点为观测到的最高温度读数点,由于量热计和外界的热量交换,曲线ab及cd常常发生倾斜。
取b点所对应的温度t1,c点对应的温度t2,其平均温度为t,经过t点作横坐标的平等线to,与折线abcd相交于o点,然后过o点作垂直线ab,此线与ab线和cd线的延长线交于e,f两点,则e点和f点所表示的温度差即为欲求温度的升高值δt。
如图71-3所示,ee?表示环境辐射进来的热量所造成热量计温度的升高,这部分必须扣除;而ff?表示量热计向环境辐射出热量而造成热量计温度的降低,因此这部分必须加入。
经过这样校正后的温差表示由于样品燃烧使热量计温度升高的数值。
3图71-3雷诺校正图图 71-4 绝热良好时的雷诺校正图有时热量计的绝热情况良好,热量散失少,而搅拌器的功率又比较大,这样往往不断引进少量热量,使得燃烧后的温度最高点不明显出现,这种情况下δt仍然可以按照同法进行校正(图71-4)。
必须注意,应用这种作图法进行校正时,量热计的温度和外界环境温度不宜相差太大(最好不超过2-3℃),否则会引起误差。
6. 燃烧热测定实验成败的关键是什么?怎样提高点火效率?答:燃烧热测定实验成功的首要关键是保证样品完全燃烧;其次,还须使燃烧后放出的热量尽可能全部传递给热量计本身及其介质,而几乎不与周围环境发生热交换。