磁场强化题
- 格式:ppt
- 大小:1.41 MB
- 文档页数:52
磁场练习题1.下列说法中正确的是 ( ) A.磁感线可以表示磁场的方向和强弱B.磁感线从磁体的N 极动身,终止于磁体的S 极C.磁铁能产生磁场,电流也能产生磁场D.放入通电螺线管内的小磁针,依据异名磁极相吸的原则,小磁针的N 极肯定指向通电螺线管的S 极2.关于磁感应强度,下列说法中错误的是 ( ) A.由B =ILF可知,B 与F 成正比,与IL 成反比 B.由B=ILF可知,一小段通电导体在某处不受磁场力,说明此处肯定无磁场 C.通电导线在磁场中受力越大,说明磁场越强 D.磁感应强度的方向就是该处电流受力方向3.关于磁场和磁感线的描述,正确的说法是 ( ) A 、磁感线从磁体的N 极动身,终止于S 极B 、磁场的方向就是通电导体在磁场中某点受磁场作用力的方向C 、沿磁感线方向,磁场渐渐减弱D 、在磁场强的地方同一通电导体受的安培力可能比在磁场弱的地方受的安培力小 4.首先发觉电流磁效应的科学家是( )A. 安培B. 奥斯特C. 库仑D. 伏特 5.两根长直通电导线相互平行,电流方向相同.它们的截面处于一个等边三角形ABC 的A 和B 处.如图所示,两通电导线在C 处的磁场的磁感应强度的值都是B ,则C 处磁场的总磁感应强度是( )A.2BB.BC.0D.3B6.如图所示为三根通电平行直导线的断面图。
若它们的电流大小都相同,且ab=ac=ad ,则a 点的磁感应强度的方向是 ( ) A. 垂直纸面指向纸里B. 垂直纸面指向纸外C. 沿纸面由a 指向bD. 沿纸面由a 指向d7.如图所示,环形电流方向由左向右,且I 1 = I 2,则圆环中心处的磁场是( )A.最大,穿出纸面B.最大,垂直穿出纸面C.为零D.无法确定8.如图所示,两个半径相同,粗细相同相互垂直的圆形导线圈,可以绕通过公共的轴线xx′自由转动,分别通以相等的电流,设每个线圈中电流在圆心处产生磁感应强度为B,当两线圈转动而达到平衡时,圆心O处的磁感应强度大小是()(A)B (B)2B (C)2B (D)0磁场对电流的作用1.关于垂直于磁场方向的通电直导线所受磁场作用力的方向,正确的说法是( )A.跟电流方向垂直,跟磁场方向平行B.跟磁场方向垂直,跟电流方向平行C.既跟磁场方向垂直,又跟电流方向垂直D.既不跟磁场方向垂直,又不跟电流方向垂直2.如图所示,直导线处于足够大的匀强磁场中,与磁感线成θ=30°角,导线中通过的电流为I,为了增大导线所受的磁场力,可实行下列四种方法,其中不正确的是( )A.增大电流IB.增加直导线的长度C.使导线在纸面内顺时针转30°D.使导线在纸面内逆时针转60°3.如图所示,长为L的直导线在竖直方向的磁场B中,且与水平面的夹角为α,通以电流I则所受的磁场力是______.4.如图所示,在垂直于纸面的磁场B中,通有电流I的导线长为L,与水平方向夹角为α,则这根通电导线受到的安培力是______.5.在两个倾角均为α光滑斜面上,放有一个相同的金属棒,分别通有电流I1和I2,磁场的磁感强度大小相同,方向如图中所示,两金属棒均处于平衡状态,则两种状况下的电流强度之比I1:I2为6.直导线ab与线圈的平面垂直且隔有一小段距离,其中直导线固定,线圈可自由运动,当通过如图所示的电流方向时(同时通电),从左向右看,线圈将( )A.不动B.顺时针转动,同时靠近导线C.顺时针转动,同时离开导线D.逆时针转动,同时靠近导线7.如图所示,有一通电导线放在蹄形磁铁磁极的正上方,导线可以自由移动,当导线通过电流I时,从上往下看,导线的运动状况是( )A.顺时针方向转动,同时下降B.顺时针方向转动,同时上升C.逆时针方向转动,同时下降D.逆时针方向转动,同时上升8.有两个相同的圆形线圈,通以大小不同但方向相同的电流,如图所示,两个线圈在光滑的绝缘杆上的运动状况是( )A.相互吸引,电流大的加速度较大B.相互排斥,电流大的加速度较大C.相互吸引,加速度相同D.以上说法都不正确9.如图所示,一根长直导线穿过有恒定电流的金属环的中心且垂直圆环的平面。
磁场强度测试题磁场强度是指磁场的大小和强度。
在物理学中,磁场强度的测量十分重要,它能够帮助我们了解磁场的性质以及与之相关的物理现象。
本文将介绍一些与磁场强度相关的测试题,以帮助你对磁场强度有更深入的理解。
题一:一个长直导线中有电流流过,电流大小为I,求在离导线距离为d的地方,磁场的大小。
解析:根据安培定律,我们知道长直导线产生的磁场强度大小与电流I和距离d成反比。
具体公式为:B=μ0×I/2πd,其中,B为磁场强度,μ0是真空中的磁导率,其值为4π×10^-7 Tm/A。
因此,根据题目中给出的条件,可以直接代入计算。
题二:一个长直导线中有电流流过,距离导线为r的地方,磁场的方向与大小如何?解析:根据安培定律,我们知道长直导线产生的磁场呈现环绕导线的形式。
对于距离导线最近的一侧,磁场方向向外;对于距离导线最远的一侧,磁场方向向内。
此外,根据比例关系,距离导线越远,磁场强度越小。
因此,在题目给出的条件下,磁场的方向向内,大小与距离r成反比。
题三:一个螺线管上有电流流过,如何测量其产生的磁场强度?解析:测量螺线管产生的磁场强度可以使用霍尔效应进行。
霍尔效应是指当沿着一条导电材料通过电流时,垂直于导电材料的方向上会形成一种电势差,该电势差与磁场强度成正比。
通过测量这种电势差,我们可以得到螺线管产生的磁场强度大小。
题四:一个磁感应强度为B的均匀磁场中,一段长为L的导线横跨其中,导线中有电流流过,求导线所受的安培力大小。
解析:根据洛伦兹力公式,我们知道导线所受的安培力与电流I、导线长度L以及磁感应强度B的乘积成正比。
具体公式为:F=B×I×L。
因此,在题目给出的条件下,可以直接代入计算。
通过以上测试题,我们能够更好地理解和掌握磁场强度的相关概念和计算方法。
磁场强度的测量与运用在工业生产和科学研究中有着广泛的应用,希望本文所提供的测试题能够对你的学习和实践有所帮助。
(每日一练)(文末附答案)2022届高中物理磁场真题单选题1、如图,半径为R的圆形区域内有方向垂直于纸面向里的匀强磁场,某质量为m、带电量为q的粒子从圆上P 点沿半径方向以速度v0射入匀强磁场,粒子从Q点飞出,速度偏转角为60°现将该粒子从P点以另一速度沿半径方向射入匀强磁场,粒子离开磁场时,速度偏转角为120°,不计粒子重力,则()A.该粒子带正电B.匀强磁场的磁感应强度为√3mv02qRC.该粒子第二次射入磁场的速度为v02D.该粒子第二次在磁场中运动的时间为2√3πR3v02、如图,长为2l的直导线拆成边长相等,夹角为60∘的V形,并置于与其所在平面相垂直的匀强磁场中,磁感应强度为B,当在该导线中通以电流强度为I的电流时,该V形通电导线受到的安培力大小为A .0B .0.5BIlC .BIlD .2BIl3、一对平行金属板中存在匀强电场和匀强磁场,其中电场的方向与金属板垂直,磁场的方向与金属板平行且垂直纸面向里,如图所示。
一质子(H 11)以速度v 0自O 点沿中轴线射入,恰沿中轴线做匀速直线运动。
下列粒子分别自O 点沿中轴线射入,能够做匀速直线运动的是( )(所有粒子均不考虑重力的影响)A .以速度v02的射入的正电子(e 10)B .以速度v 0射入的电子(e −10)C .以速度2v 0射入的核(H 12)D .以速度4v 0射入的a 粒子(H 14e )4、如右图,水平桌面上放置一根条形磁铁,磁铁中央正上方用绝缘弹簧悬挂一水平直导线,并与磁铁垂直。
当直导线中通入图中所示方向的电流时,可以判断出( )A .弹簧的拉力增大,条形磁铁对桌面的压力减小B .弹簧的拉力减小,条形磁铁对桌面的压力减小C .弹簧的拉力增大,条形磁铁对桌面的压力增大D .弹簧的拉力减小,条形磁铁对桌面的压力增大5、如图所示,四根相互平行的通有电流均为的长直导线a 、b 、c 、d ,放在正方形的四个顶点上。
高中物理磁场专题分类题型一、【磁场的描述 磁场对电流的作用】典型题1.如图所示,带负电的金属环绕轴OO ′以角速度ω匀速旋转,在环左侧轴线上的小磁针最后平衡时的位置是( )A .N 极竖直向上B .N 极竖直向下C .N 极沿轴线向左D .N 极沿轴线向右解析:选C .负电荷匀速转动,会产生与旋转方向反向的环形电流,由安培定则知,在磁针处磁场的方向沿轴OO ′向左.由于磁针N 极指向为磁场方向,可知选项C 正确.2.磁场中某区域的磁感线如图所示,则( )A .a 、b 两处的磁感应强度的大小不等,B a >B bB .a 、b 两处的磁感应强度的大小不等,B a <B bC .同一通电导线放在a 处受力一定比放在b 处受力大D .同一通电导线放在a 处受力一定比放在b 处受力小解析:选A .磁感线的疏密程度表示磁感应强度的大小,由a 、b 两处磁感线的疏密程度可判断出B a >B b ,所以A 正确,B 错误;安培力的大小跟该处的磁感应强度的大小B 、电流大小I 、导线长度L 和导线放置的方向与磁感应强度的方向的夹角有关,故C 、D 错误.3.将长为L 的导线弯成六分之一圆弧,固定于垂直纸面向外、大小为B 的匀强磁场中,两端点A 、C 连线竖直,如图所示.若给导线通以由A 到C 、大小为I 的恒定电流,则导线所受安培力的大小和方向是( )A .ILB ,水平向左B .ILB ,水平向右C .3ILB π,水平向右D .3ILB π,水平向左解析:选D .弧长为L ,圆心角为60°,则弦长AC =3L π,导线受到的安培力F =BIl =3ILB π,由左手定则可知,导线受到的安培力方向水平向左.4.如图所示,M 、N 和P 是以MN 为直径的半圆弧上的三点,O 为半圆弧的圆心,∠MOP =60°,在M 、N 处各有一条长直导线垂直穿过纸面,导线中通有大小相等的恒定电流,方向如图所示,这时O 点的磁感应强度大小为B 1.若将M 处长直导线移至P 处,则O 点的磁感应强度大小为B 2,那么B 2与B 1之比为( )A .3∶1B .3∶2C .1∶1D .1∶2解析:选B .如图所示,当通有电流的长直导线在M 、N 两处时,根据安培定则可知:二者在圆心O 处产生的磁感应强度大小都为B 12;当将M 处长直导线移到P 处时,两直导线在圆心O 处产生的磁感应强度大小也为B 12,做平行四边形,由图中的几何关系,可得B 2B 1=B 22B 12=cos 30°=32,故选项B 正确.5.阿明有一个磁浮玩具,其原理是利用电磁铁产生磁性,让具有磁性的玩偶稳定地飘浮起来,其构造如图所示.若图中电源的电压固定,可变电阻为一可以随意改变电阻大小的装置,则下列叙述正确的是( )A .电路中的电源必须是交流电源B .电路中的a 端点须连接直流电源的负极C .若增加环绕软铁的线圈匝数,可增加玩偶飘浮的最大高度D .若将可变电阻的电阻值调大,可增加玩偶飘浮的最大高度解析:选C .电磁铁产生磁性,使玩偶稳定地飘浮起来,电路中的电源必须是直流电源,电路中的a 端点须连接直流电源的正极,选项A 、B 错误;若增加环绕软铁的线圈匝数,电磁铁产生的磁性更强,电磁铁对玩偶的磁力增强,可增加玩偶飘浮的最大高度,选项C 正确;若将可变电阻的电阻值调大,电磁铁中电流减小,产生的磁性变弱,则降低玩偶飘浮的最大高度,选项D 错误.6.一通电直导线与x 轴平行放置,匀强磁场的方向与xOy 坐标平面平行,导线受到的安培力为F .若将该导线做成34圆环,放置在xOy 坐标平面内,如图所示,并保持通电的电流不变,两端点ab 连线也与x 轴平行,则圆环受到的安培力大小为( )A .FB .23πFC .223πFD .32π3F 解析:选C .根据安培力公式,安培力F 与导线长度L 成正比;若将该导线做成34圆环,由L =34×2πR ,解得圆环的半径R =2L 3π,34圆环ab 两点之间的距离L ′=2R =22L 3π.由F L =F ′L ′解得:F ′=223πF ,选项C 正确. 7.在绝缘圆柱体上a 、b 两个位置固定有两个金属圆环,当两环通有如图所示电流时,b 处金属圆环受到的安培力为F 1;若将b 处金属圆环移动到位置c ,则通有电流为I 2的金属圆环受到的安培力为F 2.今保持b 处金属圆环原来位置不变,在位置c 再放置一个同样的金属圆环,并通有与a 处金属圆环同向、大小为I 2的电流,则在a 位置的金属圆环受到的安培力( )A .大小为|F 1-F 2|,方向向左B .大小为|F 1-F 2|,方向向右C .大小为|F 1+F 2|,方向向左D .大小为|F 1+F 2|,方向向右解析:选A .c 金属圆环对a 金属圆环的作用力大小为F 2,根据同方向的电流相互吸引,可知方向向右,b金属圆环对a金属圆环的作用力大小为F1,根据反方向的电流相互排斥,可知方向向左,所以a金属圆环所受的安培力大小|F1-F2|,由于a、b间的距离小于a、c 间距离,所以两合力的方向向左.8.如图,两根相互平行的长直导线过纸面上的M、N两点,且与纸面垂直,导线中通有大小相等、方向相反的电流.a、O、b在M、N的连线上,O为MN的中点,c、d位于MN的中垂线上,且a、b、c、d到O点的距离均相等.关于以上几点处的磁场,下列说法正确的是()A.O点处的磁感应强度为零B.a、b两点处的磁感应强度大小相等,方向相反C.c、d两点处的磁感应强度大小相等,方向相同D.a、c两点处磁感应强度的方向不同解析:选C.由安培定则可知,两导线中的电流在O点产生的磁场均竖直向下,合磁感应强度一定不为零,选项A错;由安培定则知,两导线中的电流在a、b两点处产生的磁场的方向均竖直向下,由于对称性,M中电流在a处产生的磁场的磁感应强度等于N中电流在b处产生的磁场的磁感应强度,同时M中电流在b处产生的磁场的磁感应强度等于N 中电流在a处产生的磁场的磁感应强度,所以a、b两点处磁感应强度大小相等,方向相同,选项B错;根据安培定则,两导线中的电流在c、d两点处产生的磁场垂直c、d两点与导线的连线方向向下,且产生的磁场的磁感应强度大小相等,由平行四边形定则可知,c、d 两点处的磁感应强度大小相等,方向相同,选项C正确;a、c两点处磁感应强度的方向均竖直向下,选项D错.9. (多选)如图所示,金属细棒质量为m,用两根相同轻弹簧吊放在水平方向的匀强磁场中,弹簧的劲度系数为k,棒ab中通有恒定电流,棒处于平衡状态,并且弹簧的弹力恰好为零.若电流大小不变而方向反向,则()A .每根弹簧弹力的大小为mgB .每根弹簧弹力的大小为2mgC .弹簧形变量为mg kD .弹簧形变量为2mg k解析:选AC .电流方向改变前,对棒受力分析,根据平衡条件可知,棒受到的安培力竖直向上,大小等于mg ;电流方向改变后,棒受到的安培力竖直向下,大小等于mg ,对棒受力分析,根据平衡条件可知,每根弹簧弹力的大小为mg ,弹簧形变量为mg k,选项A 、C 正确.10.如图所示,两平行光滑金属导轨CD 、EF 间距为L ,与电动势为E 0的电源相连,质量为m 、电阻为R 的金属棒ab 垂直于导轨放置构成闭合回路,回路平面与水平面成θ角,回路其余电阻不计.为使ab 棒静止,需在空间施加的匀强磁场磁感应强度的最小值及其方向分别为( )A .mgR E 0L,水平向右 B .mgR cos θE 0L,垂直于回路平面向上 C .mgR tan θE 0L,竖直向下 D .mgR sin θE 0L,垂直于回路平面向下 解析:选D .对金属棒受力分析,受重力、支持力和安培力,如图所示;从图可以看出,当安培力沿斜面向上时,安培力最小,故安培力的最小值为:F A =mg sin θ,故磁感应强度的最小值为B =F A IL =mg sin θIL ,根据欧姆定律,有E 0=IR ,故B =mgR sin θE 0L,故D 正确.11.已知直线电流在其空间某点产生的磁场,其磁感应强度B 的大小与电流强度成正比,与点到通电导线的距离成反比.现有平行放置的三根长直通电导线,分别通过一个直角三角形△ABC的三个顶点且与三角形所在平面垂直,如图所示,∠ACB=60°,O为斜边的中点.已知I1=2I2=2I3,I2在O点产生的磁场磁感应强度大小为B,则关于O点的磁感应强度,下列说法正确的是()A.大小为2B,方向垂直AB向左B.大小为23B,方向垂直AB向左C.大小为2B,方向垂直AB向右D.大小为23B,方向垂直AB向右解析:选B.导线周围的磁场的磁感线,是围绕导线形成的同心圆,空间某点的磁场沿该点的切线方向,即与该点和导线的连线垂直,根据右手螺旋定则,可知三根导线在O点的磁感应强度的方向如图所示.已知直线电流在其空间某点产生的磁场,其磁感应强度B 的大小与电流强度成正比,与点到通电导线的距离成反比,已知I1=2I2=2I3,I2在O点产生的磁场磁感应强度大小为B,O点到三根导线的距离相等,可知B3=B2=B,B1=2B,由几何关系可知三根导线在平行于AB方向的合磁场为零,垂直于AB方向的合磁场为23B.综上可得,O点的磁感应强度大小为23B,方向垂直于AB向左.故B正确,A、C、D 错误.12.(多选)光滑平行导轨水平放置,导轨左端通过开关S与内阻不计、电动势为E的电源相连,右端与半径为L=20 cm的两段光滑圆弧导轨相接,一根质量m=60 g、电阻R=1 Ω、长为L的导体棒ab,用长也为L的绝缘细线悬挂,如图所示,系统空间有竖直方向的匀强磁场,磁感应强度B=0.5 T,当闭合开关S后,导体棒沿圆弧摆动,摆到最大高度时,细线与竖直方向成θ=53°角,摆动过程中导体棒始终与导轨接触良好且细线处于张紧状态,导轨电阻不计,sin 53°=0.8,g=10 m/s2,则()A.磁场方向一定竖直向下B.电源电动势E=3.0 VC.导体棒在摆动过程中所受安培力F=3 ND.导体棒在摆动过程中电源提供的电能为0.048 J解析:选AB.导体棒向右沿圆弧摆动,说明受到向右的安培力,由左手定则知该磁场方向一定竖直向下,A项正确;导体棒摆动过程中只有安培力和重力做功,由动能定理知BIL·L sin θ-mgL(1-cos θ)=0,代入数值得导体棒中的电流为I=3 A,由E=IR得电源电动势E=3.0 V,B项正确;由F=BIL得导体棒在摆动过程中所受安培力F=0.3 N,C项错误;由能量守恒定律知电源提供的电能W等于电路中产生的焦耳热Q和导体棒重力势能的增加量ΔE的和,即W=Q+ΔE,而ΔE=mgL(1-cos θ)=0.048 J,D项错误.13.(多选)某同学自制的简易电动机示意图如图所示.矩形线圈由一根漆包线绕制而成,漆包线的两端分别从线圈的一组对边的中间位置引出,并作为线圈的转轴.将线圈架在两个金属支架之间,线圈平面位于竖直面内,永磁铁置于线圈下方.为了使电池与两金属支架连接后线圈能连续转动起来,该同学应将()A.左、右转轴下侧的绝缘漆都刮掉B.左、右转轴上下两侧的绝缘漆都刮掉C.左转轴上侧的绝缘漆刮掉,右转轴下侧的绝缘漆刮掉D.左转轴上下两侧的绝缘漆都刮掉,右转轴下侧的绝缘漆刮掉解析:选AD.若将左、右转轴下侧的绝缘漆都刮掉,这样当线圈在图示位置时,线圈的上下边受到水平方向的安培力而转动,转过一周后再次受到同样的安培力而使其连续转动,选项A正确;若将左、右转轴上下两侧的绝缘漆都刮掉,则当线圈在图示位置时,线圈的上下边受到安培力而转动,转过半周后再次受到相反方向的安培力而使其停止转动,选项B 错误;左转轴上侧的绝缘漆刮掉,右转轴下侧的绝缘漆刮掉,电路不能接通,故不能转起来,选项C 错误;若将左转轴上下两侧的绝缘漆都刮掉,右转轴下侧的绝缘漆刮掉,这样当线圈在图示位置时,线圈的上下边受到安培力而转动,转过半周后电路不导通,转过一周后再次受到同样的安培力而使其连续转动,选项D 正确.14.光滑的金属轨道分水平段和圆弧段两部分,O 点为圆弧的圆心.两金属轨道之间的宽度为0.5 m ,匀强磁场方向如图所示,大小为0.5 T .质量为0.05 kg 、长为0.5 m 的金属细杆置于金属水平轨道上的M 点.当在金属细杆内通以电流强度为2 A 的恒定电流时,金属细杆可以沿轨道由静止开始向右运动.已知MN =OP =1 m ,则下列说法中正确的是( )A .金属细杆开始运动时的加速度大小为5 m/s 2B .金属细杆运动到P 点时的速度大小为5 m/sC .金属细杆运动到P 点时的向心加速度大小为10 m/s 2D .金属细杆运动到P 点时对每一条轨道的作用力大小为0.75 N解析:选D .金属细杆在水平方向受到安培力作用,安培力大小F 安=BIL =0.5×2×0.5 N =0.5 N ,金属细杆开始运动时的加速度大小为a =F 安m=10 m/s 2,选项A 错误;对金属细杆从M 点到P 点的运动过程,安培力做功W 安=F 安·(MN +OP )=1 J ,重力做功W G =-mg ·ON =-0.5 J ,由动能定理得W 安+W G =12m v 2,解得金属细杆运动到P 点时的速度大小为v =20 m/s ,选项B 错误;金属细杆运动到P 点时的向心加速度大小为a ′=v 2r=20 m/s 2,选项C 错误;在P 点金属细杆受到轨道水平向左的作用力F 和水平向右的安培力F 安,由牛顿第二定律得F -F 安=m v 2r,解得F =1.5 N ,每一条轨道对金属细杆的作用力大小为0.75 N ,由牛顿第三定律可知金属细杆运动到P 点时对每一条轨道的作用力大小为0.75 N ,选项D 正确.二、【磁场对运动电荷的作用】典型题1.如图所示,a 、b 、c 、d 为四根与纸面垂直的长直导线,其横截面位于正方形的四个顶点上,导线中通有大小相同的电流,方向如图所示.一带正电的粒子从正方形中心O 点沿垂直于纸面的方向向外运动,它所受洛伦兹力的方向是( )A .向上B .向下C .向左D .向右解析:选B .根据安培定则及磁感应强度的矢量叠加,可得O 点处的磁场方向水平向左,再根据左手定则判断可知,带电粒子受到的洛伦兹力方向向下,B 正确.2.如图,半径为R 的圆形区域内有垂直于纸面的匀强磁场,半径OC 与OB 夹角为60°.甲电子以速率v 从A 点沿直径AB 方向射入磁场,从C 点射出.乙电子以速率v 3从B 点沿BA 方向射入磁场,从D 点(图中未画出)射出,则( )A .C 、D 两点间的距离为2RB .C 、D 两点间的距离为3RC .甲在磁场中运动的时间是乙的2倍D .甲在磁场中运动的时间是乙的3倍解析:选B .洛伦兹力提供向心力,q v B =m v 2r 得r =m v qB,由几何关系求得r 1=R tan 60°=3R ,由于质子乙的速度是v 3,其轨道半径r 2=r 13=33R ,它们在磁场中的偏转角分别为60°和120°,根据几何知识可得BC =R ,BD =2r 2tan 60°=R ,所以CD =2R sin 60°=3R ,故A 错误,B 正确;粒子在磁场中运动的时间为t =θ2πT =θ2π·2πm qB,所以两粒子的运动时间之比等于偏转角之比,即为1∶2,即甲在磁场中运动的时间是乙的12倍,故C 、D 错误. 3. (多选)如图所示,一轨道由两等长的光滑斜面AB 和BC 组成,两斜面在B 处用一光滑小圆弧相连接,P 是BC 的中点,竖直线BD 右侧存在垂直纸面向里的匀强磁场,B 处可认为处在磁场中,一带电小球从A 点由静止释放后能沿轨道来回运动,C 点为小球在BD 右侧运动的最高点,则下列说法正确的是( )A .C 点与A 点在同一水平线上B .小球向右或向左滑过B 点时,对轨道压力相等C .小球向上或向下滑过P 点时,其所受洛伦兹力相同D .小球从A 到B 的时间是从C 到P 时间的2倍解析:选AD .小球在运动过程中受重力、洛伦兹力和轨道支持力作用,因洛伦兹力永不做功,支持力始终与小球运动方向垂直,也不做功,即只有重力做功,满足机械能守恒,因此C 点与A 点等高,在同一水平线上,选项A 正确;小球向右或向左滑过B 点时速度等大反向,即洛伦兹力等大反向,小球对轨道的压力不等,选项B 错误;同理小球向上或向下滑过P 点时,洛伦兹力也等大反向,选项C 错误;因洛伦兹力始终垂直BC ,小球在AB 段和BC 段(设斜面倾角均为θ)的加速度均由重力沿斜面的分力产生,大小为g sin θ,由x =12at 2得小球从A 到B 的时间是从C 到P 的时间的2倍,选项D 正确. 4.如图甲所示有界匀强磁场Ⅰ的宽度与图乙所示圆形匀强磁场Ⅱ的半径相等,一不计重力的粒子从左边界的M 点以一定初速度水平向右垂直射入磁场Ⅰ,从右边界射出时速度方向偏转了θ角;该粒子以同样的初速度沿半径方向垂直射入磁场Ⅱ,射出磁场时速度方向偏转了2θ角.已知磁场Ⅰ、Ⅱ的磁感应强度大小分别为B 1、B 2,则B 1与B 2的比值为( )A .2cos θB .sin θC .cos θD .tan θ解析:选C .设有界磁场Ⅰ宽度为d ,则粒子在磁场Ⅰ和磁场Ⅱ中的运动轨迹分别如图1、图2所示,由洛伦兹力提供向心力知Bq v =m v 2r ,得B =m v rq,由几何关系知d =r 1sin θ,d =r 2tan θ,联立得B 1B 2=cos θ,选项C 正确.5.如图所示,正方形区域内存在垂直纸面的匀强磁场.一带电粒子垂直磁场边界从a 点射入,从b 点射出.下列说法正确的是( )A .粒子带正电B .粒子在b 点速率大于在a 点速率C .若仅减小磁感应强度,则粒子可能从b 点右侧射出D .若仅减小入射速率,则粒子在磁场中运动时间变短解析:选C .由左手定则知,粒子带负电,A 错.由于洛伦兹力不做功,粒子速率不变,B 错.由R =m vqB , 若仅减小磁感应强度B ,R 变大,则粒子可能从b 点右侧射出,C 对.由R =m v qB ,若仅减小入射速率v, 则R 变小,粒子在磁场中的偏转角θ变大.由t =θ2πT ,T =2πm qB 知,运动时间变长,D 错.6.如图所示,两个同心圆,半径分别为r 和2r ,在两圆之间的环形区域内存在垂直纸面向里的匀强磁场,磁感应强度为B .圆心O 处有一放射源,放出粒子的质量为m 、带电量为q ,假设粒子速度方向都和纸面平行.(1)图中箭头表示某一粒子初速度的方向,OA 与初速度方向夹角为60°,要想使该粒子经过磁场后第一次通过A 点,则初速度的大小是多少?(2)要使粒子不穿出环形区域,则粒子的初速度不能超过多少?解析:(1)如图甲所示,设粒子在磁场中的轨道半径为R 1,则由几何关系得R 1=3r3又q v 1B =m v 21R 1得v 1=3Bqr3m.(2)如图乙所示,设粒子轨迹与磁场外边界相切时,粒子在磁场中的轨道半径为R 2,则由几何关系有(2r -R 2)2=R 22+r 2可得R 2=3r 4,又q v 2B =m v 22R 2,可得v 2=3Bqr 4m故要使粒子不穿出环形区域,粒子的初速度不能超过3Bqr4m. 答案:(1)3Bqr 3m (2)3Bqr4m7. (多选)如图所示为一个质量为m 、带电荷量为+q 的圆环,可在水平放置的足够长的粗糙细杆上滑动,细杆处于磁感应强度大小为B 、方向垂直纸面向里的匀强磁场中.现给圆环向右初速度v 0,在以后的运动过程中,圆环运动的v -t 图象可能是下图中的( )解析:选BC .当q v B =mg 时,圆环做匀速直线运动,此时图象为B ,故B 正确;当q v B >mg 时,F N =q v B -mg ,此时:μF N =ma ,所以圆环做加速度逐渐减小的减速运动,直到q v B =mg 时,圆环开始做匀速运动,故C 正确;当q v B <mg 时,F N =mg -q v B ,此时:μF N =ma ,所以圆环做加速度逐渐增大的减速运动,直至停止,所以其v -t 图象的斜率应该逐渐增大,故A 、D 错误.8.如图所示,水平放置的平行板长度为L 、两板间距也为L ,两板之间存在垂直纸面向里、磁感应强度大小为B 的匀强磁场,在两板正中央P 点有一个不计重力的电子(质量为m 、电荷量为-e ),现在给电子一水平向右的瞬时初速度v 0,欲使电子不与平行板相碰撞,则( )A .v 0>eBL 2m 或v 0<eBL4mB .eBL 4m <v 0< eBL2mC .v 0>eBL2mD .v 0<eBL4m解析:选A .此题疑难点在于确定“不与平行板相碰撞”的临界条件.电子在磁场中做匀速圆周运动,半径为R =m v 0eB ,如图所示.当R 1=L 4时,电子恰好与下板相切;当R 2=L2时,电子恰好从下板边缘飞出两平行板(即飞出磁场).由R 1=m v 1eB ,解得v 1=eBL4m ,由R 2=m v 2eB ,解得v 2=eBL 2m ,所以欲使电子不与平行板相碰撞,电子初速度v 0应满足v 0>eBL 2m 或v 0<eBL4m ,故选项A 正确.9.如图所示,在x >0,y >0的空间中有恒定的匀强磁场,磁感应强度的方向垂直于xOy 平面向里,大小为B ,现有一质量为m 、电荷量为q 的带正电粒子,从x 轴上的某点P (不在原点)沿着与x 轴成30°角的方向射入磁场.不计重力的影响,则下列有关说法中正确的是( )A .只要粒子的速率合适,粒子就可能通过坐标原点B .粒子在磁场中运动所经历的时间一定为5 πm 3qBC .粒子在磁场中运动所经历的时间可能为πmqBD .粒子在磁场中运动所经历的时间可能为πm6qB解析:选C .利用“放缩圆法”:根据同一直线边界上粒子运动的对称性可知,粒子不可能通过坐标原点,A 项错误;粒子运动的情况有两种,一种是从y 轴边界射出,最短时间要大于2πm 3qB ,故D 项错误;对应轨迹①时,t 1=T 2=πm qB ,C 项正确,另一种是从x 轴边界飞出,如轨迹③,时间t 3=56T =5πm 3qB,此时粒子在磁场中运动时间最长,故B 项错误.10.如图所示,OM 的左侧存在范围足够大、磁感应强度大小为B 的匀强磁场,磁场方向垂直纸面向外,OM 左侧到OM 距离为L 的P 处有一个粒子源,可沿纸面向各个方向射出质量为m 、电荷量为q 的带正电粒子(重力不计),速率均为v =qBLm,则粒子在磁场中运动的最短时间为( )A .πm 2qBB .πm 3qBC .πm 4qBD .πm 6qB解析:选B .粒子进入磁场中做匀速圆周运动,洛伦兹力提供向心力,则有:q v B =m v 2r ,将题设的v 值代入得:r =L ,粒子在磁场中运动的时间最短,则粒子运动轨迹对应的弦最短,最短弦为L ,等于圆周运动的半径,根据几何关系,粒子转过的圆心角为60°,运动时间为T 6,故t min =T 6=16×2πm qB =πm 3qB,故B 正确,A 、C 、D 错误.11.(2019·高考全国卷Ⅲ)如图,在坐标系的第一和第二象限内存在磁感应强度大小分别为12B 和B 、方向均垂直于纸面向外的匀强磁场.一质量为m 、电荷量为q (q >0)的粒子垂直于x 轴射入第二象限,随后垂直于y 轴进入第一象限,最后经过x 轴离开第一象限.粒子在磁场中运动的时间为( )A .5πm 6qBB .7πm6qBC .11πm 6qBD .13πm6qB解析:选B .带电粒子在不同磁场中做圆周运动,其速度大小不变,由r =m vqB 知,第一象限内的圆半径是第二象限内圆半径的2倍,如图所示.粒子在第二象限内运动的时间:t 1=T 14=2πm 4qB =πm 2qB ;粒子在第一象限内运动的时间:t 2=T 26=2πm ×26qB =2πm 3qB ,则粒子在磁场中运动的时间t =t 1+t 2=7πm 6qB,选项B 正确.12.如图,在直角三角形OPN 区域内存在匀强磁场,磁感应强度大小为B 、方向垂直于纸面向外.一带正电的粒子从静止开始经电压U 加速后,沿平行于x 轴的方向射入磁场;一段时间后,该粒子在OP 边上某点以垂直于x 轴的方向射出.已知O 点为坐标原点,N 点在y 轴上,OP 与x 轴的夹角为30°,粒子进入磁场的入射点与离开磁场的出射点之间的距离为d ,不计重力.求:(1)带电粒子的比荷;(2)带电粒子从射入磁场到运动至x 轴的时间.解析: (1)设带电粒子的质量为m ,电荷量为q ,加速后的速度大小为v .由动能定理有qU =12m v 2①设粒子在磁场中做匀速圆周运动的半径为r ,由洛伦兹力公式和牛顿第二定律有 q v B =m v 2r②由几何关系知d =2r ③ 联立①②③式得q m =4UB 2d2.④(2)由几何关系知,带电粒子射入磁场后运动到x 轴所经过的路程为 s =πr2+r tan 30°⑤带电粒子从射入磁场到运动至x 轴的时间为t =sv ⑥联立②④⑤⑥式得t =Bd 24U ⎝⎛⎭⎫π2+33.⑦ 答案:(1)4U B 2d 2 (2)Bd 24U ⎝⎛⎭⎫π2+33三、【带电粒子在组合场中的运动】典型题1.(多选)回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电极相连接的两个D 形金属盒,两盒间的狭缝中形成的周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D 形金属盒处于垂直于盒底的匀强磁场中,如图所示,要增大带电粒子射出时的动能,则下列说法中正确的是( )A .增大匀强电场间的加速电压B .增大磁场的磁感应强度C .减小狭缝间的距离D .增大D 形金属盒的半径解析:选BD .回旋加速器利用电场加速和磁场偏转来加速粒子,粒子射出时的轨道半径恰好等于D 形盒的半径,根据q v B =m v 2R 可得,v =qBR m ,因此离开回旋加速器时的动能E k =12m v 2=q 2B 2R 22m 可知,与加速电压无关,与狭缝距离无关,A 、C 错误;磁感应强度越大,D 形盒的半径越大,动能越大,B 、D 正确.2.质谱仪是一种测定带电粒子质量和分析同位素的重要工具.图中的铅盒A 中的放射源放出大量的带正电粒子(可认为初速度为零),从狭缝S 1进入电压为U 的加速电场区加速后,再通过狭缝S 2从小孔G 垂直于MN 射入偏转磁场,该偏转磁场是以直线MN 为切线、磁感应强度为B ,方向垂直于纸面向外半径为R 的圆形匀强磁场.现在MN 上的F 点(图中未画出)接收到该粒子,且GF =3R .则该粒子的比荷为(粒子的重力忽略不计)( )。
磁场基础测试题及答案高中一、选择题1. 磁场的基本性质是什么?A. 磁场对电荷有作用力B. 磁场对电流有作用力C. 磁场对磁体有作用力D. 所有以上选项2. 磁感应强度的单位是什么?A. 牛顿B. 特斯拉C. 安培D. 库仑3. 地磁场的方向是怎样的?A. 从地球内部指向外部B. 从地球外部指向内部C. 从北极指向南极D. 从南极指向北极4. 磁通量的定义是什么?A. 磁感应强度与面积的乘积B. 磁感应强度与线圈的乘积C. 磁感应强度与线圈面积的正弦值的乘积D. 磁感应强度与线圈面积的余弦值的乘积5. 洛伦兹力的方向如何确定?A. 与电荷运动方向相同B. 与电荷运动方向相反C. 垂直于电荷运动方向和磁场方向D. 与磁场方向相同二、填空题6. 地球的磁场是由______产生的。
7. 磁感应强度的定义式是______。
8. 磁场中某点的磁感应强度为1T,一个面积为1m²的线圈在该点垂直放置,则磁通量为______。
9. 磁铁的两个磁极分别是______和______。
10. 洛伦兹力的大小公式为______。
三、简答题11. 请简述安培环路定理的内容。
12. 描述磁铁在磁场中受力的情况。
四、计算题13. 一个长为2米的直导线,通有10安培的电流,求在距离导线1米处的磁感应强度。
答案:一、选择题1. D2. B3. C4. D5. C二、填空题6. 地球内部的液态外核7. B= \frac {F}{IL}8. 1Wb9. N极和S极10. F=qvB三、简答题11. 安培环路定理指出,穿过闭合回路的总磁通量等于该回路周围电流的代数和乘以磁常数μ₀。
12. 磁铁在磁场中受力的方向与磁场方向和磁铁的磁极有关,通常为磁铁的N极指向磁场方向,S极远离磁场方向。
四、计算题13. 根据毕奥-萨法尔定律,磁感应强度B= \frac {μ₀I}{2πr},其中μ₀为磁常数,I为电流,r为距离。
将数值代入公式得:B= \frac {4π×10^{-7}×10}{2π×1} = 2×10^{-6}T。
1.关于磁现象的电本质,下列说法正确的是( )A.一切磁现象都起源于运动电荷,一切磁作用都是运动电荷通过磁场而发生的B.除永久磁铁外,一切磁场都是由运动电荷产生的C.据安培的分子电流假说,在外界磁场的作用下,物体内部分子电流取向变得大致相同时,物体就被磁化,两端形成磁极D.有磁必有电,有电必有磁解析:选AC.任何物质的原子的核外电子绕核运动形成分子电流,分子电流使每个物质分子相当于一个小磁体.当各分子电流的取向大致相同时,物质对外显磁性,所以一切磁现象都源于运动电荷,A、C正确,B错误.静电场不产生磁场,D错误.2.关于磁感线下列说法正确的是( )A.磁感线是磁场中实际存在的线B.条形磁铁磁感线只分布于磁铁外部C.当空中存在几个磁场时,磁感线有可能相交D.磁感线上某点的切线方向就是放在这里的小磁针N极受力的方向解析:选D.磁感线是假想的线,故A错;磁感线是闭合的曲线,磁铁外部、内部均有磁感线,故B错;磁感线永不相交,故C错;根据磁感线方向的规定知D对.3.图3-3-15如图3-3-15所示,带负电的金属圆盘绕轴OO′以角速度ω匀速旋转,在盘左侧轴线上的小磁针最后平衡的位置是( )A.N极竖直向上B.N极竖直向下C.N极沿轴线向右D.N极沿轴线向左解析:选C.等效电流的方向与转动方向相反,由安培定则知轴线上的磁场方向向右,所以小磁针N极受力向右,故C正确.4.图3-3-16(2011年深圳中学高二检测)如图3-3-16所示,两根非常靠近且互相垂直的长直导线,当通以如图所示方向的电流时,电流所产生的磁场在导线所在平面内的哪个区域内方向是一致且向里的( )A.区域ⅠB.区域ⅡC.区域ⅢD.区域Ⅳ解析:选A.根据安培定则可判断出区域Ⅰ的磁场是一致且向里的.5.如图3-3-17所示,图3-3-17线圈平面与水平方向夹角θ=60°,磁感线竖直向下,线圈平面面积S= m2,匀强磁场磁感应强度B= T,则穿过线圈的磁通量Φ为多少?解析:法一:把S投影到与B垂直的方向,则Φ=B·S cos θ=××cos 60° Wb= Wb.法二:把B分解为平行于线圈平面的分量B∥和垂直于线圈平面的分量B⊥,B∥不穿过线圈,且B⊥=B cos θ,则Φ=B⊥S=B cos θ·S=××cos 60° Wb= Wb.答案: Wb一、选择题1.下列关于磁通量的说法,正确的是( )A.磁通量是反映磁场强弱和方向的物理量B.某一面积上的磁通量是表示穿过此面积的磁感线的总条数C.在磁场中所取的面积越大,该面上磁通量越大D.穿过任何封闭曲面的磁通量一定为零解析:选BD.磁通量Φ是磁感应强度B与垂直于磁场方向的面积S的乘积,即Φ=BS,亦表示穿过磁场中某面积S的磁感线的总条数,Φ只有大小,没有方向,是标量.由此可知选项A错误,B正确。
物理高二磁场练习题一、单选题1.关于电场强度和磁感应强度,下列说法正确的是A.电场强度的定义式适用于任何电场B.由真空中点电荷的电场强度公式可知,当r→0时,E→无穷大C.由公式可知,一小段通电导线在某处若不受磁场力,则说明此处一定无磁场D.磁感应强度的方向就是置于该处的通电导线所受的安培力方向2.如图所示,条形磁铁放在水平粗糙桌面上,它的正中间上方固定一根长直导线,导线中通过方向垂直纸面向里(即与条形磁铁垂直)的电流,和原来没有电流通过时相比较,磁铁受到的支持力N和摩擦力f将A、N减小,f=0B、N减小,f≠0C、N增大,f=0D、N增大,f≠03、有电子、质子、氘核、氚核,以同样速度垂直射入同一匀强磁场中,它们都作匀速圆周运动,则轨道半径最大的粒子是A.氘核 B.氚核 C.电子 D.质子4.一带正电荷的小球沿光滑、水平、绝缘的桌面向右运动,如图所示,速度方向垂直于一匀强磁场,飞离桌面后,最终落在地面上. 设飞行时间为t1、水平射程为s1、着地速率为v1;现撤去磁场其它条件不变,小球飞行时间为t2、水平射程为s2、着地速率为v2.则有:A、 v1=v2B、 v1>v2C、 s1=s2D、t1<t25.有一个带正电荷的离子,沿垂直于电场方向射入带电平行板的匀强电场.离子飞出电场后的动能为Ek,当在平行金属板间再加入一个垂直纸面向内的如图所示的匀强磁场后,离子飞出电场后的动能为Ek/,磁场力做功为W,则下面各判断正确的是A、EK <EK',W=0B、EK >EK',W=0C、EK =EK',W=0D、EK>EK',W>06.图是质谱仪的工作原理示意图。
带电粒子被加速电场加速后,进入速度选择器。
速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B和E。
平板S 上有可让粒子通过的狭缝P和记录粒子位置的胶片A1A2。
平板S下方有强度为B0的匀强磁场。
突破卷九磁场一、选择题(共10小题,每小题3分,共30分。
每小题列出的四个备选项中只有一个是符合题目要求的,不选、多选、错选均不得分)1.奥斯特发现通电导线周围有磁场的意义是( C )A.发现了磁性B.引入了磁感线C.首先揭示了电与磁的联系D.解释了“司南”指南、指北的原理2.下列各图中,已标出电流I、磁感应强度B的方向,其中符合安培定则的是( C )3.一根容易形变的弹性导线,两端固定。
导线中通有电流,方向如图中箭头所示。
当没有磁场时,导线呈直线状态;当分别加上方向竖直向上、水平向右或垂直于纸面向外的匀强磁场时,描述导线状态的四个图示中正确的是( D )4.我们可以用如图所示的装置探究影响安培力方向的因素。
实验中把磁铁的N极放置在金属棒上端,给金属棒通以A→B的电流,则金属棒将( A )A.向磁铁内摆动B.向磁铁外摆动C.静止不动D.上下振动5.如图所示,通电导线MN在纸面内从a位置绕其一端M转至b位置时,通电导线所受安培力的大小变化情况是( B )A.变小B.不变C.变大D.不能确定6.某小组同学利用磁传感器探究通电螺线管轴线上不同位置的磁感应强度,如图甲所示。
将传感器探头沿螺线管轴线移动时,测得磁感应强度B的大小随位置x的变化关系如图乙所示。
图乙中a,b两点对应位置分别处在( D )A.螺线管内、螺线管内B.螺线管内、螺线管外C.螺线管外、螺线管外D.螺线管外、螺线管内7.如图所示为电动机的简化模型,线圈abcd可绕轴O1O2自由转动。
当线圈中通入如图所示的电流时,顺着O1O2的方向看去,线圈将( A )A.顺时针转动B.逆时针转动C.仍然保持静止D.既可能顺时针转动,也可能逆时针转动解析:根据左手定则可判断cd受到的安培力向下,ab受到的安培力向上,顺着O1O2的方向看去,线圈将顺时针转动,故选项A正确。
8.在以下关于电荷、通电导线在电场或磁场中受力的说法中,正确的是( B )A.把通电导线放在磁场中,通电导线一定会受到磁场力的作用B.把电荷放在电场中,电荷一定受到静电力的作用C.把电荷放在磁场中,电荷一定受到洛伦兹力的作用D.电荷在磁场中运动,电荷一定受到洛伦兹力的作用解析:通电导线中电流方向与磁场方向平行时,导线不受磁场力作用,则选项A错误;电荷在电场中,一定会受静电力作用,选项B正确;静止的电荷在磁场中不受洛伦兹力作用,运动电荷速度方向与磁场方向平行时,也不受洛伦兹力作用,则选项C,D错误。
高中物理专题复习选修3-1磁场单元过关检测考试范围:单元测试;满分:100分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明评卷人得分一、单选题1.如图所示,在xOy平面的第一、四象限内存在着方向垂直纸面向外,磁感应强度为B的匀强磁场,在第四象限内还存在方向沿-y方向、电场强度为E的匀强电场.从y轴上坐标为(0,a)的P点向第一象限的磁场区发射速度大小不等的带︒-︒角,且在xOy平面内.结正电的同种粒子,速度方向范围是与+y方向成30150果所有粒子经过磁场偏转后都垂直打到x轴上,然后进入第四象限内的正交电磁场区.已知带电粒子电量为+q,质量为m,粒子重力不计.(1)所有通过第一象限磁场区的粒子中,求粒子经历的最短时间与最长时间的比值;(2)求粒子打到x轴上的范围;(3)从x轴上x=a点射入第四象限的粒子穿过正交电磁场后,从y轴上坐标为(0,-b)的Q点射出电磁场,求该粒子射出电磁场时的速度大小.2.如图所示,在平面直角坐标系xO y内,第Ⅰ象限的等腰直角三角形MNP区域内存在垂直于坐标平面向外的匀强磁场,y<0的区域内存在着沿y轴正方向的匀强电场.一质量为m、电荷量为q的带电粒子从电场中的Q(-2h,-h)点以速度v0水平向右射出,经坐标原点O处射入第I象限,最后以垂直于PN的方向射出磁场.已知MN平行于x轴,N点的坐标为(2h,2h),不计粒子的重力.求:(1)电场强度的大小E;(2)磁感应强度的大小B;(3)粒子在磁场中运动的时间t.3.如图甲所示的控制电子运动装置由偏转电场、偏转磁场组成。
偏转电场处在加有电压U、相距为d的两块水平平行放置的导体板之间,匀强磁场水平宽度一定,竖直长度足够大,其紧靠偏转电场的右边。
大量电子以相同初速度连续不断地沿两板正中间虚线的方向向右射入导体板之间。
当两板间没有加电压时,这些电子通过两板之间的时间为2t0;当两板间加上图乙所示的电压U时,所有电子均能通过电场、穿过磁场,最后打在竖直放置的荧光屏上。
高中物理磁场经典习题(题型分类)含答案题组一1.在xOy平面内,y≥0的区域有垂直于平面向里的匀强磁场,磁感应强度为B。
一质量为m、带电量大小为q的粒子从原点O沿与x轴正方向成60°角方向以速度v射入。
粒子的重力不计。
求带电粒子在磁场中运动的时间和带电粒子离开磁场时的位置。
2.如图所示,abcd是一个正方形的盒子,在cd边的中点有一小孔e。
盒子中存有沿ad方向的匀强电场,场强大小为E。
一粒子源不断地从a处的小孔沿ab方向向盒内发射相同的带电粒子,粒子的初速度为v,经电场作用后恰好从e处的小孔射出。
现撤去电场,在盒子中加一方向垂直于纸面的匀强磁场,磁感应强度大小为B。
粒子仍恰好从e孔射出。
不考虑带电粒子的重力和粒子之间的相互作用。
1)所加的磁场的方向是什么?2)电场强度E与磁感应强度B的比值是多少?题组二4.如图所示的坐标平面内,在y轴的左侧存在垂直纸面向外、磁感应强度大小为B1 = 0.20 T的匀强磁场,在y轴的右侧存在垂直纸面向里、宽度d=0.125 m的匀强磁场B2.某时刻一质量为m=2.0×10^-8 kg、电量为q=+4.0×10^-4 C的带电微粒(重力可忽略不计),从x轴上坐标为(-0.25 m,0)的P点以速度v=2.0×10^3 m/s沿y轴正方向运动。
试求:1)微粒在y轴的左侧磁场中运动的轨道半径;2)微粒第一次经过y轴时速度方向与y轴正方向的夹角;3)要使微粒不能从右侧磁场边界飞出,B2应满足的条件。
5.图中左边有一对平行金属板,两板相距为d,电压为U;两板之间有匀强磁场,磁场应强度大小为B,方向平行于板面并垂直于纸面朝里。
图中右边有一边长为a的正三角形区域EFG(EF边与金属板垂直),在此区域内及其边界上也有匀强磁场,磁感应强度大小为B,方向垂直于纸面朝里。
假设一系列电荷量为q的正离子沿平行于金属板面,垂直于磁场的方向射入金属板之间,沿同一方向射出金属板之间的区域,并经EF边中点H射入磁场区域。
磁场强度练习题及答案解析
1. 问题:一个细长的导线沿着x轴方向,通有电流I。
一个观察者位于距离导线0.5m的点P处。
求在点P处的磁场强度。
答案解析:根据毕奥-萨伐尔定律,点P处的磁场强度的大小与导线距离的平方反比,与电流的大小成正比。
所以,在点P处的磁场强度可以由下式计算得出:
其中,B是磁场强度,I是电流,r是距离导线的距离。
2. 问题:一个长直导线通有电流I1,距离该线距离d的位置放置一个带电粒子q,受到了一个磁场力F。
当距离d减小一半后,磁场力变为F2。
求F2与F的比值。
答案解析:长直导线对带电粒子产生的磁场力与距离的平方成反比,与电流强度成正比。
所以,F与d的关系可以表示为:当d减小一半后,磁场力变为F2,此时磁场力与新距离的关系可以表示为:
我们可以求出F2与F的比值:
简化上式得:
3. 问题:长直导线通有电流I,求离导线距离为r的点处的磁场强度。
答案解析:使用安培环路定理,对以点P为圆心的任意圆形回路,有:
假设我们以距离r为半径的圆形回路,因此,回路的长度为
2πr,代入上述公式得:
整理上述公式得:
以上为磁场强度练习题及答案解析,希望能帮助到您。
1.在如图所示的匀强电场和匀强磁场共存的区域内.在如图所示的匀强电场和匀强磁场共存的区域内((不计重力不计重力)),电子可能沿水平方向向右做直线运动的是,电子可能沿水平方向向右做直线运动的是( ( )解析:若电子水平向右运动,在A 图中电场力水平向左,洛伦兹力竖直向下,故不可能;在B 图中,电场力水平向左,洛伦兹力为零,故电子可能水平向右做匀减速直线运动;在C 图中电场力竖直向下,洛伦兹力竖直向下,电子不可能向右做匀速直线运动;在D 图中电场力竖直向上,洛伦兹力竖直向上,故电子不可能做水平向右的直线运动,因此只有选项B 正确.正确.答案:答案:B B2.2.如图所示,在长方形如图所示,在长方形abcd 区域内有正交的电磁场,ab =bc /2/2==L ,一带电粒子,一带电粒子从ad 的中点垂直于电场和磁场方向射入,恰沿直线从bc 边的中点P 射出,若撤射出,若撤去磁场,则粒子从c 点射出;若撤去电场,则粒子将点射出;若撤去电场,则粒子将((重力不计重力不计)( )( )A .从b 点射出点射出B .从b 、P 间某点射出间某点射出C .从a 点射出点射出D .从a 、b 间某点射出间某点射出解析:由粒子做直线运动可知qv 0B =qE ;撤去磁场粒子从c 点射出可知qE =ma ,at =2v 0,v 0t =L ,所以撤除电场后粒子运动的半径r =mv 0qB =L 2. 3.如图所示,有一混合正离子束先后通过正交的电场、磁场区域Ⅰ和匀强磁.如图所示,有一混合正离子束先后通过正交的电场、磁场区域Ⅰ和匀强磁场区域Ⅱ,如果这束正离子流在区域Ⅰ中不偏转,进入区域Ⅱ后偏转半径r 相同,则它们一定具有相同的同,则它们一定具有相同的( ( ) A .动量.动量 B B.质量.质量.质量C .电荷量.电荷量D D D.比荷.比荷.比荷解析:离子流在区域Ⅰ中不偏转,一定是qE =qvB ,v =E B .进入区域Ⅱ后,做匀速圆周运动的半径相同,由r =mv qB知,因v 、B 相同,所以只能是比荷相同,故D 正确,正确,A A 、B 、C 错误.错误.4.(2012年合肥模拟年合肥模拟))两块金属板a 、b 平行放置,板间存在与匀强电场正交的匀强磁场,假设电场、磁场只存在于两板间的空间区域.一束电子以一定的初速度v 0从两极板中间,沿垂直于电场、磁场的方向射入场中,无偏转地通过场区,如图所示.已知板长l =10 cm 10 cm,两板间距,两板间距d =3.0 cm 3.0 cm,两板间电势差,两板间电势差U =150 V 150 V,,v 0=2.0×107 m/s. m/s.求:求:求:(1)(1)磁感应强度磁感应强度B 的大小;的大小;(2)(2)若撤去磁场,求电子穿过电场时偏离入射方向的距离,以及电子通过场区后动能增加多少?若撤去磁场,求电子穿过电场时偏离入射方向的距离,以及电子通过场区后动能增加多少?若撤去磁场,求电子穿过电场时偏离入射方向的距离,以及电子通过场区后动能增加多少?((电子所带电荷量的大小与其质量之比e m =1.76×1011C/kg)解析:(1)(1)电子进入正交的电磁场不发生偏转,则满足电子进入正交的电磁场不发生偏转,则满足电子进入正交的电磁场不发生偏转,则满足Bev 0=e U dB =U v 0d=2.5×10-4T.(2)(2)设电子通过场区偏转的距离为设电子通过场区偏转的距离为y l =v 0t ,a =eU mdy =12at 2=12×eU md·(l v 0)2=1.1×10-2m. ΔE k =eEy =e U dy =8.8×10-18J =55 eV. [例1] 在平面直角坐标xOy 中,第Ⅰ象限存在沿y 轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为磁感应强度为 B .一质量为m 、电荷量为q 的带正电的粒子从y 轴正半轴上的M 点以速度v 0垂直于y 轴射入电场,经x 轴上的N 点与x 轴正方向成θ=60°角射入磁场,最后从y 轴负半 轴上的P 点垂直于y 轴射出磁场,如图所示.不计粒子重力,求:轴射出磁场,如图所示.不计粒子重力,求:(1)M 、N 两点间的电势差UMN ;(2)(2)粒子在磁场中运动的轨道半径粒子在磁场中运动的轨道半径r ;(3)(3)粒子从粒子从M 点运动到P 点的总时间t .[思路点拨思路点拨] ] 根据粒子在不同区域内的运动特点和受力特根据粒子在不同区域内的运动特点和受力特点画出轨迹,分别利用类平抛和圆周运动的分析方法列方程求解.点画出轨迹,分别利用类平抛和圆周运动的分析方法列方程求解.[自主解答] (1)(1)设粒子过设粒子过N 点时的速度大小为点时的速度大小为 v ,有v 0v=cos θ,v =2v 0粒子从M 点运动到N 点的过程,有qu MN =12mv 2-12mv 20,U MN =3mv 202q . (2)(2)粒子在磁场中以粒子在磁场中以O ′为圆心做匀速运动,半径为O ′N ,有qvB =mv 22r ,r =2mv 0qB . (3)(3)由几何关系得由几何关系得ON =r sin θ设粒子在电场中运动的时间为t 1,有ON =v 0t 1t 1=3mqB粒子在磁场中做匀速圆周运动的周期T =2πm qB设粒子在磁场中运动的时间为t 2,有,有t 2=π-θ2πT ,故t 2=2πm 3qBt =t 1+t 2,t =33+2πm 3qB .1.如图所示.如图所示 ,匀强电场区域和匀强磁场区域是紧邻的,且宽度相等均为d ,电场方向在纸平面内竖直向下,而磁场方向垂直于纸面向里,一带正电的粒子从O 点以速度v 0沿垂直电场方向进入电场,从A 点射出电场进入磁场,离开电场点时的速度方向一致,已知d 、v 0(带电粒子重力不计带电粒子重力不计)),求:,求:(1)(1)(1)粒子从粒子从C 点穿出磁场时的速度大小v ;(2)(2)电场强度电场强度E 和磁感应强度B 的比值E B .解析:(1)(1)粒子在电场中偏转时做类平抛运动,则粒子在电场中偏转时做类平抛运动,则粒子在电场中偏转时做类平抛运动,则垂直电场方向d =v 0t ,平行电场方向d 2=v y2t 得v y =v 0,到A 点速度大小为v =2v 0在磁场中速度大小不变,所以从C 点出磁场时速度大小仍为2v 0.(2)(2)在电场中偏转时,出在电场中偏转时,出A 点时速度与水平方向成45°45° v y =qE m t =qEd mv 0,并且v y =v 0得E =mv 20qd在磁场中做匀速圆周运动,如图所示在磁场中做匀速圆周运动,如图所示由几何关系得R =2d又qvB =mv 22R ,且v =2v 0 得B =mv 0qd 解得E B =v 0.[例2] 如右图所示,在磁感应强度为B 的水平匀强磁场中,有一足够长的绝缘细棒OO ′在竖直面内垂直于磁场方向放置,细棒与水平面夹角为α.一质量为m 、带电荷量为+q 的圆环A 套在OO 圆′棒上,圆环与棒间的动摩擦因数为μ,且μ<tan α.现让圆环A 由静止开始下滑,试问圆环在下滑过程中:由静止开始下滑,试问圆环在下滑过程中:(1)(1)圆环圆环A 的最大加速度为多大?获得最大加速度时的速度为多大?的最大加速度为多大?获得最大加速度时的速度为多大?(2)(2)圆环圆环A 能够达到的最大速度为多大?能够达到的最大速度为多大?[思路点拨][自主解答] (1)(1)由于由于μ<tanα,所以环将由静止开始沿棒下滑.环A 沿棒运动的速度为v 1时,受到重力mg 、洛伦兹力qv 1B 、杆的弹力F N1和摩擦力F f 1=μF N1.根据牛顿第二定律,对圆环A 沿棒的方向:沿棒的方向:mg sin α-F f 1=ma垂直棒的方向:F N1+qv 1B =mg cos α所以当F f 1=0(0(即即F N1=0)0)时,时,a 有最大值a m ,且a m =g sin α此时qv 1B =mg cos α解得:v 1=mg cos αqB. (2)(2)设当环设当环A 的速度达到最大值v m 时,环受杆的弹力为F N2,摩擦力为F f 2=μF N2.此时应有a =0,即mg sin α=F f 2在垂直杆方向上:F N2+mg cos α=qv m B解得:v m =mg sin α+μcos αμqB. 2.如图所示,套在很长的绝缘直棒上的小球,质量为 1.0×10-4 kg ,带 4.0×10-4 C 正电荷,小 球在棒上可以滑动,将此棒竖直放置在沿水平方向的匀强电场和球在棒上可以滑动,将此棒竖直放置在沿水平方向的匀强电场和匀强磁场中.匀强电场的电场强度E =10 N/C 10 N/C,方向水平向右,,方向水平向右,,方向水平向右,匀强磁场的磁感应强度B =0.5 T 0.5 T,方向为垂直纸面向里,小球与棒,方向为垂直纸面向里,小球与棒,方向为垂直纸面向里,小球与棒间动摩擦因数为μ=0.20.2,求小球由静止沿棒竖直下落的最大加速度,求小球由静止沿棒竖直下落的最大加速度,求小球由静止沿棒竖直下落的最大加速度和最大速度.和最大速度.((设小球在运动过程中所带电荷量保持不变,g 取10 m/s2)解析:带电小球沿绝缘棒下滑过程中,受竖直向下的重力,竖直向上的摩擦力,水平方向弹力和洛伦兹力及电场力作用.当小球静止时,弹力等于电场力,小球在竖直方向所受摩擦力最小,小球加速度最大,小球运动过程中,弹力等于电场力与洛伦兹力之和,随着小球运动速度的增大,小球所受洛伦兹力增大,小球在竖直方向的摩擦力也随之增大,小球加速度减小,速度增大,当球的加速度为零时,速度达最大.小球刚开始下落时,加速度最大,设为a m ,这时竖直方向有mg -F f =ma ①在水平方向上有qE -F N =0②又F f =μF N ③由①②③解得a m =mg -μqE m,代入数据得a m =2 m/s 2. 小球沿棒竖直下滑,当速度最大时,加速度a =0在竖直方向上mg -F ′f =0④在水平方向上qv m B +qE -F N ′=′=00⑤又F ′f =μF N ′⑥′⑥ 由④⑤⑥解得v m =mg -μqE μqB, 代入数据得v m =5 m/s.[例3] 如图所示 ,在磁感应强度为B 的匀强磁场中,有一与磁感线垂直且水平放置的、长为L 的摆线,拴一质量为m 、带有+q 电荷量的摆球,若摆球始终能在竖直平面内做圆弧运动.试求 摆球通过最低位置时绳上的拉力F 的大小.的大小.[思路点拨思路点拨] ] 解答此题应把握以下两点:解答此题应把握以下两点:(1)(1)弹力和洛伦兹力都随小球速度改变而改变,但这两力不做功,只有重力做功.弹力和洛伦兹力都随小球速度改变而改变,但这两力不做功,只有重力做功.弹力和洛伦兹力都随小球速度改变而改变,但这两力不做功,只有重力做功.(2)(2)在最低点应用牛顿第二定律求解.在最低点应用牛顿第二定律求解.在最低点应用牛顿第二定律求解.[自主解答] 以摆球为研究对象.以摆球为研究对象.根据机械能守恒定律得:mgL =12mv 2m , 当向左摆动,到最低点速度向左时F 洛的方向向下.的方向向下.由牛顿第二定律得:F -mg -F 洛=mv 2m /L ,且:F 洛=qv m B ,联立以上各式解得:F =3mg +qB 2gL .当向右摆动,到最低点的速度向右时,F 洛的方向则向上.的方向则向上.由牛顿第二定律得:F +F 洛-mg =mv 2m /L ,联立解得:F =3mg -qB 2gL .3.在竖直平面内半圆形光滑绝缘管处在如图所示的匀强磁场中,B =1.1 T ,半径R =0.8 m ,其直径AOB 在竖直线上.圆环平面与磁场方向垂直,在管口A 处以2 m/s 水平速度射入一个直径略小于管内径的带电小球,其电荷量为+10-4 C ,问:(1)小球滑到B 处的速度为多少?(2)若小球从B 处滑出的瞬间,管子对它的弹力恰好为零,小球质量为多少?(g =10 m/s2)解析:(1)(1)小球从小球从A 到B ,利用动能定理得,利用动能定理得mg 2R =12mv 2B -12mv 2A得v B =v 2A +4gR =22+4×10×0.8+4×10×0.8 m/s m/s m/s==6 m/s. (2)(2)在在B 点,小球受到的洛伦兹力方向指向圆心,由于小球做圆周运动,所以有qv B B -mg =mv 22B R 即:即:1010-4×6×1.1-×6×1.1-1010m =36m 0.8得m =1.2×10--55 kg.2.(2012年淮北模拟年淮北模拟))如图所示,空间存在正交的匀强电场和匀强磁场,匀强电场方向竖直向上,匀强磁场的方向垂直纸面向里.有一内壁光滑、底部有带正电小球的试管.在水平拉力F 作用下,试管向右匀速运动,带电小球能从试管口处飞出.口处飞出.已知小球质量为已知小球质量为m ,带电量为q ,场强大小为E =mg q.关于带电小球及其在离开试管前的运动,关于带电小球及其在离开试管前的运动,下列说法中不下列说法中不正确的是正确的是( ( )A .洛伦兹力对小球不做功.洛伦兹力对小球不做功B .洛伦兹力对小球做正功.洛伦兹力对小球做正功C .小球的运动轨迹是一条抛物线.小球的运动轨迹是一条抛物线D .维持试管匀速运动的拉力F 应逐渐增大应逐渐增大解析:洛伦兹力方向始终与小球运动速度方向垂直,不做功,故A 正确、正确、B B 错误;小球在竖直方向受向上的电场力与向下的重力,二者大小相等,试管向右匀速运动,小球的水平速度保持不变,则竖直向上的洛伦兹力分量大小不变,小球竖直向上做匀加速运动,即小球做类平抛运动,故C 正确;小球竖直分速度增大,受水平向左的洛伦兹力分量增大,为维持试管匀速运动拉力F 应逐渐增大,应逐渐增大,D D 正确.正确.答案:答案:B B3.(2012年铜陵模拟年铜陵模拟))如图所示的装置,左半部分为速度选择器,右半部分为匀强的偏转电场.一束同位素离子流从狭缝S 1射入速度选择器,能够沿直线通过速度选择器并从狭缝S 2射出的离子,又沿着与电场垂直的方向,立即进入场强大小为E 的偏转电场,最后打在照相底片D 上.已知同位素离子的电荷量为q (q >0)>0),速度选择器内部存在着相互垂,速度选择器内部存在着相互垂直的场强大小为E 0的匀强电场和磁感应强度大小为B 0的匀强磁场,照相底片D 与狭缝S 1、S 2的连线平行且距离为L ,忽略重力的影响.忽略重力的影响.(1)(1)求从狭缝求从狭缝S 2射出的离子速度v 0的大小;(2)(2)若打在照相底片上的离子在偏转电场中沿速度若打在照相底片上的离子在偏转电场中沿速度v 0方向飞行的距离为x ,求出x 与离子质量m 之间的关系式之间的关系式((用E 0、B 0、E 、q 、m 、L 表示表示)).解析:(1)(1)能从速度选择器射出的离子满足能从速度选择器射出的离子满足能从速度选择器射出的离子满足qE 0=qv 0B 0①故v 0=E 0B 0② (2)(2)离子进入匀强偏转电场离子进入匀强偏转电场E 后做类平抛运动,则后做类平抛运动,则x =v 0t ③L =12at 22④ 由牛顿第二定律得qE =ma ⑤由②③④⑤解得x =E 0B 0 2mL qE4.(2010年高考课标全国卷年高考课标全国卷))如图所示,在0≤x ≤a 、0≤y ≤a2范围内垂直于xOy 平面向外的匀强磁场,磁感应强度大小为B 坐标原点O 处有一个粒子源,在某时刻发射大量质量为m 、电荷量为q 的带正电粒子,它们的速度大小相同,速度方向均在xOy 平面内,与y 轴正方向的夹角分布在0~90°范围内.已知粒子在磁场中做圆周运动的半径介于a /2到a 之间,从发射粒子到粒子全部离开磁场经历的时间恰好为粒子在磁场中做圆周运动周期的四分之一.求最后离开磁场的粒子从粒子源射出时的磁场的粒子从粒子源射出时的(1)(1)速度的大小;速度的大小;速度的大小;(2)(2)速度方向与速度方向与y 轴正方向夹角的正弦.轴正方向夹角的正弦.解析:(1)(1)设粒子的发射速度大小为设粒子的发射速度大小为v ,粒子做圆周运动的轨道,粒子做圆周运动的轨道半径为R ,由牛顿第二定律和洛伦兹力公式得:,由牛顿第二定律和洛伦兹力公式得: qvB =mv 2R① 由①式得R =mv qB ②当a 2<R <a 时,在磁场中运动时间最长的粒子,其轨迹是圆心为C 的圆弧,圆弧与磁场的上边界相切,如图所示.的圆弧,圆弧与磁场的上边界相切,如图所示. 设该粒子在磁场中运动的时间为t ,依题意t =T 4,得,得 ∠OCA =π2③设最后离开磁场的粒子的发射方向与y 轴正方向的夹角为α,由几何关系得,由几何关系得R sin α=R -a 2④ R sin α=a -R cos α⑤又sin 2α+cos 2α=1⑥由④⑤⑥式得R =(2(2--62)a ⑦ 由②⑦式得v =(2(2--62)aqB m(2)(2)由④⑦式得:由④⑦式得:由④⑦式得:sin sin α=6-610. [例1] 在真空中,半径r =3×10-2m 的圆形区域内有匀强磁场,方向如图所示,磁感应强度B =0.2 T ,一个带正电的粒子以初速度v 0=106 m/s 从磁场边界上直径ab 的一端a 射入磁场,已知该粒子的比荷q m =108C/kg C/kg,不计粒子重,不计粒子重力.(1)(1)求粒子在磁场中做匀速圆周运动的半径;求粒子在磁场中做匀速圆周运动的半径;(2)(2)若要使粒子飞离磁场时有最大偏转角,若要使粒子飞离磁场时有最大偏转角,求入射时v 0与ab 的夹角θ及粒子的最大偏转角.及粒子的最大偏转角.[解析] (1)(1)粒子射入磁场后,由于不计重力粒子射入磁场后,由于不计重力粒子射入磁场后,由于不计重力,,所以洛伦兹力提供圆周运动需要的向心力,根据牛顿第二定律有:qv 0B =m v 220R , R =mv 0qB =5×10-2m. (2)(2)粒子在圆形磁场区域运动轨迹为一段半径粒子在圆形磁场区域运动轨迹为一段半径R =5 cm 的圆弧,要使偏转角最大,就要求这段圆弧对应的弦最长,即为圆形区域的直径,粒子运动轨迹的圆心O ′在ab 弦中垂线上,如上图所示.由几何关系可知:知:sin θ=r R =0.60.6,,θ=37°=37°最大偏转角β=2θ=74°.=74°.[例2] 如图所示,半径为r =0.1 m 的圆形匀强磁场区域边界跟y 轴相切于坐标原点O ,磁感应强度B = 0.332 T 方,方向向垂直纸向面向里里.在O 有处有一一射放射源源,可沿纸向面向各各方个方向向射出速率均为v =3.2×106 m/s 的α粒子.已知α粒子质量m =6.646.64××1010--27kg 27kg,电荷量,电荷量q =3.23.2××1010--19C 19C,不计,不计α粒子的重力.求α粒子在磁场中运动的最长时间.动的最长时间.m v R 得=mv =粒子在磁场中运动的圆弧所对应的弦长最长,从右图可以看出,粒子在磁场中运动的时间最长.粒子在磁场中运动的时间最长.=2πm qB ,运动时间=2θ2π·=r R =y 轴上的a 点射入右图中第可在适当的地方加一个垂直于的匀强磁场,若此磁场分布在一个圆形区域内,试求这个圆形磁场区域的最小面积.的匀强磁场,若此磁场分布在一个圆形区域内,试求这个圆形磁场区域的最小面积.[解析] 质点在磁场中做半径为=mv 0qB 的圆周运动,根据题意,质点在磁场区域中的轨道为半径等于的圆上的的圆上的113圆周,这段圆弧应与入射方向的速度,出射方向的速度相切,如右图所示.则到入射方向所在直线和出射方向所在直线相距为R 的O ′点就是圆周的圆心.质点在磁场区域中的轨道就是以和f 点应在所求圆形磁场区域的边界上,在通过即得圆形磁场区域的最小半径sin 60°=3mv 02qB=34π(mv 0qB )。
高中物理必修三专题强化训练—磁场、磁感线[学习目标] 1.知道磁场的概念,知道磁体与磁体间、磁体与电流间、电流与电流间的作用是通过磁场发生的.2.理解磁感线的概念,知道磁感线的特点.3.理解安培定则,会用安培定则判断电流的磁场方向.一、电和磁的联系磁场1.磁极之间的相互作用:同名磁极相互排斥,异名磁极相互吸引.2.奥斯特实验:把导线放置在小磁针的上方,通电时磁针发生了转动.实验意义:奥斯特实验发现了电流的磁效应,即电流可以产生磁场,首次揭示了电与磁的联系.3.磁场:磁体与磁体之间、磁体与通电导体之间,以及通电导体与通电导体之间的相互作用,是通过磁场发生的,磁场是磁体或电流周围一种看不见、摸不着的客观存在的物质.二、磁感线1.磁场的方向:物理学规定,在磁场中的某一点,小磁针静止时N极所指方向就是该点磁场的方向.2.磁感线(1)定义:在磁场中画出一些有方向的曲线,曲线上每一点的切线方向都跟这点磁场的方向一致,这样的曲线就叫作磁感线.(2)特点①磁感线的疏密表示磁场的强弱.磁场强的地方,磁感线较密;磁场弱的地方,磁感线较疏.②磁感线某点的切线方向表示该点磁场的方向.三、安培定则1.直线电流的磁场安培定则:如图1甲所示,用右手握住导线,让伸直的拇指所指的方向与电流方向一致,弯曲的四指所指的方向就是磁感线环绕的方向.直线电流周围的磁感线分布情况如图乙所示.图12.环形电流的磁场安培定则:如图2甲所示,让右手弯曲的四指与环形电流的方向一致,伸直的拇指所指的方向就是环形导线轴线上磁场的方向.图23.通电螺线管的磁场安培定则:如图3所示,用右手握住螺线管,让弯曲的四指与螺线管电流的方向一致,伸直的拇指所指的方向就是螺线管轴线上磁场的方向.图3判断下列说法的正误.(1)磁极之间的相互作用是通过磁场发生的,磁场和电场一样,也是一种客观存在的特殊物质.(√)(2)磁感线可以形象地描述各磁场的强弱和方向,它每一点的切线方向都和小磁针放在该点静止时N极所指的方向一致.(√)(3)磁感线可以用细铁屑来显示,因而是真实存在的.(×)(4)通电直导线周围磁场的磁感线是以导线为圆心的圆.(√)(5)磁体的磁场和电流的磁场本质上是一样的.(√)(6)环形电流的磁场相当于小磁针,通电螺线管的磁场相当于条形磁体.(√)一、磁场磁感线导学探究如图4所示,通电导线放在蹄形磁体附近,悬挂导线的细线偏离竖直方向,说明通电导线受到力的作用,磁体对通电导线的作用力是如何产生的?图4答案磁体在周围产生了磁场,磁场对通电导线产生了作用力.知识深化1.磁场(1)磁场的客观性:磁场与电场一样,也是一种物质,是一种看不见而又客观存在的特殊物质.存在于磁体、通电导线、运动电荷、变化电场、地球的周围.(2)磁场的基本性质:对放入其中的磁极、电流、运动的电荷有力的作用,而且磁体与磁体、磁体与电流、电流与电流间的相互作用都是通过磁场发生的.2.磁感线(1)定义:磁感线是为了形象地描述磁场而人为假想的曲线,曲线上每一点的切线方向都跟这点磁场的方向一致.(2)特点:①在磁体外部,磁感线从N极发出,进入S极;在磁体内部由S极回到N极.②磁感线的疏密程度表示磁场的强弱,磁感线越密的地方磁场越强;磁场方向与过该点的磁感线的切线方向一致.③磁感线闭合而不相交,不相切,也不中断.④磁感线是人们为了形象描述磁场而假想的线,并不真实存在.(3)几种特殊磁体外部的磁感线分布(如图5所示):图5(多选)下列有关磁场的说法,正确的是()A.磁体周围的空间存在看不见、摸不着的磁场B.磁极间的相互作用是通过磁场发生的C.磁场是有方向的,在条形磁体的磁场中的不同位置,其磁场方向一般不同D.在磁场中的某点,小磁针南极所受磁场力的方向与该点的磁场方向相同答案ABC解析磁场虽然看不见、摸不着,但它是一种客观存在的特殊物质,它的基本性质是对放入其中的磁体产生力的作用;磁极间的相互作用就是通过磁场发生的;磁场具有方向性,在磁场中的某点,小磁针北极所受磁场力的方向与该点的磁场方向一致,小磁针南极所受磁场力的方向与该点的磁场方向相反(磁场方向的另一种描述方法),在条形磁体的磁场中的不同位置,其磁场方向一般不同,故A、B、C正确,D错误.关于磁场和磁感线,下列说法正确的是()A.磁感线总是从磁体的N极出发,到S极终止B.磁感线可以形象地描述磁场的强弱和方向,它每一点的切线方向都和小磁针放在该点静止时北极所指的方向一致C.两个磁场的叠加区域,磁感线可能相交D.磁感线可以表示磁场的强弱,沿磁感线方向,磁场逐渐减弱答案 B解析磁感线是闭合曲线,在磁体外部,磁感线由N极指向S极,在磁体内部,磁感线由S极指向N极,A错误;磁感线的切线方向表示磁场方向,磁感线上每一点的切线方向都和小磁针放在该点静止时北极所指的方向一致,B正确;磁场重叠时,磁场会相互叠加,但绝对不会出现同一点处有两个磁场方向,磁感线不能相交,C错误;磁感线的疏密表示磁场的强弱,在同一磁场中,磁感线密的地方磁场较强,磁感线疏的地方磁场较弱,D错误.磁感线可以和电场线作类比:比如都是人为引入的带有方向的线,可以通过疏密程度反映场的强弱,不能相交等;也有不同点,比如磁感线是闭合的曲线而电场线不闭合.二、安培定则导学探究1.演示实验:将一根与电源、开关相连接的直导线用架子架高,沿南北方向水平放置.将小磁针平行地放在直导线的上方或下方,请观察直导线通、断电时小磁针的偏转情况.观察到什么现象?通过这种现象可以得出什么结论呢?答案观察到通电时小磁针发生偏转,断电时小磁针又回到原来的位置.通电后导线上方或下方的小磁针发生偏转,说明通电后导线周围的空间对小磁针产生力的作用,由此我们可以得出:通电导线和磁体一样,周围存在着磁场.2.重做上面的实验,请观察当电流的方向改变时,小磁针N极的偏转方向是否发生变化.观察到什么现象?这说明什么?答案观察到电流的方向改变时,小磁针N极的偏转方向发生改变,说明电流的磁场方向也发生变化.知识深化用安培定则判断电流磁场的方向安培定则立体图横截面图纵截面图直线电流以导线上任意点为圆心的多组同心圆,越向外越稀疏,磁场越弱环形电流环内磁场比环外强,磁感线越向外越稀疏通电螺线管内部磁场为匀强磁场且比外部强,方向由S极指向N极,外部磁场类似条形磁体的磁场,方向由N极指向S极如图6所示,a、b是直线电流的磁场截面图,c、d是环形电流的磁场截面图,e、f是螺线管电流的磁场的截面图.试在各图中补画出电流方向或磁感线方向.图6答案见解析解析根据安培定则,可以确定题图a中电流方向垂直纸面向里,题图b中电流方向从下向上,题图c中电流方向沿逆时针方向,题图d中磁感线方向从上向下,题图e中磁感线方向向左,题图f中磁感线方向向右.利用安培定则判定电流的磁场方向需注意的问题:1利用安培定则判断通电直导线的磁场方向时,大拇指指的是电流方向,四指指的方向为磁感线的环绕方向.2利用安培定则判断通电螺线管和环形电流的磁场方向时,四指指的是电流方向,大拇指指的方向是磁场方向.为了判断一个未知正负极的蓄电池的极性,某同学将该蓄电池通过电阻跟螺线管连接起来,发现小磁针的N极立即向螺线管偏转,如图7所示.用M、N 和P、Q分别表示蓄电池和螺线管两极,下列判断正确的是()图7A.蓄电池M端为正极B.蓄电池N端为正极C.螺线管P端为S极D.螺线管内部磁场方向由P指向Q答案 B解析小磁针的N极向螺线管偏转说明小磁针所在位置磁场方向向左,即螺线管P端为N极,Q端为S极,选项C错误;在螺线管的内部,磁场方向由S极指向N极,所以螺线管内部磁场方向由Q指向P,选项D错误;根据安培定则可知,在蓄电池外部电流从N流向M,蓄电池N端为正极,选项A错误,B正确.针对训练下列关于小磁针在磁场中静止时的指向,正确的是()答案 C解析根据同名磁极相互排斥可知,选项A错;由安培定则可知环形电流中心线上的磁场方向由右向左,小磁针N极受到的磁场力向左,选项B错;根据安培定则可知通电螺线管内部磁场向右,内部小磁针N极受到的磁场力向右,选项C对;根据安培定则可知通电直导线右边磁场向里,小磁针N极受到的磁场力向里,选项D错.三、安培分子电流假说1.法国学者安培提出:在物质内部,存在着一种环形电流——分子电流,分子电流使每个物质微粒都成为微小的磁体,它的两侧相当于两个磁极.(如图8所示)图82.当铁棒中分子电流的取向大致相同时,铁棒对外显磁性;当铁棒中分子电流的取向变得杂乱无章时,铁棒对外不显磁性.(多选)下列说法正确的是()A.奥斯特提出“分子电流”假说,认为永磁体的磁场和通电导线的磁场均由运动的电荷产生B.安培提出“分子电流”假说,认为永磁体的磁场和通电导线的磁场均由运动的电荷产生C.根据“分子电流”假说,磁体受到强烈震动时磁性会减弱D.根据“分子电流”假说,磁体在高温条件下磁性会减弱答案BCD解析“分子电流”假说是由安培提出来的,故A错误;根据安培的“分子电流”假说可知,永磁体及通电导线的磁性是由内部运动电荷产生的磁场叠加而成的,故B正确;磁体在高温和强烈震动下分子电流的取向会变得杂乱,从而使磁性减弱,故C、D正确.考点一磁场和磁感线1.(多选)下列关于磁场的说法正确的是()A.磁场最基本的性质是对处于其中的磁体或电流有力的作用B.磁场是看不见、摸不着、实际不存在的,是人们假想出来的一种物质C.磁场是客观存在的一种特殊的物质D.磁场的存在与否决定于人的思想,想其有则有,想其无则无答案AC解析磁场虽看不见、摸不着,但它是客观存在的,它是一种特殊的物质,最基本的性质是对处于其中的磁体、电流或运动的电荷有力的作用,A、C正确,B、D错误.2.下列关于磁场的说法中,正确的是()A.只有磁体周围才存在磁场B.磁场是为了解释磁极间的相互作用而人为规定的C.磁场只有在磁极与磁极、磁极与通电导线发生作用时才产生D.磁极与磁极之间、磁极与通电导线之间、通电导线与通电导线之间都是通过磁场发生相互作用的答案 D解析磁场存在于磁体周围和电流周围,故A错误;磁场是实际存在的,不是假想的,磁感线是假想的,故B错误;磁场存在于磁体和电流周围,即使没有发生作用,磁场仍然是存在的,故C错误;磁极与磁极、磁极与电流、电流与电流之间都是通过磁场发生相互作用的,故D正确.3.下列关于磁感线的说法正确的是()A.磁感线可以形象地描述磁场的强弱与方向B.磁感线总是从磁体的N极发出,到S极终止C.磁感线就是细铁屑在磁铁周围排列的曲线,没有细铁屑的地方就没有磁感线D.沿磁感线的方向磁场逐渐减弱答案 A解析磁场是一种看不见的特殊物质,人们为了形象地描述磁场而引入了磁感线这一假想的曲线,磁感线可以表示磁场的强弱与方向,选项A正确;在磁体外部,磁感线从磁体的N极发出,从磁体的S极进入,在磁体内部磁感线由S极回到N 极,构成闭合曲线,选项B错误;磁感线是人们假想的曲线,与有无铁屑无关,选项C错误;磁场的强弱由磁感线的疏密程度表示,而与磁感线的方向无关,选项D错误.4.(多选)如图1所示,关于磁体、电流间的相互作用,下列说法正确的是()图1A.图甲中,电流不产生磁场,电流对小磁针的作用力是通过小磁针的磁场产生的B.图乙中,磁体对通电导线的力是通过磁体的磁场产生的C.图丙中电流间的相互作用是通过电流的磁场产生的D.图丙中电流间的相互作用是通过电荷的电场产生的答案BC解析题图甲中,电流对小磁针的作用力是通过电流的磁场产生的;题图乙中,磁体对通电导线的作用力是通过磁体的磁场产生的;题图丙中,电流对另一个电流的作用力是通过该电流的磁场产生的.综上所述,选项B、C正确,A、D错误.考点二电流的磁场5.下列各图中,电流及其产生的磁场方向均正确的是()答案 C6.(多选)导线中分别通入图示方向的电流,小磁针静止时N极垂直纸面向里的是()答案AB解析A图中,通电直导线中的电流从左向右,根据右手螺旋定则,电流在小磁针所处的位置产生的磁场方向垂直纸面向里,所以小磁针静止时N极垂直纸面向里,故A正确;B图中,根据右手螺旋定则,磁场的方向为逆时针方向(从上向下看),所以小磁针静止时N极垂直纸面向里,故B正确;C图中,根据环形导线的电流方向,由右手螺旋定则可知,小磁针所处的位置磁场方向垂直纸面向外,所以小磁针静止时N极垂直纸面向外,故C错误;D图中,根据右手螺旋定则,结合电流的方向,可知通电螺线管的内部磁场方向由右向左,所以小磁针静止时N极指向左,故D错误.7.两根非常靠近且互相垂直并互相绝缘的长直导线,当通以如图2所示方向的电流时,电流所产生的磁场在导线所在平面内的哪个区域内方向是一致且向里的()图2A.区域ⅠB.区域ⅡC.区域ⅢD.区域Ⅳ答案 A解析由安培定则可知,I1电流在其上方产生的磁场方向垂直纸面向里,I2电流在其右方产生的磁场方向垂直纸面向里,故只有在区域Ⅰ,两个电流产生的磁场才都向里,选项A正确.8.通电螺线管附近放置四个小磁针,如图3所示,当小磁针静止时,图中小磁针的指向正确的是(涂黑的一端为N极)()图3A.a B.bC.c D.d答案 B解析由安培定则判断出螺线管的左侧相当于条形磁体的N极,右侧相当于S极,故在小磁针a、c、d处磁场方向水平向左,小磁针b处磁场方向水平向右,小磁针静止时N极应沿磁感线方向,只有小磁针b指向正确,选项B正确.考点三安培分子电流假说9.小华同学在探究磁极间的相互作用时,不小心将条形磁体掉在了地上,当小华把条形磁体拾起来再次进行实验时,发现该条形磁体失去了磁性.则下列说法正确的是()A.由安培分子电流假说可知,条形磁体中的分子电流消失了B.由安培分子电流假说可知,条形磁体中的分子电流的取向变得一致了C.由安培分子电流假说可知,条形磁体中的分子电流的取向变得杂乱无章了D.由安培分子电流假说可知,条形磁体中的分子电流强度减弱了答案 C解析由安培分子电流假说可知,原来有磁性的物体,经过高温、剧烈震动等作用后分子电流的取向重新变得杂乱无章,分子电流仍然存在且强度也没有发生变化,但分子电流产生的磁场相互抵消,这样物体就会失去磁性,C正确.10.安培观察到通电螺线管的磁场和条形磁体的磁场很相似,提出了分子电流假说.他认为,在物质内部存在着一种环形电流——分子电流(分子电流实际上是由原子内部电子绕核运动形成的),分子电流使每个物质微粒都成为微小的磁体,它的两侧相当于两个磁极,如图4所示.下列将分子电流(箭头表示电子运动方向)等效为小磁体的图示中正确的是()图4答案 B解析做圆周运动的电荷带负电,则环形电流方向与其运动方向相反,根据安培定则可知其左侧为N极,选项B对.11.如图5所示,直导线AB、螺线管E、U形磁体D三者相距较远,磁场相互不影响,开关闭合后,小磁针N极(黑色一端)指示磁场方向正确的是()图5A.a B.bC.c D.d答案 C解析小磁针N极的指向为磁感线方向,直导线AB部分,电流从上到下,所以从上往下看,直导线产生的磁场方向应为顺时针方向,所以小磁针a的N极应指向纸面外,A错误;在通电螺线管E部分,由安培定则可知,在内部磁感线从右到左,故右端为螺线管S极,左端为N极,在外部磁感线从N极到S极,所以小磁针b的N极应向右,小磁针c的N极向左,B错误,C正确;在U形磁体D 部分,由安培定则可知,左端为S极,右端为N极,在外部磁场方向从右端指向左端,所以小磁针d的N极应向左,D错误.12.(多选)如图6所示,一束带电粒子沿水平方向飞过小磁针上方.若带电粒子飞过小磁针上方的瞬间,小磁针N极向纸面内偏转,则带电粒子可能是()图6A.向右飞行的正离子束B.向左飞行的正离子束C.向右飞行的负离子束D.向左飞行的负离子束答案AD解析由小磁针N极向纸面内偏转知,粒子束下方磁感线垂直纸面向里,由安培定则可知,小磁针上方的直线电流方向向右,则带电粒子可能是向右飞行的正离子束,也可能是向左飞行的负离子束,故A、D正确.13.(2020·江苏淮安期中)1876年美国物理学家罗兰完成了著名的“罗兰实验”.此实验可简化为将大量的负电荷加在一个橡胶圆盘边缘上,然后在圆盘附近悬挂一个小磁针,将圆盘绕中心轴按如图7所示方向高速旋转时,就会发现小磁针发生偏转,忽略地磁场对小磁针的影响.下列说法错误的是()图7A.小磁针发生偏转说明电流会产生磁场B.圆盘中心轴处的磁场方向向下C.当小磁针位于圆盘的左上方时,它的N极向左侧偏转D.当小磁针位于圆盘的左下方时,它的N极向右侧偏转答案 B解析由题意可知,小磁针受到磁场力的作用而发生偏转,原因是电荷的定向移动形成电流,电流周围产生磁场,A正确;圆盘带负电,根据安培定则可知,产生的磁场方向向上,故圆盘上方为N极,圆盘下方为S极,B错误;当小磁针处于圆盘的左上方时,因圆盘上方为N极,则小磁针的N极向左侧偏转,C正确;当小磁针处于圆盘的左下方时,因圆盘下方为S极,则小磁针的N极向右侧偏转,D正确.14.如图8所示,橡胶圆环上带有大量的负电荷,当圆环沿顺时针方向转动时,a、b、c三枚小磁针都要发生转动,以下说法正确的是()图8A.a、b、c的N极都向纸内转B.b的N极向纸外转,而a、c的N极向纸内转C.b、c的N极都向纸内转,而a的N极向纸外转D.b的N极向纸内转,而a、c的N极向纸外转答案 B解析圆环带有负电荷,圆环顺时针转动,产生的等效电流方向沿逆时针方向,由安培定则可知,a、c小磁针所在处磁场方向垂直于纸面向里,b小磁针处磁场方向垂直于纸面向外,故a、c小磁针的N极向纸内转动,b小磁针的N极向纸外转动,故B正确.。
高中物理竞赛磁场试题及答案一、选择题(每题3分,共15分)1. 一个带正电的粒子以速度v进入一个垂直于速度方向的均匀磁场中,该粒子将:A. 做匀速直线运动B. 做匀速圆周运动C. 做螺旋运动D. 静止不动2. 地球的磁场是由:A. 地球内部的电流产生的B. 太阳风影响产生的C. 地球表面的岩石产生的D. 地球大气层中的电荷分布产生的3. 根据洛伦兹力公式 \( F = q(v \times B) \),当带电粒子的速度方向与磁场方向平行时,洛伦兹力的大小为:A. 0B. \( qvB \)C. \( qB \)D. \( vB \)4. 一个带电粒子在磁场中做匀速圆周运动,其半径 \( r \) 与磁场强度 \( B \) 和粒子速度 \( v \) 的关系是:A. \( r \propto \frac{1}{Bv} \)B. \( r \propto \frac{1}{B^2v} \)C. \( r \propto \frac{1}{v} \)D. \( r \propto Bv \)5. 以下哪个选项不是磁感应强度的单位?A. 特斯拉(T)B. 韦伯(Wb)C. 高斯(G)D. 奥斯特(Oe)二、填空题(每空2分,共10分)6. 一个带电粒子在磁场中受到的洛伦兹力大小为 \( F = ______ \)。
7. 磁通量 \( \Phi \) 定义为穿过某一闭合表面的磁感应线的总数量,其单位是 ______ 。
8. 当线圈中的电流发生变化时,线圈周围的磁场也会发生变化,根据法拉第电磁感应定律,线圈中将产生 ______ 。
9. 磁感应强度 \( B \) 的方向定义为 ______ 。
10. 磁铁的南极和北极分别用字母 ______ 和 ______ 表示。
三、计算题(每题10分,共20分)11. 一个带正电的粒子,电荷量 \( q = 1.6 \times 10^{-19} \) C,以速度 \( v = 3 \times 10^7 \) m/s 进入一个磁场强度 \( B =0.5 \) T 的均匀磁场中,求该粒子在磁场中的运动轨迹半径。
高中磁场试题及答案一、选择题1. 磁场的基本性质是什么?A. 磁场对放入其中的电流有力的作用B. 磁场对放入其中的电荷有力的作用C. 磁场对放入其中的物体有力的作用D. 磁场对放入其中的金属有力的作用答案:A2. 根据安培环路定理,磁场线是闭合的,那么以下哪个选项是错误的?A. 磁场线是闭合的B. 磁场线不相交C. 磁场线可以是直线D. 磁场线总是从磁北极指向磁南极答案:D3. 一个带正电的粒子以一定速度进入磁场,如果磁场方向垂直于粒子运动的方向,那么粒子的运动轨迹是什么形状?A. 直线B. 圆C. 螺旋D. 抛物线答案:B二、填空题4. 根据洛伦兹力公式,一个带电粒子在磁场中的受力大小为 \[ F = q \times v \times B \],其中 \( q \) 表示______,\( v \) 表示______,\( B \) 表示______。
答案:电荷量;速度;磁感应强度5. 磁通量是穿过一个闭合表面的磁场线的总数,其单位是______。
答案:韦伯(Weber)三、简答题6. 请简述法拉第电磁感应定律的主要内容。
答案:法拉第电磁感应定律指出,当磁场中的磁通量发生变化时,会在闭合电路中产生感应电动势。
感应电动势的大小与磁通量变化的速率成正比。
四、计算题7. 一个长为 \( L \) 的导线,以速度 \( v \) 在垂直于磁场 \( B \) 的方向上运动,求导线两端的感应电动势。
答案:根据法拉第电磁感应定律,导线两端的感应电动势 \( E \) 可以通过公式 \( E = B \times L \times v \) 计算得出。
五、论述题8. 论述磁场对带电粒子运动的影响,并给出一个实际应用的例子。
答案:磁场对带电粒子的影响主要体现在洛伦兹力的作用上。
当带电粒子以一定速度进入磁场时,如果其速度方向与磁场方向不平行,粒子将受到一个垂直于速度和磁场方向的力,导致粒子做圆周运动。
一个实际应用的例子是质谱仪,它利用磁场使带电粒子在磁场中做圆周运动,通过测量粒子的轨迹半径来确定粒子的质量和电荷比。
WORD 格式整理专业资料值得拥有1 .如图所示,一电荷量为 力的是()K~~X~~X~~X SK X XX --XX XXA.工 x M 篦B.【答案】C【解析】由图可知,ABD 图中带电粒子运动的方向都与粗糙度方向垂直,所以受到的洛伦兹力都 等于qvB,而图C 中,带电粒子运动的方向与磁场的方向平行,所以带电粒子不受洛伦 兹力的作用.故 C 正确,ABD 昔误.故选C.2 .如图所示为电流产生磁场的分布图,其中正确的是 ( )【答案】D 【解析】A 中电流方向向上,由右手螺旋定则可得磁场为逆时针(从上向下看),故A 错误;B 图 电流方向向下,由右手螺旋定则可得磁场为顺时针(从上向下看) ,故B 错误;C 图中电流为环形电流,由由右手螺旋定则可知,内部磁场应向右,故C 错误;D 图根据图示电流方向,由右手螺旋定则可知,内部磁感线方向向右,故 D 正确;故选D. 点睛:因磁场一般为立体分布,故在判断时要注意区分是立体图还是平面图,并且要能 根据立体图画出平面图,由平面图还原到立体图^3 .下列图中分别标出了一根放置在匀强磁场中的通电直导线的电流I 、磁场的磁感应根据左手定则的内容:伸开左手,使大拇指与其余四个手指垂直,并且都与手掌在同一 个平面内;让磁感线从掌心进入,并使四指指向电流的方向,这时拇指所指的方向就是 通电导线在磁场中所受安培力的方向,可得:A 、电流与磁场方向平行,没有安培力,故 A 错误;B 、安培力的方向是垂直导体棒向下的,故 B 错误;评卷人 得分、选择题q 的负电荷以速度 v 射入匀强磁场中.其中电荷不受洛仑兹PC~~X —X~~X R y [一X X X X」 V :•: C.【解析】C、安培力的方向是垂直导体棒向上的,故C正确;D、电流方向与磁场方向在同一直线上,不受安培力作用,故D错误.故选C. 点睛:根据左手定则直接判断即可,凡是判断力的方向都是用左手,要熟练掌握,是一道考查基础的好题目.4.如图所示,水平地面上固定着光滑平行导轨,导轨与电阻R连接,放在竖直向上的匀强磁场中,杆的初速度为V%不计导轨及杆的电阻,则下列关于杆的速度与其运动位移之间的关系图像正确的是()V【答案】C【解析】导体棒受重力、支持力和向后的安培力;感应电动势为:E=BLv感应电流为:安培力为: - —故:一 =求和,有:—=故:一二故v与x是线性关系;故C正确,ABD昔误;故选:C.5.如图所示,直角三角形ABC中存在一匀强磁场,比荷相同的两个粒子沿AB方向射入磁场,粒子仅受磁场力作用,分别从AC边上的P、Q两点射出,则()A.从P射出的粒子速度大B. 从Q射出的粒子速度大C.从P射出的粒子,在磁场中运动的时间长D. 两粒子在磁场中运动的时间一样长【答案】BD【解析】试题分析:粒子在磁场中做圆周运动,根据题设条件作出粒子在磁场中运动的轨迹,根据轨迹分析粒子运动半径和周期的关系,从而分析得出结论.粒子在磁场中做匀速圆周运动,根据几何关系(图示弦切角相等),粒子在磁场中偏转试卷第2页,总139页WORD格式整理的圆心角相等,根据粒子在磁场中运动的时间:又因为粒子在磁场中圆周运动的周期可知粒子在磁场中运动的时间相等,故D正确,C错误;如图,粒子在磁场中做圆周运动,分别从P点和Q点射出,由图知,粒子运动的半径,又粒子在磁场中做圆周运动的半径知粒子运动速度,故A错误B正确;【点睛】带电粒子在匀强磁场中运动时,洛伦兹力充当向心力,从而得出半径公式周期公式-,运动时间公式-,知道粒子在磁场中运动半径和速度有关,运动周期和速度无关,画轨迹,定圆心,找半径,结合几何知识分析解题,6.在等边三角形的三个顶.点a、b、c处,各有一条长直导线垂直纸面放置,导线中通有大小相等的恒定电流,方向如图所示.过c点的导线所受安培力的方向()除:上A.与ab边平行,竖直向上B. 与ab边垂直,指向右边C.与ab边平行,竖直向下D. 与ab边垂直,指向左边【答案】D【解析】试题分析:先根据右手定则判断各个导线在c点的磁场方向,然后根据平行四边形定则,判断和磁场方向,最后根据左手定则判断安培力方向导线a在c处的磁场方向垂直ac斜向下,b在c处的磁场方向垂直bc斜向上,两者的和磁场方向为竖直向下,根据左手定则可得c点所受安培力方向为与ab边垂直,指向左边,D正确;7.下列说法中正确的是()A.电场线和磁感线都是一系列闭合曲线8.在医疗手术中,为防止麻醉剂乙醛爆炸,医生和护士要穿由导电材料制成的鞋子和外套,这样做是为了消除静电C.奥斯特提出了分子电流假说D.首先发现通电导线周围存在磁场的科学家是安培【答案】B【解析】电场线是从正电荷开始,终止于负电荷,不是封闭曲线,A错误;麻醉剂为易挥发性物品,遇到火花或热源便会爆炸,良好接地,目的是为了消除静电,这些要求与消毒无关,B正确;安培发现了分子电流假说,奥斯特发现了电流的磁效应,CD错误;9.在如图所示的平行板电容器中,电场强度E和磁感应强度B相互垂直,一带正电的粒子q以速度v沿着图中所示的虚线穿过两板间的空间而不偏转(忽略重力影响)。
磁场高中练习题磁场是物质固有的性质,它可以感应出物体之间的相互作用力。
在高中物理学习中,磁场是一个重要的概念,它与电流、电磁感应等有着密切的关系。
下面是几道关于磁场的高中练习题,帮助大家巩固对磁场的理解。
(题目一)1. 两根平行的电流直导线,电流方向分别为I1和I2。
它们之间的磁场强度如何?(题目二)2. 在给定磁场B下,一名运动带电粒子受到的洛伦兹力的大小与哪些因素有关?(题目三)3. 两根平行导线之间距离为d,电流分别为I1和I2,两根导线之间的相对运动速度为v。
求其中一根导线上感受到的感应电动势。
(题目四)4. 一只电荷为q的正电子,在磁感应强度为B的磁场中以速度v垂直于磁场方向运动。
求正电子受到的洛伦兹力大小和方向。
(题目五)5. 磁感应强度为B的磁场中,有一导线形成一个半径为R、电流为I的圆环。
求圆环中心的磁场强度。
(题目六)6. 一根弯折的导线形成一个半径为R的圆环,圆环上通过电流I。
求圆环中心的磁感应强度。
(题目七)7. 带电粒子进入匀强磁场后,将做哪些运动?(题目八)8. 两个长度相等的蓄电池,其电动势分别为ε1和ε2。
将它们通过相同的正电荷通过相同的导线连接后,电动势的大小将如何变化?(题目九)9. 已知单个电子的电量为e,以速度v匀速运动。
在给定的磁场中,若电子受到的洛伦兹力与重力平衡。
求这个磁场的磁感应强度。
(题目十)10. 一个导体棒的长度为L,电阻为R,质量为m。
当导体棒通过电源提供的电流为I时,它在给定的磁场中受到的磁感应力大小。
以上是关于磁场的高中练习题,通过解答这些问题,可以巩固对磁场的理解,为进一步学习电磁学打下坚实的基础。
希望本文对你有所帮助。
大学物理磁场考试练习题一、选择题1.空间某点的磁感应强度的方向,一般可以用下列几种办法来判断,其中哪个是错误的?() (A )小磁针北(N )极在该点的指向;(B )运动正电荷在该点所受最大的力与其速度的矢积的方向;(C )电流元在该点不受力的方向;(D )载流线圈稳定平衡时,磁矩在该点的指向。
2.下列关于磁感应线的描述,哪个是正确的?() (A )条形磁铁的磁感应线是从N 极到S 极的; (B )条形磁铁的磁感应线是从S 极到N 极的; (C )磁感应线是从N 极出发终止于S 极的曲线; (D )磁感应线是无头无尾的闭合曲线。
3.磁场的高斯定理说明了下面的哪些叙述是正确的?()a 穿入闭合曲面的磁感应线条数必然等于穿出的磁感应线条数;B⎰⎰=⋅0S d Bb 穿入闭合曲面的磁感应线条数不等于穿出的磁感应线条数;c 一根磁感应线可以终止在闭合曲面内;d 一根磁感应线可以完全处于闭合曲面内。
(A )ad ;(B )ac ;(C )cd ;(D )ab 。
4.如图所示,在无限长载流直导线附近作一球形闭合曲面S ,当曲面S 向长直导线靠近时,穿过曲面S 的磁通量和面上各点的磁感应强度B 将如何变化?() (A )增大,B 也增大; (B )不变,B 也不变; (C )增大,B 不变; (D )不变,B 增大。
5.两个载有相等电流I 的半径为R 的圆线圈一个处于水平位置,一个处于竖直位置,两个线圈的圆心重合,则在圆心o 处的磁感应强度大小为多少?() (A )0;(B ); (C );(D )。
ΦΦΦΦΦR I 2/0μR I 2/20μR I /0μISIIo二、填空题1.如图所示,均匀磁场的磁感应强度为B =0.2T ,方向沿x 轴正方向,则通过abod 面的磁通量为_________,通过befo 面的磁通量为__________,通过aefd 面的磁通量为_______。
2.真空中一载有电流I 的长直螺线管,单位长度的线圈匝数为n ,管内中段部分的磁感应强度为________,端点部分的磁感应强度为__________。