直线与椭圆的弦长公式.
- 格式:pdf
- 大小:1.89 MB
- 文档页数:15
1.直线和椭圆位置关系判定方法概述1直线斜率存在时221y kx bmx ny =+⎧⎨+=⎩⇒222()210m k n x kbnx b +++-=当0∆>时直线和椭圆相交当0∆=时直线和椭圆相切当0∆<时直线和椭圆相离2直线斜率不存在时22221x x y ab =⎧⎪⎨+=⎪⎩判断y 有几个解注:01无论直线斜率存在与否,关键是看联立后的方程组有几组解,而不是看""∆。
02直线和椭圆位置关系的判断只有这种“坐标法”,无几何法。
2.直线和椭圆相交时1弦长问题弦长公式22121221111AB k x x k y y a k∆=+-=+=+-注:2121212()4x x x x x x -=+-而12x x +和12x x 可用韦达定理解决,不必求出1x 和2x 的精确值,“设而不求”思想初现。
2三角形面积1过x 轴上一定点H 的直线l 与椭圆22221x y a b +=交于A 、B 两点,求AOB S ∆1212AOB S OH y y ∆=- 02过y 轴上一定点H 的直线l 与椭圆22221x y b a+=交于A 、B 两点,求AOB S ∆1212AOB S OH x x ∆=- 03弦任意,点任意12S ∆=弦长×点线距注:仍然蕴含“设而不求”思想。
3弦的中点问题01中点弦所在直线方程问题02平行弦中点轨迹03共点弦中点轨迹04其他问题类型题一:直线与椭圆位置1.已知直线2+=kx y 和椭圆12322=+y x ,当k 取何值时,此直线与椭圆:(1)相交;(2)相切;(3)相离。
2.已知直线2+=kx y 与椭圆2222=+y x 相交于不同的两点,求k 的取值范围。
3.点P 在椭圆284722=+y x 上,则点P 到直线01623=--y x 的距离的最大值为_____,最小值为________.类型题二:弦长公式1.已知椭圆:1922=+y x ,过左焦点1F 作倾斜角为6 的直线交椭圆于B A ,两点,求弦AB 的长。
椭圆的弦长公式椭圆是常见的几何图形,它与圆相似,但形状略有不同。
在本文中,我们将探讨椭圆的弦长公式及其推导过程。
椭圆的定义椭圆是在平面上定义的几何图形,它是固定点F(称为焦点)和固定直线L (称为直角边)到平面上点P的距离之和与一定的常数2a成比例的点的集合,即PF1 + PF2 = 2a其中F1和F2是一个椭圆的两个焦点,a是一个椭圆的半长轴。
椭圆的弦长弦是在椭圆内部连接两个不相邻的点的线段。
图中AB和CD是椭圆的两条弦,其长度为l。
我们的目标是推导出椭圆弦长的公式。
椭圆的标准方程为了推导椭圆的弦长公式,我们需要引入椭圆的标准方程。
标准方程是将椭圆放在坐标系中并将椭圆的中心与坐标系的原点重合时的方程。
一个椭圆的标准方程为:x²/a² + y²/b² = 1其中a和b是椭圆的半长轴和半短轴。
椭圆的弦长公式的推导现在我们来推导椭圆的弦长公式。
假设椭圆的标准方程是x²/a² + y²/b² = 1弦AB的两个端点的坐标可以表示为:A(-x1, y1)和B(x2, y2)根据标准方程,我们可以得到:y1²/b² = 1 - x1²/a² (1)y2²/b² = 1 - x2²/a² (2)将式(1)和式(2)相加:y1²/b² + y2²/b² = 2 - x1²/a² - x2²/a²将x1和x2相加,得到:x1 + x2 = -(a²/b²)(y1 + y2)/(x1 - x2)我们假设椭圆的中心为(0, 0),则坐标系中任意一点P的坐标为(x, y)。
以y1作为y坐标,可以得到:x = a²x1/(a² - b²),y = b²y1/(a² - b²)同样地,以y2作为y坐标,可以得到:x = a²x2/(a² - b²),y = b²y2/(a² - b²)令l为弦AB的长度,则:l² = (x2 - x1)² + (y2 - y1)²将x1和x2代入上式,得到:l² = (a²x2/(a² - b²)- a²x1/(a² - b²))² + (b²y2/(a² - b²)- b²y1/(a² - b²))²整理后得到:l² = a²(x2 - x1)²/(a² - b²)² + b²(y2 - y1)²/(a² - b²)²将x1 + x2 = -(a²/b²)(y1 + y2)/(x1 - x2)代入上式,得到:l² = 4a²b²(x1 - x2)²/(a² - b²)⁴ + 4a²b²(y1 + y2)²/(a² - b²)⁴将x1 + x2代入上式中的(x1 - x2)²,得到:l² = 4a²b²(x1 + x2)²/(a² - b²)⁴ + 4a²b²(y1 + y2)²/(a² - b²)⁴ - 8a²b²x1x2/(a² - b²)⁴由于x1 + x2 = -(a²/b²)(y1 + y2)/(x1 - x2),所以8a²b²x1x2/(a ² - b²)⁴可以改写为4(a² - b²)(y1 + y2)²。
直线与圆锥曲线的弦长公式
直线与圆锥曲线的弦长公式指的是通过直线和圆锥曲线两点间的弦长计算公式。
对于圆锥曲线来说,其弦长的公式是根据椭圆、双曲线和抛物线的不同方程来确定的。
具体公式如下:
1. 椭圆的弦长公式:
设椭圆的两点分别为P(x1,y1)、Q(x2,y2),则它们之间的弦长为:
L = 2a * sin[(Δθ)/2]
其中a为椭圆的半长轴,Δθ为两点在椭圆上的夹角。
2. 双曲线的弦长公式:
设双曲线的两点分别为P(x1,y1)、Q(x2,y2),则它们之间的弦长为:
L = 2a * sinh[1/2 * arcosh((x2-x1)/2a)]
其中a为双曲线的半参数。
3. 抛物线的弦长公式:
设抛物线的两点分别为P(x1,y1)、Q(x2,y2),则它们之间的弦长为:
L = [(x2-x1)^2 + (y2+y1)^2]^(1/2)
以上是直线与圆锥曲线的弦长公式。
1.直线和椭圆位置关系判定方法概述1直线斜率存在时221y kx bmx ny =+⎧⎨+=⎩⇒222()210m k n x kbnx b +++-=当0∆>时直线和椭圆相交当0∆=时直线和椭圆相切当0∆<时直线和椭圆相离2直线斜率不存在时22221x x y ab =⎧⎪⎨+=⎪⎩判断y 有几个解注:01无论直线斜率存在与否,关键是看联立后的方程组有几组解,而不是看""∆。
02直线和椭圆位置关系的判断只有这种“坐标法”,无几何法。
2.直线和椭圆相交时1弦长问题弦长公式22121221111AB k x x k y y a k∆=+-=+=+-注:2121212()4x x x x x x -=+-而12x x +和12x x 可用韦达定理解决,不必求出1x 和2x 的精确值,“设而不求”思想初现。
2三角形面积1过x 轴上一定点H 的直线l 与椭圆22221x y a b +=交于A 、B 两点,求AOB S ∆1212AOB S OH y y ∆=- 02过y 轴上一定点H 的直线l 与椭圆22221x y b a+=交于A 、B 两点,求AOB S ∆1212AOB S OH x x ∆=- 03弦任意,点任意12S ∆=弦长×点线距注:仍然蕴含“设而不求”思想。
3弦的中点问题01中点弦所在直线方程问题02平行弦中点轨迹03共点弦中点轨迹04其他问题类型题一:直线与椭圆位置1.已知直线2+=kx y 和椭圆12322=+y x ,当k 取何值时,此直线与椭圆:(1)相交;(2)相切;(3)相离。
2.已知直线2+=kx y 与椭圆2222=+y x 相交于不同的两点,求k 的取值范围。
3.点P 在椭圆284722=+y x 上,则点P 到直线01623=--y x 的距离的最大值为_____,最小值为________.类型题二:弦长公式1.已知椭圆:1922=+y x ,过左焦点1F 作倾斜角为6 的直线交椭圆于B A ,两点,求弦AB 的长。
高中数学中的四大类弦长公式一、平面直角坐标中的全场通用弦长公式1、已知两点坐标:()11,y x A ,()22,y x B ,则()()221221y y x x AB -+-=2、已知直线上两点:若()11,y x A ,()22,y x B 两点在直线b kx y +=(直线的斜率存在并且不为0)上,则ak x x k AB ∆+=-+=221211(∆,,21x x 是02=++c bx ax 的两根和判别式) ak y y k AB ∆+=-+=22121111(∆,,21y y 是02=++c by ay 的两根和判别式)注:以上公式适用于直线与曲线相交,将直线与曲线联立但不易求出交点坐标 时,采用设而不求思想的解决弦长问题,以上公式的证明会用到韦达定理)二、平面直角坐标中特殊曲线(例如:圆,抛物线,椭圆)中的弦长公式1、直线0:=++C By Ax l 与圆()()222:r b y a x M =-+-相交于B A ,,则222d r AB -=(其中22BA C Bb Aa d +++=为圆心),(b a M 到直线l 的距离)注:此公式证明需用垂径定理2、抛物线中的焦点弦弦长公式,过抛物线交点F 直线l 与抛物线相交的弦长,BF AF AB += ①α221sin 2px x p AB =++=(其中抛物线开口向右,方程为px y 22=)②)(21x x p AB +-=(其中抛物线开口向左,方程为px y 22-=) ③21y y p AB ++=(其中抛物线开口向上,方程为py x 22=) ④)(21y y p AB +-=(其中抛物线开口向下,方程为py x 22-=) 注:此公式的证明需用到抛物线的定义和焦半径公式.3、椭圆中的焦点弦的弦长公式,BF AF AB +=①过椭圆)0(12222>>=+b a b y a x 的左焦点)0,(1c F -的直线l 与椭圆相交于()11,y x A ,()22,y x B 两点,则()212x x e a AB ++=.②过椭圆)0(12222>>=+b a b y a x 的左焦点)0,(2c F 的直线l 与椭圆相交于()11,y x A ,()22,y x B 两点,则()212x x e a AB +-=.③过椭圆)0(12222>>=+b a b x a y 的左焦点)0(1c F -,的直线l 与椭圆相交于 ()11,y x A ,()22,y x B 两点,则()212y y e a AB ++=.④过椭圆)0(12222>>=+b a b y a x 的左焦点),0(2c F 的直线l 与椭圆相交于()11,y x A ,()22,y x B 两点,则()212y y e a AB +-=.注:此公式的证明需用到椭圆的第二定义和焦半径公式.三、直线标准参数方程下的弦长公式过定点),(00y x P ,倾斜角为α的直线l 的参数方程⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数). 参数t 的几何意义为: t 为直线上任一点(,)x y 到定点00(,)x y 的数量;即:直线l 上的动点()()ααsin ,cos ,00t y t x M y x M ++=到点),(00y x P 的距离等于t .设点B A 、对应的参数分别为,,21t t 则有: ①2121,,t t AB t PB t PA -=== ②AB 中点M 对应的参数为221t t +,则.221t t PM += 证明:∵A 对应的参数分别为1t ∴()ααsin ,cos 1010t y t x A ++, ∴ ()()()()1212120102010sin cos sin cos t t t y t y x t x PA =+=-++-+=αααα同理2t PB =,21t t AB -=还有一些可能会用到的公式,他们都可通过以上两个结论+绝对值的运算而得:例如:③⎩⎨⎧<->+=+=+0,,2121212121t t t t t t t t t t PB PA ;⎩⎨⎧<+>-=-=-0,,2121212121t t t t t t t t t t PB PA④ 若AB 的中点为P ,则021=+t t .(∵AB 中点对应的参数为221t t +,P 对应的参数为0)过定点),(00y x P 的直线l 的参数方程也可表示为:⎩⎨⎧+=+=bt y y atx x 00(b a ,是常数,t 为参数).设点N M 、对应的参数分别为21,t t ,即()()20201010,,,bt y at x N bt y at x M ++++则有:①122t b a PM +=,222t b a PN +=,()2122t t b a PN PM +=⋅②Aba t tb a MN ∆+=-+=222122(其中21,t t 是方程02=++C Bt At 的两根)③⎩⎨⎧<->+=+=+0,,2121212121t t t t t t t t t t PN PM ; ⎪⎩⎪⎨⎧<++>-+=-+=-0,0,2121222121222122t t t t b a t t t t b a t t b a PN PM④ 若MN 的中点为P ,则021=+t t .(∵MN 中点对应的参数为221t t +,P 对应的参数为0)四、极坐标系中的弦长公式:()()2211,,,θρθρB A①若21θθ=,则21ρρ-=AB②若21θθ≠,则()21212221cos 2θθρρρρ--+=AB ,()2121sin 21θθρρ-=∆OAB S。
椭圆与直线相交的弦长公式推导椭圆与直线相交的弦长公式推导引言概述椭圆与直线相交的弦长公式推导具有繁多的种类和巨大的数量,如果不能够科学处置,将会严重污染到水、大气以及土壤环境。
近些年来,椭圆与直线相交的弦长公式推导产生量呈现出不断增长的态势,迫切需要深入治理。
因此,椭圆与直线相交的弦长公式推导要依据生态文明建设要求,结合椭圆与直线相交的弦长公式推导的产生原因以及处置利用中暴露的问题,及时采取针对性的优化措施,减少椭圆与直线相交的弦长公式推导产生量的基础上,高效利用椭圆与直线相交的弦长公式推导。
1椭圆与直线相交的弦长公式推导的概念1.1椭圆与直线相交的弦长公式推导种类通常情况下,可从三个方面划分椭圆与直线相交的弦长公式推导的种类。
第一,工业椭圆与直线相交的弦长公式推导。
工业生产过程中,难免会有气体、固体、液体等诸多形式的污染物产生。
工业椭圆与直线相交的弦长公式推导涵盖一般废物与危险废物两种,前者的危害较小,后者的腐蚀性,毒性较强,会在较大程度上危害到人体健康与环境。
第二,城市椭圆与直线相交的弦长公式推导。
城市运行过程中,将会有建筑垃圾、商业垃圾等大量的椭圆与直线相交的弦长公式推导产生。
特别是近些年来,随着城市规模的扩大,椭圆与直线相交的弦长公式推导量也显著增加。
第三,农业椭圆与直线相交的弦长公式推导。
植物秸秆、动物粪便等为农业椭圆与直线相交的弦长公式推导的主要类型,如果不能够科学处置,也会污染到生态环境。
1.2椭圆与直线相交的弦长公式推导的影响椭圆与直线相交的弦长公式推导往往经过一段时间的积累后,方才会逐渐体现出对椭圆与直线相交的弦长公式推导的污染。
第一,椭圆与直线相交的弦长公式推导污染水体。
在雨水、重力沉降等作用下,椭圆与直线相交的弦长公式推导地表水系内容易进入空中漂浮的椭圆与直线相交的弦长公式推导细小颗粒,颗粒溶解后,有害成分将会在水中产生。
椭圆与直线相交的弦长公式推导如果向河流中排放大量的椭圆与直线相交的弦长公式推导,河道将会遭到堵塞,出现不同程度的淤积现象。
椭圆求弦长两种解题方法
椭圆的弦长问题通常可以通过两种主要方法来解决:几何法和代数法。
方法一:几何法
1.首先,确定椭圆的标准方程,例如 a2x2+b2y2=1,其中 a 和
b 是椭圆的半长轴和半短轴。
2.确定直线方程,例如 y=kx+m。
3.联立椭圆方程和直线方程,消去 y 或 x,得到一个关于 x 或
y 的二次方程。
4.利用韦达定理,求出这个二次方程的根的和与积,即弦的两个
端点的 x 或 y 坐标的和与积。
5.利用弦长公式,如 d=1+k2⋅(x1+x2)2−4x1x2,其中 k 是直线
的斜率,x1 和 x2 是二次方程的根,求出弦长。
方法二:代数法
1.同样首先确定椭圆和直线的方程。
2.联立椭圆方程和直线方程,消去 y 或 x,得到一个关于 x 或
y 的二次方程。
3.利用求根公式求出这个二次方程的根,即弦的两个端点的 x
或 y 坐标。
4.直接计算这两个端点之间的距离,即弦长。
这两种方法的主要区别在于如何计算弦长。
几何法利用弦长公式和韦达定理,而代数法则直接计算两个端点之间的距离。
在实际应用中,可以根据具体情况选择适合的方法。
椭圆中的弦长公式椭圆是一种常见的几何图形,其形状类似于拉长的圆形。
在数学中,我们可以通过椭圆中的弦长公式来计算椭圆的相关参数。
我们需要了解什么是弦。
弦是连接椭圆上任意两点的直线段。
在椭圆中,我们可以通过弦的长度来推导出椭圆的周长、面积等参数。
椭圆中的弦长公式是指,如果一条弦的长度为2a,那么这条弦所对应的两个角的正弦值之和等于2a的长度与椭圆长轴长度2b的比值。
换句话说,假设弦所对应的两个角为角A和角B,那么sinA+sinB=2a/2b,即sinA+sinB=a/b。
这个公式可以通过三角函数的知识来推导,但对于我们来说,更重要的是应用这个公式来解决实际问题。
例如,如果我们已知椭圆的长轴和短轴长度分别为6和4,同时已知一条弦的长度为5,那么我们可以通过弦长公式计算出这条弦所对应的两个角的正弦值之和。
我们可以通过勾股定理计算出椭圆的焦距长度f。
根据勾股定理,f 的平方等于长轴长度a的平方减去短轴长度b的平方。
因此,f的长度为√(a²-b²)=√(6²-4²)=√20≈4.47。
接下来,我们可以通过椭圆的离心率e来计算弦所对应的两个角的正弦值之和。
椭圆的离心率e为f/a,因此e的值为4.47/6≈0.745。
根据弦长公式,sinA+sinB=a/b=3/2。
由于sinA和sinB的值相等,我们可以将它们表示为x,那么2x=3/2,因此x=3/4。
由于sinA和sinB的值相等,因此它们的值均为3/4。
我们可以通过反三角函数计算出角A和角B的度数值,然后再将它们转换为弧度制。
例如,我们可以使用arcsin函数计算出sinA和sinB的度数值为48.59度,然后将它们转换为弧度制得到0.846弧度。
通过这个例子,我们可以看到,椭圆中的弦长公式可以帮助我们计算出椭圆的相关参数,例如椭圆内部的角度、周长、面积等。
同时,我们也需要注意到,在实际应用中,我们需要灵活运用数学知识来解决问题,而不是仅仅依靠公式的记忆。
直线与椭圆位置关系(经典)本文介绍了直线与椭圆的位置关系以及弦长计算方法。
1.点与椭圆的位置关系对于椭圆$x^2/a^2+y^2/b^2=1$,点$P(x,y)$在椭圆内部的充要条件是$x^2/a^2+y^2/b^21$,在椭圆上的充要条件是$x^2/a^2+y^2/b^2=1$。
2.直线与椭圆的位置关系设直线$l: Ax+By+C=0$,椭圆$C: x^2/a^2+y^2/b^2=1$,联立$l$与$C$,消去某一变量$(x$或$y)$得到关于另一个变量的一元二次方程,此一元二次方程的判别式为$\Delta$,则$l$与$C$相离的充要条件是$\Delta0$。
3.弦长计算计算椭圆被直线截得的弦长,往往是设而不求,即设弦两端坐标为$P_1(x_1,y_1)$,$P_2(x_2,y_2)$,则$|P_1P_2|=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}=1+kx_1-x_2=1+\frac{1}{k}(y_1-y_2)$($k$为直线斜率)。
题目:已知椭圆$\frac{x^2}{5m}+\frac{y^2}{m}=1$,直线$y=kx+1$,求实数$m$的取值范围使得直线与椭圆有公共点。
解法一:将直线方程代入椭圆方程,得到关于$x$的一元二次方程,其判别式为$\Delta=m-5k-1$,要使直线与椭圆有交点,需要$\Delta\geq0$,即$m\geq5k+1$。
另外要注意,当$m=5k+1$时,直线与椭圆可能只有一个交点,在这种情况下也算有公共点。
因此,实数$m$的取值范围为$m\geq1$且$m\neq5$。
解法二:观察椭圆方程,发现其长轴在$x$轴上,短轴在$y$轴上,因此,当$m5$时,椭圆焦点在$y$轴上,与直线的交点只有$1$个或$3$个。
因此,要使直线与椭圆有公共点,需要$m\geq5$。
另外,当$m=5$时,椭圆退化成一个点,直线与该点有交点,因此也算有公共点。