竟赛数学练习题
- 格式:ppt
- 大小:417.50 KB
- 文档页数:39
高中数学竞赛一试试题高中数学竞赛是一项旨在激发学生对数学的兴趣和提高数学能力的重要活动。
以下是一套模拟的高中数学竞赛一试试题,供参赛者练习使用。
一、选择题(每题5分,共20分)1. 下列哪个数是无理数?A. πB. 0.33333...(无限循环)C. √2D. 1/32. 已知函数f(x) = 2x^2 - 3x + 5,求f(-1)的值。
A. 8B. 10C. 12D. 143. 一个圆的半径为5,求其面积。
A. 25πB. 50πC. 75πD. 100π4. 一个等差数列的首项为3,公差为2,第10项是多少?A. 23B. 25C. 27D. 29二、填空题(每题4分,共16分)1. 如果一个三角形的三边长分别为a, b, c,且满足a^2 + b^2 =c^2,那么这个三角形是________。
2. 已知一个二次方程x^2 + 4x + 4 = 0,求其判别式Δ。
3. 一个函数y = 3x - 2的斜率是________。
4. 圆心在(1,2),半径为3的圆的标准方程是________。
三、解答题(共64分)1. (10分)证明:对于任意实数x,不等式\( e^x \geq x + 1 \)成立。
2. (12分)解不等式:\( |x - 1| + |x - 2| < 2 \)。
3. (16分)已知数列{an}的前n项和为S_n,且满足S_n = 2an - 1(n≥2),a1 = 1。
求数列{an}的通项公式。
4. (26分)一个圆与x轴相切于点A(1,0),圆心在直线y = x上,且此圆经过点B(0,4)。
求这个圆的方程。
结束语:希望这份试题能够帮助参赛者更好地准备即将到来的高中数学竞赛。
通过练习这些题目,不仅可以检验自己的数学知识掌握程度,还能提高解题技巧和速度。
祝所有参赛者取得优异的成绩!。
小学数学竞赛题库200道及答案(完整版)题目1:计算:1.2 + 2.3 + 3.4 + 4.5 + 5.6 = ?答案:17题目2:一个数乘以8,然后除以2,结果是24,这个数是多少?答案:6题目3:有一堆苹果,平均分给7 个小朋友,每人分3 个,还剩2 个,这堆苹果一共有多少个?答案:23 个题目4:小明在计算除法时,把除数 5 看成了8,结果得到的商是6,余数是3,正确的商应该是多少?答案:9题目5:在一个减法算式中,被减数、减数与差的和是80,减数是18,差是多少?答案:22题目6:一个长方形的长是12 厘米,宽比长短3 厘米,这个长方形的面积是多少平方厘米?答案:108 平方厘米题目7:45 除以5 加上30 乘以2 的积,和是多少?答案:69题目8:某数加上5,乘以5,减去5,再除以5,结果还是5,这个数是多少?答案:1题目9:时钟3 点钟敲3 下,6 秒钟敲完,那么9 点钟敲9 下,多少秒钟敲完?答案:24 秒题目10:用0、1、2、3 能组成多少个不同的三位数?答案:18 个题目11:一桶水可灌3 壶水,1 壶水可以冲2 杯水,1 桶水可以冲几杯水?答案:6 杯题目12:学校买了4 个篮球和5 个排球,共用去570 元。
一个篮球80 元,一个排球多少元?答案:50 元题目13:有一个等差数列:2,5,8,11,······,101 是这个数列的第几个数?答案:34 个题目14:两个数的和是682,其中一个加数的个位是0,若把0 去掉,则与另一个加数相同,这两个数分别是多少?答案:62,620题目15:在一条长40 米的道路两边每隔5 米种一棵树(两端都种),一共要种多少棵树?答案:18 棵题目16:小明做一道乘法题时,把其中一个因数21 看成了12,结果得到的积比正确的积少1107,正确的积是多少?答案:2583题目17:一张长方形纸,长28 厘米,宽15 厘米,从这张纸上剪下一个最大的正方形,正方形的周长是多少厘米?答案:60 厘米题目18:一个数除以9,商和余数都是7,这个数是多少?答案:70题目19:鸡兔同笼,共有30 个头,88 只脚,鸡兔各有多少只?答案:鸡16 只,兔14 只题目20:同学们排队做操,每行站12 人,正好站4 行,如果每行站8 人,可以站多少行?答案:6 行题目21:一本书有240 页,小明第一天看了全书的1/4,第二天看了全书的1/3,第三天应该从第几页开始看?答案:141 页题目22:一辆汽车从甲地开往乙地,前3 小时行了180 千米,照这样的速度,从甲地到乙地一共要5 小时,甲乙两地相距多少千米?答案:300 千米题目23:一个正方形的边长增加3 厘米,面积就增加39 平方厘米,原来正方形的面积是多少平方厘米?答案:25 平方厘米题目24:甲乙两数的平均数是25,甲乙丙三数的平均数是27,丙数是多少?答案:31题目25:修一条长600 米的水渠,甲队单独修要12 天,乙队单独修要20 天,两队合修要多少天完成?答案:7.5 天题目26:果园里有苹果树和梨树共360 棵,苹果树的棵数是梨树的 3 倍,苹果树和梨树各有多少棵?答案:苹果树270 棵,梨树90 棵题目27:在一个周长为48 厘米的长方形中,长比宽多2 厘米,这个长方形的长和宽分别是多少厘米?答案:长13 厘米,宽11 厘米题目28:20 个同学平分一些练习本,后来又来了5 人,大家重新分配,每人分得的练习本比原来少2 本,这些练习本共有多少本?答案:200 本题目29:一个直角三角形的三条边分别是6 厘米、8 厘米和10 厘米,这个三角形的面积是多少平方厘米?答案:24 平方厘米题目30:有5 箱苹果,每箱的个数都相等,如果从每箱中各拿出18 个,剩下的苹果个数正好等于原来2 箱苹果的个数,原来每箱苹果有多少个?答案:30 个题目31:一块长方形菜地的周长是184 米,它的长是宽的3 倍,这块菜地的长和宽各是多少米?答案:长78 米,宽26 米题目32:被除数、除数、商与余数的和是165,已知商是11,余数是5,被除数和除数各是多少?答案:被除数137,除数12题目33:小明从一楼走到三楼用了18 秒,照这样计算,他从一楼走到六楼要用多少秒?答案:45 秒题目34:一个等腰三角形的顶角是底角的4 倍,这个等腰三角形的底角和顶角分别是多少度?答案:底角30 度,顶角120 度题目35:一个长方形,如果长增加5 厘米,面积就增加20 平方厘米;如果宽减少3 厘米,面积就减少18 平方厘米。
小学奥数竞赛试题小学奥数竞赛是一项旨在培养小学生数学思维和解决问题能力的竞赛活动。
它不仅考察学生的数学基础知识,还考验他们的逻辑推理、空间想象和创新能力。
以下是一些精选的小学奥数竞赛试题,供学生练习和挑战。
试题一:数字填空题在下面的数字序列中,每个数字代表一个特定的数,数字之间的运算符号是加号或乘号。
请找出正确的运算符号,使得等式成立。
```1 □2 □3 □4 = 24```提示:考虑使用乘法来达到较大的结果。
试题二:几何问题一个圆的直径为10厘米,求这个圆的面积。
试题三:逻辑推理题一个班级有45名学生,其中会游泳的有30人,会骑自行车的有25人,两者都不会的有5人。
问:既会游泳又会骑自行车的学生有多少人?试题四:数列问题给定数列:2, 4, 8, 16, ...,求第10项的值。
试题五:组合问题一个盒子里有5个红球和3个蓝球,如果随机取出3个球,求取出的球中至少有2个红球的概率。
答案解析:试题一答案:1 *2 +3 *4 = 24试题二答案:圆的面积公式为A = πr²,其中 r 为半径。
由于直径为10厘米,半径为5厘米。
所以面积 A = π * 5² = 25π ≈ 78.54 平方厘米。
试题三答案:会游泳的有30人,会骑自行车的有25人,两者都不会的有5人。
所以两者都会的人数为:30 + 25 - (45 - 5) = 55 - 40 = 15人。
试题四答案:这是一个等比数列,公比为2。
第10项的值为:2 * 2^(10-1) = 2^9 = 512。
试题五答案:首先计算没有红球的概率,即全部取出蓝球的概率:(3/8) * (2/7) * (1/6) = 1/56。
然后用1减去这个概率,得到至少有2个红球的概率:1 - 1/56 ≈ 55/56。
奥数竞赛不仅能够激发学生对数学的兴趣,还能帮助他们在解决实际问题时更加灵活和创新。
希望这些题目能够为参加小学奥数竞赛的学生们提供一些帮助。
六年级上册数学竞赛试题-奥数题习题(含答案)1.一辆汽车以60km/h的速度行驶4小时,再以40km/h的速度行驶2小时,求它行驶的总路程。
解:根据路程等于速度乘以时间的公式,第一段路程为60km/h×4h=240km,第二段路程为40km/h×2h=80km,总路程为240km+80km=320km。
答:该汽车行驶的总路程为320km。
2.甲、乙两人相向而行,甲的速度是每小时5km,乙的速度是每小时7km,如果他们相距60km,问他们多长时间能相遇?解:根据相遇公式,时间等于距离除以速度之和,即60km÷(5km/h+7km/h)=6h。
答:甲、乙两人相遇需要6小时。
3.甲、乙两人相向而行,甲的速度是每小时5km,乙的速度是每小时7km,他们相遇后,甲又行驶了2小时,问甲、乙两人分别行驶了多少路程?解:根据相遇公式,他们相遇时的路程之和等于他们分别行驶的路程之和,即(5km/h+7km/h)×t=60km,解XXX。
甲行驶的路程为5km/h×8h=40km,乙行驶的路程为7km/h×8h=56km。
答:甲行驶了40km,乙行驶了56km。
4.一辆汽车以每小时60km的速度行驶,行驶了2小时后,因故障而减速为每小时40km,又行驶了3小时,问它行驶的总路程。
解:前两小时行驶的路程为60km/h×2h=120km,后三小时行驶的路程为40km/h×3h=120km,总路程为120km+120km=240km。
答:该汽车行驶的总路程为240km。
1.根据题目给出的条件,可以得出马每步长为7/4倍狗的步长。
因为狗已经跑出了30米,所以马需要追赶的距离是30米。
根据速度比可以得出马与狗相差的路程份额为1,所以马需要跑21倍狗才能追上它,即21/20倍狗已经跑的距离,计算得出马需要跑630米才能追上狗。
2.根据题目给出的信息,可以得出甲、乙两车相遇时,甲车行驶了10份路程,乙车行驶了8份路程,两车的路程差是80千米。
四年级数学竞赛试题一、选择题(每题2分,共10分)1. 下列哪个数字是质数?A. 15B. 17C. 18D. 202. 一个数的平方等于它本身,这个数可能是:A. 0B. 1C. -1D. 以上都是3. 如果一个长方形的长是8厘米,宽是4厘米,它的周长是多少?A. 20厘米B. 24厘米C. 28厘米D. 32厘米4. 两个数的和是45,其中一个加数是15,另一个加数是多少?A. 30B. 25C. 20D. 355. 下列哪个分数是最接近1的?A. 1/2B. 3/4C. 4/5D. 5/6二、填空题(每题2分,共20分)6. 一个数的3倍加上5等于35,这个数是________。
7. 一个数除以6的商是8,余数是2,这个数是________。
8. 一个数的一半加上10等于20,这个数是________。
9. 一个数的4倍等于这个数加40,这个数是________。
10. 一个数的7倍等于这个数的10倍减去21,这个数是________。
三、计算题(每题5分,共15分)11. 计算下列表达式的值:(1) 48 ÷ 8 + 6 × 7(2) (100 - 25) × 4 ÷ 212. 计算下列分数的和:(1) 3/4 + 2/5(2) 1 1/6 + 2 2/313. 解下列方程:(1) 3x + 5 = 23(2) 2x - 7 = 9四、应用题(每题10分,共20分)14. 一个班级有40名学生,如果每个学生需要3本练习本,那么这个班级一共需要多少本练习本?15. 一个水果店有苹果和橙子两种水果,苹果每斤5元,橙子每斤4元。
如果小明买了3斤苹果和2斤橙子,他需要支付多少钱?五、智力题(每题5分,共5分)16. 一个数字去掉最后一位是40,这个数字本身是多少?六、附加题(每题10分,共10分)17. 一个数列的前三项是2,3,5,这个数列是质数数列。
第四项是多少?答案:1. B2. D3. B4. C5. B6. 107. 508. 309. 510. 411. (1) 52 (2) 18012. (1) 1 3/20 (2) 3 5/613. (1) x = 6 (2) x = 914. 120本15. 27元16. 4117. 7【结束语】本次数学竞赛试题旨在考察同学们的逻辑思维能力、计算能力以及应用数学知识解决问题的能力。
一、 填空题(每小题4分,共40分)1. 设⎭⎬⎫⎩⎨⎧+=∞→x t x x t t f 2)11(lim )(,则=')(t f .解:)(t f tx x x t 2)11(lim ⎭⎬⎫⎩⎨⎧+=∞→tte 2=,t t t e t te e t f 222)21(2)(+=+='∴.2. 设曲线L 的方程为te x 2=,te t y --=,则L 的拐点个数为 .解:)(21213-22t ttt t t e e e e x y dx dy +=+=''=--, )32(412/)32(215-423-222tt t t t t t e e e e e x dx dy dxy d +-=--=''⎪⎭⎫ ⎝⎛=--. 022<dxyd ,∴无拐点,即L 的拐点个数为0.3. 设2)1()(x e x x f +=,则=)0()2009(f.解:n n xx n e ∑∞==0!1 ,n n x x n e 20!12∑∞==∴,12020!1!1)1()(2+∞=∞=∑∑+=+=∴n n n n x x n x n e x x f .令200912=+n ,则20082=n ,1004=n ,∴2009次幂项的系数!100412009=a . 又!2009)0()2009(2009f a =,!1004!2009)0()2009(=∴f . 另解:利用2009阶Peano 型余项(或者拉格朗日型余项)的麦克劳林公式,或者高阶导数的乘法法则.4. 设x e f xsin 1)(+=',则=)(x f .解:x e f xsin 1)(+=' ,⎰⎰-+=+=∴x d e e x de x e f x x x x sin )sin 1()sin 1()(⎰-+=xdx e e x x x cos )sin 1(.而⎰xdx e xcos ⎰=x d e x sin ⎰-=xdx e x e x xsin sin ⎰+=x d e x e xxcos sin)cos cos (sin ⎰-+=xdx e x e x e x x x ⎰-+=xdx e x x e x x cos )cos (sin ,⎰∴xdx e x cos C x x e x ++=)cos (sin 21.)(x e f ∴x e x )sin 1(+=C x x e x ++-)cos (sin 21C x x e x +-+=)cos sin 2(21.C x x x x f +-+=∴)]cos(ln )sin(ln 2[21)(.另解:x e f xsin 1)(+=' ,令xe t =,则t x ln =,)sin(ln 1)(t tf +='∴,dxxx x x x dx x x f ⎰⎰⋅⋅-+=+=∴1)cos(ln )]sin(ln 1[])sin(ln 1[)(dx x x x ⎰-+=)cos(ln )]sin(ln 1[.而dx x ⎰)cos(ln dx xx x x x ⎰⋅⋅+=1)sin(ln )cos(ln dx x x x ⎰+=)sin(ln )cos(lndxxx x x x x x 1)cos(ln )sin(ln )cos(ln ⋅⋅-+=⎰dx x x x x ⎰-+=)cos(ln )]sin(ln )[cos(ln .而dx x ⎰∴)cos(ln C x x x ++=)]sin(ln )[cos(ln 21. -+=∴x x x f )]sin(ln 1[)(Cx x x ++)]sin(ln )[cos(ln 21C x x x ++-=)]sin(ln )cos(ln 2[21.5. 设)(x f 在),(+∞-∞上连续,且⎰-+=-02)1()(xx x e x dt t x f ,则=)1(f .解:⎰--02)(xx dt t x f⎰-=-=x xtx u du u f 2))((⎰=2)(x xdu u f ,⎰+=∴2)1()(x xx e x du u f .对方程两边求导,有xxxe e x f x x f ++=-⋅1)(2)(2. 令1=x ,有e e f f ++=-1)1()1(2,e f 21)1(+=∴. 6. =⎪⎪⎭⎫⎝⎛-++-+-∞→2222241241141lim n n n n n . 解:原式n nk kn nk n nk n 1)(41lim 41lim 12122⋅-=-=∑∑=∞→=∞→621arcsin 2arcsin 4110102π===-=⎰x dx x .7. 设曲线)(x f y =在原点处有拐点及切线x y 2=,且满足微分方程0='-'''y y ,则曲线的方程为 .解:)(x f 为0='-'''y y 满足00==x y ,20='=x y ,00=''=x y 的特解.由特征方程03=-r r ,得特征根01=r ,12-=r ,13=r , 得微分方程的通解为xx e C e C C y 321++=-.由初始条件,有0)0(321=++=C C C y , 2)0(32=+-='C C y ,0)0(32=+=''C C y ,解得01=C ,12-=C ,13=C .∴曲线方程为x x e e y --=.8. 设yxxy z )(=(0>x ,0>y ),则=∂∂==12y x xz .解:由)ln (ln ln y x yxz +=,有)1ln (ln 11)ln (ln 11++=⎭⎬⎫⎩⎨⎧⋅++='y x y x x y x y z z x, )1ln (ln 1)(++⋅='∴y x yxy z yx x.)12(ln 4)12(ln 2212+=+⋅='∴==y x x z ..9. 已知{}n a 为等差数列,01≠=-+d a a n n ,0≠n a ( ,2,1=n ),且∞=∞→n n a lim ,则级数∑∞=+111n n n a a 的和是 . 解:)111(lim 11322111+∞→∞=++++=∑n n n n n n a a a a a a a a ⎭⎬⎫⎩⎨⎧-++-+-=++∞→)(1lim 1132232112n n n n n a a a a a a a a a a a a d )111111(lim 113221+∞→-++-+-=n n n a a a a a a d 1111)11(lim 1da a a d n n =-=+∞→. 10. 设L 为圆周122=+y x ,则{}=++⎰ds y x y x yL2222sin )cos(π .解:原式L ds y x ds x ds y ds y L Lyx L L 21)(21cos 22222L -=+-=-=-==⎰⎰⎰⎰↔方程对称性的方程πππ-=⋅-=221.二、 计算题(10分)设0)1(=f , 2)1(='f ,求xe x xf x x cos )cos (sin lim220-+→.解:原式[]xe x x x xf x x f x x x cos 1cos sin lim 1cos sin )1(1)1cos (sin lim 2202200--+⋅-+-+-+=→→∴;变形;连续乘法))(21())(1(1))(21())((lim )1(22222220)1(x o xx o x x o x x o x f x f +--++-+-++⋅'=→'存在;泰勒公式 )(23)(2)(lim222222202)1(x o x x o x x o x x f ++-+=→=' 32)1(23)1(21lim 20=++=→o o x .三、 计算题(10分)设可导函数)(x f y =由方程3223323=+-y xy x 所确定,求)(x f 的极值点与极值. 解:视)(x f y =,对方程两边求导,得06)2(33222=⋅+⋅+-dxdyy dx dy xy y x , 即 0)(222=---dxdy y x y y x .由原方程知,有 x y ≠, 02=-+∴dxdyy y x .……………………………………①令0=dxdy,得x y -=,代入原方程,有3223333=--x x x , 解得唯一驻点2-=x ,此时2)2(=-=f y .再对①式两边求导,得0)(21222=⎥⎦⎤⎢⎣⎡+-+dx y d y dxdy dx dy .………………………………………②在驻点2-=x 处,有0202012222=⎥⎥⎦⎤⎢⎢⎣⎡+-+-=x dx yd ,041222>=∴-=x dx yd , 2-=∴x 为)(x f 的极小值点,)(x f 有极小值2)2(=-f .四、 证明题(10分)试证:当0≠x 时,有不等式21)4(arctan 10<-<πx e x 成立. 证明:令te tf arctan )(=,t tg =)(,则对0≠x ,在0与x 构成的闭区间上)(t f 与)(t g 满足柯西中值TH 条件,所以存在介于0与x 之间的ξ,使得)()()0()()0()(ξξg f g x g f x f ''=--,即22)(11104arctan ξξξξπe e e e x e x +=⋅+=--. 由212)(102=<+<ξξξξe e e e ,即得21)4(arctan 10<-<πxe x ,证毕. 另证:利用拉格朗日中值定理,或者泰勒中值定理.五、 计算题(10分)计算二次积分dy e x dx dy e x dx I y xy x2210130113}1){sin(}1){sin(⎰⎰⎰⎰+-+=--.解:⎰dy e y 2积不出来,∴考虑交换积分次序.dye x dx dy e x dx I y xy x2210130113}1){sin(}1){sin(⎰⎰⎰⎰+++=∴<--交换上下限下限,上限第二个积分的内积分有 .相应二重积分区域D 如图所示.⎰⎰⎰⎰⎰⎰-==+=1yx )sin(32232)1)(sin(yyy Dy D x Dy dx dy edxdy edxdye x I 后先左右对称为奇函数121011222-====⎰⎰e ededy ye y y y .六、 计算题(10分)求幂级数∑∞=-+11213n n n x n 的收敛半径、收敛域及和函数.解:21211221333)1(lim )()(lim x x n x n x u x u n n n n n nn n =+=-+++∞→+∞→ ,∴收敛区间为31<x ,收敛半径为31. 当31±=x 时,级数为∑∑∞=∞=+±=±11133)3(313n n nn n n ,发散.∴收敛域为)31,31(-. ∑∑∑∞=∞=++∞=-++=+=0201221121)3)(1(93)1(3n n n n n n n n x n x xn xn)(9)(9)1(9010132'='=+=∑∑∑∞=+∞=+∞==n n n n n nx y y x yx y n x 令2222)31(9)1(19)1()1()1(9)1(9x x y x y y y x y y x -=-⋅=--⋅--⋅='-=.七、 计算题(10分)求曲面积分⎰⎰∑++++=23222)(z y x zdxdy ydzdx xdydz I ,其中∑是球面4)1()1()1(222=-+-+-z y x的内侧. 解:( 直接计算困难,∴考虑借助高斯公式).记222z y x r ++=,则3r x P =,3r yQ =,3rz R =. 522623333)(r x r r r xr x r r xx x P -=⋅⋅-=∂∂=∂∂,有对称性可知,5223r y r y Q -=∂∂,5223rz r z R -=∂∂, 有033522=-=∂∂+∂∂+∂∂r r r z R y Q x P ,)0,0,0(),,(≠∀z y x .∴可以改变积分闭曲面. 记22221:ε=++∑z y x (320-<<ε),取内侧,则⎰⎰⎰⎰∑∑∑++=++++=1113232221)(zdxdy ydzdx xdydz z y x zdxdy ydzdx xdydz Iε方程改变积分闭曲面ππεεεεε4343131)3(13313:322221-=⋅⋅-=Ω⋅-=-=⎰⎰⎰≤++Ωz y x Gauss dV 方程。
六年级数学智力竞赛题
1. 小建得了60分,他做对了几道题?
题目描述:六年级数学竞赛共20题,做一题5分,不写或写错扣3分,小建得了60分。
解答:设小建做对了x道题。
根据题目描述,做错的题目数量为20-x。
因此,可以建立方程:5x-3(20-x)=60。
解这个方程可以得到x=15。
所以,小建做对了15道题。
2. 工人植树晴天每天栽20棵,雨天每天栽12棵,几天共栽112棵,平均每天栽14棵,求共有几个雨天?
解答:设共有x个雨天。
根据题目描述,可以建立方程:12x+20(112/14-x)=112。
解这个方程可以得到x=6。
所以,共有6个雨天。
3. 小明用40元买14张贺年卡和明信片,贺年卡每张3元5角,明信片每张2元5角,贺年卡和明信片各几张?
解答:设贺年卡有x张,明信片有y张。
根据题目描述,可以建立方程:3.5x+2.5y=40和x+y=14。
解这个方程组可以得到x=8,y=6。
所以,贺年卡有8张,明信片有6张。
以上只是部分六年级数学智力竞赛题,还有更多有趣的题目可以尝试解决。
精心整理奥数(一)一、填空题:3.一个两位数,其十位与个位上的数字交换以后,所得的两位数比原来小27,则满足条件的两位数共有______个.5.图中空白部分占正方形面积的______分之______.6.甲、乙两条船,在同一条河上相距210千米.若两船相向而行,则2小时相遇;若同向而3千.1.21的123.算式:(121+122+…+170)-(41+42+…+98)的结果是______(填奇数或偶数).4.两个桶里共盛水40斤,若把第一桶里的水倒7斤到第2个桶里,两个桶里的水就一样多,则第一桶有______斤水.5.20名乒乓球运动员参加单打比赛,两两配对进行淘汰赛,要决出冠军,一共要比赛______场.6.一个六位数的各位数字都不相同,最左一位数字是3,且它能被11整除,这样的六位数中最小的是______.7.一个周长为20厘米的大圆内有许多小圆,这些小圆的圆心都在大圆的一个直径上.则小圆的周长之和为______厘米.精心整理8.某次数学竞赛,试题共有10道,每做对一题得8分,每做错一题倒扣5分.小宇最终得41分,他做对______题.9.在下面16个6之间添上+、-、×、÷(),使下面的算式成立:6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6=1997二、解答题:1.如图中,三角形的个数有多少?2341D岁.67平8分),为了使平均成绩尽快达到95分以上,他至少还要连考______次满分.9.现有一叠纸币,分别是贰元和伍元的纸币.把它分成钱数相等的两堆.第一堆中伍元纸币张数与贰元张数相等;第二堆中伍元与贰元的钱数相等.则这叠纸币至少有_____元.10.甲、乙两人同时从相距30千米的两地出发,相向而行.甲每小时走3.5千米,乙每小时走2.5千米.与甲同时、同地、同向出发的还有一只狗,每小时跑5千米,狗碰到乙后就回头向甲跑去,碰到甲后又回头向乙跑去,……这只狗就这样往返于甲、乙之间直到二人相遇而止,则相遇时这只狗共跑了______千米.二、解答题:......1.右图是某一个浅湖泊的平面图,图中曲线都是湖岸(1)若P 点在岸上,则A 点在岸上还是水中?(2)某人过这湖泊,他下水时脱鞋,上岸时穿鞋.若有一点B ,他脱鞋的次数与穿鞋的次数和是奇数,那么B 点在岸上还是水中?说明理由.2. 将1~3000的整数按照下表的方式排列.用一长方形框出九个数,要使九个数的和等于(1)1997(2)2160(3)2142能否办到?若办不到,简单说明理由.若办得到,写出正方框里的最大数和最小数.3.甲、乙、丙、丁四个人比赛乒乓球,每两人要赛一场,结果甲胜了丁,并且甲、乙、丙三人胜的场数相同,问丁胜了几场?4.有四条弧线都是半径为3厘米的圆的一部分,它们成一个花瓶(如图).请你把这个花瓶切成几块,再重新组成一个正方形,并求这个正方形的面积.奥数(四)一、填空题:1.41.2×8.1+11×9.25+537×0.19=______.2.在下边乘法算式中,被乘数是______.3.小惠今年6岁,爸爸今年年龄是她的5倍,______年后,爸爸年龄是小惠的3倍.4.图中多边形的周长是______厘米.5.甲、乙两数的最大公约数是75,最小公倍数是450.若它们的差最小,则两个数为______和______.6.鸡与兔共有60只,鸡的脚数比兔的脚数多30只,则鸡有______只,兔有__只.7.师徒加工同一种零件,各人把产品放在自己的筐中,师傅产量是徒弟的2倍,师傅的产品放在4只筐中.徒弟产品放在2只筐中,每只筐都标明了产品数量:78,94,86,77,92,80.其中数量为______和______2只筐的产品是徒弟制造的.8.一条街上,一个骑车人与一个步行人同向而行,骑车人的速度是步行人速度的3倍,每隔10分钟有一辆公共汽车超过行人,每隔20分钟有一辆公共汽车超过骑车人.如果公共汽车从始发站每次间隔同样的时间发一辆车,那么间隔______分发一辆公共汽车.9.一本书的页码是连续的自然数,1,2,3,…,当将这些页码加起来的时候,某个页码被加了两次,得到不正确的结果1997,则这个被加了两次的页码是______.10.四个不同的真分数的分子都是1,它们的分母有两个是奇数,两个是偶数,而且两个分母是奇数的分数之和等于两个分母是偶数的分数之和.这样的两个偶数之和至少为______.精心整理二、解答题:1.把任意三角形分成三个小三角形,使它们的面积的比是2∶3∶5.2.如图,把四边形ABCD的各边延长,使得AB=BA′,BC=CB′CD=DC′,DAAD′,得到一个大的四边形A′B′C′D′,若四边形ABCD的面积是1,求四边形A′B′C′D′的面积.3.如图,甲、乙、丙三个互相咬合的齿轮,若使甲轮转5圈时,乙轮转7圈,丙轮转2圈,这三个齿轮齿数最少应分别是多少齿?4.(1)图(1)是一个表面涂满了红颜色的立方体,在它的面上等距离地横竖各切两刀,共得到27个相等的小立方块.问:在这27个小立方块中,三面红色、两面红色、一面红色,各面都没有颜色的立方块(2(31______.2.把0,□+□=□3450b绳剩下的2/5;第三次剪去a绳剩下的2/5,b绳的剩下部分的2/3,最后a剩下的长度与b剩下的长度之比为2∶1,则原来两绳长度的比为______.10.有黑、白、黄色袜子各10只,不用眼睛看,任意地取出袜子来,使得至少有两双袜子不同色,那么至少要取出______只袜子.二、解答题:1.字母A、B、C、D、E和数字1997分别按下列方式变动其次序:A B C D E 1 9 9 7B C D E A 9 9 7 1(第一次变动)C D E A B 9 7 1 9(第二次变动)D E A B C 7 1 9 9(第三次变动)......……问最少经过几次变动后ABCDE1997将重新出现?2.把下面各循环小数化成分数:3.如图所示的四个圆形跑道,每个跑道的长都是1千米,A、B、C、D四位运动员同时从交点O出发,分别沿四个跑道跑步,他们的速度分别是每小时4千米,每小时8千米,每小时6千米,每小时12千米.问从出发到四人再次相遇,四人共跑了多少千米?4.某路公共汽车,包括起点和终点共有15个车站,有一辆车除终点外,每一站上车的乘客中,恰好有一位乘客到以后的每一站下车,为了使每位乘客都有座位,问这辆公共汽车最少要有多少个座位?奥数(六)一、填空题:2.把33,51,65,77,85,91六个数分为两组,每组三个数,使两组的积相等,则这两组数之差为______.大的分数为______.4.如图,一长方形被一条直线分成两个长方形,这两个长方形的宽的比为1∶3,若阴影三角形面积为1平方厘米,则原长方形面积为______平方厘米.5.字母A、B、C代表三个不同的数字,其中A比B大,B比C大,如果用数字A、B、C组成的三个三位数相加的和为777,其竖式如右,那么三位数ABC是______.7.如图,在棱长为3的正方体中由上到下,由左到右,由前到后,有三个底面积是1的正方形高为3的长方体的洞,则所得物体的表面积为______.8.有一堆糖果,其中奶糖占45%,再放入16块水果糖后,奶糖就只占25%,那么,这堆糖中有奶糖______块.10.某地区水电站规定,如果每月用电不超过24度,则每度收9分;如果超过24度,则多出度数按每度2角收费.若某月甲比乙多交了9.6角,则甲交了______角______分.二、解答题:1.求在8点几分时,时针与分针重合在一起?2.如图中数字排列:问:第20行第7个是多少?3.某人工作一年酬金是1800元和一台全自动洗衣机.他干了7个月,得到490元和一台洗衣机,问这台洗衣机为多少元?4.兄弟三人分24个苹果,每人所得个数等于其三年前的年龄数.如果老三把所得苹果数的一半平分给老大和老二,然后老二再把现有苹果数的一半平分给老大和老三,最后老大再把现有苹果数的一半平分给老二和老三,这时每人苹果数恰好相等,求现在兄弟三人的年龄各是多少岁?????????????????奥数(七)一、填空题:精心整理2.将一张正方形的纸如图按竖直中线对折,再将对折纸从它的竖直中线(用虚线表示)处剪开,得到三个矩形纸片:一个大的和两个小的,则一个小矩形的周长与大矩形的周长之比为______.么回来比去时少用______小时.4.7点______分的时候,分针落后时针100度.5.在乘法3145×92653=29139□685中,积的一个数字看不清楚,其他数字都正确,这个看不清的数字是______.789.10.北.12323.如图,O为△A1A6A12的边A1A12上的一点,分别连结OA2,OA3,…,OA11,图中共有______个三角形.4.今年小宇15岁,小亮12岁,______年前,小宇和小亮的年龄和是15.5.在前三场击球游戏中,王新同学得分分别为139,143,144,为使前4场的平均得分为145,第四场她应得______分.6.有这样的自然数:它加1是2的倍数,加2是3的倍数,加3是4的倍数,加4是5的倍数,加5是6的倍数,加6是7的倍数,在这种自然数中除了1以外最小的是______.......7.如图,半圆S1的面积是14.13cm 2圆S 2的面积是19.625cm 2那么长方形(阴影部分)的面积是______cm 2.8.直角三角形ABC 的三边分别为AC=3,AB=1.8,BC=2.4,ED 垂直于AC ,且ED=1,正方形的BFEG 边长是______.9.有两个容器,一个容器中的水是另一个容器中水的2倍,如果从每个容器中都倒出8升水,那么一个容器中的水是另一个容器中水的3倍.有较少水的容器原有水______升.10.100名学生要到离校33千米处的少年宫活动.只有一辆能载25人的汽车,为了使全体学生尽快地到达目的地,他们决定采取步行与乘车相结合的办法.已知学生步行速度为每小时5千米,汽车速度为每小时55千米.要保证全体学生都尽快到达目的地,所需时间是______(上、下车所用的时间不计).二、解答题:1.一个四边形的广场,它的四边长分别是60米,72米,96米,84米.现在要在四边上植树,如果四边上每两树的间隔距离都相等,那么至少要种多少棵树?2.一列火车通过一条长1140米的桥梁(车头上桥直至车尾离开桥)用了50秒,火车穿越长1980米的隧道用了80秒,问这列火车的车速和车身长?3.能否把1,1,2,2,3,3,…,50,50这100个数排成一行,使得两个1之间夹着这100个数中的一个数,两个2之间夹着这100个数中的两个数,……两个50之间夹着这100个数中的50个数?并证明你的结论.4.两辆汽车运送每包价值相同的货物通过收税处.押送人没有带足够的税款,就用部分货物充当税款.第一辆车载货120包,交出了10包货物另加240元作为税金;第二辆车载货40包,交给收税处5包货,收到退还款80元,这样也正好付清税金.问每包货物销售价是多少元?奥数(九)一、填空题:1.在下面的四个算式中,最大的得数是______:(1)1994×1999+1999,(2)1995×1998+1998,(3)1996×1997+1997,(4)1997×1996+1996.2.今有1000千克苹果,刚入库时测得含水量为96%;一个月后,测得含水量为95%,则这批苹果的总重量损失了______.3.填写下面的等式:4.任意调换五位数54321的各个数位上的数字位置,所得的五位数中的质数共有______.5.下面式子中每一个中文字代表1~9中的一个数码,不同的文字代表不同的数码:则被乘数为_____.6.如图,每个小方格的面积是1cm 2,那么△ABC 的面积是______cm 2.7.如图,A 1,A 2,A 3,A 4是线段AA 5上的分点,则图中以A ,A 1,A 2,A 3,A 4,A 5这六个点为端点的线段共有______条.8.10点15分时,时针和分针的夹角是______.精心整理9.一房间中有红、黄、蓝三种灯,当房间中所有灯都关闭时,拉一次开关,红灯亮;第二次拉开关,红黄灯都亮;第三次拉开关,红黄蓝三灯都亮;第四次拉开关,三灯全关闭,现在从1~100编号的同学走过该房间,并将开关拉若干次,他们拉开关的方式为:编号为奇数者,他拉的次数就是他的号数;编号为偶数者,其编号可以写成2r·p(其中p为正奇数,r为正整数),就拉p次,当100人都走过房间后,房间中灯的情况为______.10.老师带99名同学种树100棵,老师先种一棵,然后对同学们说:“男生每人种两棵,女生每两人合种一棵。
专题一——计算技巧1.110+111+112+ (126)2.40264223⨯+⨯=3.)(90254500⨯÷=4.=+++399629718105.3334333322229999⨯+⨯=6.=⨯⨯1537-51137.=⨯⨯200720072008-2008200820078.=⨯⨯⨯⨯162162162-1731731739.下面的算式中,每个汉字代表一个数字(0~9),不同汉字代表不同数字,美+妙+数+学+花+园= 。
美 妙 数 学× 花 园数 学 真 美 妙 4 2 3 8 05 好 好 好 美 妙10. □ □ 8× 8 □□ 8 □ □□ 8 □ □8 □ □ □ □专题二——路程与分配问题1.甲、乙二人在一圆形跑到上分别从A、B两点同时出发,相向而行,5分钟后相遇,又过7分钟后甲到B点,甲到B点后再过8分钟两人第二次相遇,甲环行一周需要多少分钟?2.冬季的一天早上,天下着雪,小明从家出发去上学,由于下雪的缘故,小明留在雪地里的脚印会慢慢消失,小明出发12分钟后,爸爸发现小明忘带作业本了,便出追小明,又过了5分钟,爸爸开始在路上发现了小明留下的脚印,再过了7分钟后,爸爸追上了小明,小明的脚印从刚踩下到消失需要花几分钟?3.早上,小张骑车从甲地出发去乙地,下午1点,小王开车也从甲地出发,前往乙地,下午2点两人之间距离为15千米,下午3点两人之间的距离还是15千米,下午4点时小王到达乙地,晚上7点小张到达乙地,小张是早上几点出发的?4.奶糖每千克24元,水果糖每千克18元,买两种糖花了同样多的钱,但水果糖比奶糖多4千克,水果糖多少千克?奶糖多少千克?5.猴王带领一群猴子去摘桃子,下午收工后,猴王开始分配,若大猴分5个,小猴分3个,猴王可留下10个,若大、小猴都分4个,猴王能留下20个,在这群猴中,大猴(不包括猴王)比小猴多几只?6.一堆废料,用小车运7车刚好运完,用大车运5车刚好运完,大车比小车多运2吨,这堆废料有多少吨?练习:1.甲、乙二人同时从A地出发,以相同的速度向B地前进,甲每行5分钟休息2分钟,乙每行210米休息3分钟,甲出发后50分钟到达B,乙到达B地比甲迟了10分钟,两人最后一次休息地点相距35米,两人的速度为每分钟走多少米?***2.以为旅客去杭州旅游,车子开了全程的一半时,他睡觉了;当他醒来时,剩下的路程是他睡觉中开过的路程的32,他睡觉中行的路程是全程的几分之几?(补充:列方程解应用题)例 10箱苹果比6箱梨重54千克,每箱梨重16千克,每箱苹果重多少千克? 10箱苹果的重量-6箱梨的重量=54千克列方程 54616=⨯-x 10专题三:几何问题与猜想1.由六个边长为1的小正方体拼成如图所示立体,它的表面积为多少?2.用6张边长为3厘米的正方形纸片拼成一个长方形,这个长方形的周长是多少厘米?3.正方形ABCD与等腰三角形BEF叠放在一起,M,N点为正方形的边的中点,阴影部分的面积为14平方厘米,三角形BEF的面积是多少平方厘米?4.如图所示,大长方形恰被分割为几个互不重叠的正方形,已知最小的两个正方形的边长分别为2厘米和5厘米,那么大长方形的周长为多少厘米?5.把一个边长为6厘米的正方形纸片,分成两个大小一样的长方形纸片,每一个长方形纸片的面积为多少平方厘米?周长为多少厘米?6.利用数字0,1,2,3,4,5,6,7,8,9(每个数字可重复)构造一个6位数,满足要求:前k位数被k整除(k=1,2,3,4,5,6)。
小学六年级奥林匹克数学竞赛题及答案1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?解题思路:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。
再根据椅子的价钱,就可求得一张桌子的价钱。
答题:解:一把椅子的价钱:288÷(10-1)=32(元)一张桌子的价钱:32×10=320(元)答:一张桌子320元,一把椅子32元。
2. 3箱苹果重45千克。
一箱梨比一箱苹果多5千克,3箱梨重多少千克?解题思路:可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。
答题:解:45+5×3=45+15=60(千克)答:3箱梨重60千克。
3. 甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。
甲比乙速度快,甲每小时比乙快多少千米?解题思路:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。
即可求甲比乙每小时快多少千米。
答题:解:4×2÷4=8÷4=2(千米)答:甲每小时比乙快2千米。
4. 李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。
每支铅笔多少钱?解题思路:根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。
答题:解:0.6÷[13-(13+7)÷2]=0.6÷[13—20÷2]=0.6÷3=0.2(元)答:每支铅笔0.2元。
5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。
由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。
数学竞赛练习题推荐数学竞赛是一项重要的学科竞赛活动,旨在培养学生的数学思维能力和解决问题的能力。
参加数学竞赛需要具备扎实的数学基础,同时也需要大量的题目练习来磨砺技巧和提高应试能力。
本文将向大家推荐一些适合数学竞赛练习的题目,希望能够对广大竞赛选手有所帮助。
一、数列与数表题1. 给定数列1,4,7,10,13,...,其中每一项都是前一项加上3的结果。
如果数列的第n项是55,求n为多少?2. 在数表中,每一行的数都满足特定的规律,给出下面两行数表的规律,求第18行的第13个数是多少?行1:2,4,6,8,10,...行2:3,6,9,12,15,...二、几何题1. 已知三角形ABC,AB=AC,角B=30°,角C=45°,求角A的大小。
2. 在长方形中,对角线的长度等于宽的2倍,如果长方形的周长为24,求长方形的面积。
三、方程与不等式1. 求方程x^2 - 2x - 3 = 0的解。
2. 某商品原价x元,现在促销后打8折销售,已知折扣后的价格为15元,求原价x。
四、概率统计题1. 甲、乙、丙三人参加抽奖,分别有4个、3个、2个奖项,三人只能获得一个奖项,求甲乙丙三人获奖的可能性总数。
2. 一枚均匀的六面骰子同时掷三次,求出三次掷出的点数和为9的概率。
五、数论题1. 在自然数1~1000中,恰好可以被5或7整除但不能被8整除的数有多少个?2. 某数的个位数与十位数的和为11,该数的个位数减去十位数的差值为5,求出这个数。
六、函数与图像题1. 函数f(x) = x^2 - 4x + 3的图像在坐标系中的形状是什么?2. 函数g(x)的图像经过点(1, 3)和(3, 1),求出函数g(x)的解析式。
七、组合数学1. 在一个班级里有10个男生和12个女生,其中要选出3个代表参加学校的演讲比赛,男生之间不分先后,女生之间也不分先后,求男生代表和女生代表分别有多少种组合方式。
2. 一叠扑克牌有52张,从中任意抽出5张,问有多少种可能性抽到的牌面数字都不相同的组合方式。
数学奥林匹克竞赛试题数学奥林匹克竞赛是针对中学生的高水平数学竞赛,旨在激发学生对数学的兴趣,培养他们的逻辑思维、创新能力和解决复杂问题的能力。
以下是一些典型的数学奥林匹克竞赛试题示例,供大家参考和练习。
代数问题问题1:解方程求解方程 (x^3 - 5x^2 + 7x - 1 = 0)。
问题2:因式分解将多项式 (x^4 - 81) 进行因式分解。
几何问题问题3:三角形面积在直角三角形中,已知两直角边的长度分别为3和4,求斜边上的高。
问题4:圆的性质证明:若一个圆内接四边形的对角互补,则该四边形为矩形。
组合与概率问题问题5:排列组合计算用数字1到9(每个数字仅使用一次)可以组成的所有不同三位数的数量。
问题6:概率计算一个袋子里有5个红球和3个蓝球,随机取出两个球,求取出的两个球都是红球的概率。
数列与函数问题问题7:等差数列如果数列 (a_n = 2n + 1),求第10项和前10项的和。
问题8:函数图像画出函数 (y = |x-3|) 的图像,并指出其与x轴的交点。
解析与答案问题1答案通过因式分解或使用牛顿法等方法求解。
问题2答案(x^4 - 81 = (x^2 + 9)(x^2 - 9) = (x^2 + 9)(x + 3)(x - 3))。
问题3答案斜边上的高 (h = \frac{3 \times 4}{5} = 2.4)。
问题4答案利用圆周角定理和直角三角形的性质证明。
问题5答案总共有 (9 \times 8 \times 7) 种不同的排列方式。
问题6答案概率为 (\frac{C_5^2}{C_8^2} = \frac{10}{28} = \frac{5}{14})。
问题7答案第10项 (a_{10} = 21),前10项和 (S_{10} = 2(1 + 2 + ... + 10) + 10 = 110)。
问题8答案函数图像为V型,与x轴的交点为(3,0)。
请注意,以上只是示例题目,实际的数学奥林匹克竞赛题目可能会更加复杂和多样。
小学数学竞赛复习题及答案一、选择题(每题3分,共15分)1. 下列哪个数是质数?A. 4B. 9C. 13D. 16答案:C2. 一个数的平方是81,这个数是:A. 9B. -9C. 81D. 8答案:A、B3. 一个数的3倍加上5等于35,这个数是:A. 10B. 9C. 8D. 7答案:A4. 一个班级有40名学生,其中女生占60%,男生占多少百分比?A. 40%B. 50%C. 60%D. 70%5. 一个长方体的长、宽、高分别是8cm、6cm和5cm,它的体积是多少立方厘米?A. 240B. 180C. 120D. 100答案:A二、填空题(每题2分,共10分)6. 一个数加上它的相反数等于______。
答案:07. 一个数的绝对值是它到0的距离,如果|-5|=5,那么-5的相反数是______。
答案:58. 一个数的平方根是7,那么这个数的立方根是______。
答案:343的立方根9. 如果一个圆的直径是14cm,那么它的半径是______cm。
答案:710. 一个数除以5的商是8,余数是2,这个数是______。
答案:42三、计算题(每题5分,共20分)11. 计算下列表达式的值:(1) 36 - 15 * 2(2) (48 ÷ 6) + 3 * 2(1) 36 - 30 = 6(2) 8 + 6 = 1412. 解下列方程:(1) 2x + 5 = 13(2) 3x - 7 = 14答案:(1) 2x = 8,x = 4(2) 3x = 21,x = 713. 一个长方体的长、宽、高分别是10cm、8cm和6cm,求它的表面积。
答案:(10 * 8 + 10 * 6 + 8 * 6) * 2 = 376平方厘米14. 一个班级有45名学生,其中男生占总人数的55%,求女生的人数。
答案:45 * (1 - 0.55) = 20人四、解答题(每题10分,共20分)15. 一个长方形的长是20cm,宽是15cm,如果将这个长方形的长和宽都增加5cm,那么新的长方形的面积比原来增加了多少平方厘米?答案:原面积 = 20 * 15 = 300平方厘米。
小学一年级数学奥林匹克竞赛题(102题)1.哥哥4个苹果,姐姐有3个苹果,弟弟有8个苹果,哥哥给弟弟1个后,弟弟吃了3个,这时谁的苹果多?2.小明今年6岁,小强今年4岁,2年后,小明比小强大几岁?3.同学们排队做操,小明前面有4个人,后面有4个人,这一队一共有多少人?4.有一本书,小华第一天看了2页,以后每一天都比前一天多看2页,第4天看了多少页?5.同学们排队做操,从前面数,小明排第4,从后面数,小明排第5,这一队一共有多少人?6.有8个皮球,如果男生每人发一个,就多2个,如果女生每人发一个,就少2个,男生有多少人,女生有多少人?7.老师给9个三好生每人发一朵花,还多出1朵红花,老师共有多少朵红花?8.有5个同学投沙包,老师如果发给每人2个沙包就差1个,老师共有多少个沙包?9.刚刚有9本书,爸爸又给他买了5本,小明借去2本,刚刚还有几本书?10.一队小学生,平前面有8个学生比他高竺嬗?个学生比他矮,这队小学生共有多少人?11.小林吃了8块饼干后,小林现在有4块饼干,小林原来有多少块饼干?12.哥哥送给弟弟5支铅笔后,还剩6支,哥哥原来有几支铅笔?13.第二中队有8名男同学,女同学的人数跟男同学同样多,第二中队共有多少名同学?14.大华和小刚每人有10画片,大华给小刚2后,小刚比大华多几?15.猫妈妈给小白5条鱼,给小花4条鱼,小白和小花共吃了6条,它们还有几条?16.同学们到体育馆借球,一班借了9只,二班借了6只。
体育馆的球共减少了几只?17.明明从布袋里拿出5个白皮球和5个花皮球后,白皮球剩下10个,花皮球剩下5个。
布袋里原来有多少个白皮球,多少个花皮球?18.芳芳做了14朵花,晶晶做了8朵花,芳芳给晶晶几朵花,两人的花就一样多?19.妈妈买回一些鸭蛋和12个鸡蛋,吃了8个鸡蛋后,剩下的鸡蛋和鸭蛋同样多,问妈妈一共买回几个蛋?20.草地上有10只羊,跑走了3只白山羊,又来了7只黑山羊,现在共有几只羊?21.冬冬有5支铅笔,南南有9支铅笔,冬冬再买几支就和南南的一样多?22.小平家距学校2千米,一次他上学走了1千米,想起忘带铅笔盒,又回家去取。
数学竞赛练习题(鸡兔同笼问题)1、笼中共有30只鸡和兔,数一数足数正好是100只。
问鸡兔各有多少只?2、班级买来50张票,其中一部分是1元5角的,另一部分是2元的,总共的票价是88元,问两种票各买多少张?3、某厂工会组织集体游园,买了99张票,共花34元,其中儿童票每张0.2元,成人票每张0.4元,问两种票相差几张?4、某人在途中经过一个山岭,上山时每小时走3240米,下山时每小时走6440米,已知他从上山到下山共用去6小时(不抱括休息时间),共走27440米,求上山和下山各用多少时间?上山和下山各走多少米?5、有鸡蛋18箩,每只大箩容180个,每只小箩容120个,共值320.4元,若将每个鸡蛋便宜2分出售,则可得款252元,问大箩、小箩各几只?6、有40分、20分、16分、10分的邮票共40枚,总计7.85元,已知40分和20分的邮票枚数相等,16分和10分的邮票枚数相等,求四种邮票各多少枚?7、一群公猴、母猴、小猴共38只,每天共摘桃266个,已知一只公猴每天摘桃10个,一只母猴每天摘桃8个,一只小猴每天摘桃5个。
又知公猴比母猴少4只,那么这群猴子中,小猴有多少只?8、李老师带48名学生去划船,一共乘坐10只船,每只大船可坐6人,每只小船可坐4人,问大船和小船各多少只?9、已知兔的只数是鸡的6倍,鸡兔足数共390只,问鸡、免各多少只?10、在学雷锋活动中,同学们共做好事240件,大同学每人做好事8件,小同学每人做好事3件,他们平均每人做好事6件,问参加这此活动的小同学有多少人?11、买来3角、5角、7角的游览票400张,共用去192元,其中7角和5角的游览票张数相等,求每种票的张数。
12、有一元、五元和十元的人民币共14张,共计66元,其中一元比十元的多2张,问三种钞票各多少张?。