精选人教版九年级数学上册解直角三角形测试卷含答案
- 格式:doc
- 大小:820.00 KB
- 文档页数:12
解直角三角形 单元检测试卷一、单选题(共10题;共30分)1.在△ABC 中,∠C=90°,BC=3,AC=4,则sinA 的值是( ) A. 34 B. 35 C. 45 D. 432.一个三角形的两边长分别是3和7,且第三边长为整数,这样的三角形周长最大的值为( )A. 15B. 16C. 18D. 19 3.为测量某河的宽度,小军在河对岸选定一个目标点A ,再在他所在的这一侧选点B ,C ,D ,使得AB ⊥BC ,CD ⊥BC ,然后找出AD 与BC 的交点E .如图所示,若测得BE=90m ,EC=45m ,CD=60m ,则这条河的宽AB 等于( )A. 120mB. 67.5mC. 40mD. 30m 4.等腰三角形的周长为20cm ,腰长为x cm ,底边长为y cm ,则底边长与腰长之间的函数关系式为( )A. y=20﹣x (0<x <10)B. y=20﹣x (10<x <20)C. y=20﹣2x (10<x <20)D. y=20﹣2x (5<x <10)5.一段拦水坝横断面如图所示,迎水坡AB 的坡度为i=1:√3 , 坝高BC=6m ,则坡面AB 的长度( )A. 12mB. 18mC. 6√3D. 12√3 6.汶川地震后,抢险队派一架直升飞机去A 、B 两个村庄抢险,飞机在距地面450米上空的P 点,测得A 村的俯角为30°,B 村的俯角为60°(如图)则A ,B 两个村庄间的距离是( )米.A. 300B. 900C. 300 √2D. 300 √37.如图,小明晚上由路灯A 下的点B 处走到点C 处时,测得自身影子CD 的长为1米,他继续往前走3米到达点E 处(即CE=3米),测得自己影子EF 的长为2米,已知小明的身高是1.5米,那么路灯A 的高度AB 是( )A. 4.5米B. 6米C. 7.2米D. 8米 8.一个三角形的两边长为2和6,第三边为偶数,则这个三角形的周长为( )A. 10B. 12C. 14D. 16 9.如图,斜面AC 的坡度(CD 与AD 的比)为1:2,AC=3 √5 米,坡顶有旗杆BC ,旗杆顶端B 点与A 点有一条彩带相连.若AB=10米,则旗杆BC 的高度为( )A. 5米B. 6米C. 8米D. (3+ √5 )米 10.如图,在□ABCD 中,AB ∶AD=3∶2,∠ADB=60°,那么cos A的值等于( )A. 3−√66B. √3+3√26C. 3+√66D. √3+2√26二、填空题(共10题;共33分)11.小凡沿着坡角为30°的坡面向下走了2米,那么他下降________米.12.已知一个等腰三角形的两边长分别为3和6,则该等腰三角形的周长是________. 13.如图是一个中心对称图形,A 为对称中心,若∠C=90°, ∠B=30°,AC=1,则BB′的长为________.14.如图,在直角坐标系中,P是第二象限的点,其坐标是(x,8),且OP与x轴的负半轴的夹角α的,则x=________,cosα=________.正切值是4315.在Rt△ABC中,∠C=90°,如果AC=4,sinB=2,那么AB=________316.高4 m的旗杆在水平地面上的影子长6 m,此时测得附近一个建筑物的影长24 m,则该建筑物的高是________m.17.tan________ °=0.7667.18.如图:∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF等于________.19.如图,将两块直角三角形的一条直角边重合叠放,已知AC=BC= √3+1,∠D=60°,则两条斜边的交点E到直角边BC的距离是________.x2+mx对应的函数值分别为y1,y2,y3,20.已知当x1=a,x2=b,x3=c时,二次函数y= 12若正整数a,b,c恰好是一个三角形的三边长,且当a<b<c时,都有y1<y2<y3,则实数m的取值范围是________.三、解答题(共8题;共57分)21.如图,我国的一艘海监船在钓鱼岛A附近沿正东方向航行,船在B点时测得钓鱼岛A在船的北偏东60°方向,船以50海里/时的速度继续航行2小时后到达C点,此时钓鱼岛A在船的北偏东30°方向.请问船继续航行多少海里与钓鱼岛A的距离最近?22.小宇想测量位于池塘两端的A、B两点的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=45°,再向前行走100米到点D处,测得∠BDF=60°.若直线AB 与EF之间的距离为60米,求A、B两点的距离.23.如图,为了测量出楼房AC的高度,从距离楼底C处60 √3米的点D(点D与楼底C在同一水平上)出发,沿斜面坡度为i=l:√3的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53 °,求楼房AC的高度(参考数据:sin53 °= 45, cos53 °= 35, tan53°= 43,√3≈1.732,结果精确到0.1米)24.如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(√3=1.7).25.“蘑菇石”是我国著名的自然保护区梵净山的标志,小明从山脚B点先乘坐缆车到达观景平台DE观景,然后再沿着坡脚为29°的斜坡由E点步行到达“蘑菇石”A点,“蘑菇石”A点到水平面BC的垂直距离为1890m.如图,DE∥BC,BD=1800m,∠DBC=80°,求斜坡AE的长度.(结果精确到0.1m,可参考数据sin29°≈0.4848,sin80°≈0.9848,cos29°≈0.8746,cos80°≈0.1736)26.在一次数学活动课上,老师带领同学们去测量一座古塔CD的高度.他们首先从A处安置测倾器,测得塔顶C的仰角∠CFE=21°,然后往塔的方向前进50米到达B处,此时测得仰角∠CGE=37°,已知测倾器高1.5米,请你根据以上数据计算出古塔CD的高度.(参考数据:sin37°≈ 35,tan37°≈ 34,sin21°≈ 925,tan21°≈ 38)27.在一次课题学习中,老师让同学们合作编题.某学习小组受赵爽弦图的启发,编写了下面这道题,请你来解一解.如图,将矩形ABCD的四边BA、CB、DC、AD分别延长至E、F、G、H,使得AE=CG,BF=DH,连结EF、FG、GH、HE.(1)求证:四边形EFGH为平行四边形;(2)若矩形ABCD是边长为1的正方形,且∠FEB=45°,tan∠AEH=2,求AE的长.28.如图,在一次军事演习中,蓝方在一条东西走向的公路上的A处朝正南方向撤退,红方在公路上的B处沿南偏西60°方向前进实施拦截,红方行驶1000米到达C处后,因前方无法通行,红方决定调整方向,再朝南偏西45°方向前进了相同的距离,刚好在D处成功拦截蓝方,求拦截点D处到公路的距离(结果不取近似值).答案解析部分一、单选题1.【答案】B【考点】锐角三角函数的定义【解析】【解答】解:在△ABC中,∠C=90°,∵AC=4,BC=3,∴AB= √32+42=5.∴sinA= 35,故答案为:B.【分析】先根据勾股定理算出AB,再根据正切定义得出结论。
28.2解直角三角形(第一课时)一、基础知识1、直角三角的边角关系:如图,在RtAABC中,ZA、ZB为锐角,ZC二90/它们所对的边分别为讣心英中除直角ZC外,其余的5个元素Z间有以下关系:(1)三边之间的关系:a2+b2=c2(勾股定理);(2)锐角之间的关系:ZA+ZB=90°;(3)边角之间的关系:sinA=cosB=— , cosA=sinA=—,2、解直角三角形:在直角三角形中,由己知元素(直角除外)求未知元素的过程,叫做解直用三角形.提示:(1)在直角三角形中,除直角外的五个元素中,己知其中的两个元素(至少有一条边),可求出其余的三个未知元素.(知二求三)(2)解直角三角形,就是把所有未知元素求出来的过程,不是只求单独的一条未知边或一个未知角.3、解直角三角型的类型与解法:atanA=—,bb tanB=—・a二、重难点分析当问题屮给出介的三和函数值时,要注盘在直加三角形屮应用,若没冇直和三和形,要构造直角三角形.例1: RtAABC 中,ZC=90。
,已知。
=10, 仏。
=¥、疗,解这个直角三角形.【解析】:因RtAABC 的面积为-a'b,故用已知条件可求出b 的值,这样一来,RtAABC 就已知两 直角辺了,再由学科网直角三角形中的锐角三角函数定义,便可求出锐角和斜辺. <50 ]【答案】解:T ZC = 90'-' ,= 9 • • ~ -J乙•.■ZA+ZB=90° , ZB=90° -60° =30° ,^ ^ 20 /-T ZC=90° , ZB=30° ,c =2b, :. G = 5三角 类蟹RtAABC已知条件两直角边(如e b )解法步sc由ten求ZA ;B純a,-直角边(如s g由 Sin A=^> 求ZA ;£ZB ・9(r f b ・Jc 匚J一角边 和(jDZA, b)無边,赫(如s ZA )重点: 直角三角形的解法.难点: 三角函数在解直角三角形中的灵活运用.注愆:/a=10, -*.b= y \/3tanA=r^=^3-山=60・・・b=¥&, c=弓語,ZA=60° ,ZB=30° •【点评】在直角三角形屮,锐角三角函数定义是连接三角形中边角关系的纽带,因此要熟练 地掌握定义,进而灵活运用,要注意:直角三角形屮若已知--边长和一个特殊锐角(30°、45°、 60° ),则可利用三角函数定义求出具它两边的长,利用这一方法有时比利用勾股定理要简单得 多.2【解析】作AD 丄BC 于D,在肮△皿中,tana=-分别表 乔出AD 和BD,再根据勾股定理表乔出沙,因为&J=5,从而可以 得出答案.【答案】作AD 丄BC 于D,在RtAADB 中,2'/ tan a =—,・■•设 AD=2k, BD=5k,则 AB= ^AD 2+BD 2 =亦k ,又■•■RC=5, .*.BD = •—・*.5k — ~k ——・£BZ^I£B2 例2、如图,在等腰三角形ABC 中,底边BC 为5, a 是底角且tana =-,求AC.【点评】解答木题的关键是作等腰三角形ABC 底边上的高AD,构造出直角三角形.三、中考感悟I 、 (2014・济宁)如图,在ZXABC 中,ZA=30° , ZB=45° , AC=2>/3 ,则 AB 的长为 ______ 。
九年级数学解直角三角形单元综合测试题直角三角形常用到一个非常重要的三角形定理,勾股定理。
下面是小编给大家带来的九年级数学解直角三角形单元综合测试题,希望能够帮助到大家!九年级上册数学单元综合测试卷(第23章解直角三角形)注意事项:本卷共8大题23小题,满分150分,考试时间120分钟.一、选择题(本题共10小题,每小题4分,共40分)1.在Rt△ABC中,∠C=90°,若斜边AB是直角边BC的3倍,则tanB的值是( )A. B.3 C. D.22.在△ABC中,∠C=90°,AB=5,BC=3,则cosA的值是( )A. B. C. D.3.如果∠ 为锐角,且sin =0.6,那么的取值范围是( )A.0°< ≤30°B.30°< <45°C.45°< <60°D.60°< ≤90°4.若为锐角,且sin = ,则tan 的值为( )A. B. C. D.5.如图,在平面直角坐标系中,P是第一象限内的点,其坐标为(3,m),且OP与x轴正半轴的夹角的正切值是,则sin 的值为( )A. B. C. D.第5题图第8题图第9题图第10题图6. 在Rt△ABC中,∠C=90°,sinB= ,则cosA的值为( )A. B. C. D.7.在△ABC中,∠A=120°,AB=4,AC=2,则sinB的值是( )A. B. C. D.8.如图,在△ABC中,AB=AC=13,BC=10,点D为BC的中点,DE⊥AC于点E,则tan∠CDE的值等于( )A. B. C. D.9.如图,两条宽度均为40 m的公路相交成角,那么这两条公路在相交处的公共部分(图中阴影部分)的路面面积是( )A. (m2)B. (m2)C.1600sin (m2)D.1600cos (m2)10.如图,一个小球由地面沿着坡度i=1:2的坡面向上前进了10m,此时小球距离地面的高度为( )A.5mB. mC.4 mD.2二、填空题(本题共4小题,每小题5分,共20分)11.如图,在四边形ABCD中,∠BAD=30°,∠C=90°,∠ADB=105°,sin∠BDC= ,AD=4.则DC=___________.第11题图第12题图第13题图第14题图12.如图,在A处看建筑物CD的顶端D的仰角为,且tan =0.7,向前行进3米到达B处,从B处看D的仰角为45°(图中各点均在同一平面内,A、B、C三点在同一条直线上,CD⊥AC),则建筑物CD的高度为___________米.13.如图,已知点A(5 ,0),直线y=x+b(b>0)与x轴、y轴分别相交于点C、B,连接AB,∠ =75°,则b=________.14.如图,正方形ABCD中,E是CD中点,FC= BC,则tan∠EAF=________.三、(本题共2小题,每小题8分,满分16分)15.计算:(1) +2sin45°- ;(2)sin30° tan60°-(-tan45)2016+ .16.如图,在△ABC中,BD⊥AC于点D,AB=6,AC=5 ,∠A=30°.(1)求BD和AD的长;(2)求tanC的值.四、(本题共2小题,每小题8分,满分16分)17.如图,某中学课外活动小组的同学利用所学知识去测量某河段的宽度.小明同学在A处观测对岸C点,测得∠CAD=45°,小英同学在距A处50米远的B处测得∠CBD=30°,请你根据这些数据计算出河宽.(精确到0.01米,参考数据:≈1.414,≈1.732)18.如图,在Rt△ABC中,∠C=90°,M是直角边AC上一点,MN⊥AB于点N,AN=3,AM=4,求tanB的值.五、(本题共2小题,每小题10分,满分20分)19.如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH.(1)求sinB的值;(2)如果CD= ,求BE的值.20.已知,△ABC中,D是BC上的一点,且∠DAC=30°,过点D 作ED⊥AD交AC于点E,AE=4,EC=2.(1)求证:AD=CD;(2)若tanB=3,求线段AB的长﹒六、(本题满分12分)21.如图,在一笔直的海岸线l上有A、B两个码头,A在B的正东方向,一艘小船从A码头沿它的北偏西60°的方向行驶了20海里到达点P处,此时从B码头测得小船在它的北偏东45°的方向.求此时小船到B码头的距离(即BP的长)和A、B两个码头间的距离(结果都保留根号)﹒七、(本题满分12分)22.如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度(竖直高度与水平宽度的比)i=1:2,且O、A、B在同一条直线上.求电视塔OC的高度以及此人所在位置点P的铅直高度.(测角器高度忽略不计,结果保留根号形式)八、(本题满分14分)23.如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=4,AD=3,BC=5,点M是边CD的中点,连接AM、BM.(1)求△ABM的面积;(2)求sin∠MBC的值.第23章《解直角三角形》单元综合测试题参考答案一、选择题(本题共10小题,每小题4分,共40分) 题号 1 2 3 4 5 6 7 8 9 10答案 D D B D A C B C A D二、填空题(本题共4小题,每小题5分,共20分)11. . 12. 7 . 13. 5 . 14. .三、(本题共2小题,每小题8分,满分16分)15. 解答:(1) +2sin45°- ;= +2× - ,= + -= + -2 +2=3 - ;(2)sin30° tan60°-(-tan45)2016+ .= × -(-1)2016+= -1+1-= .16.解答:(1)∵BD⊥AC,AB=6,∠A=30°,∴BD= AB=3,在Rt△ABD中,AD=AB cosA=6× =3 ;(2)∵AC=5 ,AD=3 ,∴CD=AC-AD=2 ,在Rt△BCD中,tanC= = = .四、(本题共2小题,每小题8分,满分16分)17.解答:过C作CE⊥AB于E,设CE=x米,在Rt△AEC中:∠CAE=45°,∴AE=CE=x在Rt△BCE中,∠CBE=30°,BE= CE= x,∵BE=AE+AB,∴ x=x+50,解得:x=25 +25≈68.30.答:河宽为68.30米.18.解答:∵∠C=90°,MN⊥AB,∴∠C=∠ANM=90°,又∵∠MAN=∠BAC,∴△AMN∽△ABC,∴ = = ,设AC=3x,AB=4x,由勾股定理得:BC= = ,在Rt△ABC中,tanB= = = .五、(本题共2小题,每小题10分,满分20分)19.解答:(1)∵∠ACB=90°,CD是斜边AB上的中线,∴CD=BD,∴∠B=∠BCD,∵AE⊥CD,∴∠CAH+∠ACH=90°,又∠ACB=90°,∴∠BCD+∠ACH=90°,∴∠B=∠BCD=∠CAH,即∠B=∠CAH,∵AH=2CH,∴由勾股定理得AC= CH,∴CH:AC=1:,∴sinB= ;(2)∵sinB= ,∴AC:AB=1:,∴AC=2,∵∠CAH=∠B,∴sin∠CAH=sinB= ,设CE=x(x>0),则AE= x,则x2+22=( x)2,∴CE=x=1,AC=2,在Rt△ABC中,AC2+BC2=AB2,∵AB=2CD=2 ,∴BC=4,∴BE=BC-CE=3.20.解答:(1)证明:∵ED⊥AD,∴∠ADE=90°.在Rt△ADE中,∠DAE=30°,AE=4,∴∠DEA=60°,DE= AE=2,∵EC=2,∴DE=EC,∴∠EDC=∠C.又∵∠EDC+∠C=∠DEA=60°,∴∠C=30°=∠DAE,∴AD=CD;(2)解:如图,过点A作AF⊥BC于点F,则∠AFC=∠AFB=90°,∵AE=4,EC=2,∴AC=6.在Rt△AFC中,∠AFC=90°,∠C=30°,∴AF= AC=3.在Rt△AFB中,∠AFB=90°,tanB=3,∴BF= =1,∴AB= = .六、(本题满分12分)21.解答:过P作PM⊥AB于M,则∠PMB=∠PMA=90°,∵∠PBM=90°﹣45°=45°,∠PAM=90°﹣60°=30°,AP=20海里,∴PM= AP=10海里,AM=AP cos30°=10 海里,∴∠BPM=∠PBM=45°,∴PM=BM=10海里,∴AB=AM+BM=(10+10 )海里,∴BP= =10 海里,即小船到B码头的距离是10 海里,A、B两个码头间的距离是(10+10 )海里.七、(本题满分12分)22.解答:作PE⊥OB于点E,PF⊥CO于点F,在Rt△AOC中,AO=100,∠CAO=60°,∴CO=AO tan60°=100 (米).设PE=x米,∵tan∠PAB= = ,∴AE=2x.在Rt△PCF中,∠CPF=45°,CF=100 ﹣x,PF=OA+AE=100+2x,∵PF=CF,∴100+2x=100 ﹣x,解得x= (米),答:电视塔OC高为100 米,点P的铅直高度为 (米).八、(本题满分14分)23.解答:(1)延长AM交BC的延长线于点N,∵AD∥BC,∴∠DAM=∠N,∠D=∠MCN,∵点M是边CD的中点,∴DM=CM,∴△ADM≌△NCM(AAS),∴CN=AD=3,AM=MN= AN,∴BN=BC+CN=5+3=8,∵∠ABC=90°,∴S△ABN= ×AB BN= ×4×8=16,∴S△ABM= S△ABN=8;∴△ABM的面积为8;(2)过点M作MK⊥BC,∵∠ABC=90°,∴MK∥AB,∴△NMK∽△NAB,∴ = = ,∴MK= AB=2,在Rt△ABN中,AN= = =4 ,∴BM= AN=2 ,在Rt△BKM中,sin∠MBC= = = ,∴∠MBC的正弦值为 .。
第一章《解直角三角形》测试卷班级 姓名 得分一、选择题(每小题4分;共40分)1.在Rt △ABC 中;如果一条直角边和斜边的长度都缩小至原来的51;那么锐角A 的各个三角函数值( ) A .都缩小51B .都不变C .都扩大5倍D .无法确定 ∠A 是锐角;且sinA=32;那么∠A 等于( ) A .30° B .45° C .60° D .75° △ABC 中;∠C=90°;tanA=43;BC=8;则AC 等于( ) A .6 B .323C .10D .12 4. 如图所示;为了加快施工进度;要在小山的另一边同时施工;从AC 上的一点B;取∠ABD=1450; BD=500m;∠D=550; 要A 、C 、E 成一直线;那么开挖点E 离点D 的距离是 ( )A. 500sin550mB. 500cos550mC. 500tan550mD. 500cot550m α>30°时;则cos α的值是( ) A .大于12 B .小于12C .大于32D .小于326. 身高相等的三名同学甲、乙、丙参加风筝比赛;三人放出风筝的线长、线与地面夹角如下表(假设风筝线是拉直的);则三人所放的风筝中 ( )同学甲 乙 丙 放出风筝线长(m ) 10010090线与地面夹角040 015 060A .甲的最高B .丙的最高C .乙的最低 D. 丙的最低7.A 、B 、C 是△ABC 的三个内角;则2sinBA +等于( ) A .2cos CB .2sinC C .C cosD .2cos BA +8.在Rt △ABC 中;∠C =900;32cos =B ;则a ∶b ∶c 为( )A .2∶5∶3B .2∶5∶3C .2∶3∶13D .1∶2∶3 9.如图;小阳发现电线杆AB 的影子落在土坡的坡面CD 和地面BC 上;量得CD =8米;BC =20米;CD 与地面成30º角;且此时测得1米杆的影长为2米;则电线杆的高度为( )A .9米B .28米C .()73+米 D .()3214+米 Rt △ABC 中;∠C =900;∠A 、∠B 的对边分别是a 、b ;且满足022=--b ab a ;则tanA 等于( )A 、1B 、251+ C 、251- D 、251± 二、填空题(每题5分;共30分) 1. 在Rt △ABC 中;∠ACB=900;SinB=27则cosB . 2.旗杆的上一段BC 被风吹断;顶端着地与地面成300角;顶端着地处B 与旗杆底端相距4米;则原旗杆高为_________米.3.在坡度为1:2的斜坡上;某人前进了100米;则他所在的位置比原来升高了 米. 4.已知△ABC 中;AB =24;∠B =450;∠C =600;AH ⊥BC 于H ;则CH = .5. 平行四边形ABCD 中;两邻边长分别为4cm 和6cm;它们的夹角为600;则较短的对角线的长为 cm 。
第24章 解直角三角形检测题(本检测题满分:120分,时间:120分钟)一、选择题(每小题2分,共24分)1.计算:A. B.232+ C.23D.231+2.(2014·杭州中考)在直角三角形ABC 中,已知90C ∠=︒,40A ∠=︒,3BC =,则AC =( ) A.3sin 40︒ B.3sin 50︒ C.3tan 40︒ D.3tan 50︒3.(2013·浙江温州中考)如图,在ABC △中,90,5,3,∠C AB BC =︒==则sin A 的值是( )A.34 B.34 C.35D.454.(2013·广州中考)如图,四边形ABCD 是梯形,AD ∥BC ,CA 是∠BCD 的平分线,且AB ⊥AC ,AB =4,AD =6,则tan B =( )A.2B.2C.D.5.(2014·安徽中考)如图,Rt △ABC 中,9,6,AB BC B ==∠=90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为( )A.53B.52C.4D.56.在△ABC 中,若三边BC ,CA ,AB 满足 BC ∶CA ∶AB =5∶12∶13,则cos B =( ) A.125 B.512 C.135 D.1312 7.(2014·杭州中考)已知AD BC ∥,AB AD ⊥,点E ,点F 分别在射线AD ,射线BC 上,若点E 与点B 关于AC 对称,点E 与点F 关于BD 对称,AC 与BD 相交于点G ,则( ) A.1tan 2ADB +∠= B.25BC CF = C.22AEB DEF ∠+︒=∠ D.4cos 6AGB ∠=第题图8.(2013·聊城中考)河堤横断面如图所示,堤高BC =6 m ,迎水坡AB 的坡比为1∶,则AB 的长为( )第9题图第3题图 第8题图 第5题图A.12 mB.4 mC.5 mD.6 m 9.如图,一个小球由地面沿着坡度12∶i =的坡面向上前进了10 m ,此时小球距离地面的高度为( )A.5 mB.25 mC.45 mD.310 m 10.如图,在菱形ABCD 中,⊥DE AB ,3cos 5A =,2BE =,则tan ∠DBE 的值是( ) A .12 B .2 C .52 D .5511.已知直角三角形两直角边长之和为7,面积为6,则斜边长为( ) A. 5 B.C. 7D.12.如图,已知:45°<∠A <90°,则下列各式成立的是( )A.sin cos A A =B.sin cos A>AC.sin tan A>AD.sin cos A<A二、填空题(每小题3分,共18分)13.(2013·陕西中考)比较大小:8cos 31︒35.(填“>”“=”或“<”)14.(2014·山西中考)如图,在△ABC 中,∠BAC =30°,AB =AC ,AD是BC 边上的中线,∠ACE =12∠BAC ,CE 交AB 于点E ,交AD 于点F ,若BC =2,则EF 的长为 . 15.如图,小兰想测量南塔的高度,她在A 处仰望塔顶,测得仰角为30°,再往塔的方向前进50 m 至B 处,测得仰角为60°,那么塔高约为 _________ m.(小兰身高忽略不计,31732.≈)A B C第12题图①1AB C②2ABC第17题图第14题图16.已知等腰三角形的腰长为2,腰上的高为1,则它的底角等于________ .17.图①是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图②所示的“数学风车”,则这个风车的外围周长是__________. 18.(2013· 杭州中考)在△ABC 中,∠90°,AB =2BC ,现给出下列结论:①sin A =32;②cos B =12;③tan A =33;④tan B =3, 其中正确的结论是 .(只需填上正确结论的序号)三、解答题(共78分)19.(8分)计算下列各题:,此时自B 处测得建筑物顶部的仰角是45°.已知测角仪的高度是1.5 m ,请你计算出该建筑物的高度.(取3≈1.732,结果精确到1 m )23.(8分)如图,在梯形ABCD 中,∥AD BC ,AB CD AD ==,⊥BD CD . (1)求sin ∠DBC 的值;(2)若BC 长度为4cm ,求梯形ABCD 的面积.24.(10分)(2014·成都中考)如图,在一次数学课外实践活动中,小文在点C 处测得树的顶端A 的仰角为37°,BC =20 m ,求树的高度AB .(参考数据:sin 370.60≈o ,cos 370.80≈o ,tan 370.75≈o )25.(10分)如图,在小山的东侧A 处有一热气球,以每分钟30m 的速度沿着仰角为60°的方向上升,20 min 后升到B 处,这时热气球上的人发现在A 的正西方向俯角为45°的C 处有一着火点,求热气球的升空点A 与着火点C 的距离(结果保留根号). 26.(14分)(2014·福州中考)如图(1),点O 在线段AB 上,AO =2,OB =1,OC 为射线,且∠BOC =60︒,动点P 以每秒2个单位长度的速度从点O 出发,沿射线OC 做匀速运动,设运动时间为t 秒.(1)当t =12秒时,则OP = ,S △ABP = ;(2)当△ABP 是直角三角形时,求t 的值; (3)如图(2),当AP =AB 时,过点A 作AQ ∥BP ,并使得∠QOP =∠B ,求证:AQ ·BP =3.第26题图BC A东 西 45°60°第25题图 第24题图第24章 解直角三角形检测题参考答案1.C 解析:2.D 解析:在Rt ABC △中,∵ 90C ∠=︒,40A ∠=︒,∴ 50B =︒∠,∴ tan tan 50ACB BC =︒=,∴ tan 503tan 50AC BC =︒=︒g .3.C 解析:3sin 5BC A AB == .4.B 解析:如图,过点D 作DE ∥AB 交BC 于点E ,则四边形ABED 是平行四边形, ∴ BE =AD =6.∵ AB ⊥AC ,∴ DE ⊥AC .∵ CA 是∠BCD 的平分线,∴ CD =CE . ∵ AD ∥BC ,∴ ∠ACB =∠DAC =∠DCA .∴ CD =AD =6. ∴ BC =BE +CE =BE +CD =6+6=12. ∴ AC ===8.∴ tan B ===2.5.C 解析:设BN 的长为x ,则AN =9-x ,由题意得DN =AN =9-x .因为D 为BC 的中点,所以132BD BC ==.在Rt △BND 中,∠B =90°,由勾股定理得222BN BD ND +=,即2223(9)x x +=-,解得4x =. 6.C 解析:设,则,,所以,所以△是直角三角形,且∠.所以在△ABC 中,135135==x x AB BC . 7.A 解析:设AB x =.由题意知AE BC x ==,2BE DE x ==,∴ (21)AD x =+. 在Rt ABD △中,22422BD AB AD x =+=+,又2BF BE x ==, ∴ (21)CF BF BC x =-=-.根据条件还可以得出45ABE AEB EBF ===︒∠∠∠,EBD EDB ∠=∠=22.5FBD ∠=︒,67.5AGB ABG ∠=∠=︒.A.在Rt ABD △中,tan 21(21)AB ADB AD x ===-+∠, ∴ 1tan 2ADB +∠=,故选项A 正确.B.2255(21)BC x CF x =≠=,故选项B 错误.C.226767.5AEB DEF ∠+︒=︒≠∠=︒,故选项C 错误.D.∵ cos cos 422AB AGB ABG BD ∠=∠=+,∴ 4cos 6AGB ∠≠D 错误. 第4题答图8.A 解析:先由坡比的定义,得BC∶AC=1∶.由BC=6 m,可得AC=6m. 在Rt△ABC 中,由勾股定理,得AB==12(m).9.B 解析:设小球距离地面的高度为则小球水平移动的距离为所以解得10.B 解析:设又因为在菱形中,所以所以所以由勾股定理知所以211.A 解析:设直角三角形的两直角边长分别为则在△QFA和△PFO中,∵∠QAF=∠FOP,∠QFA=∠PFO,∴△QFA∽△PFO.∴FQ FAFP FO=,即FQ FPFA FO=.又∵∠PFQ=∠OFA,∴△PFQ∽△OFA.∴∠3=∠1. ∵∠AOC=∠2+∠B=∠1+∠QOP,∠B=∠QOP,∴∠1=∠2.∴∠2=∠3.∴△APQ∽△BPO.∴AQ APBO BP=.∴AQ·BP=AP·BO=3⨯1=3.第26题答图(4)。
解直角三角形一.选择题1.(2018·某某市B卷)5.坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)()【分析】作BM⊥ED交ED的延长线于M,⊥DM于N.首先解直角三角形Rt△CDN,求出,DN,再根据tan24°=,构建方程即可解决问题;【解答】解:作BM⊥ED交ED的延长线于M,⊥DM于N.在Rt△CDN中,∵==,设=4k,DN=3k,∴CD=10,∴(3k)2+(4k)2=100,∴k=2,∴=8,DN=6,∵四边形BMNC是矩形,∴BM==8,BC=MN=20,EM=MN+DN+DE=66,在Rt△AEM中,tan24°=,∴0.45=,∴AB=21.7(米),故选:A.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.2.(2018·某某某某·3分)如图,某地修建高速公路,要从A地向B地修一条隧道(点A.B在同一水平面上).为了测量A.B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A.B两地之间的距离为()A.800sinα米B.800tanα米C.米D.米【分析】在Rt△ABC中,∠CAB=90°,∠B=α,AC=800米,根据tanα=,即可解决问题;【解答】解:在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=,∴AB==.故选:D.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是熟练掌握基本知识,属于中考常考题型.3.(2018·某某某某·2分)某数学研究性学习小组制作了如下的三角函数计算图尺:在半径为1的半圆形量角器中,画一个直径为1的圆,把刻度尺CA的0刻度固定在半圆的圆心O处,刻度尺可以绕点O旋转.从图中所示的图尺可读出sin∠AOB的值是()A.B.C.D.【分析】如图,连接AD.只要证明∠AOB=∠ADO,可得sin∠AOB=sin∠ADO==;【解答】解:如图,连接AD.∵OD是直径,∴∠OAD=90°,∵∠AOB+∠AOD=90°,∠AOD+∠ADO=90°,∴∠AOB=∠ADO,∴sin∠AOB=sin∠ADO==,故选:D.【点评】本题考查圆周角定理、直径的性质、锐角三角函数等知识,解题的关键是学会用转化的思想思考问题,属于中考创新题目.二.填空题1. (2018·某某江汉·3分)我国海域辽阔,渔业资源丰富.如图,现有渔船B在海岛A,C附近捕鱼作业,已知海岛C位于海岛A的北偏东45°方向上.在渔船B上测得海岛A位于渔船B的北偏西30°的方向上,此时海岛C恰好位于渔船B的正北方向18(1+)n mile 处,则海岛A,C之间的距离为18n mile.【分析】作AD⊥BC于D,根据正弦的定义、正切的定义分别求出BD.CD,根据题意列式计算即可.【解答】解:作AD⊥BC于D,设AC=x海里,在Rt△ACD中,AD=AC×sin∠ACD=x,则CD=x,在Rt△ABD中,BD=x,则x+x=18(1+),解得,x=18,答:A,C之间的距离为18海里.故答案为:182. (2018·某某荆州·3分)荆州市滨江公园旁的万寿宝塔始建于明嘉靖年间,周边风景秀丽.现在塔底低于地面约7米,某校学生测得古塔的整体高度约为40米.其测量塔顶相对地面高度的过程如下:先在地面A处测得塔顶的仰角为30°,再向古塔方向行进a米后到达B处,在B处测得塔顶的仰角为45°(如图所示),那么a的值约为米(≈1.73,结果精确到0.1).【解答】解:如图,设CD为塔身的高,延长AB交CD于E,则CD=40,DE=7,∴CE=33,∵∠CBE=45°=∠BCE,∠CAE=30°,∴BE=CE=33,∴AE=a+33,∵tanA=,∴tan30°=,即33=a+33,解得a=33(﹣1)≈24.1,∴a的值约为24.1米,故答案为:24.1.3.(2018·某某省某某市) 如图,某景区的两个景点A.B处于同一水平地面上、一架无人机在空中沿MN方向水平飞行进行航拍作业,MN与AB在同一铅直平面内,当无人机飞行至C 处时、测得景点A的俯角为45°,景点B的俯角为知30°,此时C到地面的距离CD为100米,则两景点A.B间的距离为100+100米(结果保留根号).【解答】解:∵∠MCA=45°,∠NCB=30°,∴∠ACD=45°,∠DCB=60°,∠B=30°.∵CD=100米,∴AD=CD=100米,D B=米,∴AB=AD+DB=100+100(米).故答案为:100+100.4. (2018·某某某某·3分)如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为45°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为110m,那么该建筑物的高度BC约为_____m(结果保留整数,≈1.73).【答案】300【解析】【分析】在Rt△ABD中,根据正切函数求得BD=AD•tan∠BAD,在Rt△ACD中,求得CD=AD•tan∠CAD,再根据BC=BD+CD,代入数据计算即可.【详解】如图,∵在Rt△ABD中,AD=110,∠BAD=45°,∴BD= AD•tan45° =110(m),∵在Rt△ACD中,∠CAD=60°,∴CD=AD•tan60°=110×≈190(m),∴BC=BD+CD=110+190=300(m),即该建筑物的高度BC约为300米,故答案为:300.【点睛】本题考查了解直角三角形的应用-仰角俯角问题,熟练应用锐角三角函数关系是解题关键.5.(2018·某某某某·3分)如图,小明为了测量校园里旗杆AB的高度,将测角仪CD竖直放在距旗杆底部B点6m的位置,在D处测得旗杆顶端A的仰角为53°,若测角仪的高度是1.5m,则旗杆AB的高度约为m.(精确到0.1m.参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)解:过D作DE⊥AB,∵在D处测得旗杆顶端A的仰角为53°,∴∠ADE=53°.∵BC=DE=6m,∴AE=DE•tan53°≈6×1.33≈7.98m,∴AB=AE+BE=AE+CD=7.98+1.5=9.48m≈9.5m.故答案为:9.5.三.解答题1. (2018·某某贺州·8分)如图,一艘游轮在A处测得北偏东45°的方向上有一灯塔B.游轮以20海里/时的速度向正东方向航行2小时到达C处,此时测得灯塔B在C处北偏东15°的方向上,求A处与灯塔B相距多少海里?(结果精确到1海里,参考数据:≈1.41,≈1.73)【解答】解:过点C作CM⊥AB,垂足为M,在Rt△ACM中,∠MAC=90°﹣45°=45°,则∠MCA=45°,∴AM=MC,由勾股定理得:AM2+MC2=AC2=(20×2)2,解得:AM=CM=40,∵∠ECB=15°,∴∠BCF=90°﹣15°=75°,∴∠B=∠BCF﹣∠MAC=75°﹣45°=30°,在Rt△BCM中,tanB=tan30°=,即=,∴BM=40,∴AB=AM+BM=40+40≈40+40×1.73≈109(海里),答:A处与灯塔B相距109海里.2. (2018·某某某某·8分)随着人们生活水平的不断提高,旅游已成为人们的一种生活时尚.为开发新的旅游项目,我市对某山区进行调查,发现一瀑布.为测量它的高度,测量人员在瀑布的对面山上D点处测得瀑布顶端A点的仰角是30°,测得瀑布底端B点的俯角是10°,AB与水平面垂直.又在瀑布下的水平面测得CG=27m,GF=17.6m(注:C.G、F三点在同一直线上,CF⊥AB于点F).斜坡CD=20m,坡角∠ECD=40°.求瀑布AB的高度.(参考数据:≈1.73,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin10°≈0.17,cos10°≈0.98,tan10°≈0.18)【分析】过点D作DM⊥CE,交CE于点M,作DN⊥AB,交AB于点N,在Rt△CMD中,通过解直角三角形可求出CM的长度,进而可得出MF、DN的长度,再在Rt△BDN、Rt△ADN中,利用解直角三角形求出BN、AN的长度,结合AB=AN+BN即可求出瀑布AB的高度.【解答】解:过点D作DM⊥CE,交CE于点M,作DN⊥AB,交AB于点N,如图所示.在Rt△CMD中,CD=20m,∠DCM=40°,∠CMD=90°,∴CM=CD•cos40°≈15.4m,DM=CD•sin40°≈12.8m,∴DN=MF=CM+CG+GF=60m.在Rt△BDN中,∠BDN=10°,∠BND=90°,DN=60m,∴BN=DN•tan10°≈10.8m.在Rt△ADN中,∠ADN=30°,∠AND=90°,DN=60m,∴AN=DN•tan30°≈34.6m.∴AB=AN+BN=45.4m.答:瀑布AB的高度约为45.4米.【点评】本题考查了解直角三角形的应用中的仰角俯角问题及坡度坡角问题,通过解直角三角形求出AN、BN的长度是解题的关键.3. (2018·某某某某·7分)如图,一艘海轮位于灯塔C的北偏东45方向,距离灯塔100海里的A处,它沿正南方向航行一段时间后,到达位于灯塔C的南偏东30°方向上的B处,求此时船距灯塔的距离(参考数据:≈1.414,≈1.732,结果取整数).【分析】过C作CD垂直于AB,根据题意求出AD与BD的长,由AD+DB求出AB的长即可.【解答】解:过C作CD⊥AB,在Rt△ACD中,∠A=45°,∴△ACD为等腰直角三角形,∴AD=CD=AC=50海里,在Rt△BCD中,∠B=30°,∴BC=2CD=100海里,根据勾股定理得:BD=50海里,则AB=AD+BD=50+50≈193海里,则此时船锯灯塔的距离为193海里.【点评】此题考查了解直角三角形﹣方向角问题,熟练掌握各自的性质是解本题的关键.4.(2018·某某省某某·7分)小婷在放学路上,看到隧道上方有一块宣传“中国﹣南亚博览会”的竖直标语牌CD.她在A点测得标语牌顶端D处的仰角为42°,测得隧道底端B处的俯角为30°(B,C,D在同一条直线上),AB=10m,隧道高6.5m(即BC=65m),求标语牌CD的长(结果保留小数点后一位).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,≈1.73)【分析】如图作AE⊥BD于E.分别求出BE.DE,可得BD的长,再根据CD=BD﹣BC计算即可;【解答】解:如图作AE⊥BD于E.在Rt△AEB中,∵∠EAB=30°,AB=10m,∴BE=AB=5(m),AE=5(m),在Rt△ADE中,DE=AE•tan42°=7.79(m),∴BD=DE+BE=12.79(m),∴CD=BD﹣BC=12.79﹣6.5≈6.3(m),答:标语牌CD的长为6.3m.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线面构造直角三角形解决问题.5.(2018·某某省某某·8分)图1是一辆吊车的实物图,图2是其工作示意图,AC是可以伸缩的起重臂,其转动点A离地面BD的高度AH为3.4m.当起重臂AC长度为9m,X角∠HAC 为118°时,求操作平台C离地面的高度(结果保留小数点后一位:参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)【分析】作CE⊥BD于F,AF⊥CE于F,如图2,易得四边形AHEF为矩形,则EF=AH=3.4m,∠HAF=90°,再计算出∠CAF=28°,则在Rt△ACF中利用正弦可计算出CF,然后计算CF+EF 即可.【解答】解:作CE⊥BD于F,AF⊥CE于F,如图2,易得四边形AHEF为矩形,∴EF=AH=3.4m,∠HAF=90°,∴∠CAF=∠CAH﹣∠HAF=118°﹣90°=28°,在Rt△ACF中,∵sin∠CAF=,∴CF=9sin28°=9×0.47=4.23,∴CE=CF+EF=4.23+3.4≈7.6(m),答:操作平台C离地面的高度为7.6m.【点评】本题考查了解直角三角形的应用:先将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题),然后利用勾股定理和三角函数的定义进行几何计算.6.(2018·某某省某某市)两栋居民楼之间的距离CD=30米,楼AC和B D均为10层,每层楼高3米.(1)上午某时刻,太阳光线GB与水平面的夹角为30°,此刻B楼的影子落在A楼的第几层?(2)当太阳光线与水平面的夹角为多少度时,B楼的影子刚好落在A楼的底部.【解答】解:(1)延长BG,交AC于点F,过F作FH⊥BD于H,由图可知,FH=CD=30m.∵∠BFH=∠α=30°.在Rt△BFH中,BH=,,答:此刻B楼的影子落在A楼的第5层;(2)连接BC\1BD=3×10=30=CD,∴∠BCD=45°,答:当太阳光线与水平面的夹角为45度时,B楼的影子刚好落在A楼的底部.7.(2018·某某省某某市)(12.00分)如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN和∠DBN分别是37°和60°(图中的点A.B.C.D.M、N均在同一平面内,CM∥AN).(1)求灯杆CD的高度;(2)求AB的长度(结果精确到0.1米).(参考数据:=1.73.sin37°≈060,cos37°≈0.80,tan37°≈0.75)【分析】(1)延长DC交AN于H.只要证明BC=CD即可;(2)在Rt△BCH中,求出BH、CH,在Rt△ADH中求出AH即可解决问题;【解答】解:(1)延长DC交AN于H.∵∠DBH=60°,∠DHB=90°,∴∠BDH=30°,∵∠CBH=30°,∴∠CBD=∠BDC=30°,∴BC=CD=10(米).(2)在Rt△BCH中,CH=BC=5,BH=5≈8.65,∴DH=15,在Rt△ADH中,AH===20,∴AB=AH﹣BH=20﹣8.65=11.4(米).【点评】本题考查解直角三角形的应用﹣坡度坡角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.8. (2018•呼和浩特•8分)如图,一座山的一段斜坡BD的长度为600米,且这段斜坡的坡度i=1:3(沿斜坡从B到D时,其升高的高度与水平前进的距离之比).已知在地面B处测得山顶A的仰角为33°,在斜坡D处测得山顶A的仰角为45°.求山顶A到地面BC的高度AC是多少米?(结果用含非特殊角的三角函数和根式表示即可)解:作DH⊥BC于H.设AE=x.∵DH:BH=1:3,在Rt△BDH中,DH2+(3DH)2=6002,∴DH=60,BH=180,在Rt△ADE中,∵∠ADE=45°,∴DE=AE=x,∵又HC=ED,EC=DH,∴HC=x,EC=60,在Rt△ABC中,tan33°=,∴x=,∴AC=AE+EC=+60=.答:山顶A到地面BC的高度AC是米9. (2018•某某•8分)据调查,超速行驶是引发交通事故的主要原因之一.小强用所学知识对一条笔直公路上的车辆进行测速,如图所示,观测点C到公路的距离CD=200m,检测路段的起点A位于点C的南偏东60°方向上,终点B位于点C的南偏东45°方向上.一辆轿车由东向西匀速行驶,测得此车由A处行驶到B处的时间为10s.问此车是否超过了该路段16m/s的限制速度?(观测点C离地面的距离忽略不计,参考数据:≈1.41,≈1.73)【分析】根据直角三角形的性质和三角函数得出DB,DA,进而解答即可.【解答】解:由题意得:∠DCA=60°,∠DCB=45°,在Rt△CDB中,tan∠DCB=,解得:DB=200,在Rt△CDA中,tan∠DCA=,解得:DA=200,∴AB=DA﹣DB=200﹣200≈146米,轿车速度,答:此车没有超过了该路段16m/s的限制速度.【点评】本题考查了解直角三角形的应用﹣方向角问题,解答本题的关键是利用三角函数求出AD与BD的长度,难度一般.10. (2018•莱芜•9分)在小水池旁有一盏路灯,已知支架AB的长是0.8m,A端到地面的距离AC是4m,支架AB与灯柱AC的夹角为65°.小明在水池的外沿D测得支架B端的仰角是45°,在水池的内沿E测得支架A端的仰角是50°(点C.E.D在同一直线上),求小水池的宽DE.(结果精确到0.1m)(sin65°≈0.9,cos65°≈0.4,tan50°≈1.2)【分析】过点B作BF⊥AC于F,BG⊥CD于G,根据三角函数和直角三角形的性质解答即可.【解答】解:过点B作BF⊥AC于F,BG⊥CD于G,在Rt△BAF中,∠BAF=65°,BF=AB•sin∠×0.9=0.72,AF=AB•cos∠×0.4=0.32,∴FC=AF+AC=4.32,∵四边形FCGB是矩形,∴BG=FC=4.32,CG=BF=0.72,∵∠BDG=45°,∴∠BDG=∠GBD,∴GD=GB=4.32,∴CD=CG+GD=5.04,在Rt△ACE中,∠AEC=50°,CE=,∴≈1.7,答:小水池的宽DE为1.7米.【点评】此题考查的知识点是解直角三角形的应用﹣仰角俯角问题,关键是本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.11.(2018·某某某某·6分)如图,校园内有两幢高度相同的教学楼AB,CD,大楼的底部B,D在同一平面上,两幢楼之间的距离BD长为24米,小明在点E(B,E,D在一条直线上)处测得教学楼AB顶部的仰角为45°,然后沿EB方向前进8米到达点G处,测得教学楼CD 顶部的仰角为30°.已知小明的两个观测点F,H距离地面的高度均为1.6米,求教学楼AB 的高度AB长.(精确到0.1米)参考值:≈1.41,≈1.73.【解答】解:延长HF交CD于点N,延长FH交AB于点M,如右图所示,由题意可得,MB=HG=FE=ND=1.6m,HF=GE=8m,MF=BE,HN=GD,MN=BD=24m,设AM=xm,则=xm,在Rt△AFM中,MF=,在Rt△H中,HN=,∴HF=MF+HN﹣MN=x+x﹣24,即8=x+x﹣24,解得,x≈11.7,∴AB=11.7+1.6=13.3m,答:教学楼AB的高度AB长13.3m.12.(2018·某某某某·8分)京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A.B和点C.D,先用卷尺量得AB=160m,CD=40m,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH 的长).【分析】过D作DE⊥AB,可得四边形CHED为矩形,由矩形的对边相等得到两对对边相等,分别在直角三角形ACH与直角三角形BDE中,设CH=DE=xm,利用锐角三角函数定义表示出AH与BE,由AH+HE+EB=AB列出方程,求出方程的解即可得到结果.【解答】解:过D作DE⊥AB,可得四边形CHED为矩形,∴HE=CD=40m,设CH=DE=xm,在Rt△BDE中,∠DBA=60°,∴BE=xm,在Rt△ACH中,∠BAC=30°,∴AH=xm,由AH+HE+EB=AB=160m,得到x+40+x=160,解得:x=30,即CH=30m,则该段运河的河宽为30m.【点评】此题考查了解直角三角形的应用,熟练掌握锐角三角函数定义是解本题的关键.。
九年级上解直角三角形完美测试题及答案(总11页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--九年级上解直角三角形完美测试题及答案一、选择题 (每小题2分)题号12345678910答案1.在△ABC中,∠C=90°.若AB=3,BC=1,则sin A的值为A.13B.22C.223 D.32.如图,在Rt△ABC中,∠C = 90°,AB = 5,BC = 3,则tan A的值为A.35B.34C.45D.433.反比例函数2yx=的图象上有两点()11A x,y,()22B x,y,若x1>x2,x1x2>0,则y1-y2的值是(A)正数(B)负数(C)0 (D)非负数4.抛物线223y x x=-+的顶点坐标是A. (1,-2)B. (1,2) )C.(-1,2D. (-1,-2)5.在△ABC中,锐角A、B满足223sin cos(15)022A Bο⎡-+--=⎢⎣⎦,则△ABC是A.等腰三角形B. 直角三角形C. 等腰直角三角形D. 无法确定6.将二次函数2y x=的图象向左平移1个单位,再向下平移2个单位后,所得图象的函数表达式是A.2(1)2y x=++ B.2(1)2y x=-- C.2(1)2y x=+-D.2(1)2y x=-+7. 如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan∠ABC的值为A BA .35B .34C .105D . 1 8. 如图,在由边长为1的小正方形组成的网格中,点A ,B ,C都在小正方形的顶点上.则A ∠cos 的值为( )A.552 B. 2 C.55D.219.已知抛物线y=ax 2+bx 和直线y=ax+b 在同一坐标系内的图象如图,其中正确的是A .B .C .D .10.如图,在Rt △ABC 中,∠ACB =90︒,AC =12,BC =5,CD ⊥AB 于点D ,那么sin BCD ∠的值是A .512 B .513C .1213D .125二、填空题(每空2分)11.已知∠A 为锐角,且tan 3A =,那么∠A 的大小是 °.12. 如图,角α的一边在x 轴上,另一边为射线OP .则._______tan =α 13.在ABC △中,45A ∠=,6AB =,2BC =,则AC 的长为 . 14. 如图,在△ABC 中,tan A =43,∠B =45°,AB =14. 则BC 的长为 .15.如图,矩形ABCD 中,AP 平分∠DAB ,且AP ⊥DP 于点P , 联结CP ,如果AB ﹦8, AD ﹦4,求sin ∠DCP 的值为 ..三、解答题(本题共70分)ABCDP16.计算:2sin 30°2cos 45-°8+.17.计算:︒+︒-︒⋅︒453046030tan sin tan cos18.如图,在△ABC 中, AB=AC ,BD ⊥AC 于点D .AC =10,cos A =45,求BC 的长.19.如图,∠ABC =∠BCD =90°,∠A =45°,∠D =30°,BC =1,AC ,BD 交于点O .求BODO的值.20. 如图,建筑物的高CD 为17. 32米.在其楼顶C ,测得旗杆底部B 的俯角α为︒60,旗杆顶部A 的仰角β为︒20,请你计算旗杆的高度.(342.020≈︒sin ,364.020≈︒tan ,940.020≈︒cos ,732.13≈,结果精确到米)ODA BCD CBAC21.如图所示,某小组同学为了测量对面楼AB 的高度,分工合作,有的组员测得两楼间距离为40米,有的组员在教室窗户处测得楼顶端A 的仰角为30°,底端B 的俯角为10°,请你根据以上数据,求出楼AB 的高度.(精确到米)(参考数据:sin10°≈, cos10°≈, tan10°≈,2≈,3≈)22.如图,△ABC 中,∠ACB =90°,4sin 5A =, BC =8,D 是AB 中点,过点B 作直线CD 的垂线,垂足为E .(1)求线段CD 的长;(2)求cos ABE ∠的值.E D ABC23. 已知:如图,在四边形ABCD 中,BD 是一条对角线,∠DBC =30°, ∠DBA =45°,∠C =70°.若DC =a ,AB=b , 请写出求tan ∠ADB 的思路. (不用写出计算结果........)24.缆车,不仅提高了景点接待游客的能力,而且解决了登山困难者的难题.如图,当缆车经过点A 到达点B 时,它走过了700米.由B 到达山顶D 时,它又走过了700米.已知线路AB 与水平线的夹角α为16°,线路BD 与水平线的夹角β为20°,点A 的海拔是126米.求山顶D 的海拔高度(画出设计图,写出解题思路即可).25.在平面直角坐标系xOy 中,抛物线219y x bx =+经过点A (-3,4). (1)求b 的值;(2)过点A 作x 轴的平行线交抛物线于另一点B ,在直线AB 上任取一点P ,作点A 关于直线OP 的对称点C ;①当点C 恰巧落在x 轴时,求直线OP 的表达式; ②连结BC ,求BC 的最小值.26.如图,∠BAD=90°,AB=AD ,CB=CD ,一个以点C 为顶点的45°角绕点C 旋转,角的两边与BA ,DA 交于点M ,N ,与BA ,DA 的延长线交于点E ,F ,连接AC .(1)在∠FCE 旋转的过程中,当∠FCA =∠ECA 时,如图1,求证:AE =AF ; (2)在∠FCE 旋转的过程中,当∠FCA ≠∠ECA 时,如图2,如果∠B=30°,CB=2,用等式表示线段AE ,AF 之间的数量关系,并证明.EMNFA CEMN FAC图1图2答案:一、选择题 (每小题2分) 题号 1 2 3 4 5 6 7 8 9 10 答案 ABBBCCBCDB二、填空题(每空2分)11.60°. 12. 3 13. 13+或 13- (此题答全才得分) 14.26 15.1010三、解答题(本题共70分) 16.解:原式=22222212+⨯-⨯………3分 =12+ ………5分17.解:原式=1214323+⨯-⨯ ………3分 =21………5分18.解:∵AC=AB ,AB=10,∴AC=10. ………1分 ∵BD ⊥AC 于点D ∴090=∠=∠CDB ADB ∴cos A=,∴AD=5410cos ⨯=⋅A AB =8,………2分∴DC=2.………3分 ∴.………4分D CBA∴.………5分19.解:∵∠ABC=∠BCD=90°,∴AB∥CD.………1分∴∠A=∠ACD.………2分∵∠AOB=∠COD.∴△ABO∽△CDO.………3分∴BO ABCO CD=.………4分在Rt△ABC中,∠ABC=90°,∠A=45°,BC=1,∴AB=1.………5分在Rt△BCD中,∠BCD=90°,∠D=30°,BC=1,∴CD=3.∴1333BOCO==.………6分20.解:根据题意,在Rt△BCE中,∠BEC=90°,tanα=,………1分∴CE=≈=10米,………3分在Rt△ACE中,∠AEC=90°,tanβ=,………4分∴AE=CE•tan20°≈10×=米,………6分∴AB=AE+BE=+=≈米,答:旗杆的高约为米.………7分21.解:过点D作DE⊥AB于点E,………1分在Rt△ADE中,∠AED=90°,tan∠1=,∠1=30°,………2分∴AE=DE×tan∠1=40×tan30°=40×≈40××≈………5分在Rt△DEB中,∠DEB=90°,tan∠2=,∠2=10°,ODAB C∴BE=DE×tan∠2=40×tan10°≈40×=,………6分∴AB=AE+BE≈+=米.答:楼AB的高度是米.………7分22.如图,△ABC中,∠ACB=90°,4sin5A=, BC=8,D是AB中点,过点B作直线CD的垂线,垂足为E.(1)求线段CD的长;(2)求cos ABE∠的值.注:此题解法较多,其他解法也可解:(1)∵△ABC中,∠ACB=90°,4sin5A=, BC=8,∴8104sin5BCABA===.………2分∵△ABC中,∠ACB=90°,D是AB中点,∴152CD AB==.………4分(2)法一:过点C作CF⊥AB于F,如图.∴∠CFD=90°.在Rt△ABC中,由勾股定理得6AC==. (5)分∵CF AB AC BC⋅=⋅,∴245AC BCCFAB⋅==.………6分∵BE⊥CE,∴∠BED=90°.∵∠BDE=∠CDF,∴∠ABE=∠DCF.…∴24245cos cos525CFABE DCFCD∠=∠===. (7)分法二:∵D是AB中点,AB=10,∴152BD AB==.∴12BDC ABCS S∆∆=.在Rt△ABC中,由勾股定理得6AC==.AAD ∴168242ABC S ∆=⨯⨯=.∴12BDC S ∆=.∴1122BE CD =.∵5CD =,∴245BE =. ∵BE ⊥CE ,∴∠BED =90°.∴24245cos 525BE ABE BD ∠===.………7分23. 解: (1)过D 点作DE ⊥BC 于点E ,可知△CDE 和△DEB 都是直角三角形;………1分(2)由∠C =70°,可知sin ∠C 的值,在Rt△CDE 中,由sin ∠C 和DC =a ,可求DE 的长;………2分(3)在Rt△DEB 中,由∠DBC =30°,DE 的长,可求BD 的长………3分 (4)过A 点作AF ⊥BD 于点F 可知△DFA 和△AFB 都是直角三角形; ………4分(5)在Rt△AFB 中,由∠DBA =45°,AB =b ,可求AF 和BF 的长;………5分(6)由DB 、BF 的长,可知DF 的长;………6分(7)在Rt△DFA 中,由DFFA ,可求tan ∠ADB . ………7分24. 解:如图,………1分在Rt△ABC 中,∠ACB =90°,∠α=16°,AB =700,由sin α,可求BC 的长.即BC=AB ·sin α=700sin16°,………3分在Rt△BDE 中,∠DBE =90°,∠β=16°,BD=AB =700,由sin β,可求DE 的长. ····························即DE=BD ·sin β=700sin20°,………5分由矩形性质,可知EF=BC =700sin16°, FH=AG =126.………6分从而,可求得DH 的长.即DH=DE+EF+FH =700sin20°+700sin16°+126.………7分25.(1)∵抛物线219y x bx =+经过点A (-3,4)令x =-3,代入219y x bx =+,则()14939b =⨯+⨯-,∴b =-1.………2分(2)①画图………3分由对称性可知OA =OC ,AP =CP , ∵AP ∥OC ,∴∠1=∠2,又∵∠AOP =∠2,∴∠AOP =∠1,∴AP =AO ,………4分 ∵A (-3,4),∴AO =5,∴AP =5,∴P 1(2,4),同理可得P 2(-8,4),∴O P 的表达式为2y x =或12y x =-. ………6分(各1分)②以O 为圆心,OA 长为半径作⊙O ,连接BO ,交⊙O 于点C ∵B (12,4),∴OB =410, ∴BC 的最小值为4105-. ………7分26..解:(1)证明:∵AB=AD ,BC=CD ,AC=AC ,∴△ABC ≌△ADC . ………1分∴∠BAC =∠DAC =45°,可证∠FAC =∠EAC =135°. ………2分又∵∠FCA =∠ECA ,∴△ACF ≌△ACE . ∴AE =AF . ………3分其他方法相应给分.(2)过点C 作CG ⊥AB 于点G ,求得AC =2 (4)∵∠FAC =∠EAC =135°,∴∠ACF +∠F =45°. 又∵∠ACF +∠ACE =45°,∴∠F =∠ACE .∴△ACF ∽△AEC. ………5分∴ACAFAE AC =,即AF AE AC ⋅=2. ………6分 ∴2=⋅AF AE . ………7分。
解直角三角形自测题命题人:罗成1、已知:如图,在ΔABC中,∠ACB=90°,CD⊥AB,垂足为D,若∠B=30°,CD=6,求AB的长.2、我国为了维护队钓鱼岛P的主权,决定对钓鱼岛进行常态化的立体巡航.在一次巡航中,轮船和飞机的航向相同(AP∥BD),当轮船航行到距钓鱼岛20km的A处时,飞机在B处测得轮船的俯角是45°;当轮船航行到C处时,飞机在轮船正上方的E处,此时EC=5km.轮船到达钓鱼岛P时,测得D处的飞机的仰角为30°.试求飞机的飞行距离BD(结果保留根号).3、如图,某公路路基横断面为等腰梯形.按工程设计要求路面宽度为10米,坡角为,路基高度为5.8米,求路基下底宽(精确到0.1米).4、为申办2010年冬奥会,须改变哈尔滨市的交通状况。
在大直街拓宽工程中,要伐掉一棵树AB,在地面上事先划定以B为圆心,半径与AB等长的圆形危险区,现在某工人站在离B点3米远的D处,从C点测得树的顶端A点的仰角为60°,树的底部B点的俯角为30°. 问:距离B点8米远的保护物是否在危险区内?5、如图,某一水库大坝的横断面是梯形ABCD,坝顶宽CD=5米,斜坡AD=16米,坝高 6米,斜坡BC的坡度.求斜坡AD的坡角∠A(精确到1分)和坝底宽AB.(精确到0.1米)6. 在一次实践活动中,某课题学习小组用测倾器、皮尺测量旗杆的高度,他们设计了如下的方案(如图1所示):(1)在测点A处安置测倾器,测得旗杆顶部M的仰角∠MCE=α;(2)量出测点A到旗杆底部N的水平距离AN=m;(3)量出测倾器的高度AC=h。
根据上述测量数据,即可求出旗杆的高度MN。
如果测量工具不变,请参照上述过程,重新设计一个方案测量某小山高度(如图2)1)在图2中,画出你测量小山高度MN的示意图2)写出你的设计方案。
8、如图,小方在五月一日假期中到郊外放风筝,风筝飞到C 处时的线长为20米,此时小方正好站在A处,并测得∠CBD=60°,牵引底端B离地面1.5米,求此时风筝离地面的高度(结果精确到个位)9、如图,广安市防洪指挥部发现渠江边一处长400米,高8米,背水坡的坡角为45°的防洪大堤(横截面为梯形ABCD)急需加固.经调查论证,防洪指挥部专家组制定的加固方案是:背水坡面用土石进行加固,并使上底加宽2米,加固后,背水坡EF的坡比i=1:2.(1)求加固后坝底增加的宽度AF的长;(2)求完成这项工程需要土石多少立方米?10、某船向正东航行,在A处望见灯塔C在东北方向,前进到B处望见灯塔C在北偏西30o,又航行了半小时到D处,望灯塔C恰在西北方向,若船速为每小时20海里,求A、D两点间的距离。
解直角三角形班级: 姓名 成绩解直角三角形1、已知:如图,在ΔABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,若∠B =30°,CD =6,求AB 的长.2、我国为了维护队钓鱼岛P 的主权,决定对钓鱼岛进行常态化的立体巡航.在一次巡航中,轮船和飞机的航向相同(AP ∥BD ),当轮船航行到距钓鱼岛20km 的A 处时,飞机在B 处测得轮船的俯角是45°;当轮船航行到C 处时,飞机在轮船正上方的E 处,此时EC =5km .轮船到达钓鱼岛P 时,测得D 处的飞机的仰角为30°.试求飞机的飞行距离BD (结果保留根号).3、如图,某公路路基横断面为等腰梯形.按工程设计要求路面宽度为10米,坡角为︒55,路基高度为5.8米,求路基下底宽(精确到0.1米).C AD B︒ 55 5.8m 10mA BC D 姓名: 得分:M E NCA4、为申办2010年冬奥会,须改变哈尔滨市的交通状况。
在大直街拓宽工程中,要伐掉一棵树AB ,在地面上事先划定以B 为圆心,半径与AB 等长的圆形危险区,现在某工人站在离B 点3米远的D 处,从C 点测得树的顶端A 点的仰角为60°,树的底部B 点的俯角为30°. 问:距离B 点8米远的保护物是否在危险区内?5、如图,某一水库大坝的横断面是梯形ABCD ,坝顶宽CD =5米,斜坡AD =16 米,坝高 6米,斜坡BC 的坡度3:1=i .求斜坡AD 的坡角∠A (精确到1分)和坝底宽AB .(精确到0.1米)6. 在一次实践活动中,某课题学习小组用测倾器、皮尺测量旗杆的高度,他们设计了如下的方案(如图1所示):(1) 在测点A 处安置测倾器,测得旗杆顶部M 的仰角∠MCE =α ; (2) 量出测点A 到旗杆底部N 的水平距离AN =m; (3) 量出测倾器的高度AC =h 。
根据上述测量数据,即可求出旗杆的高度MN 。
初三数学解直角三角形试题答案及解析1.一测量爱好者,在海边测量位于正东方向的小岛高度AC,如图所示,他先在点B测得山顶点A的仰角为30°,然后向正东方向前行62米,到达D点,在测得山顶点A的仰角为60°(B、C、D三点在同一水平面上,且测量仪的高度忽略不计).求小岛高度AC(结果精确的1米,参考数值:,)【答案】53米.【解析】首先利用三角形的外角的性质求得∠BAD的度数,得到AD的长度,然后在直角△ADC 中,利用三角函数即可求解.试题解析:∵∠ADC=∠B+∠BAD,∴∠BAD=∠ADC-∠B=60°-30°=30°,∴∠B=∠BAD,∴AD=BD=62(米).在直角△ACD中,AC=AD•sin∠ADC=62×=31≈31×1.7=52.7≈53(米).答:小岛的高度约为53米.【考点】解直角三角形的应用-仰角俯角问题.2.如图,等腰△ABC中,AB=AC,∠BAC=36°,BC=1,点D在边AC上且BD平分∠ABC,设CD=x.(1)求证:△ABC∽△BCD;(2)求x的值;(3)求cos36°-cos72°的值.【答案】(1)证明见解析;(2);(3).【解析】(1)由等腰三角形ABC中,顶角的度数求出两底角度数,再由BD为角平分线求出∠DBC的度数,得到∠DBC=∠A,再由∠C为公共角,利用两对角相等的三角形相似得到三角形ABC与三角形BCD相似;(2)根据(1)结论得到AD=BD=BC,根据AD+DC表示出AC,由(1)两三角形相似得比例求出x的值即可;(3)过B作BE垂直于AC,交AC于点E,在直角三角形ABE和直角三角形BCE中,利用锐角三角函数定义求出cos36°与cos72°的值,代入原式计算即可得到结果.试题解析:(1)∵等腰△ABC中,AB=AC,∠BAC=36°,∴∠ABC=∠C=72°,∵BD平分∠ABC,∴∠ABD=∠CBD=36°,∵∠CBD=∠A=36°,∠C=∠C,∴△ABC∽△BCD;(2)∵∠A=∠ABD=36°,∴AD=BD,∵BD=BC,∴AD=BD=CD=1,设CD=x,则有AB=AC=x+1,∵△ABC∽△BCD,∴,即,整理得:x2+x-1=0,解得:x1=,x2=(负值,舍去),则x=;(3)过B作BE⊥AC,交AC于点E,∵BD=CD,∴E为CD中点,即DE=CE=,在Rt△ABE中,cosA=cos36°=,在Rt△BCE中,cosC=cos72°=,则cos36°-cos72°=-=.【考点】1.相似三角形的判定与性质;2.等腰三角形的性质;3.黄金分割;4.解直角三角形.3.如图,在△ABC中,∠BAC=90°,AD⊥BC于D,AD=3,cosB=3/5,则AC等于()A.4B.5C.6D.7【答案】B.【解析】∵∠BAC=90°,AD⊥BC于D,∴∠BAD+∠CAD=90°,∠BAD+∠B=90°,∴∠CAD=∠B,∴cos∠CAD=cosB=,在直角△ACD中,∵∠ADC=90°,AD=3,∴cos∠CAD=,∴AC=5.故选B.【考点】解直角三角形.4.在△ACB中,∠C=90°,AB=10,,,.则BC的长为()A.6B.7.5C.8D.12.5【答案】A.【解析】∵∠C=90°,∴.又∵AB=10,∴.故选A.【考点】1.解直角三角形;2.锐角三角函数定义.5.已知:如图,斜坡AP的坡度为1:2.4,坡长AP为26米,在坡顶A处的同一水平面上有一座古塔BC,在斜坡底P处测得该塔的塔顶B的仰角为45°,在坡顶A处测得该塔的塔顶B的仰角为76°.求:(1)坡顶A到地面PQ的距离;(2)古塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)【答案】(1)10米;(2)19米.【解析】(1)过点A作AH⊥PQ,垂足为点H,利用斜坡AP的坡度为1:2.4,得出AH,PH,AH的关系求出即可;(2)利用矩形性质求出设BC=x,则x+10=24+DH,再利用tan76°=,求出即可.试题解析::(1)过点A作AH⊥PQ,垂足为点H.∵斜坡AP的坡度为1:2.4,∴,设AH=5k,则PH=12k,由勾股定理,得AP=13k.∴13k=26.解得k=2.∴AH=10.答:坡顶A到地面PQ的距离为10米.(2)延长BC交PQ于点D.∵BC⊥AC,AC∥PQ,∴BD⊥PQ.∴四边形AHDC是矩形,CD=AH=10,AC=DH.∵∠BPD=45°,∴PD=BD.设BC=x,则x+10=24+DH.∴AC=DH=x-14.在Rt△ABC中,tan76°=,即,解得x=,即x≈19,答:古塔BC的高度约为19米.【考点】1.解直角三角形的应用-坡度坡角问题;2.解直角三角形的应用-仰角俯角问题.6.超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在A处,离益阳大道的距离(AC)为30米.这时,一辆小轿车由西向东匀速行驶,测得此车从B处行驶到C处所用的时间为8秒,∠BAC=75°.(1)求B、C两点的距离;(2)请判断此车是否超过了益阳大道60千米/小时的限制速度?(计算时距离精确到1米,参考数据:sin 75°≈0.965 9,cos 75°≈0.258 8,tan 75°≈3.732,≈1.732,60千米/小时≈16.7米/秒)【答案】(1)112(米) (2)此车没有超过限制速度【解析】解:(1)在Rt△ABC中,∠ACB=90°,∠BAC=75°,AC=30,∴BC=AC·tan ∠BAC=30×tan 75°≈30×3.732≈112(米).(2)∵此车速度=112÷8=14(米/秒)<16.7(米/秒)=60(千米/小时)∴此车没有超过限制速度.7.在△ABC中,若∠A、∠B满足|cos A-|+=0,则∠C=________.【答案】75°【解析】∵|cos A-|+=0,∴cos A-=0,sin B-=0,∴cos A=,sin B=,∴∠A=60°,∠B=45°,则∠C=180°-∠A-∠B=180°-60°-45°=75°.8.在△ABC中,∠C=90°,,则().A.B.C.D.【答案】D.【解析】由sin A=,设∠A的对边是3k,则斜边是5k,∠A的邻边是4k.再根据正切值的定义,得tanA=.故选D.【考点】锐角三角函数.9.如图,将45°的∠AOB按下面的方式放置在一把刻度尺上:顶点O与尺下沿的端点重合,OA与尺下沿重合,OB与尺上沿的交点B在尺上的读数恰为2cm.若按相同的方式将37°的∠AOC放置在该刻度尺上,则OC与尺上沿的交点C在尺上的读数约为cm.(结果精确到0.1cm,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【答案】2.7【解析】过点B作BD⊥OA于D,过点C作CE⊥OA于E.在△BOD中,∠BDO=90°,∠DOB=45°,∴BD=OD=2cm,∴CE=BD=2cm.在△COE中,∠CEO=90°,∠COE=37°,∵tan37°=≈0.75,∴OE≈2.7cm.∴OC与尺上沿的交点C在尺上的读数约为2.7 cm.10.如图,一段河坝的横截面为梯形ABCD,试根据图中数据,求出坝底宽AD.(i=CE∶ED,单位:m)【答案】(7.5+4)m【解析】解:作BF⊥AD于点F.则BF=CE=4m,在直角△ABF中,AF===3m,在直角△CED中,根据i=,则ED===4m.则AD=AF+EF+ED=3+4.5+4=(7.5+4)m.11.如图,A、B两地之间有一座山,汽车原来从A地到B地经过C地沿折线A→C→B行驶,现开通隧道后,汽车直接沿直线AB行驶.已知AC=10千米,∠A=30°,∠B=45°.则隧道开通后,汽车从A地到B地比原来少走多少千米?(结果保留根号)【答案】(5+5-5)千米【解析】解:过C作CD⊥AB于D,在Rt△ACD中,∵AC=10,∠A=30°,∴DC=ACsin30°=5,AD=ACcos30°=5,在Rt△BCD中,∵∠B=45°,∴BD=CD=5,BC=5,则用AC+BC-(AD+BD)=10+5-(5+5)=5+5-5(千米).答:汽车从A地到B地比原来少走(5+5-5)千米.12.在Rt△ABC中,若∠C=90°,cosA=,则sinA的值为()A.B.C.D.【答案】A.【解析】先根据特殊角的三角函数值求出∠A的值,再求出sinA的值即可.∵Rt△ABC中,∠C=90°,∴∠A是锐角,∵cosA==,∴设AB=25x,BC=7x,由勾股定理得:AC=24x,∴sinA=.故选A.考点:同角三角函数的关系.13.如图,在△中,,,则△的面积是()A.B.12C.14D.21【答案】A【解析】如图,作因为,所以.由勾股定理得.又,所以所以所以所以14.计算下列各题:(1);(2).【答案】(1)2 (2)【解析】解:(1)(2)15.在Rt△ABC中,∠C=90°,sinA=,则cosB的值为()A.B.C.D.【答案】C.【解析】在Rt△ABC中,∠C=90°,sinA=,设BC=3x,则AB=5x,∴AC=4x.∴cosB=.故选C.考点: 互余两角三角函数的关系.16.计算:【答案】-2.【解析】本题涉及零指数幂、特殊角的三角函数值、二次根式化简、负整数指数幂以及绝对值等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:考点: 实数的混合运算.17.若(为锐角),则=【答案】1.【解析】因为所以得,代入可得值为1【考点】正切和正、余弦函数的关系.18.如图所示,直角三角形纸片的两直角边长分别为6,8,现将如图那样折叠,使点与点重合,折痕为,则的值是________【答案】.【解析】折叠后形成的图形相互全等,利用三角函数的定义可求出.根据题意,BE=AE.设CE=x,则BE=AE=8-x.在Rt△BCE中,根据勾股定理得:BE2=BC2+CE2,即(8-x)2=62+x2解得x=,∴tan∠CBE==考点:(1)锐角三角函数的定义;(2)勾股定理;(3)翻折变换(折叠问题).19.(1)一个人由山底爬到山顶,需先爬450的山坡200m,再爬300的山坡300m,求山的高度(结果可保留根号)。
第一章《解直角三角形》单元测试卷一、填空题:1、如下图;表示甲、乙两山坡的情况; _____坡更陡。
(填“甲”“乙”)αβ 13 34 甲 乙2、在Rt △ABC 中;∠C =90°;若AC =3;AB =5;则cosB 的值为__________。
3、在Rt △ABC 中;∠C=90°.若sinA=22;则sinB= 。
4、计算:tan 245°-1= 。
5、在△ABC 中;AB=AC=10;BC=16;则tanB=_____。
6、△ABC 中;∠C=90°;斜边上的中线CD=6;sinA=31;则S △ABC=______。
7、菱形的两条对角线长分别为23和6;则菱形较小的内角为______度。
8、如图2是固定电线杆的示意图。
已知:CD ⊥AB;CD 33=m;∠CAD=∠CBD=60°;则拉线AC 的长是__________m 。
9、升国旗时;某同学站在离旗杆底部24米处行注目礼;当国旗升至旗杆顶端时;该同学视线的仰角恰为30°;若双眼离地面;则旗杆的高度为______米。
(用含根号的式子表示)10、如图3;我校为了筹备校园艺术节;要在通往舞台的台阶上铺上红色地毯.如果地毯的宽度恰好与台阶的宽度一致;台阶的侧面如图所示;台阶的坡角为30;90BCA ∠=;台阶的高BC 为2米;那么请你帮忙算一算需要米长的地毯恰好能铺好台阶.(结果精确到0.1m ;取2 1.414=3 1.732=)11、如图4;如果△APB 绕点B 按逆时针方向旋转30°后得到△A'P 'B;且BP=2;那么PP '的长为____________.(不取近似值. 62-62+)二、选择题:1班级:____________姓名:____________A 、45B 、5C 、15 D 、14513、李红同学遇到了这样一道题:3tan(α+20°)=1;你猜想锐角α的度数应是( ) ° ° ° °14、身高相同的三个小朋友甲、乙、丙放风筝;他们放出的线长分别为300 m;250 m;200 m;线与地面所成的角度分别为30°;45°;60°(假设风筝线是拉直的);则三人所放的风筝( )15、在△ABC 中;若tanA=1;sinB=22;你认为最确切的判断是( ) A.△ABC 是等腰三角形 B.△ABC 是等腰直角三角形 C.△ABC 是直角三角形 D.△ABC 是一般锐角三角形16、如图5;某地夏季中午;当太阳移至房顶上方偏南时;光线与地面成80°角;房屋朝南的窗子高AB=1.8 m;要在窗子外面上方安装水平挡光板AC;使午间光线不能直接射入室内;那么挡光板的宽度AC 为( ) tan80°m °m C.︒80sin 8.1 m D.︒80tan 8.1 m17、如图6;四边形ABCD 中;∠A=135°;∠B=∠D=90°;BC=23;AD=2;则四边形ABCD 的面积是( )2B.43三、解答题: 18、计算:(1)3cos30°+2sin45° (2)6tan 2 30°-3sin 60°-2sin 45°19、根据下列条件;求出Rt △ABC(∠C=90°)中未知的边和锐角. (1)BC=8;∠B=60°; (2)AC=2;AB=2.20、如图7;在Rt △ABC 中;∠C=90°;AC=8;∠A 的平分线AD=3316;求∠B 的度数及边BC 、AB 的长.21、等腰三角形的底边长20 cm;面积为33100c m 2;求它的各内角.22、同学们对公园的滑梯很熟悉吧!如图是某公园在“六•一”前新增设的一台滑梯;该滑梯高度AC =2m;滑梯着地点B 与梯架之间的距离BC =4m 。
解直角三角形及其应用中考频度:★★★☆☆ 难易程度:★★☆☆☆1.如图,为了测量河岸A ,B 两点的距离,在与AB 垂直的方向上取点C ,测得AC =a ,∠ABC =α,那么AB 等于A .a ·sin αB .a ·cos αC .a ·tan αD .tan a a2.如图,河坝横断面迎水坡AB 的坡比是13∶(坡比是坡面的铅直高度BC 与水平宽度AC 之比),坝高3m BC ,则坡面AB 的长度是A .9 mB .6 mC .63mD .33m3.某水库大坝的横断面是梯形,坝内斜坡的坡度i =1 ∶3,坝外斜坡的坡度i =1∶1,则两个坡角的和为 A .60°B .75°C .90°D .105°4.如图,在△ABC 中,AC ⊥BC ,∠ABC =30°,点D 是CB 延长线上的一点,且BD =BA ,则tan ∠DAC 的值为A .2+3B .23C .3+3D .335.菱形OABC 在平面直角坐标系中的位置如图所示,∠AOC =45°,OC =2,则点B 的坐标为A .(2,1)B .(1,2)C .(2+1,1)D .(1,2+1)6.如图,其中A ,B ,C 三地在同一直线上,D 地在A 地北偏东30°方向、在C 地北偏西45°方向.C 地在A 地北偏东75°方向.且BD =BC =30 m ,从A 地到D 地的距离是A .303 mB .205 mC .302 mD .156 m7.某市进行城区规划,工程师需测某楼AB 的高度,工程师在D 处用高2m 的测角仪(CD ),测得楼顶端A 的仰角为30°,然后向楼前进30m 到达E ,又测得楼顶端A 的仰角为60°,楼AB 的高为A .()103+2m B .()203+2m C .()53+2mD .()153+2m8.某山的山顶B 处有一个观光塔,已知该山的山坡面与水平面的夹角∠BDC 为30°,山高BC 为100米,点E 距山脚D 处150米,在点E 处测得观光塔顶端A 的仰角为60°,则观光塔AB 的高度是A .50米B .100米C .125米D .150米9.如图,在正方形ABCD 外作等腰直角△CDE ,DE =CE ,连接AE ,则sin ∠AED =A .12B .255C .55D .10510.如图是某款篮球架的示意图,已知底座BC =0.60米,底座BC 与支架AC 所成的角∠ACB =75°,支架AF的长为2.50米,篮板顶端F 点到篮框D 的距离FD =1.35米,篮板底部支架HE 与支架AF 所成的角∠FHE =60°,则篮框D 到地面的距离约为(精确到0.01米)(参考数据:cos75°≈0.26,sin75°≈0.97,tan75°≈3.73,3≈1.73)A .3.04B .3.05C .3.06D .4.4011.一架直升飞机执行海上搜救任务,在空中A 处发现海面上有一目标B ,仪器显示这时飞机距目标5km ,俯角为30°,这时飞机的飞行高度为________km .学-科网12.如图,沿倾斜角为30°的山坡植树,要求相邻两棵树间的水平距离AC 为2m ,那么相邻两棵树的斜坡距离AB 约为________m .(结果精确到0.1m )13.如图,小明在楼AB顶部的点A处测得楼前一棵树CD的顶端C的俯角为37°,已知楼AB高为18m,楼与树的水平距离BD为8.5m,则树CD的高约为________ m(精确到0.1m).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)14.如图,已知小岛B在基地A的南偏东30°方向上,与基地A相距10海里,货轮C在基地A的南偏西60°方向、小岛B的北偏西75°方向上,那么货轮C与小岛B的距离是________ 海里.15.如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,求该船航行的距离(即AB的长).16.如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾斜度由45°降为30°,已知原滑滑板AB 的长为5米,点D、B、C在同一水平地面上.求:改善后滑滑板会加长多少?(精确到0.01)(参考数据:2≈1.414,3≈1.732,6≈2.449)17.如图,港口A在观测站O的正东方向,OA=4 km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,求该船航行的距离(即AB的长).18.如图,小华站在河岸上的G点,看见河里有一小船沿垂直于岸边的方向划过来.此时测得小船C的俯角是∠FDC=30°.若小华的眼睛与地面的距离是3米,BG=1.5米,BG平行于AC所在的直线,迎水坡i=4∶3,坡长AB=10米,点A、B、C、D、F、G在同一平面内,则此时小船C到岸边的距离CA的长是多少?(结果保留根号)1.【答案】D【解析】根据三角函数可得:tan∠ABC=AC aAB AB=,则AB=tanaα,故选D.2.【答案】B【解析】由图可知,13∶∶BC AC=,1tan3BAC∠=,∴30BAC∠=︒,∴36m1sin302BCAB===︒,故选B.3.【答案】B【解析】通常把坡面的垂直高度h和水平距离l的比叫做坡度,根据定义可知:内斜坡的坡角为30°,外斜坡的坡角为45°,故选B.4.【答案】A【解析】∵AC⊥BC于点C,∴∠C=90°,设AC=x,∵∠ABC=30°,∴AB=2AC=2x,由勾股定理可得BC =3x,∵BD=BA=2x,∴DC=BD+BC=2x +3x,∴tan∠DAC =23DC x xAC x+==2+3,故选A.5.【答案】C【解析】如图,过点B 作BD x ⊥轴于点D ,∵OABC 是菱形, 452,AOC OC ∠=︒=,∴2,O A A B == 45BAD ∠=︒,∴2sin451AD BD ==︒=,∴点B 的坐标为:(211),+,故选C .6.【答案】D【解析】如图,过点D 作DH 垂直于AC ,垂足为H ,由题意可知∠DAC =75°-30°=45°,∵△BCD 是等边三角形,∴∠DBC =60°,BD =BC =CD =30 m ,∴DH =32×30=153,∴AD =2DH =156 m ,故选D .7.【答案】D【解析】如图,在Rt △AFG 中,tan AG AFG FG∠=, ∠AFG =60°, ∴ 3tan 603AG FG AG ︒==.在Rt △ACG 中,tan AGACG CG∠=,∠ACG =30°, ∴3tan30AGCG AG ==︒.又∵CF =CG -FG =30,即33303AG AG -=,解得15 3AG =. ∴15 3 2AB AG GB =+=+.∴这幢教学楼的高度AB 为(15 3 2+)m .故选D. 8.【答案】A【解析】如图,作EF ⊥AC 于F ,EG ⊥DC 于G ,在Rt △DEG 中,EG =12DE =75米,∴BF =BC -CF =BC -CE = 100-75=25(米),EF =tan tan30BF BFBEF =∠︒=253,∵∠AEF =60°,∴∠A =30°,∴AF =253tan 33EF A ==75(米),∴AB =AF -BF =50(米),故观光塔AB 的高度为50米,故选A .9.【答案】C【解析】如图,过A 点作AG ⊥ED ,设正方形ABCD 的边长为a ,∵等腰直角△CDE 中,DE =CE , ∴DE =22a ,∠CDE =45°,∴△AGD 也是等腰直角三角形,∴AG =GD =22a ,∴AE =22AG GE +=102a ,∴sin ∠AED =AG AE =55,故选C .10.【答案】B【解析】如图,延长FE 交CB 的延长线于M ,过A 作AG ⊥FM 于G , 在Rt △ABC 中,tan ∠ACB =ABBC, ∴AB =BC •tan75°≈0.60×3.73=2.238,∴GM =AB =2.238, 在Rt △AGF 中,∵∠FAG =∠FHD =60°,sin ∠FAG =FGAF, ∴sin60°=2.5FG =32,∴FG ≈2.1625,∴DM =FG +GM –DF ≈3.05(米).所以篮框D到地面的距离约是3.05米.故选B.11.【答案】2.5【解析】由题意得,∠B=∠α= 30°,在Rt△ABC中,AC=AB⋅sin B=2.5km,故答案为:2.5.13.【答案】11.6【解析】如图,作CE⊥AB,垂足为E.在Rt△AEC中,AE=CE•tan37º=BD•tan37º≈8.5×0.75=6.375(米);BE=AB–AE≈18–6.375=11.625≈11.6(米).故答案为11.6.14.【答案】102【解析】如图,由题意得,∠BAD=30°,∠CAD=60°,∠CBE=75°,AB=10海里.∵AD ∥BE ,∴∠ABE =∠BAD =30°,∴∠ABC =∠CBE –∠ABE =75°–30°=45°.在△ABC 中,∵∠BAC =∠BAD +∠CAD =30°+60°=90°,∠ABC =45°, ∴△ABC 是等腰直角三角形, ∵AB =10海里,∴AC =10海里, ∴BC =22AB AC =102海里.故答案为:10错误!未找到引用源。
三角形一、选择题1.在直角三角形中,若勾为3,股为4,则弦为()A. 5B. 6C. 7D. 8【答案】A【解析】:∵在直角三角形中,勾为3,股为4,∴弦为故答案为:A.【分析】根据在直角三角形中,勾是最短的直角边,股是长的直角边,弦是斜边,知道勾和股利用勾股定理,即可得出答案。
2.在▱ABCD中,对角线AC,BD相交于点O,AC=8,BD=10,那么BC的取值X围是()A.8<BC<10B.2<BC<18C.1<BC<8D.1<BC<9【答案】D【解析】:如图∵▱ABCD,AC=8,BD=10,∴OB=BD=5,OC=AC=4∴5-4<BC<5+4,即1<BC<9故答案为:D【分析】根据平行四边形的性质求出OB、OC的长,再根据三角形三边关系定理,建立不等式组,求解即可。
3.如图所示,∠A=50°,∠B=20°,∠D=30°,则∠BCD的度数为()A. 80°B. 100°C. 120°D. 140°【答案】B【解析】如图,延长BC交AD于点E,∵∠BCD=∠D+∠DEC,∠DEC=∠A+∠B,∴∠BCD=∠A+∠B+∠D,∵∠A=50°,∠B=20°,∠D=30°,∴∠BCD=50°+20°+30°=100°,故答案为:B.【分析】延长BC交AD 于点E,根据三角形的一个外角等于和它不相邻的两个内角的和可得∠BCD=∠D+∠DEC,∠DEC=∠A+∠B,所以∠BCD=∠A+∠B+∠D,由已知可得∠BCD=50°+20°+30°=100°。
4.如图,BE∥AF,点D是AB上一点,且DC⊥BE于点C,若∠A=35°,则∠ADC的度数()A. 105°B. 115°C. 125°D. 135°【答案】C【解析】:∵BE∥AF,∴∠B=∠A=35°.∵DC⊥BE,∴∠DCB=90°,∴∠ADC=90°+35°=125°.故答案为:C.【分析】由平行线的性质可得∠B=∠A=35°,根据三角形的一个外角等于和它不相邻的两个内角的和可得∠ADC=90°+35°=125°。
初三数学解直角三角形试题答案及解析1.周末,小强在文化广场放风筝.如图,小强为了计算风筝离地面的高度,他测得风筝的仰角为58°,已知风筝线BC的长为10米,小强的身高AB为1.55米.请你帮小强画出测量示意图,并计算出风筝离地面的高度(结果精确到0.1米).(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60)]【答案】10.1【解析】根据题意画出图形,根据sin58°=可求出CE的长,再根据CD=CE+ED即可得出试题解析:如图,过点C作地面的垂线CD,垂足为D,过点B作BE⊥CD于E.在Rt△CEB中,∵sin∠CBE=,∴CE=BC•sin58°=10×0.85≈8.5m,∴CD=CE+ED=8.5+1.55=10.05≈10.1m,【考点】解直角三角形的应用-仰角俯角问题2.在平面直角坐标系中,设点P到原点O的距离为,OP与x轴正方向的夹角为,则用[,]表示点P的极坐标;显然,点P的极坐标与它的坐标存在一一对应的关系.例如,点P的坐标(1,1),则极坐标为[,45°].若点Q的极坐标为[4,60°],则点Q的坐标为()A.B.C.D.(2,2)【答案】A.【解析】:作QA⊥x轴于点A,则OQ=4,∠QOA=60°,故OA=OQ×cos60°=2,AQ=OQ×sin60°=2,∴点Q的坐标为(2,2).故选A.【考点】点的坐标.3.在Rt△ABC中,∠A=90°,有一个锐角为60°,BC=6.若点P在直线AC上(不与点A,C重合),且∠ABP=30°,则CP的长为.【答案】6或2或4【解析】如图1:当∠C=60°时,∠ABC=30°,与∠ABP=30°矛盾;如图2:当∠C=60°时,∠ABC=30°,∵∠ABP=30°,∴∠CBP=60°,∴△PBC是等边三角形,∴CP=BC=6;如图3:当∠ABC=60°时,∠C=30°,∵∠ABP=30°,∴∠PBC=60°﹣30°=30°,∴PC=PB,∵BC=6,∴AB=3,∴PC=PB=;如图4:当∠ABC=60°时,∠C=30°,∵∠ABP=30°,∴∠PBC=60°+30°=90°,∴PC=BC÷cos30°=4.故答案为:6或2或4.【考点】解直角三角形4.如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果保留根号).【答案】CE的长为(4+)米【解析】根据题意过点A作AH⊥CD于H,由三角函数可求出CH的长,从而可求出CD的长,在Rt△CED中,由∠CED=60°,利用三角函数可求出CE的长.试题解析:过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt△ACH中,tan∠CAH=,∴CH=AH•tan∠CAH,∴CH=AH•tan∠CAH=6tan30°=6×(米),∵DH=1.5,∴CD=2+1.5,在Rt△CDE中,∵∠CED=60°,sin∠CED=,∴CE=(米),答:拉线CE的长为(4+)米.【考点】1、三角函数;2、解直角三角形5.某煤矿发生瓦斯爆炸,该地救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面A、B两个探测点探测到C处有生命迹象.已知A、B两点相距6米,探测线与地面的夹角分别是30°和45°,试确定生命所在点C的深度.(精确到0.1米,参考数据:)【答案】8.2米.【解析】过点C作CD⊥AB于点D,设CD=x,在Rt△ACD中表示出AD,在Rt△BCD中表示出BD,再由AB=6米,即可得出关于x的方程,解出即可.试题解析:过点C作CD⊥AB于点D,设CD=x,在Rt△ACD中,∠CAD=30°,则AD=CD=x,在Rt△BCD中,∠CBD=45°,则BD=CD=x,由题意得x-x=6,解得:x=3(+1)≈8.2.答:生命所在点C的深度为8.2米.【考点】解直角三角形的应用.6.如图1是一张折叠椅子,图2是其侧面示意图,已知椅子折叠时长1.2米,椅子展开后最大张角∠CBD=37°,且BD=BC,AB:BG:GC=1:2:3,座面EF与地面平行,当展开角最大时,请解答下列问题:(1)求∠CGF的度数;(2)求座面EF与地面之间的距离。
精选人教版九年级数学上册 解直角三角形测试卷含答案(本试卷满分120分,考试时间120分钟)一、选择题(本大题共有16个小题,1~6小题,每小题2分,7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在ABC △中,90C =︒∠,如果2,1AB BC ==,那么sin A 的值是( ) A.21 B.55 C.33 D.23 参考答案:A 解析:2.如果∠A 是锐角,且A cos A sin =,那么∠A =( )。
A.30° B.45° C.60° D.90°参考答案:B解析:∵A cos A sin ==22∴∠A =45°3.在Rt △ABC 中,∠C=90°,sinA=,则cosB 的值为( )BD4.已知在中,5,则的值为( ) A.43 B.45C.54D.34参考答案:AB第4题答图C解析:如图,由已知sin A =35可设则由勾股定理知,所以tan B =34. 5. 如果△ABC 中,sin A =cos B =22,则下列最确切的结论是( ) A .△ABC 是直角三角形 B .△ABC 是等腰三角形C .△ABC 是等腰直角三角形三角形.6如图, CD 是一平面镜,光线从A 点射出经CD 上的E 点反射后照射到B 点,设入射角为α(入射角等于反射角),BD ⊥CD ,垂足为D ,且BD =3, DE =4,则tan α的值为( )A . 34B . 43C . 54D . 53参考答案:A解析:由入射角等于反射角及两直线平行内错角相等可知 ∠B=∠α,34tantan ===BD ED B α 7.一辆汽车沿倾斜角是的斜坡行驶500米,则它上升的高度是( ) A.米 B.500sin α米 C.米 D.500cos α米 参考答案:A解析:设上升的高度为h ,则sin α=500h,所以h =500sin α. 8.一人乘雪橇沿坡比1∶3的斜坡笔直滑下,滑下的距离s(米)与时间t(秒)间的关系为s=10t +2t 2,若滑到坡底的时间为4秒,则此人下降的高度为()第6题图28.2-30A.72 mB.36 mC.36 mD.318 m 参考答案:C解析:解:当t=4时,s=10t+2t 2=72.设此人下降的高度为x 米,过斜坡顶点向地面作垂线, ∵一人乘雪橇沿坡度为1:的斜坡笔直滑下, ∴CA=x ,BC=x , 在直角△ABC 中,由勾股定理得: AB 2=BC 2+AC 2, x 2+(x )2=722. 解得:x=36. 故选C .9.如图,梯子(长度不变)跟地面所成的锐角为,关于的三角函数值与梯子的倾斜程度之间,叙述正确的是( )A.的值越大,梯子越陡B.的值越大,梯子越陡C.的值越小,梯子越陡D.陡缓程度与 的三角函数值无关 参考答案:A解析:根据锐角三角函数的变化规律,知的值越大,越大,梯子越陡,10.如图为了测量某建筑物AB 的高度,在平地上C 处测得建筑物顶端A 的仰角为30°,沿CB 方向前进12m 到达D 处,在D 处测得建筑物顶端A 的仰角为45°,则建筑物AB 的高度等于( )(((参考答案:A解:根据题意可得:BC==AB ,BD==AB .第9题图∵CD=BC ﹣BD=AB(﹣1)=12,∴AB=6(+1).故选A .11.如图,已知45°<∠A <90°,则下列各式成立的是( )A.B. C.D.解析:在锐角三角函数中仅当45°时,,所以选项错误;因为即,所以选项正确,选项错误,<,所以选项错误12.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,若这位同学的目高为1.6米,则旗杆的高度约为( )A .6.9米B .8.5米C .10.3米D .12.0米 参考答案:B解析:由于某同学站在离国旗旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,则目高以上旗杆的高度h 1=12×tan 30°=4(米),旗杆的高度h =h 1+1.6=1.6+4≈8.5(米).故选B . 13.王英同学从A 地沿北偏西60°方向走100 m 到B 地,再从B 地向正南方向走200 m 到C 地,此时王英同学离A 地 ( ) A.50 m B.100 mC.150 mD.100 m参考答案:D解析:设经过A 地正西方向上的D 点,则AD =AB •sin 60°=50 (m),BD=AB • cos 60°=50(m),∴ CD =150(m). ∴ AC ==100 (m).故选D .第11题图A .50°B .60°C .70°D .80°15.菱形ABCD 的对角线AC 长为10 cm,∠BAC=30°,那么AD 为( )A.3310 B.33 C.3315 D.3 参考答案:A解析:如图,∵AC ⊥BD,∴AD=331030cos 5=︒.16.菱形OABC 在平面直角坐标系中的位置如图所示,若OA=2,∠AOC=45°,则B 点的坐标是( )2+)﹣,2+,﹣,∵OA=2,∠AOC=45°,∴AE=AOsin45°=,OE=AOcos45°=,∴点B 的横坐标为﹣(2+),纵坐标为,∴B 点的坐标是(﹣2﹣,). 故选D .二、填空题(本大题共有4个小题,每小题3分,共12分.把答案写在题中的横线上.)17.若,则锐角α=__________。
参考答案:60° 解析:易得21cos =α,所以∠α=60° 18.某飞机在离地面1 200米的上空测得地面控制点的俯角为60°,此时飞机与地面控制点之间的距离是_________米. 参考答案:3800解析: 根据题意得飞机与地面控制点之间的距离是380060sin 1200=.19.如图,P 是∠α的边OA 上一点,且点P 的坐标为(3,4),则sin α= .参考答案:解析:∵P 是∠α的边OA 上一点,且点P 的坐标为(3,4), ∴DP=4,DO=3,PO=5,∴sin α==,故答案为:.20.如图所示,如果△APB 绕点B 按逆时针方向旋转30°后得到△A 'P 'B ,且BP =2,那么点P 与点P '间的长度为___________. (不取近似值. 以下数据供解题使用:sin 15°=,cos 15°=426+)。
参考答案:解析:连接PP ',过点B 作BD ⊥PP ',交PP '于点D ,因为∠PBP '=30°,所以∠PBD =15°,利用sin 15°=,先求出PD ,乘2即得PP '.三、解答题(本大题共有6个小题,共66分.解答应写出文字说明、证明过程或验算步骤)21.(本小题满分9分)计算:(1)222sin 45sin 35sin 55++ 解:原式=2221)sin 35cos 352⨯-++……………(3分)………………………………………(5分)(2)12︒-30tan 3+0)4(-π1)21(--.解:原式2133332-+⨯-=………………………………………(7分)13-=………………………………………………………………(9分)22.(本小题满分10分)如图,在梯形ABCD 中,AD ∥BC ,AB=CD=AD ,BD ⊥CD .(1)求sin ∠DBC 的值;第20题图(2)若BC 长度为4cm ,求梯形ABCD 的面积.解:(1)∵AD=AB ∴∠ADB=∠ABD∵AD ∥CB ∴∠DBC=∠ADB=∠ABD ……………(2分) ∵在梯形ABCD 中,AB=CD ,∴∠ABD+∠DBC=∠C=2∠DBC ∵BD ⊥CD ∴3∠DBC=90º∴∠DBC=30º……(4分)∴sin ∠DBC=12……………………(5分)(2)过D 作DF ⊥BC 于F …………………………(6分)在Rt △CDB 中,BD=BC ×cos ∠DBC=2 3 (cm )…………………(7分) 在Rt △BDF 中,DF=BD ×sin ∠DBC= 3 (cm )…………………(8分) ∴S 梯=12(2+4)·3 =3 3 (cm 2)………………………………………(10分)23.(本小题满分10分)已知方程012)53()15(2=++-+x m x m 的两根分别是一个直角三角形两个锐角的正弦值,求m 的值。
解:设这个直角三角形的两锐角为α、β,则sin α+sin β=3515m m ++ …………(2分)sin αsin β=1215m +……………………………………………………(4分)而:sin β=sin(90)α-=cos α22sin cos αα+=1………………………………………………………………(6分)故:2(sin cos )2sin cos 1αααα+-= …………………………………(7分)B ADBAD(第7题图)即:23512211515mm m+⎛⎫-∙=⎪++⎝⎭…………………………………………………(8分)解之得:m=-7 或m=10…………………………………………………(9分)但m=-7时3515mm++<0,这与sinα+sinβ>0不符,故舍去.故: m=10………………………………………………………………………(10分)24.(本小题满分11分)如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树的正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为3米,台阶AC的坡度为1:(即AB:BC=1:),且B、C、E三点在同一条直线上.请根据以上条件求出树DE 的高度(侧倾器的高度忽略不计).解:如图,过点A作AF⊥DE于F,则四边形ABEF为矩形,∴AF=BE,EF=AB=3,…………………………………………………(2分)设DE=x,在Rt△CDE中,CE==x,……………………(4分)在Rt△ABC中,∵=,AB=3,∴BC=3,……………………………………………………………(6分)在Rt△AFD中,DF=DE﹣EF=x﹣3,∴AF==(x﹣3),…………………………………(8分)∵AF=BE=BC+CE,∴(x﹣3)=3+x,解得x=9.…………………………………………………………(9分)答:树高为9米.………………………………………………(11分)25.(本小题满分12分)如图,在一笔直的海岸线l 上有A 、B 两个观测站,A 在B 的正东方向,AB =2(单位:km ).有一艘小船在点P 处,从A 测得小船在北偏西60°的方向,从B 测得小船在北偏东45°的方向.(1)求点P 到海岸线l 的距离;(2)小船从点P 处沿射线AP 的方向航行一段时间后,到点C 处,此时,从B 测得小船在北偏西15°的方向.求点C 与点B 之间的距离.(上述两小题的结果都保留根号)【解】(1)如图,过点P 作PD ⊥AB 于点D .设PD =x km . 在Rt △PBD 中,∠BDP =90°,∠PBD =90°-45°=45°,∴BD =PD =x km .………………………………………………………………(3分) 在Rt △PAD 中,∠ADP =90°,∠P AD =90°-60°=30°,∴ADkm .……………………………………………(5分) ∵BD+AD=AB , ∴x+=2,x=1,……………………………………………(7分)∴点P 到海岸线l1)km ;……………………………………………(8分)l第26题图l第25题图(2)如图,过点B作BF⊥AC于点F.在Rt△ABF中,∠AFB=90°,∠BAF=30°,∴BF=12AB=1km.……………………………………………(10分)在△ABC中,∠C=180°-∠BAC-∠ABC=45°.在Rt△BCF中,∠BFC=90°,∠C=45°,∴BC,……………………………………………(11分)∴点C与点B.……………………………………………(12分)26.(本小题满分14分)小华同学学习了第二十五章《锐角三角比》后,对求三角形的面积方法进行了研究,得到了新的结论:(1)如图1,已知锐角△ABC.求证:;(2)根据题(1)得到的信息,请完成下题:如图2,在等腰△ABC中,AB=AC=12厘米,点P从A点出发,沿着边AB移动,点Q从C点出发沿着边CA移动,点Q的速度是1厘米/秒,点P的速度是点Q速度的2倍,若它们同时出发,设移动时间为t秒,问:当t为何值时,?解:(1)如图1,过点C作CE⊥AB于点E,sinA=,∴ EC=ACsinA,………………………………(2分)S△AB C=EC×AB=AB×ACsinA;……………………(4分)(2)如图2,过点P作PE⊥AC于点E,过点B作BF⊥AC于点F,设移动时间为t秒,则AP=2t,CQ=t,∴ PE=APsinA,BF=12sinA,…………………………(6分)S△APQ=AQ×PE=×(12﹣t)×APsinA=×(12﹣t)×2t×sinA=t(12﹣t)sinA,S△ABC=BF×AC=×12×12sinA=72sinA,………………………(8分)当,∴=,…………………(10分)∴整理得出:t2﹣12t+27=0,…………………(12分)解得:t1=3,t2=9(不合题意舍去),∴当t为3时,.…………………(14分)。