数学公式范例
- 格式:doc
- 大小:67.50 KB
- 文档页数:8
数学公式大全图形公式正方形:周长=边长×4(C = 4a)面积=边长×边长(S = a×a = a2)正方体:表面积=棱长×棱长×6(S = a×a×6 = 6a2)体积=棱长×棱长×棱长(V = a×a×a = a2)棱长和=棱长×12(l = 12a)长方形:周长=(长+宽)×2(C = 2×(a+b))面积=边长×边长(S = ab)长方体:表面积=(长×宽+长×高+宽×高)×2(S = 2(ab+ah+bh))体积=长×宽×高(V = abh)棱长和=(长+宽+高)×4(l = 4(a+b+h))三角形:面积=底×高÷2 (S = ah÷2)平行四边形:面积=底×高(S = ah)梯形:面积=(上底+下底)×高÷2(S = (a+b)×h÷2)圆形:直径=半径×2(d = 2r)周长=2×π×半径(C = 2πr)面积=半径×半径×π(S = πr2)圆柱体:侧面积=底面周长×高(S = Ch)表面积=侧面积+底面积×2 (S = Ch + 2πr2)体积=底面积×高(V = Sh)圆锥体:体积=底面积×高÷3(V = Sh÷3)三角函数公式和差公式:(正余同余正,余余反正正)和差化积:(正加正,正在前;余加余,余并肩;正减正,余在前;余减余,负正弦)积化和差:Sinαsinβ = -1/2[cos(α+β)-cos(α-β)]Cosαcosβ = 1/2[cos(α+β)+cos(α-β)]Sinαcosβ = 1/2[sin(α+β)+sin(α-β)]Cosαsinβ = 1/2[sin(α+β)-sin(α-β)]倍角公式:乘法公式完全平方公式:平方差公式:立方和公式:立方差公式:完全立方公式:三数和平方公式:欧拉公式:公式变式:⑴⑵⑶⑷⑸⑹。
数学公式大全(数学)数学公式大全数学是一门关于数量、结构、空间以及变化的学科,它是科学和工程中必不可少的基础。
数学公式是数学思想的精华所在,它们可以用来解决各种数学问题,并在实际应用中发挥重要作用。
本文将为您提供一份数学公式大全,涵盖了数学的各个领域。
一、代数和方程1. 一次方程式:ax + b = 0其中,a和b是已知常数,x是未知数。
2. 二次方程式:ax^2 + bx + c = 0其中,a、b、c是已知常数,x是未知数。
3. 四则运算:- 加法:a + b = c- 减法:a - b = c- 乘法:a × b = c- 除法:a ÷ b = c4. 幂运算:a^n表示将a自乘n次,其中a是底数,n是指数。
5. 开平方:√a表示寻找b,使得b^2 = a,其中a是要开方的数。
6. 排列和组合:- 排列:P(n, k) = n! / (n-k)!- 组合:C(n, k) = n! / (k!(n-k)!)其中,n为元素个数,k为要选择的元素个数,"!"表示阶乘运算。
二、几何和三角学1. 直角三角形:- 勾股定理:a^2 + b^2 = c^2- 正弦定理:sin(A) / a = sin(B) / b = sin(C) / c- 余弦定理:c^2 = a^2 + b^2 - 2abcos(C)2. 圆:- 圆的面积:A = πr^2- 圆的周长:C = 2πr其中,r为圆的半径,π是一个数学常数,近似值为3.14159。
3. 三角函数:- 正弦函数:sin(x)- 余弦函数:cos(x)- 正切函数:tan(x)其中,x为角度。
4. 三角恒等式:- 和差公式:sin(A ± B) = sin(A)cos(B) ± cos(A)sin(B)- 二倍角公式:sin(2A) = 2sin(A)cos(A)三、微积分1. 导数:f'(x)表示函数f(x)对x的变化率。
数学公式大全一、小学数学几何形体周长面积体积计算公式长方形的周长=(长+宽)×2 C=(a+b)×2正方形的周长=边长×4 C=4a长方形的面积=长×宽S=ab正方形的面积=边长×边长S=a.a= a三角形的面积=底×高÷2 S=ah÷2平行四边形的面积=底×高S=ah梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2直径=半径×2 d=2r 半径=直径÷2 r= d÷2圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr圆的面积=圆周率×半径×半径三角形的面积=底×高÷2。
公式S= a×h÷2正方形的面积=边长×边长公式S= a×a长方形的面积=长×宽公式S= a×b平行四边形的面积=底×高公式S= a×h梯形的面积=(上底+下底)×高÷2 公式S=(a+b)h÷2 内角和:三角形的内角和=180度。
长方体的体积=长×宽×高公式:V=abh长方体(或正方体)的体积=底面积×高公式:V=abh 正方体的体积=棱长×棱长×棱长公式:V=aaa圆的周长=直径×π 公式:L=πd=2πr圆的面积=半径×半径×π 公式:S=πr2圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式:S=ch=πdh=2πrh圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式:S=ch+2s=ch+2πr2圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh圆锥的体积=1/3底面×积高。
常用数学公式数学公式是一类非常特殊的符号表达式。
在常用的数学公式都有哪些呢?接下来店铺为你整理了常用数学公式,一起来看看吧。
常用数学公式:基础代数1. 平方差公式:(a+b)×(a-b)=a2-b22. 完全平方公式:(a±b)2=a2±2ab+b2完全立方公式:(a±b)3=(a±b)(a2 ab+b2)3. 同底数幂相乘: am×an=am+n(m、n为正整数,a≠0)同底数幂相除:am÷an=am-n(m、n为正整数,a≠0)a0=1(a≠0)a-p= (a≠0,p为正整数)4. 等差数列:(1)sn ==na1+ n(n-1)d;(2)an=a1+(n-1)d;(3)n = +1;(4)若a,A,b成等差数列,则:2A=a+b;(5)若m+n=k+i,则:am+an=ak+ai ;(其中:n为项数,a1为首项,an为末项,d为公差,sn为等差数列前n项的和)5. 等比数列:(1)an=a1q-1;(2)sn = (q 1)(3)若a,G,b成等比数列,则:G2=ab;(4)若m+n=k+i,则:am·an=ak·ai ;(5)am-an=(m-n)d(6) =q(m-n)(其中:n为项数,a1为首项,an为末项,q为公比,sn为等比数列前n项的和)常用数学公式:基础几何1. 三角形:不在同一直线上的三点可以构成一个三角形;三角形内角和等于180°;三角形中任两边之和大于第三边、任两边之差小于第三边;(1)角平分线:三角形一个的角的平分线和这个角的对边相交,这个角的顶点和交点之间的线段,叫做三角形的角的平分线。
(2)三角形的中线:连结三角形一个顶点和它对边中点的线段叫做三角形的中线。
(3)三角形的高:三角形一个顶点到它的对边所在直线的垂线段,叫做三角形的高。
(4)三角形的中位线:连结三角形两边中点的线段,叫做三角形的中位线。
数学所有的公式大全
以下是一些数学公式:
1. 加法公式:加数+加数=和,和-一个加数=另一个加数。
2. 减法公式:被减数-减数=差,被减数-差=减数,差+减数=被减数。
3. 乘法公式:每份数×份数=总数,总数÷每份数=份数,总数÷份数=每份数。
4. 除法公式:被除数÷除数=商,被除数÷商=除数,商×除数=被除数。
5. 正方体体积和表面积公式:体积V=棱长^3,表面积S=6×棱长^2。
6. 三角形面积公式:面积S=底×高÷2。
7. 圆柱体体积公式:体积V=底面积S×高h。
8. 圆柱体表面积公式:表面积S=2πr^2+2πrh(其中r是底面半径,h是高)。
9. 圆周长公式:周长C=2πr(其中r是半径)。
10. 圆面积公式:面积S=πr^2(其中r是半径)。
11. 指数公式:a^n=b(其中a是底数,n是指数,b是结果)。
12. 对数公式:log_a(b)=n(其中a是底数,b是对数,n是指数)。
13. 三角函数公式:sin(A+B)=sinAcosB+cosAsinB,
cos(A+B)=cosAcosB-sinAsinB等。
14. 代数公式:x^2-bx+c=0(其中x是未知数,b和c是常数)。
15. 几何公式:平行四边形面积S=底×高,梯形面积S=(上底+下底)×高÷2等。
以上是一些常见的数学公式,它们在数学和科学领域中有着广泛的应用。
数学计算公式表大全一、小学数学计算公式。
1. 加法交换律。
- 公式:a + b=b + a- 示例:3+5 = 5+3=82. 加法结合律。
- 公式:(a + b)+c=a+(b + c)- 示例:(2 + 3)+4=2+(3 + 4)=93. 乘法交换律。
- 公式:a× b = b× a- 示例:2×3=3×2 = 64. 乘法结合律。
- 公式:(a× b)× c=a×(b× c)- 示例:(2×3)×4=2×(3×4)=245. 乘法分配律。
- 公式:a×(b + c)=a× b+a× c- 示例:2×(3 + 4)=2×3+2×4 = 6 + 8=146. 减法的性质。
- 公式:a - b - c=a-(b + c)- 示例:10-3 - 2=10-(3 + 2)=57. 除法的性质。
- 公式:a÷ b÷ c=a÷(b× c)(b≠0,c≠0)- 示例:12÷2÷3 = 12÷(2×3)=28. 长方形的周长公式。
- 公式:C=(a + b)×2(a为长,b为宽)- 示例:长为5厘米,宽为3厘米的长方形,周长C=(5 + 3)×2=16厘米。
9. 长方形的面积公式。
- 公式:S = a× b- 示例:长为6厘米,宽为4厘米的长方形,面积S=6×4 = 24平方厘米。
10. 正方形的周长公式。
- 公式:C = 4× a(a为边长)- 示例:边长为5厘米的正方形,周长C=4×5=20厘米。
11. 正方形的面积公式。
- 公式:S=a^2- 示例:边长为4厘米的正方形,面积S = 4^2=16平方厘米。
数学公式表(完整版)1. 数学基础公式1.1 代数公式- 平均值公式:$\frac{{x_1 + x_2 + \cdots + x_n}}{n}$- 二次方程求解公式:$x = \frac{{-b \pm \sqrt{b^2 - 4ac}}}{2a}$ - 因式分解公式:$a^2 - b^2 = (a-b)(a+b)$1.2 几何公式- 长方形面积公式:$A = l \times w$- 圆周长公式:$C = 2\pi r$- 三角形面积公式:$A = \frac{1}{2}bh$2. 微积分公式2.1 函数与导数- 函数$f(x)$在$x=c$处的导数:$f'(c) = \lim_{{h \to 0}}\frac{{f(c+h) - f(c)}}{h}$- 求导法则:- 导数的和:$(f+g)' = f' + g'$- 导数的积:$(fg)' = f'g + fg'$- 导数的商:$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$2.2 微分与积分- 定积分:$\int_a^b f(x) dx$- 常见定积分公式:- $\int k \, dx = kx + C$- $\int x^n \, dx = \frac{{x^{n+1}}}{n+1} + C$- $\int e^x \, dx = e^x + C$- $\int \sin x \, dx = -\cos x + C$- $\int \cos x \, dx = \sin x + C$3. 概率与统计公式3.1 概率公式- 排列公式:$P(n,r) = \frac{{n!}}{{(n-r)!}}$- 组合公式:$C(n,r) = \frac{{n!}}{{r!(n-r)!}}$- 条件概率公式:$P(A|B) = \frac{{P(A \cap B)}}{{P(B)}}$3.2 统计公式- 平均值公式:$\bar{x} = \frac{{x_1 + x_2 + \cdots + x_n}}{n}$ - 方差公式:$Var(X) = \frac{{\sum{{(x_i - \bar{x})^2}}}}{n}$ - 标准差公式:$SD(X) = \sqrt{Var(X)}$这份完整版的数学公式表包含了数学基础、微积分和概率统计方面的常用公式,希望能对您的学习和应用有所帮助。
数学公式大全数学公式是数学领域中用来表达数学关系的符号和语言。
它们被广泛应用于科学、工程、经济和其他领域的解决问题中。
下面将为你介绍一些基本的数学公式。
一、代数公式1. 一元二次方程的根公式:设一元二次方程为ax²+bx+c=0,其根公式为:\[ x = \frac{-b \pm \sqrt{b^2-4ac}}{2a} \]2. 二项式定理:二项式定理用来展开二项式的幂,它表示为:\[ (a+b)^n = C_0 a^n b^0 + C_1 a^{n-1} b^1 + \cdots + C_n a^0 b^n \]其中,各个系数Cn可以通过组合数表达。
二、几何公式1. 三角形面积公式:对于已知三角形的底和高,可以使用以下公式计算其面积:\[ A = \frac{1}{2} \times \text{底} \times \text{高} \]2. 圆的周长和面积:圆的周长(C)和面积(A)可以通过半径(r)或直径(d)计算,公式如下:\[ C = 2\pi r = \pi d \]\[ A = \pi r^2 \]三、微积分公式1. 导数公式:导数用于描述函数在某个点的变化率,以下是一些常见函数的导数公式:- 常数函数的导数为0- 幂函数的导数为该函数的指数乘以常数- 指数函数的导数等于该函数自身乘以常数ln(x)- 对数函数的导数等于1/x- 三角函数的导数可以根据具体函数类型进行计算2. 积分公式:积分是导数的逆运算,以下是一些基本的积分公式:- 幂函数的积分等于该函数的幂次加1再除以新的幂次- 指数函数的积分等于该函数除以常数ln(x)- 对数函数的积分等于该函数自身乘以常数- 三角函数的积分可以根据具体函数类型进行计算四、概率与统计公式1. 期望值公式:期望值是一个随机变量的平均值,对于离散型随机变量X,其期望值计算公式为:\[ E(X) = \sum x P(X=x) \]其中,x表示随机变量的可能取值,P(X=x)表示该取值的概率。
数学常用公式范文1. 一次函数公式:y = ax + b,其中a为斜率,b为截距。
2. 二次函数公式:y = ax^2 + bx + c,其中a、b和c是常数。
3. 三次函数公式:y = ax^3 + bx^2 + cx + d,其中a、b、c和d是常数。
4. 正弦函数公式:y = A sin(wx + φ),A为振幅,w为角频率,φ为初相位。
5. 余弦函数公式:y = A cos(wx + φ),A为振幅,w为角频率,φ为初相位。
6.指数函数公式:y=Ab^x,A和b是常数,b为底数。
7. 对数函数公式:y = logb(x),b为底数。
8.平方根函数公式:y=√x。
9. 二项式定理:(a + b)^n = C(n, 0)a^n + C(n, 1)a^(n-1)b +C(n, 2)a^(n-2)b^2 + ... + C(n, n-1)ab^(n-1) + C(n, n)b^n,其中C(n, k)为组合数。
10.齐次线性方程组解的性质:若Ax=0是一个齐次线性方程组的解,那么Ax=b也是其解的充要条件是b也是Ax=0的解。
11.非齐次线性方程组解的性质:若x0是Ax=b的解,x'是Ax=0的解,那么x=x0+x'是Ax=b的解。
12.贝叶斯定理:P(A,B)=P(B,A)*P(A)/P(B),其中P(A,B)是在B发生的条件下A发生的概率,P(B,A)是在A发生的条件下B发生的概率,P(A)和P(B)分别是A和B独立发生的概率。
13.正态分布公式:f(x)=1/(σ*√(2π))*e^(-(x-μ)^2/(2σ^2)),其中f(x)是x在正态分布中的概率密度函数,μ是均值,σ是标准差。
14.组合数公式:C(n,k)=n!/(k!(n-k)!),表示从n个元素中选取k个元素的组合数。
15.泰勒级数公式:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+f'''(a)(x-a)^3/3!+...,其中f'(x)表示f(x)的导数。
各种计算公式范文计算公式是数学和物理学等科学领域中的基本工具,用于解决各种数值问题和推导数学关系。
下面是一些常见的计算公式:1.简单算术公式:-加法:a+b=c-减法:a-b=c-乘法:a*b=c-除法:a/b=c2.平方和立方公式:-平方:a^2=c-立方:a^3=c3.三角函数公式:- 正弦函数:sin(theta) = opposite/hypotenuse- 余弦函数:cos(theta) = adjacent/hypotenuse- 正切函数:tan(theta) = opposite/adjacent4.面积和体积计算公式:- 三角形面积:A = (1/2) * base * height-圆的面积:A=π*r^2-球体积:V=(4/3)*π*r^35.百分比计算公式:-百分比:x%=(x/100)*y- 增加百分比:(1 + x/100) * y = new_value - 减少百分比:(1 - x/100) * y = new_value 6.连续复利计算公式:- 年利率复利公式:A = P * (1 + r/n)^(nt)-复利利息:I=A-P7.排列和组合公式:-排列:P(n,r)=n!/(n-r)!-组合:C(n,r)=n!/(r!*(n-r)!)8.法拉第电磁感应定律:- 电动势:E = -d(phi_B)/dt9.等速直线运动公式:-位移:s=v*t-初速度:v=(s/t)-加速度:a=(v-u)/t10.焓和热能转换公式:-焓:H=U+PV- 热能转换:Q = mcΔT这些公式只是计算中使用的一小部分,数学和科学领域中还有许多其他公式。
《初中数学公式大全》一、代数部分1.平方差公式:(a + b)² = a² + 2ab + b²(a - b)² = a² - 2ab + b²2.完全平方公式:a²-b²=(a-b)(a+b)3.一元一次方程:ax + b = 0 (a ≠0)解:x=-b/a4.一元二次方程:ax² + bx + c = 0 (a ≠ 0)解: x = (-b ± √(b² - 4ac)) / (2a)5.二次差公式:(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ac6.三次差公式:(a + b + c + d)² = a² + b² + c² + d² + 2ab + 2ac + 2ad + 2bc + 2bd + 2cd7.分式运算公式:a/b ± c/d = (ad ± bc)/(bd)8.数列通项公式:an = a1 + (n - 1)d9.等差数列前n项和公式:Sn=(n/2)(2a1+(n-1)d)10.等比数列前n项和公式:Sn=a1(1-r^n)/(1-r)(r≠1)11.等差数列求和公式:Sn = (n/2)(a1 + an)12.等比数列求和公式:Sn=a1(1-r^n)/(1-r)(r≠1)13.n个非零数的乘法积为1的不等式:a₁+a₂+...+aₙ≥n(√(a₁a₂...aₙ)) 14.平方根性质:√ab = √a * √b15.高斯定理:1+2+3+...+n=n(n+1)/216.平方根运算公式:(a + b)² = a² + 2ab + b²(a - b)² = a² - 2ab + b²a² + b² = (a + b)² - 2aba²-b²=(a+b)(a-b)17.完全立方公式:(a + b)³ = a³ + 3a²b + 3ab² + b³(a - b)³ = a³ - 3a²b + 3ab² - b³18.四次立方公式:(a + b)⁴ = a⁴ + 4a³b + 6a²b² + 4ab³ + b⁴(a - b)⁴ = a⁴ - 4a³b + 6a²b² - 4ab³ + b⁴19.乘法公式:(a + b)(c + d) = ac + ad + bc + bd20.三角函数和与差化积公式:sin(a ± b) = sin(a)cos(b) ± cos(a)sin(b)cos(a ± b) = cos(a)cos(b) ∓ sin(a)sin(b)tan(a ± b) = [tan(a) ± tan(b)] / [1 ∓ tan(a)tan(b)] 21.对数运算公式:loga(m ∙ n) = loga(m) + loga(n)loga(m/n) = loga(m) - loga(n)loga(m^p) = p ∙ loga(m)二、几何部分1.直角三角形斜边平方等于两直角边平方和:c²=a²+b²2.正弦定理:a/sinA = b/sinB = c/sinC3.余弦定理:a² = b² + c² - 2bc∙cosAb² = a² + c² - 2ac∙cosBc² = a² + b² - 2ab∙cosC4.面积公式:三角形面积:S=1/2∙底∙高平行四边形面积:S=底∙高梯形面积:S=1/2∙(上底+下底)∙高圆面积:S=πr²5.角平分线公式:AD/AE=BD/BE=CD/CE6.三角形外接圆与外心的性质:三角形的三条边的中垂线交于一点,该点称为三角形的外心。
数学所有公式大全数学是一门广泛而深入的学科,其中包含了众多的概念、定理和公式。
以下是一些常见的数学公式的大全,涵盖了代数、几何、微积分等不同领域的公式。
1.代数公式:-二次方程求根公式:对于二次方程ax^2+bx+c=0,其根可以通过公式x=(-b±√(b^2-4ac))/(2a)来求解。
-四则运算规则:加法:a+b=b+a,乘法:a×b=b×a,减法和除法也有相应的规则。
-平方差公式:(a+b)(a-b)=a^2-b^2,可用于分解平方差和求解因式分解问题。
2.几何公式:-面积公式:长方形面积A=长×宽,三角形面积A=1/2×底边长×高,圆面积A=π×半径^2。
-周长公式:长方形周长P=2×(长+宽),圆周长C=2π×半径。
-三角函数公式:正弦定理:a/sin(A)=b/sin(B)=c/sin(C),余弦定理:c^2=a^2+b^2-2abcos(C),正弦定理和余弦定理可以用于解决三角形的边长和角度关系问题。
3.微积分公式:-导数公式:常见函数的导数,如常数函数、幂函数、指数函数、对数函数、三角函数等的导数公式。
-积分公式:常见函数的不定积分和定积分公式,如幂函数、指数函数、对数函数、三角函数等的积分公式。
-牛顿-莱布尼茨公式:∫(a to b)f(x)dx=F(b)-F(a),表示定积分可以通过原函数在区间端点处的值之差来计算。
4.概率与统计公式:-条件概率公式:P(A|B)=P(A∩B)/P(B),表示事件A在事件B发生的条件下的概率。
-期望值公式:离散随机变量的期望值E(X)=ΣxP(X=x),连续随机变量的期望值E(X)=∫xf(x)dx,表示随机变量的平均值。
-方差公式:离散随机变量的方差Var(X)=Σ[(X-E(X))^2P(X)],连续随机变量的方差Var(X)=∫[(X-E(X))^2f(x)]dx,表示随机变量的离散程度。
数学公式大全完整版在数学领域中,数学公式是用符号和符号的组合来表示数学概念、定理、运算等的一种表达方式。
数学公式被广泛应用于数学证明、计算机算法、工程应用等领域。
本文将介绍一些常见的数学公式,供读者参考。
代数公式1. 一元二次方程根公式给定形如ax2+bx+c=0的一元二次方程,其中a、b、c为常数且a eq0,则其根可以由以下公式计算得出:$$ x = \\frac{-b \\pm \\sqrt{b^2 - 4ac}}{2a} $$2. 复数表示复数可以用a+bi的形式表示,其中a和b都是实数,i是虚数单位,满足i2=−1。
复数的加法和减法可以通过实部和虚部的分别相加减得到。
3. 幂运算法则对于任意实数a和b,幂运算法则包括以下公式:•幂的乘法法则:$a^m \\cdot a^n = a^{m+n}$•幂的除法法则:$\\frac{a^m}{a^n} = a^{m-n}$•幂的乘方法则:(a m)n=a mn4. 对数运算法则对于任意正实数a、b和c,对数运算法则包括以下公式:•对数的乘法法则:$\\log_a(bc) = \\log_a(b) + \\log_a(c)$•对数的除法法则:$\\log_a(\\frac{b}{c}) = \\log_a(b) - \\log_a(c)$•对数的幂运算法则:$\\log_a(b^c) = c \\cdot \\log_a(b)$ 几何公式1. 三角函数公式三角函数是研究角度和边的关系的函数,常见的三角函数包括正弦函数、余弦函数和正切函数。
以下是三角函数的关系公式:•正弦函数:$\\sin(\\theta) = \\frac{opposite}{hypotenuse}$•余弦函数:$\\cos(\\theta) = \\frac{adjacent}{hypotenuse}$•正切函数:$\\tan(\\theta) = \\frac{opposite}{adjacent}$2. 面积公式几何图形的面积计算是几何学中的重要内容,常见几何图形的面积公式如下:•矩形的面积公式:$A = l \\cdot w$,其中A表示面积,l表示长度,w表示宽度。
数学全部的公式范文一、数学定义数学(Mathematics)是一门研究空间、数量、结构、变化和关系的学科,数学中的定义、定理、公式、表达式等共同构成了数学原理,研究者通过推理分析它们,推导出数学结果和解决数学问题。
二、数学公式1. 二次公式:ax2 + bx + c = 02. 直线方程:y = kx + b3. 二元一次方程组:ax + by = c; ax + by + c = 04. 一元二次方程的解:x2 + bx + c = 0,x = (-b ± √(b2 -4ac))/2a5.阶乘:n!=n×(n-1)×(n-2)×(n-3)×…×16.平面向量公式:a+b=c7. 角度公式:sin2θ + cos2θ = 18.三角形的周长:a+b+c=L9.球体表面积公式:4πr210.体积公式:V=4/3πr311.球面积:A=4πr212.直角三角形斜边长:a2+b2=c213.夹角公式:a/b+b/a=c/a14.坐标公式:x2+y2=r215. 内接圆公式:x2 + y2 + 2gx + 2fy + c = 016. 高斯公式:f(x) = a0 + a1x + a2x2 + … + anxn17. 平面几何公式:1 + tan2θ = sec2θ18.贝塞尔曲线方程:P(t)=P0(1-t)3+P1(3t(1-t)2)+P2(3t2(1-t))+P3(t3)19.椭圆方程:(x/a)2+(y/b)2=120. 泰勒展开式:f(x)=f(x)+f′(x)(x−x0)+f′′(x)/2!(x−x0)2+⋯+f(n)(xn)(x−x0)n/n!+⋯21.距离公式:d=√(x1-x2)2+(y1-y2)222.三角不等式:a+b≥c23.勾股定理:a2+b2=c224. 余弦定理:a2 = b2 + c2 -2bc cos A25.行列式求值公式:,A,=a1。
数学公式大全一、代数公式1. 一次方程的解:对于方程ax + b = 0,其解为x = -b/a。
2. 二次方程的解:对于方程ax² + bx + c = 0,其解为x = (-b ± √(b² - 4ac)) / (2a)。
3.二次根式的求和与差:a) √a ± √b = (√2 ± 1) * √(a ± √ab + b)b)√a±√b=(√a+√b)*(√a-√b)二、几何公式1.周长和面积:a) 矩形:周长P = 2(l + w),面积A = lwb)正方形:周长P=4s,面积A=s²c)圆:周长C=2πr,面积A=πr²d)三角形:周长P=a+b+c,海伦公式:A=√(s(s-a)(s-b)(s-c)),其中s=(a+b+c)/2为半周长e)梯形:面积A=(a+b)h/2,其中a和b为上下底边长,h为高f) 平行四边形:面积A = bh,其中b为底边长,h为高2.三角函数:a) 正弦定理:a/sinA = b/sinB = c/sinCb) 余弦定理:c² = a² + b² - 2ab*cosCc) 正弦、余弦和正切值:sin²θ+ cos²θ = 1,tanθ =sinθ/cosθ三、微积分公式1.导数与微分:a)基本导数:-常数函数:(c)'=0- 幂函数:(x^n)' = nx^(n-1)-指数函数:(e^x)'=e^x- 对数函数:(lnx)' = 1/xb)基本微分:- 常数函数积分:∫c dx = cx + C- 幂函数积分:∫x^n dx = (x^(n+1))/(n+1) + C,其中n ≠ -1- e^x函数积分:∫e^x dx = e^x + C- 对数函数积分:∫1/x dx = ln,x, + C2.积分法则:a) 线性法则:∫(cf(x) + dg(x)) dx = c∫f(x) dx + d∫g(x) dxb) 乘法法则:∫(f(x)*g'(x)) dx = f(x)*g(x) - ∫(f'(x)*g(x)) dxc) 代换法则:∫f(g(x))g'(x) dx = ∫f(u) du,其中u = g(x)四、概率与统计公式1.排列组合:a)排列公式:An=n!b)组合公式:C(n,r)=n!/[(n-r)!r!]2.期望与方差:a)期望:E(X)=∑(xP(x)),其中x为随机变量的取值,P(x)为该取值发生的概率b) 方差:Var(X) = ∑((x-E(X))²P(x))以上是一些常见的数学公式,在数学的各个领域中都有广泛的应用。
数学公式-数学公式表一、基本运算符
- 加法:a + b
- 减法:a - b
- 乘法:a * b
- 除法:a / b
- 次方:a^b
二、代数运算
- 开方:√a
- 绝对值:|a|
- 立方:a^3
- 平方:a^2
- 取余:a % b
三、三角函数
- 正弦:sinθ
- 余弦:cosθ
- 正切:tanθ
- 正割:secθ
- 余割:cscθ
- 余切:cotθ
四、微积分
1. 导数
- 函数导数:f'(x)
- 高阶导数:f^(n)(x)
- 一阶偏导数:∂f/∂x
- 二阶偏导数:∂^2f/∂x^2 2. 积分
- 不定积分:∫f(x) dx
- 定积分:∫[a,b] f(x) dx
- 累积积分:∫∫f(x, y) dA
- 弧长积分:∫√(1 + (f'(x))^2) dx 五、向量运算
- 向量加法:a + b
- 向量减法:a - b
- 向量点乘:a · b
- 向量叉乘:a × b
- 向量模长:|a|
- 向量投影:proj_a b
六、矩阵运算
- 矩阵加法:A + B
- 矩阵减法:A - B
- 矩阵乘法:A * B
- 矩阵转置:A^T
- 矩阵行列式:|A|
- 逆矩阵:A^(-1)
七、概率统计
- 期望:E(X)
- 方差:Var(X)
- 标准差:Std(X)
- 协方差:cov(X, Y)
- 相关系数:corr(X, Y)
以上是一些常见的数学公式,可以帮助你学习和应用数学知识。
数学的计算公式大全一、算术运算。
1. 加法。
- 整数加法:a + b=c,例如3+5 = 8。
- 小数加法:把小数点对齐,然后按照整数加法的法则进行计算。
例如2.3+1.2 =3.5。
- 分数加法。
- 同分母分数相加:(a)/(b)+(c)/(b)=(a + c)/(b),如(1)/(5)+(2)/(5)=(3)/(5)。
- 异分母分数相加:先通分,化为同分母分数再相加。
例如(1)/(2)+(1)/(3)=(3)/(6)+(2)/(6)=(5)/(6)。
2. 减法。
- 整数减法:a - b = c,如7-3=4。
- 小数减法:把小数点对齐,然后按照整数减法的法则进行计算。
例如3.5 - 1.2=2.3。
- 分数减法。
- 同分母分数相减:(a)/(b)-(c)/(b)=(a - c)/(b),如(3)/(5)-(1)/(5)=(2)/(5)。
- 异分母分数相减:先通分,化为同分母分数再相减。
例如(1)/(2)-(1)/(3)=(3)/(6)-(2)/(6)=(1)/(6)。
3. 乘法。
- 整数乘法:a× b = c,如3×5 = 15。
- 小数乘法:先按照整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
例如2.5×1.2 = 3.0。
- 分数乘法。
- 分数乘整数:(a)/(b)× c=(a× c)/(b),如(1)/(3)×3 = 1。
- 分数乘分数:(a)/(b)×(c)/(d)=(a× c)/(b× d),如(1)/(2)×(2)/(3)=(1×2)/(2×3)=(1)/(3)。
4. 除法。
- 整数除法:a÷ b = c(b≠0),如15÷3 = 5。
- 小数除法。
- 除数是整数的小数除法:按照整数除法的法则去除,商的小数点要和被除数的小数点对齐。
所有的公式数学公式数学公式是表达数学关系与原理的符号化工具,其由数学符号、运算符号与命题符号组成,用于解决问题、推导结论与表示规律。
以下是一些常见的数学公式:1.代数公式:- 一次方程:ax + b = 0- 二次方程:ax^2 + bx + c = 0- 三次方程:ax^3 + bx^2 + cx + d = 0- 四次方程:ax^4 + bx^3 + cx^2 + dx + e = 0- 定比数列通项公式:an = a1 * q^(n-1)-定和数列公式:Sn=(2a+(n-1)d)*n/22.几何公式:- 三角形面积公式:S = 0.5 * a * b * sin(C)- 三角形三边关系:a/sin(A) = b/sin(B) = c/sin(C)-直角三角形勾股定理:a^2+b^2=c^2- 正弦定理:a/sin(A) = b/sin(B) = c/sin(C)- 余弦定理:a^2 = b^2 + c^2 - 2bc * cos(A)3.微积分公式:- 导数定义:f'(x) = lim(h→0) (f(x+h)-f(x))/h-函数导数:(x^n)'=n*x^(n-1)- 导数的和差乘商法则:(u ± v)' = u' ± v',(u * v)' = u' * v + u * v',(u/v)' = (u'v - uv')/v^2- 不定积分:∫f(x) dx = F(x) + C- 定积分:∫ab f(x) dx = F(b) - F(a)4.概率与统计公式:-期望值:E(X)=∑xP(X=x)- 方差:Var(X) = E(X^2) - [E(X)]^2-正态分布函数:N(x,μ,σ^2)=(1/σ√(2π))*e^(-(x-μ)^2/(2σ^2))-二项分布概率:P(X=k)=C(n,k)*p^k*(1-p)^(n-k)- 样本方差:s^2 = Σ(xi - x̄)^2 / (n-1)5.线性代数公式:-矩阵乘法:C=A*B- 矩阵转置:A^T_ij = A_ji-向量内积:A·B=∑A_iB_i- 张量积:C = A ⊗ B,其中C_ij = A_iB_j-特征值方程:Ax=λx,其中A为n阶矩阵数学公式有很多种类和应用,以上只是一小部分的示例。
数学公式概述数学公式是人们在研究自然界物与物之间时发现的一些联系,并通过一定的方式表达出来的一种表达方法。
是表征自然界不同事物之数量之间的或等或不等的联系,它确切的反映了事物内部和外部的关系,是我们从一种事物到达另一种事物的依据,使我们更好的理解事物的本质和内涵。
一些基本公式(1)抛物线:y = ax^2 + bx + c (a≠0)就是y等于a乘以x 的平方加上 b乘以x再加上 c置于平面直角坐标系中a > 0时开口向上a < 0时开口向下c = 0时抛物线经过原点b = 0时抛物线对称轴为y轴(当然a=0且b≠0时该函数为一次函数)还有顶点式y = a(x+h)* 2+ k (h,k)=(-b/2a,(4ac-b^2)/4a)就是y等于a乘以(x+h)的平方+k-h是顶点坐标的xk是顶点坐标的y一般用于求最大值与最小值抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2pxx^2=2py x^2=-2py(2)圆:体积=4/3π(r^3)面积=π(r^2)周长=2πr =πd圆的标准方程 (x-a)^2+(y-b)^2=r^2 注:(a,b)是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注:D^2+E^2-4F>0(一)椭圆周长计算公式椭圆周长公式:L=2πb+4(a-b)椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。
(二)椭圆面积计算公式椭圆面积公式: S=πab椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。
常数为体,公式为用。
椭球物体体积计算公式椭圆的长半径*短半径*π*高(3)三角函数:和差角公式sin(A+B)=sinAcosB+cosAsinB ;sin(A-B)=sinAcosB - sinBcosA ;cos(A+B)=cosAcosB - sinAsinB ;cos(A-B)=cosAcosB + sinAsinB ;tan(A+B)=(tanA+tanB)/(1-tanAtanB);tan(A-B)=(tanA-tanB)/(1+tanAtanB) ;cot(A+B)=(cotAcotB-1)/(cotB+cotA) ;cot(A-B)=(cotAcotB+1)/(cotB-cotA) ;倍角公式tan2A=2tanA/(1-tan^2A) ;cot2A=(cot^2A-1)/2cota ;cos2a=cos^2a-sin^2a=2cos^2a-1=1-2sin^2a ;sin2A=2sinAcosA=2/(tanA+cotA);另:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*( n-1)/n]=0 ;cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*( n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2 ;tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0;四倍角公式:sin4A=-4*(cosA*sinA*(2*sinA^2-1))cos4A=1+(-8*cosA^2+8*cosA^4)tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)五倍角公式:sin5A=16sinA^5-20sinA^3+5sinAcos5A=16cosA^5-20cosA^3+5cosAtan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)六倍角公式:sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))cos6A=((-1+2*cosA^2)*(16*cosA^4-16*cosA^2+1))tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^6) 七倍角公式:sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7* tanA^6)八倍角公式:sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1))cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28 *tanA^6+tanA^8)九倍角公式:sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3))cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3))tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126 *tanA^4-84*tanA^6+9*tanA^8)十倍角公式:sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA ^2+5+16*sinA^4))cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tan A^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10)·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA)) 和差化积2sinAcosB=sin(A+B)+sin(A-B); 2cosAsinB=sin(A+B)-sin(A-B) ;2cosAcosB=cos(A+B)-cos(A-B) ;-2sinAsinB=cos(A+B)-cos(A-B) ;sinA+sinB=2sin((A+B)/2)cos((A-B)/2 ;cosA+cosB=2cos((A+B)/2)sin((A-B)/2) ;tanA+tanB=sin(A+B)/cosAcosB; tanA-tanB=sin(A-B)/cosAcosB ;cotA+cotB=sin(A+B)/sinAsinB; -cotA+cotB=sin(A+B)/sinAsinB ;降幂公式sin²(A)=(1-cos(2A))/2=versin(2A)/2;cos²(α)=(1+cos(2A))/2=covers(2A)/2;tan²(α)=(1-cos(2A))/(1+cos(2A));某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n^22+4+6+8+10+12+14+…+(2n)=n(n+1)1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/61^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^21*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径余弦定理 b^2=a^2+c^2-2accosB 注:角B是边a和边c的夹角乘法与因式分解 a^2-b^2=(a+b)(a-b)a^3+b^3=(a+b)(a^2-ab+b^2)a^3-b^3=(a-b)(a^2+ab+b^2)三角不等式 -|a|≤a≤|a||a|≤b<=>-b≤a≤b|a|≤b<=>-b≤a≤b|a|-|b|≤|a+b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a|-|b|≤|a-b|≤|a|+|b||z1|-|z2|-...-|zn|≤|z1+z2+...+zn|≤|z1|+|z2|+...+|zn||z1|-|z2|-...-|zn|≤|z1-z2-...-zn|≤|z1|+|z2|+...+|zn||z1|-|z2|-...-|zn|≤|z1±z2±...±zn|≤|z1|+|z2|+...+|zn|一元二次方程的解x1= -b+√(b^2-4ac)/2a x2= -b-√(b^2-4ac)/2a根与系数的关系(韦达定理) x1+x2=-b/a ; x1*x2=c/a判别式△= b^2-4ac=0 则方程有相等的两实根△>0 则方程有两个不相等的个实根△<0 则方程有两共轭复数根公式分类公式表达式圆的标准方程 (x-a)^2+(y-b)^2=r^2 注:(a,b)是圆心坐标圆的一般方程 x^2+y^2+Dx+Ey+F=0 注:△=D^2+E^2-4F>0抛物线标准方程 y^2=2px y^2=-2px x^2=2py x^2=-2py直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c' *h正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4π*r2圆柱侧面积 S=c*h=2π*h 圆锥侧面积 S=1/2*c*l=π*r*l弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长柱体体积公式 V=s*h 圆柱体 V=π*r2h图形周长面积体积公式长方形的周长=(长+宽)×2正方形的周长=边长×4长方形的面积=长×宽正方形的面积=边长×边长三角形的面积已知三角形底a,高h,则S=ah/2已知三角形三边a,b,c,半周长p,则S=√[p(p - a)(p - b)(p - c)] (海伦秦九韶公式)(p= (a+b+c)/2)和:(a+b+c)*(a+b-c)*1/4已知三角形两边a,b,这两边夹角C,则S=absinC/2设三角形三边分别为a、b、c,内切圆半径为r则三角形面积=(a+b+c)r/2设三角形三边分别为a、b、c,外接圆半径为r则三角形面积=abc/4r已知三角形三边a、b、c,则S=√{1/4[c^2a^2-((c^2+a^2-b^2)/2)^2]} (“三斜求积” 南宋秦九韶)注:秦九韶公式与海伦公式等价| a b 1 |S△=1/2 * | c d 1 || e f 1 |【| a b 1|| c d 1| 为三阶行列式,此三角形ABC在平面直角坐标系内A(a,b),B(c,d), C(e,f),这里| e f 1 |ABC选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小!】秦九韶三角形中线面积公式:S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3其中Ma,Mb,Mc为三角形的中线长.平行四边形的面积=底×高梯形的面积=(上底+下底)×高÷2直径=2 r圆的周长=πd= 2πr圆的面积= πr^2长方体的表面积=(长×宽+长×高+宽×高)×2长方体的体积 =长×宽×高正方体的表面积=棱长×棱长×6正方体的体积=棱长×棱长×棱长圆柱的侧面积=底面圆的周长×高圆柱的表面积=上下底面面积+侧面积圆柱的体积=底面积×高圆锥的体积=底面积×高÷3柱体体积=底面积×高平面图形名称符号周长C和面积S正方形 a—边长 C=4a S=a2长方形 a和b-边长 C=2(a+b) S=ab三角形 a,b,c-三边长其中s=(a+b+c)/2 S=ah/2h-a边上的高=ab/2×sin Cs-周长的一半=[s(s-a)(s-b)(s-c)]1/2A,B,C-内角=a^2sinBsinC/(2sinA)几何公理:1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等24 推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(sss) 有三边对应相等的两个三角形全等26 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理 n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即s=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 l=(a+b)÷2 s=l×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(asa)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(sas)94 判定定理3 三边对应成比例,两三角形相似(sss)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
间隔发车行程问题知识点回顾
发车问题知识点拨:
(1)一般间隔发车问题, 用3个公式迅速作答:
汽车间距=(汽车速度+行人速度)×相遇事件时间间隔
汽车间距=(汽车速度-行人速度)×追及事件时间间隔
汽车间距=汽车速度×汽车发车时间间隔
(2)求到达目的地后相遇和追及的公共汽车的辆数。
方法:画图---尽可能多的列3个好使公式---结合s全程=v×t---结合植树问题数数。
(3)当出现多次相遇和追及问题--柳卡(线段图)
例题解析
【例1】某停车场有10辆出租汽车,第一辆出租汽车出发后,每隔4分钟,有一辆出租汽车开出.在第一辆出租汽车开出2分钟后,有一辆出租汽车进场.以后每隔6分钟有一辆出租汽车回场.回场的出租汽车,在原有的10辆出租汽车之后又依次每隔4分钟开出一辆,问:从第一辆出租汽车开出后,经过多少时间,停车场就没有出租汽车了?
解析:这个题可以简单的找规律求解
时间车辆
4分钟 9辆
6分钟 10辆
8分钟 9辆
12分钟 9辆
16分钟 8辆
18分钟 9辆
20分钟 8辆
24分钟 8辆
由此可以看出:每12分钟就减少一辆车,但该题需要注意的是:到了剩下一辆的时候是不符合这种规律的到了12*9=108分钟的时候,剩下一辆车,这时再经过4分钟车厂恰好没有车了,所以第112分钟时就没有车辆了,但题目中问从第一辆出租汽车开出后,所以应该为108分钟。
对“发车问题”的化归与优化
为便于叙述,现将“发车问题”进行一般化处理:某人以匀速行走在一条公交车线路上,线路的起点站和终点站均每隔相等的时间发一次车。
他发现从背后每隔a分钟驶过一辆公交车,而从迎面每隔b分钟就有一辆公交车驶来。
问:公交车站每隔多少时间发一辆车?(假如公交车的速度不变,而且中间站停车的时间也忽略不计。
)
一、把“发车问题”化归为“和差问题”
因为车站每隔相等的时间发一次车,所以同向的、前后的两辆公交车间的距离相等。
这个相等的距离也是公交车在发车间隔时间内行驶的路程。
我们把这个相等的距离假设为“1”。
根据“同向追及”,我们知道:公交车与行人a分钟所走的路程差是1,即公交车比行人每分钟多走1/a, 1/a就是公交车与行人的速度差。
根据“相向相遇”,我们知道:公交车与行人b分钟所走的路程和是1,即公交车与行人每分钟一共走1/b, 1/b就是公交车和行人的速度和。
这样,我们把“发车问题”化归成了“和差问题”。
根据“和差问题”的解法:大数=(和+差)÷2,小数=(和- 差)÷2,可以很容易地求出公交车的速度是(1/a +1/b)÷2。
又因为公交车在这个“间隔相等的时间”内行驶的路程是1,所以再用“路程÷速度=时间”,我们可以求出问题的答案,即公交车站发车的间隔时间是1÷【(1/a + 1/b)÷2】=2÷(1/a + 1/b)。
二、把“发车问题”优化为“往返问题”
如果这个行人在起点站停留m分钟,恰好发现车站发n辆车,那么我们就可以求出车站发车的间隔时间是m÷n分钟。
但是,如果行人在这段时间内做个“往返运动”也未尝不可,那么他的“往返”决不会影响答案的准确性。
因为从起点站走到终点站,行人用的时间不一定被a和b都整除,所以他见到的公交车辆数也不一定是整数。
故此,我们不让他从起点站走到终点站再返回。
那么让他走到哪再立即返回呢?或者说让他走多长时间再立即返回呢?
取a和b的公倍数(如果是具体的数据,最好取最小公倍数),我们这里取ab。
假如刚刚有一辆公交车在起点站发出,我们让行人从起点站开始行走,先走ab分钟,然后马上返回;这时恰好是从行人背后驶过第b辆车。
当行人再用ab 分钟回到起点站时,恰好又是从迎面驶来第a辆车。
也就是说行人返回起点站时第(a+b)辆公交车正好从车站开出,即起点站2ab分钟开出了(a+b)辆公交车。
这样,就相当于在2ab分钟的时间内,行人在起点站原地不动看见车站发出了(a+b)辆车。
于是我们求出车站发车的间隔时间也是2ab÷(a+b)=2÷
(1/a+1/b)。
这样的往返假设也许更符合“发车问题”的情景,更简明、更严谨,也更易于学生理解和接受。
如果用具体的时间代入,则会更加形象,更便于说明问题。
三、请用上述两种方法,试一试,解答下面两题:
1、小红在环形公路上行走,每隔6分钟就可以看见一辆公共汽车迎面开来,每隔9分钟就有一辆公共汽车从背后超过她。
如果小红步行的速度和公共汽车的速度各自都保持一定,而汽车站每隔相等的时间向相反的方向各发一辆公共汽车,那么汽车站发车的间隔时间是多少?
2、小明从东城到西城去,一共用了24分钟。
两城之间同时并且每隔相等的时间对发一辆公共汽车。
他出发时恰好有一辆公共汽车从东城发出,之后他每隔4分钟看见一辆公共汽车迎面开来,每隔6分钟有一辆公共汽车从背后超过。
问小明从东城出发与到达西城这段时间内,一共有多少辆公共汽车从东城发出?
四、下面三题也是发车问题,试一试,揭示问题实质。
3、从电车总站每隔一定时间开出一辆电车。
甲和乙两人在一条街上沿着同一方向步行,甲每分钟步行82千米,每隔10分钟遇上一辆迎面而来的电车;乙每分钟步行60米,每隔10分15秒遇上迎面开来的一辆电车。
电车总站每隔__分钟开出一辆电车。
[题说] 1997年小学数学奥林匹克决赛A卷第12题
答案:11(分钟)
4、有一路电车的起点站和终点站分别是甲站和乙站。
每隔5分钟有一辆电车从甲站出发开往乙站。
全程要走15分钟。
有一个人从乙站出发沿电车路线骑车前往甲站。
他出发的时候,恰好有一辆电车到达乙站。
在路上他又遇到了10辆迎面开来的电车,才到达甲站。
这时候,恰好又有一辆电车从甲站开出。
问他从乙站到甲站用了多少分钟?
[题说] 第一届“华杯赛”初赛第16题
答案:40(分钟)
5、一条双向铁路上有11个车站。
相邻两站都相距7公里。
从早晨7点开始,有18列货车由第十一站顺次发出,每隔5分钟发出一列,都驶向第一站,速度都是每小时60公里。
早晨8点,由第一站发出一列客车,向第十一站驶去,时速是100公里,在到达终点站前,货车与客车都不停靠任何一站,问:在哪两个相邻站之间,客车能与3列货车先后相遇?
[题说] 第三届“华杯赛”决赛二试第6题
答案:在第5个站与第6个站之间,客车与三列货车相遇。
行程间隔发车解析
发车行程问题例题讲解
例题:A、B是公共汽车的两个车站,从A站到B站是上坡路。
每天上午8点到11点从A、B两站每隔30分同时相向发出一辆公共汽车。
已知从A站到B 站单程需要105分钟,从B站到A站单程需要80分钟。
问8:30、9:00从A站发车的司机分别能看到几辆从B站开来的汽车?
(2)在班车外。
联立3个基本公式好使。
汽车间距=(汽车速度+行人速度)×相遇事件时间间隔------1
汽车间距=(汽车速度-行人速度)×追及事件时间间隔------2
汽车间距=汽车速度×汽车发车时间间隔------3
1、2合并理解,即
汽车间距=相对速度×时间间隔
分为2个小题型:
1、一般间隔发车问题。
用3个公式迅速作答;
2、求到达目的地后相遇和追及的公共汽车的辆数。
标准方法是:画图-尽可能多的列3个好使公式-结合s全程=v×t-结合植树问题数数。
如何解决复杂的发车问题
∙校车问题。
就是这样一类题:队伍多,校车少,校车来回接送,队伍不断步行和坐车,最终同时到达目的地(即到达目的地的最短时间,不要求证
明)分4种小题型:根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类。
(1)车速不变-班速不变-班数2个(最常见)
(2)车速不变-班速不变-班数多个
(3)车速不变-班速变-班数2个
(4)车速变-班速不变-班数2个
标准解法:
∙画图-列3个式子:
∙1、总时间=一个队伍坐车的时间+这个队伍步行的时间;
∙2、班车走的总路程;
∙3、一个队伍步行的时间=班车同时出发后回来接它的时间。
∙
∙最后会得到几个路程段的比值,再根据所求代数即可。
∙
∙
简单例题:甲班与乙班学生同时从学校出发去15千米外的公园游玩,甲、乙两班的步行速度都是每小时4千米。
学校有一辆汽车,它的速度是每小时48千米,这辆汽车恰好能坐一个班的学生。
为了使两班学生在最短时间内到达公园,那么甲班学生与乙班学生需要步行的距离是多少千米?。